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Adaptive heuristics refer to simple behavioral rules that are directed toward payoff
improvement but may be less than fully rational. The number and variety of
such rules is virtually unlimited; here we shall survey several prominent
examples drawn from psychology, computer science, statistics, and game theory.
Of particular interest are the informational inputs required by different learning
heuristics and the conditions under which they lead to equilibrium behavior
when used by all the players in a game. The empirical validity of various

learning procedures is treated elsewhere (see experimental game theory).

One of the simplest learning heuristics is cumulative payoff matching, in which the
subject plays actions next period with probabilities proportional to their
cumulative payoffs to date. Specifically, consider a finite stage game G that is
played infinitely often, where all payoffs are assumed to be strictly positive. Let
ajj(t) denote the cumulative payoff to player i over all those periods 0 < t' <'t
when he played action j, including some initial propensity a;(0) > 0. The
cumulative payoff matching rule stipulates that in period t + 1, player i chooses
action j with probability
pit +1) = aij(t)/ Zkan(t). 1)



Notice that the distribution has full support given the assumption that the initial
propensities are positive. This idea was first proposed by the psychologist
Nathan Herrnstein (1970) to explain certain types of animal behavior, and falls
under the more general rubric of reinforcement learning (Bush and Mosteller, 1951;
Suppes and Atkinson, 1960; Cross, 1983). The key feature of a reinforcement
model is that the probability of choosing an action increases monotonically with
the total payoff it has generated in the past (assuming the payoffs are positive).
In other words, taking an action and receiving a positive payoff reinforces the
tendency to take that same action again. This means, in particular, that play can
become concentrated on certain actions simply because they were played early

on, that is, play can be habit-forming (Roth and Er’ev, 1995; Er’ev and Roth, 1998)

Reinforcement models differ in various details that materially affect their
theoretical behavior as well as their empirical plausibility. Under cumulative
payoff matching, for example, the payoffs are not discounted, which means that
current payoffs have an impact on current behavior that diminishes as 1/t.
Laboratory experiments suggest, however, that recent payoffs matter more than
distant ones (Er'ev and Roth, 1998); furthermore the rate of discounting has

implications for the asymptotic properties of such models (Arthur, 1991).

Another variation in this class of models involves the concept of an aspiration
level. This is a level of payoffs, sometimes endogenously determined by past
play, that triggers a change in a player’s behavior when current payoffs fall
below the level and inertial behavior when payoffs are above the level. The
theoretical properties of these models have been studied for 2 x 2 games, but
relatively little is known about their behavior in general games (Borgers and

Sarin, 2000; Cho and Matsui, 2006).



Next we turn to a class of adaptive heuristics based on the notion of minimizing
regret, about which more is known in a theoretical sense. Fix a particular player
and let o(t) denote the average per period payoff that she received over all
periods t' <t.  Let ay(t) denote the average payoff she would have received by
playing action j in every period through t, assuming the opponents played as
they actually did. The difference rj(t) = o,(t) - a(t) is the subject’s unconditional
regret from not having played j in every period through t. (In the computer
science literature this is known as external regret (see Gondek and Greenwald,

2002).

The following simple heuristic was proposed by Hart and Mas-Colell (2000;
2001) and is known as unconditional regret matching: play each action with a
probability that is proportional to the positive part of its unconditional regret up

until now, that is,

pit +1) = [5j(O] +/Zk[re(B)]- ()

This learning rule has the following remarkable property: when used by any one
player, his regrets become nonpositive almost surely as t goes to infinity
irrespective of the behavior of the other players. When all players use the rule, their
time average behavior converges almost surely to a generalization of correlated
equilibrium known as the Hannan set or the coarse correlated equilibrium set
(Hannan, 1957, Moulin and Vial, 1978; Hart and Mas-Colell, 2000; Young, 2004).
In general, a coarse correlated equilibrium (CCE) is a probability distribution over
outcomes (joint actions) such that, given a choice between: i) committing ex ante
to whatever joint action will be realized, and ii) committing ex ante to a fixed

action, given that the others are committed to playing their part of whatever joint



action will be realized, every player weakly prefers the former option. By
contrast, a correlated equilibrium (CE) is a distribution such that, after a player’s
part of the joint action has been announced, he prefers to play it instead of
something else, assuming that the other players also play their part of the joint
action. It is straightforward to show that the coarse correlated equilibria form a

convex set that contains the set of correlated equilibria (Young, 2004, 3.3).

The heuristic specified in (2) belongs to a large family of rules whose time-
average behavior converges almost surely to the coarse correlated equilibrium
set; equivalently, that assures no long-run regret for all players simultaneously.
For example, this property holds if we let pj(t + 1) = [5()]L° /Xur(t)].? for some
exponent 6 > 0; one may even take different exponents for different players.
Notice that these heuristics put positive probability only on actions that would
have done strictly better (on average) than the player’s realized average payoff.
These are sometimes called better reply rules. Fictitious play, by contrast, puts
positive probability only on action(s) that would have done best against the
opponents’ frequency distribution of play. Fictitious play does not necessarily
converge to CCE; indeed in some 2 x 2 coordination games fictitious play causes
perpetual miscoordination, in which case both players have unconditional long-
run regret (Fudenberg and Kreps, 1993; Young, 1993a). By taking 6 very large,
however, we see that there exist better reply rules that are arbitrarily close to
fictitious play and that do converge almost surely to CCE. Fudenberg and
Levine (1995, 1998, 1999) and Hart and Mas-Colell (2001) give general conditions
under which stochastic forms of fictitious play converge in time average to the

CCE.



