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stochastic adaptive dynamics

Economic systems often involve large numbers of agents whose behaviour,
and patterns of interaction, have stochastic components. The dynamic prop-
erties of such systems can be analysed using stochastic dynamical systems
theory. A key feature of these processes is that their long-run behaviour often
differs substantially from the behaviour of the deterministic process obtained
by taking expectations of the random wvariables. Furthermore, unlike the
deterministic dynamics, the theory yields sharp predictions about the prob-
ability of being in different equilibria independently of the initial conditions.

Stochastic adaptive dynamics require analytical methods and solution con-
cepts that differ in important ways from those used to study deterministic
processes. Consider, for example, the notion of asymptotic stability: in a
deterministic dynamical system, a state is locally asymptotically stable if any
sufficiently small deviation from the original state is self-correcting. We can
think of this as a first step toward analysing the effect of stochastic shocks;
that is, a state is locally asymptotically stable if, after the impact of a small,
one-time shock, the process evolves back to its original state.

This idea is not entirely satisfactory, however, because it treats shocks as if
they were isolated events. Economic systems are usually composed of large
numbers of interacting agents whose behaviour is constantly being buffeted
by perturbations from various sources. These persistent shocks have sub-
stantially different effects from one-time shocks:; in particular, persistent
shocks can accumulate and tip the process out of the basin of attraction of an
asymptotically stable state. Thus, in a stochastic setting, conventional no-
tions of dynamic stability — including evelutionarily stable strategies — are
inadequate to characterize the long-run behaviour of the process. Here we
shall outline an alternative approach that is based on the theory of large
deviations in Markov processes (Freidlin and Wentzell, 1984; Foster and
Young, 1990; Young, 1993a).

Types of stochastic perturbations

Before introducing formal definitions, let us consider the various kinds of
stochastic shocks to which a system of interacting agents may be exposed.
First, there is the interaction process itself whereby agents randomly en-
counter other agents in the population. Second, the agents’ behaviour will be
intentionally stochastic if they are employing mixed strategies. Third, their
behaviour may be unintentionally stochastic if their payoffs are subject to
unobserved utility shocks. Fourth, mutation processes may cause one type of
agent to change spontaneously into another type. Fifth, in- and out-migra-
tion can introduce new behaviours into the population or extinguish existing
ones. Sixth, the system may be hit by aggregate shocks that change the
distribution of behaviours. This list is by no means exhaustive, but it does
convey some sense of the range of stochastic influences that arise quite nat-
urally in economic (and biological) contexts.

Stochastic stability

The early literature on evolutionary game dynamics tended to sidestep stoc-
hastic issues by appealing to the law of large numbers. The reasoning is that,
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when a population is large, random influences at the individual level will tend
to average out, and the aggregate state variables will evolve according to the
expected (hence deterministic) direction of motion. While this approximation
may be reasonable in the short and medium run, however, it can be quite
misleading when extrapolated over longer periods of time. The difficulty is
that, even when the stochastic shocks have very small probability, their ac-
cumulation can have dramatic long-run effects that push the process far
away from its deterministic trajectory.

The key to analysing such processes is to observe that, when the aggregate
stochastic effects are “small” and the resulting process is ergodic, the long-run
distribution will often be concentrated on a very small subset of states —
possibly, in fact, on a single state. This leads to the idea of stochastic stability,
a solution concept first proposed for general stochastic dynamical systems by
Foster and Young (1990, p. 221): “the stochastically stable set (SSS) is the set
of states S such that, in the long run, it is nearly certain that the system lies
within every open set containing S as the noise tends slowly to zero.” The
analytical technique for computing these states relies on the theory of large
deviations first developed for continuous-time processes by Freidlin and
Wentzell (1984), and subsequently extended to general finite-state Markov
chains by Young (1993a). It is in the latter form that the theory is usually
applied in economic contexts.

