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Abstract

This paper constructs options-implied probability density functions for real
interest rates. These use options on TIPS, that were launched in 2009. Data
availability limits us to studying short-maturity probability density functions
for intermediate- to long-term TIPS yields. The pdfs imply high uncertainty
about real rates. I also estimate empirical pricing kernels using these option
prices along with time series models fitted to real interest rates. The empirical
pricing kernel implies that investors have high marginal utility in states of the
world with high real rates.
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1 Introduction

Options-markets provide risk-neutral distributions of the future values of many as-

set prices and even macroeconomic variables. These include probability density

functions (pdfs) for future nominal interest rates (see a long literature including Li

and Zhao (2009)) and inflation (Kitsul and Wright, 2013). But to date, as far as I

know, no work has been done on options-implied pdfs for real interest rates. This

is the task undertaken in the present paper. A pdf for real interest rates cannot be

backed out from pdfs from nominal interest rates and inflation without making an

assumption about the correlation between these two. However, over the last seven

years, the Chicago Board Options Exchange (CBOE) has traded options on a TIPS

Exchange Traded Fund. I show that these can be used to construct risk-neutral pdfs

of intermediate-to-long term TIPS yields at short horizons. The standard deviation

of options-implied pdfs for nominal interest rates is often treated as a measure of

monetary policy uncertainty. Yet, aggregate demand should be determined by real

rather than nominal rates, and so pdfs for real rates arguably give a better measure

of investors’ beliefs about the future effective stance of monetary policy. Even the

limited snapshot of uncertainty about real interest rates that can be obtained from

the available data may thus be important to monetary policymakers.

The plan for the remainder of this paper is as follows. In section 2, I describe the

data and the methodology for extracting risk-neutral pdfs (also known as state-price

densities) for real interest rates. Section 3 contains the results for implied volatilities

and risk-neutral pdfs. Section 4 evaluates these as physical density forecasts and finds

some evidence for the existence of risk-premia, notwithstanding the short available

data span. Section 5 provides econometric-based physical density forecasts for real

interest rates and then adapts the methodology of Rosenberg and Engle (2002) to
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obtain a time-varying empirical pricing kernel. Based on these results, investors

generally appear to view high real interest rate states as having high marginal utility.

Section 6 concludes.

2 Data and Methodology

Since January 2009, the CBOE has traded call and put options on the Barclays TIPS

ETF. These options have expiration dates of up to 9 months ahead and various strike

prices. The underlying asset is a portfolio of TIPS with a duration that is stable at 7

years. I obtained prices (both trades and quotes) from the CBOE from inception to

the end of January 2016. Table 1 lists some summary statistics of these options. On

average, 49 options change hands a day1 where each option is for the purchase/sale

of 100 shares in the ETF, each of which has a value of roughly $100. Thus the

daily transaction volume has a notional underlying amount of about $500,000. This

amount is minuscule relative to trading in conventional interest rate derivatives—for

comparison trading volume in Eurodollar options averaged around 440,000 contracts

per day in 2015. But that does not mean that the prices are uninformative. In

experimental game theory, it is common to study individuals’ behavior when tiny

sums are at stake. Prediction markets are a good example of cases in which the stakes

are small, but there is strong evidence that prices are nonetheless quite informative

(Wolfers and Zitzewitz, 2004). The dollar trading volumes in TIPS options are far

bigger than those in experimental games and in prediction markets, and it seems

reasonable to presume that they are reflective of traders’ beliefs. Nonethleless it

is clear that this is a small and illiquid market and results should be treated with

caution, especially in 2009 and 2010 when liquidity was particularly limited.

1This is the total number of options that change hands each day—the number of distinct trades
is smaller.
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I do all empirical work with midpoints of bid and ask quotes. This makes for

a large dataset of n = 164, 320 options quotes. I prefer this to using actual trades

because that would give a much smaller dataset, and one in which bid-ask bounce

would be a major concern. Bid-ask spreads are wide, and average around 18 percent.

The quotes on call/put options have average moneyness slightly below/above one

respectively, indicating that the options quotes tend to be in the money. Note however

that the price of an in-the-money put/call option to be converted to that of an out-

of-the-money call/put option via put-call parity, which is an arbitrage relationship

(Stoll, 1969).