Without complicating the adjustment process too much, one can construct rules
whose time average behavior converges almost surely to the correlated
equilibrium set. To define this class of heuristics we need to introduce the notion
of conditional regret. Given a history of play through time t and a player i,
consider the change in per period payoff if i had played action k in all those
periods t" < t when he actually played action j (and the opponents played what
they did). If the difference is positive player i has conditional regret — he wishes
he had played k instead of j. Formally, i's conditional regret at playing j instead of
k up through time t, ri(t), is 1/t times the increase in payoff that would have
resulted from playing k instead of j in all periods t" < t. Notice that the average is
taken over all t periods to date, hence if j was not played very often, riy(t) will be

small.

Consider the following conditional regret matching heuristic proposed by Hart and
Mas-Colell (2000): an agent played action j in period t, then in period t + 1 he

plays according to the distribution

qu(t+ 1) =& Tje(t): for all k #j, and q(t + 1) =1 — & Yyes (8. (3)

In effect 1 - ¢ is the degree of inertia, which must be large enough that q(t + 1) is
nonnegative for all realizations of the conditional regrets rj(t). If all players use
conditional regret matching and ¢ is sufficiently small, then almost surely the
joint frequency of play converges to the set of correlated equilibria (Hart and
Mas-Colell, 2000). Notice that pointwise convergence is not guaranteed; the result
says only that the empirical distribution converges to a convex set. It should also
be remarked that if a single player uses conditional regret matching, there is no

assurance that his conditional regrets will become non-positive over time unless



we assume that the other players use the same rule. This stands in contrast to
unconditional regret matching, which assures nonpositive unconditional regret
for the player who uses it irrespective of the behavior of the other players.
Somewhat more sophisticated updating procedures can be designed that
unilaterally assure no conditional regret; see Foster and Vohra (1999), Fudenberg
and Levine (1998, chapter 4), Hart and Mas-Colell (2000), and Young (2004,

chapter 4).

A natural question now arises: do there exist simple heuristics that allow the
players to learn Nash equilibrium instead of correlated or still coarser forms of
equilibrium? The answer depends on how demanding we are about the long-
run convergence properties of the learning dynamic. Notice that the preceding
results on regret matching were concerned solely with time-average behavior; no
claim was made that period-by-period behavior converges to any notion of
equilibrium. Yet it is period-by-period behavior that is most relevant if we want
to assert that the players have “learned” to play equilibrium. It turns out that it
is very difficult to design adaptive learning rules under which period-by-period
behavior converges almost surely to Nash equilibrium in any finite game, unless
one builds in some form of coordination among the players (Hart and Mas-
Colell, 2003, 2006). The situation becomes even more problematic if one insists
on fully rational, Bayesian learning. In this case it can be shown that there exist
games of incomplete information in which no form of Bayesian rational learning
causes period-by-period behaviors to come close to Nash equilibrium behavior
even in a probabilistic sense (Jordan, 1991, 1993; Foster and Young, 2001; Young,

2004; see also belief learning).



If one backs off of full rationality, however, one can design stochastic adaptive
heuristics that cause period-by-period behaviors to come close to Nash
equilibrium without necessarily converging to it. Here is one approach due to
Foster and Young (2003); for related work see Foster and Young (2003) and
Germano and Lugosi (2004). Let G be a finite n-person game that is played
infinitely often. At each point in time, each player thinks that the others are
playing i.i.d. strategies. Specifically, at time t player i thinks that j is playing the
iid strategy pj(t) on j's action space, and that the opponents are playing
independently, that is, their joint strategies are given by the product distribution
p-i(t) = s pi(t). Suppose that i's best response is to play a smoothed best
response to p.(t); for example, with probability 1 — & he plays a strict best
response and with probability & he chooses an action uniformly at random.
Denote this response by qi’(t), which depends of course on p.(t). Player i
views p.(t) as a hypothesis that he wishes to test against data. After first
adopting this hypothesis he waits for a number of periods (say s) while he
observes the opponents’ behavior, all the while playing q’(t). After s periods
have elapsed, he compares the empirical frequency distribution of the
opponents’ play during these periods with his hypothesis. Notice that both the
empirical frequency distribution and the hypothesized distribution lie in the
same compact subset of Euclidean space. If the two differ by more than some
tolerance level t (in the Euclidean metric), he rejects his current hypothesis and

chooses a new one.

In choosing a new hypothesis, he may wish to take account of information
revealed during the course of play, but we shall also assume he engages in some
experimentation. Specifically, we shall suppose that he chooses a new hypothesis

according to a probability density that is uniformly bounded away from zero on



the space of hypotheses. One can show the following: given any ¢ > 0, if the
deviation from best response & is sufficiently small, the test tolerance t is
sufficiently small, and the amount of data collected s is sufficiently large, then
the players’ period-by-period behaviors constitute an g-equilibrium of the stage
game G at least 1 — ¢ of the time (Foster and Young, 2003). In other words,
classical statistical hypothesis testing is a heuristic for learning Nash equilibria of
the stage game. Moreover, if the players adopt hypotheses that condition on
history, they can learn complex g-equilibria of the repeated game, including

forms of subgame perfect equilibrium.

The theoretical literature on strategic learning has advanced rapidly in recent
years. Compared to the situation a decade ago, a much richer class of learning
models has been identified and more is known about their long-run convergence
properties. There is also a greater understanding of the various kinds of
equilibrium that different forms of learning deliver. An important open question
is how these theoretical proposals relate to the empirical behavior of laboratory
subjects. Obviously this question could not even be posed unless such proposals
were in hand. The important point, however, is not whether a given theoretical
rule fits the data, but whether key features identified by theory - including
informational requirements, inertia, and experimentation — help to explain actual
behavior. It may also be that the less demanding forms of equilibrium to which
some of these processes converge turn out to be useful predictors of long-run

behavior in experimental situations.
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