An illustrative example

The following simple model illustrates the basic ideas. Consider a population
of n agents who are playing the “Stag Hunt’ game:
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The state of the process at time ¢ is the current number of agents playing A,
which we shall denote by z, € Z =1{0. 1, 2,....n}. Time is discrete. At the
start of period ¢+ 1, one agent is chosen at random. Strategy A is a best
response if z; < .7n and B is a best response if z, = .7n. (We assume that the
player includes herself in assessing the current distribution, which simplifies
the computations.) With high probability, say 1—¢, the agent chooses a best
response to the current distribution of strategies; while with probability € she
chooses 4 or B at random (each with probability &/2).

We can interpret such a departure from best response behaviour in various
ways: it might be a form of experimentation, it might be a behavioural
‘mutation’, or it might simply be a form of ignorance — the agent may not
know the current state. Whatever the explanation, the result is a perturbed
best response process in which individuals choose (myopic) best responses to
the current state with high probability and depart from best response be-
haviour with low probability.

This process is particularly easy to visualize because it is one-dimensional:
the states can be viewed as points on a line, and in each period the process
moves to the left by one step, to the right by one step, or stays put, Figure 1
illustrates the situation when the population consists of ten players.

The transitions indicated by solid arrows have high probability and rep-
resent the direction of best response, that is, the main flow of the process.
The dashed arrows go against the flow and have low probability, which is the
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Figure 1  Transitions for the perturbed best response process in the Stag Hunt game
and a population of ten agents. Noze: Each vertex represents the number of agents
playing action A at a given time. Solid arrows are transitions with high-probability,

dotted arrows are transitions with low (order-z) probability

same order of magnitude as £. (The process can also loop by staying in a
given state with positive probability; these loops are omitted from the figure
to avoid clutter.)

In this example the transition probabilities are easy to compute. Consider
any state z to the left of the critical value z* =7. The process moves right if
and only if one more agent plays 4. This occurs if and only if an agent
currently playing B is drawn (an event with probability 1 — z/10) and this
agent mistakenly chooses 4 (an event with probability ¢/2). In other words, if
z<7 the probability of moving right is R. = (1 — z/10)(¢/2). Similarly, the
probability of moving left is L. = (z/10)(1 — &/2). The key point is that the
right transitions have much smaller probability than the left transitions when
¢ is small. Exactly the reverse is true for those states z>7. In this case the
probability of moving right is R. = (1 — z/10)(1 — &/2), whereas the prob-
ability of moving left is L. = (z/10)(&/2). (At z=7 the process moves left
with probability .15, moves right with probability .35, and stays put with
probability .50.)

Computing the long-run distribution

Since this finite-state Markov chain is irreducible (ecach state is reachable
from every other via a finite number of transitions), the process has a unique
long-run distribution. That is, with probability 1, the relative frequency of
being in any given state z equals some number . independently of the initial
state. Since the process is one-dimensional, the equations defining p are
particularly transparent, namely, it can be shown that for every z<n,
u.R.=p. L.y This is known as the detailed balance condition. It has a
simple interpretation: in the long run, the process transits from z+1 to z as
often as it transits from z to z+ 1.

The solution in this case is very simple. Given any state z, consider the
directed tree T. consisting of all right transitions from states to the left of z
and all left transitions from states to the right of z. This is called a z-rree (see
Figure 2).

An elementary result in Markov chain theory says that, for one-dimen-
sional chains, the long-run probability of being in state z is proportional to
the product of the probabilities on the edges of T.:
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This is a special case of the Markov chain tree theorem, which expresses the
stationary distribution of any finite chain in terms of the probabilities of its z-
trees. (Versions of this result go back at least to Kirchhoff’s work in the
1840s; sce Haken, 1978, s. 4.8. Freidlin and Wentzell, 1984, use it to study
large deviations in continuous-time Wiener processes.)

Formula (1) allows us to compute the order-of-magnitude probability of
each state without worrying about its exact magnitude. Figure 2 shows, for
example, that us, the long-run probability of state z= 3, must be proportional
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Figure 2 The unique 3-tree

to &%, because the 3-tree has six dotted arrows, each of which has probability
of order & Using this method we can easily compute the relative probabilities
of each state.