2.1 Semiparametric State Price Densities

In estimating state price densities, one possible approach is to use the observed quotes

on options at a particular maturity on a particular day in isolation to directly estimate

the state price density at that maturity on that day, as in Bliss and Panigirtzoglou

(2002) and Kitsul and Wright (2013). In the current context, I do not use that

approach for a number of reasons. Firstly, there are on average 21 strike prices for

each maturity/trading day combination, which constitutes a very small sample size

especially given that the data are noisy. Secondly, there are gaps in the available

strike prices in many cases. Thirdly, the available options are for fixed maturity

dates (the third Friday of the month), whereas it is easier to compare state price

densities over time when they are for fixed horizons, like three months ahead.

Instead, I use a smoothing approach to estimate prices that are not actually

observed. Intuitively, the idea is to infer prices from the observed prices of options

that are similar in maturity, strike price and other characteristics. This smooths out

measurement error in individual quotes. More precisely, I adopt the semiparametric
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approach proposed by Aı̈t-Sahalia and Lo (1998). I convert the observed options

prices into Black-Scholes implied volatilities. Let these options implied volatilities be

{σi}ni=1, where n is the total number of options, pooling all call and put options on all

trading days, strike prices and expiration dates. I assume that the implied volatility

is a function of a state vector, σ(Zi), where the px1 state vector, Zi, includes the

strike price or moneyness of the option. I assume that the price of a call option is

CBS(S,X, rf , d, τ, σ(Z)) where CBS(.) is the Black-Scholes expression for the price of

a call option , S is the price of the underlying security, X is the strike price of the

option, r is the risk-free rate, d is the dividend-yield of the security and τ is the time-

to-maturity of the option. I estimate the implied volatility function nonparametrically

as

σ̂(Z) =
Σn
i=1Π

p
j=1k(

Zj−Zij
hj

)σi

Σn
i=1Π

p
j=1k(

Zj−Zij
hj

)
(1)

where k(.) is the Gaussian kernel and the bandwidth hj is set to
c0σjn

−1/11

log(n)
where

σj is the standard deviation of Zij. The value of c0 is determined by 10-fold cross

validation2. The nonparametric estimate of the implied volatility gives an implied

call option price for any choice of Z, S, rf , d and τ . The second derivative of this

call price is then the state-price density, or risk-neutral options implied pdf (Breeden

and Litzenberger, 1978). In the empirical work, the risk-free rate is measured from

3-month LIBOR—over the period in question, short-term risk-free rates are very close

to zero. Meanwhile, the dividend yield is measured as the trailing 12-month yield on

the TIPS ETF.

2Standard, or leave-one-out cross-validation would pick c0 so as to minimize mean square fitting
error, where the fit for each observation is computed omitting that one observation. This would be
very computationally costly given the large sample size that I have. Instead, I split the data into 10
roughly equal-sized bins, and compute the errors within each bin, where the fit is computed omitting
that bin. The parameter c0 is chosen to minimize the mean square fitting error over all these bins.
This reduces the number of nonparametric function estimates from the sample size to 10.
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Equation (1) can be estimated over the full sample, effectively pooling information

across the whole sample period. Alternatively, equation (1) can be estimated for each

calendar month separately. This pools information across multiple days, but allows

for the possibility of lower frequency changes that are not captured by the state

vector. I have computed the pdfs in both ways. However, in order to conserve space,

I report the result only using the approach where the implied volatility is estimated

for each calendar month separately.

This of course gives us a pdf for the price of a share in the TIPS ETF. But this

ETF has a duration of about 7 years, giving the approximation:

∆yt ' −
1

7
∆ log(Pt) (2)

where Pt is the price of the ETF and yt is the zero-coupon TIPS yield. This in turn

allows the pdf for the TIPS price to be converted into a pdf for the TIPS yield. I

use the dataset of Gürkaynak et al. (2010) for zero-coupon TIPS yields. It should be

noted that equation (2) is empirically a very good approximation—regressing three-

month changes in seven-year zero-coupon yields on the corresponding change in the

log price of the TIPS ETF gives a coefficient estimate of almost exactly −1
7

(-0.159)

with an R-squared of 93 percent.

Moreover, as the vast majority of changes in TIPS yields are level shifts, equation

(2) can also provide a good approximation to the pdf for the change in any TIPS

yield with maturity in at least the five-to-ten year range. The information that can

be gathered from these TIPS options is limited by the fact that they are short maturity

options on longer-term TIPS yields, but this nonetheless represents an important first

look at state-price densities for real interest rates.
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3 Results

3.1 Implied Volatilities

I first plot the average annualized implied volatility of TIPS prices, by month, av-

eraged across all options with moneyness between 0.9 and 1.1, in Figure 1. The

implied volatility was high in early 2009. This was in the immediate aftermath of the

financial crisis—TIPS prices were volatile and liquidity was unusually poor. Implied

volatilities climbed in 2011, which was during the European debt crisis. Since 2012,

TIPS implied volatilities have been fairly stable. Over the sample period, TIPS im-

plied volatilities have averaged around 10 percentage points at an annualized rate.

Given the relationship between real yields and prices (equation (2)), this means that

the options-implied volatility of real rates is around 1.4 percentage points per annum.

Using daily real yield data (Gürkaynak et al., 2010), the realized volatility of seven-

year TIPS zero-coupon yields over the sample period is 80 basis points per annum. In

other financial markets, it is standard to find that options-implied volatilities exceed

realized volatilities, and this is interpreted as a variance risk premium (Bollerslev et

al., 2010; Choi et al., 2013). I observe the same phenomenon for TIPS yields.

To compare these implied volatilities with their nominal counterparts, I used the

same methodology to obtain the annualized implied volatility of options on ten-year

nominal Treasury futures—a long-standing and very liquid options market. These

are shown in Figure 2. The options-implied volatility of a ten-year nominal futures

contract was also elevated in early 2009, but not as much as the TIPS implied volatil-

ity. This is perhaps because the financial crisis led to fewer strains in the market for

nominal Treasury securities. The options-implied volatility of a ten-year nominal fu-

tures contract fell in the first part of 2011, while TIPS implied volatilities were rising,

though the nominal implied volatility climbed a bit later that year. The effect of the
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“taper tantrum” of mid 2013 is more apparent in nominal implied volatilities than

in TIPS implied volatilities. That’s perhaps not surprising, since Federal Reserve

large scale asset purchases were overwhelmingly concentrated in nominal securities.

Nominal implied volatilities also climbed in late 2014, as oil prices slid, and this did

not affect TIPS implied volatilities very much.

Over the sample period, nominal implied volatilities have averaged around 7 per-

centage points at an annualized rate. As discussed in Burghardt and Belton (2005),

the precise terms of a ten-year nominal Treasury futures contract are such that the

effective underlying security is a nominal coupon security with 6.5 to 7 years to ma-

turity (the “ten-year” label is somewhat misleading). The duration of this security

is around 6 years. So the options-implied volatility of six-year zero-coupon nominal

yields is around 1.2 percentage points per annum. Meanwhile, using daily nomi-

nal yield data the realized volatility of six-year nominal zero-coupon yields over the

sample period is 92 basis points per annum.

As Campbell et al. (2009) point out, whereas one might in theory think that TIPS

yields ought to be determined by the long-run marginal product of capital and ought

to be very stable, in practice TIPS yields are quite unstable. This shows up in the

options market as well. The spread between options-implied and realized volatility

(the variance risk premium) seems to be bigger for TIPS than for nominal bonds.

Figure 3 plots the average TIPS implied volatility by moneyness of the option.

Under the Black-Scholes assumptions, this should be flat. But it in fact exhibits a

pronounced volatility smile.
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3.2 Computing PDFs

I next turn to the construction of the full pdfs. I consider two choices of the state

vector that governs the implied volatility of different options, as follows:

1. S1. The state vector is (X,S, τ)′: the strike price, price of the underlying security

and maturity.

2. S2. The state vector is (X/S, τ, σEGARCH)′: the moneyness and maturity of the

option, and the volatility of daily changes in seven-year TIPS yields implied by

an EGARCH(1,1) model with conditionally t−distributed errors. The param-

eters of the EGARCH model are estimated by maximum likelihood over the

whole period for which TIPS yields are available (since January 1999).