Stochastic stability and equilibrium selection

This example illustrates a general property of adaptive processes with small
persistent shocks. That is, the persistent shocks act as a selection mechanism,
and the selection strength increases the less likely the shocks are. The reason is
that the long-run distribution depends on the probability of escaping from
various states, and the critical escape probabilities are exponential in €. Fig-
ure 1 shows, for example, that the probability of all-B (the left endpoint) is
larger by a factor of 1/ than the probability of any other state, and it is
larger by a factor of 1/¢* than the probability of all-A (the right endpoint). Tt
follows that, as £ approaches zero, the long-run distribution of the process is
concentrated entirely on the all-B state. It is the unique stochastically stable
state.

While stochastic stability is defined in terms of the limit as the perturbation
probabilities go to zero, sharp selection can in fact occur when the prob-
abilities are quite large. To illustrate, suppose that we take £=.20 in the
above example. This defines a very noisy adjustment process, but in fact the
long-run distribution is still strongly biased in favour of the all-B state. It can
be shown, in fact, that the all- B state is nearly 50 times as probable as the all-
A state. (See Young, 1998b, ch. 4, for a general analysis of stochastic se-
lection bias in one-dimensional evolutionary models.)

A noteworthy feature of this example is that the stochastically stable state
(all-B) does not correspond to the Pareto optimal equilibrium of the game,
but rather to the risk dominant equilibrium (Harsanyi and Selten, 1988). The
connection between stochastic stability and risk dominance was first pointed
out by Kandori, Mailath and Rob (1993). Essentially their result says that, in
any symmetric 2 x 2 game with a uniform mutation process, the risk dom-
inant equilibrium is stochastically stable provided the population is suffi-
ciently large. The logic of this connection can be seen in the above example.
In the pure best response process (¢=0) there are two absorbing states: all-B
and all-4. The basin of attraction of all-B is the set of states to the left of the
critical point, while the basin of attraction of the all-A is the set of states to
the right of the critical point. The left basin is bigger than the right basin. To
go from the left endpoint into the opposite basin therefore requires more
‘uphill” motion than to go the other way around. In any symmetric 2 x 2
coordination game the risk dominant equilibrium is the one with the widest
basin, hence it is stochastically stable under uniform stochastic shocks of the
above type.

How general is this result? It depends in part on the nature of the shocks.
On the one hand, if we change the probabilities of left and right transitions in
an arbitrary way, then we can force any given state — including non-equi-
librium states — to have the highest long-run probability; indeed this follows
readily from formula (1). (See Bergin and Lipman, 1996.) On the other hand,
there are many natural perturbations that do lead to the risk dominant
equilibrium in 2 x 2 games. Consider the following class of perturbed best
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response dynamics. In state z, let A(z) be the expected payoff from playing A
against the population minus the payoff from playing B against the pop-
ulation. Assume that in state z the probability of choosing A4 divided by the
probability of choosing B is well-approximated by a function of form
MAEVE where h(A) is non-decreasing in A, strictly increasing at A=0, and
skew-symmetric (h(A)=— h(—A)). The positive scalar f§ is a measure of the
noise level. In this set-up, a state is stochastically stable if its long-run prob-
ability is bounded away from zero as f — 0. Subject to some minor addi-
tional regularity assumptions, it can be shown that, in any symmetric 2 x 2
coordination game, if the population is large enough, the unique stochas-
tically stable state is the one in which everyone plays the risk-dominant
equilibrium (Blume, 2003).

Unfortunately, the connection between risk dominance and stochastic
stability breaks down — even for uniform mutation rates — in games with
more than two strategies per player (Young, 1993a). The difficulty stems
from the fact that comparing ‘basin sizes’ works only in special situations. To
determine the stochastically stable states in more general settings requires
finding the path of least resistance — the path of greatest probability — from
every absorbing set to every other absorbing set, and then constructing a
rooted tree from these critical paths (Young, 1993a). (An absorbing set is a
minimal set of states from which the unperturbed process cannot escape.)
What makes the one-dimensional situation so special is that there are only
two absorbing sets — the left endpoint and the right endpoint — and there is a
unique directed path going from left to right and another unique path going
from right to left. (For other situations in which the analysis can be sim-
plified, see Ellison, 2000; Kandori and Rob, 1995.)