The idea of using EGARCH-filtered volatility as an element of the state vector was

used in the context of nominal interest rate derivatives by Li and Zhao (2009).

Table 2 shows the option pricing errors using either of these two state vectors—the

percentage difference between actual options prices and the fitted options price using

the nonparametric estimate of the volatility function in equation (1) (estimated for

each month separately, as discussed above). The median absolute pricing error is a

bit above 2 percent with either state vector. R2 values—the ratio of the variance

of fitted implied volatilities to observed implied volatilities—are around 80 percent.

The methodology is using fitted options prices, so it is an important check on the

adequacy of the methodology and state vector that the options pricing errors not be

too big. It can be seen from Table 2 that this is indeed the case.

State variables S1 and S2 both contain three elements and are thus equally parsi-

monious. State vector S1 can be thought of as pooling options with similar maturity

and moneyness over days when the level of real rates is similar. State vector S2
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can instead be thought of as pooling options with similar maturity and moneyness

over days when the level of real rate volatility is similar. Both of these are reasonable

modeling choices. From Table 2 we see that in the sample at hand, both state vectors

provide a good fit to observed options prices, although S2 does a bit better.

Figures 4 and 5 show the implied pdfs for real yields at the three-month maturity

as of the first day of each year from 2009 to 2016, inclusive, for the two different state

vectors. The densities have a standard deviation of real rates that is around 60 basis

points. The densities are more dispersed in the early years of the sample (2009-2011)

than more recently, especially when using state vector S2. Asymptotic 95% confidence

intervals are included in these figures.3 The uncertainty in the pdfs is driven by

measurement error in options prices. While measurement error for individual options

prices is considerable, with the smoothing procedure it is overwhelmed by the large

sample size, leaving tight confidence intervals. The prices used to construct the

state price density are these smoothed prices that average out measurement error in

individual quotes.4

Figures 6 and 7 repeat the exercise at the six-month maturity. Again, the densities

are more dispersed early in the sample, especially when using state vector S2, and

are precisely estimated. The densities are modestly skewed in the direction of higher

real rates.

4 Evaluation of Density Forecasts

If agents were risk-neutral, then the pdfs reverse-engineered from options ought to be

good density forecasts for future TIPS yields. As the market in TIPS options is still

3These are formed from the variance-covariance matrix of implied volatilities, computed assuming
iid measurement error in options prices, and then applying the delta method.

4If equation (1) were estimated over the entire sample, the standard errors would be even tighted.
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young, evaluation of these options-implied density forecasts is difficult. Still, I have

28 non-overlapping one-quarter ahead density forecasts which is enough to make an

attempt at density forecast evaluation. I follow Diebold et al. (1998) in evaluating

these density forecasts by checking that the probability integral transform (PIT) of the

realized data is both uniform on the unit interval and independent over time. Figure

8 shows the histogram of the PIT of the realized data for non-overlapping forecasts

of one-quarter-ahead TIPS yields made at the end of each quarter from 2009Q1 to

2015Q4, respectively, using state variables S1. The realized real rate tends to lie

towards the left of the forecast density, consistent with a positive real term premium.

The likelihood ratio test of Berkowitz (2001)—that jointly tests that the PIT is both

uniform and independent over time—rejects with a p-value of below 0.01. Thus,

despite a small sample, I can reject the hypothesis that the options-implied pdfs

embeds no risk premium, at conventional significance levels.

The finding that the options-implied pdfs embed a risk premium, even though

statistically significant, could nevertheless be idiosyncratic to this unusual period.

Swanson and Williams (2014) document that interest rate futures and surveys both

consistently predicted near-term liftoff from the zero lower bound throughout much

of the period from 2009 to 2015, even though that didn’t actually happen till the

end of 2015. Interest rate futures embed a term premium, but surveys should not.

Time alone will tell whether realized real rates continue to lie towards the left of the

forecast density, or whether this was idiosyncratic to the years following the Great

Recession.
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5 Physical PDFs and the Empirical Pricing Kernel

Probability densities under the physical (P ) measure weight different outcomes by

their actual probabilities. The implied pdfs extracted from options reweight outcomes

by marginal utility, and so give probabilities under the risk-neutral (Q) measure.