There are many games of economic importance in which this theory has
powerful implications for equilibrium selection. In the non-cooperative Nash
bargaining model, for example, the Nash bargaining solution is essentially
the unique stochastically stable outcome (Young, 1993b). Different assump-
tions about the one-shot bargaining process lead instead to the selection of
the Kalai-Smorodinsky solution (Young, 1998a; for further variations see
Binmore, Samuelson and Young, 2003). In a standard oligopoly framework,
marginal cost pricing turns out to be the stochastically stable solution (Vega-
Redondo, 1997).

Speed of adjustment

One criticism that has been levelled at this approach is that it may take an
exceedingly long time for the evolutionary process to reach the stochastically
stable states when it starts from somewhere else. The difficulty is that, when
the shocks have very small probability, it takes a long time (in expectation)
before enough of them accumulate to tip the process into the stochastically
stable state(s). While this is correct in principle, the waiting time can be very
sensitive to various modelling details. First, it depends on the size and prob-
ability of the shocks themselves. As we have already noted, the shocks need
not be small for sharp selection to occur, in which case the waiting time need
not be long either. (In the above example we found that an error rate of 20
per cent still selects the all-B state with high probability.) Second, the ex-
pected waiting time depends crucially on the topology of interaction. In the
above example we assumed that each agent reacts to the distribution of
actions in the whole population. If instead we suppose that people respond
only to actions of those in their immediate geographic (or social) neigh-
bourhood, the time to reach the stochastically stable state is greatly reduced
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(Ellison, 1993; Young, 1998b, ch. 6). Third, the waiting time is reduced if the
stochastic perturbations are not independent, either because the agents act in
a coordinated fashion, or because the utility shocks among agents are sta-
tistically correlated (Young, 1998b, ch. 9; Bowles, 2004).

Path dependence

The results discussed above rely on the assumption that the adaptive process
is ergodic, that is, its long-run behaviour is almost surely independent of the
initial state. Ergodicity holds if, for example, the number of states is finite,
the transition probabilities are time-homogeneous, and there is a positive
probability of transiting from any state to any other state within a finite
number of periods. One way in which these conditions may fail is that the
weight of history grows indefinitely. Consider, for example, a two-person
game G together with a population of potential row players and another
population of potential column players. Assume that an initial history of
plays is given. In each period, one row player and one column player are
drawn at random, and each of them chooses an &-trembled best reply to the
opposite population’s previous actions (alternatively, to a random sample of
fixed size drawn from the opponent’s previous actions). This is a stochastic
form of fictitious play (Fudenberg and Kreps, 1993; Kaniovski and Young,
1995). The proportion of agents playing each action evolves according to a
stochastic difference equation in which the magnitude of the stochastic term
decreases over time; in particular it decreases at the rate 1/¢.

This type of process is not ergodic. It can be shown, in fact, that the long-
run proportions converge almost surely either to a neighbourhood of all-4 or
to a neighbourhood of all-B, where the relative probabilities of these two
events depend on the initial state (Kaniovski and Young, 1995). Processes of
this type require substantially different techniques of analysis from the er-
godic processes discussed earlier; see in particular Arthur, Ermoliev and
Kaniovski (1987), Benaim and Hirsch (1999) and Hofbauer and Sandholm
(2002).

Summary

The introduction of persistent random shocks into models with large num-
bers of interacting agents can be handled using methods from stochastic
dynamical systems theory; moreover, there is virtually no limit on the di-
mensionality of the systems that can be analysed using these techniques. Such
processes can exhibit path dependence if the weight of history is allowed to
grow indefinitely. If instead past actions fade away or are forgotten, the
presence of persistent random shocks makes the process ergodic and its long-
run behaviour is often easier to analyse. An important feature of such er-
godic models is that some equilibrium states are much more likely to occur in
the long run than others, and this holds independently of the initial state. The
length of time that it takes to reach such states from out-of-equilibrium
conditions depends on key structural properties of the model, including the
size and frequency of the stochastic shocks, the extent to which they are
correlated among agents, and the network topology governing agents’ in-
teractions with one another.

H. Peyton Young
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