Outcomes in which the marginal utility of an investor is high get more weight under

the risk-neutral measure than under the physical measure. The evidence from the

last section indicates that physical and risk-neutral pdfs are significantly different,

even with the short sample period that is available.

In this section, I estimate physical pdfs for real interest rates, and adapt the

methodology of Rosenberg and Engle (2002) to obtain a time-varying empirical pricing

kernel projected onto real interest rate states.

First, I fit a univariate EGARCH(1,1) model with t−distributed conditional er-

rors to daily changes in seven-year TIPS yields. I estimate the model over the whole

period for which TIPS yields are available by maximum likelihood, exactly as in

the construction of state variables S2 above. Then, at each date, I simulate density

forecasts for these TIPS yields. If the model is correctly specified, then these are

density forecasts under the physical measure. Figure 9 shows these EGARCH-based

density forecasts at the start of each year at the three-month horizon—results at the

six-month horizon are not shown, but are qualitatively similar. This specification

does not allow for mean reversion in real interest rates, but does allow for poten-

tially asymmetric conditional volatility, and conditional excess kurtosis. These latter

features are most important for near-term density forecasts.

Let rt denote the seven-year real interest rate. I specify a pricing kernel from time
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t to time t+ τ that is a nonlinear function of rt+τ :

Mt(θt, rt+τ ) = θ0t exp(θ1tT1(rt+τ ) + θ2tT2(rt+τ )) (3)

where θt = (θ1t, θ2t)
′ is a vector of parameters, θ0t = e

−rft(τ)τ

E(exp(θ1tT1(rt+τ )+θ2tT2(rt+τ )))
, rft(τ)

is the nominal τ -period risk-free rate, and Tj(.) is a Chebyshev polynomial, such that

Tj(x) = cos(j cos−1(2x−a−b
b−a )), where a and b are the endpoints of the interval over

which the Chebyshev polynomial is expected to provide an approximation.5 These

are set to 1.2 percentage points below and above the current real interest rate, rt. At

each time t, this gives an empirical pricing kernel.

Let fQt (rt+τ ) denote the risk-neutral pdf for rt+τ as of time t, obtained in section

3. The horizon τ is either three or six months, and the state vector can be either

S1 or S2. Let fPt (rt+τ ) denote the physical pdf obtained from the fitted EGARCH

model. As is well known,

fQ(rt+τ ) = erf,t(τ)fP (rt+τ )Mt (4)

where Mt is the pricing kernel from time t to time t + τ. I estimate the parameters

of the pricing kernel to solve the optimization problem:

θ̂t = arg min
θt

ΣL
i=1(f

Q(ri,t+τ )− erf,t(τ)fP (ri,t+τ )Mt(θt, ri,t+τ ))
2 (5)

where {ri,t+τ}Li=1 is a grid of possible values of rt+τ . The grid consists of 32 points in

the interval rt±1.2 percentage points.

Intuitively, this procedure is simply measuring the empirical pricing kernel as the

5The specification of θ0t ensures that the expectation of the pricing kernel is the inverse of the
price of a τ−period risk-free bond.
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ratio of the Q-measure pdf to the P -measure pdf. However, following the approach

of Rosenberg and Engle (2002), I restrict the pricing kernel to have the functional

form in equation (3).

Figure 10 shows the estimated empirical pricing kernels at the start of each year, at

the horizon, τ , of 3 months. Although the pricing kernels vary over time, the empirical

pricing kernels generally slope up, meaning that marginal utility is highest in high

real interest rate states of the world. As in the previous section, this is consistent

with a positive real term premium. It contrasts somewhat with estimated pricing

kernels for stock returns or inflation, which are found to be U-shaped in returns and

inflation (see, for example Aı̈t-Sahalia and Lo (2000), Jackwerth (2000) and Kitsul

and Wright (2013)).

6 Conclusion

Options on TIPS have recently been launched, and in this paper I have used these to

construct risk-neutral probability densities for real interest rates going back to 2009.

The nature of the options that trade mean that it is only possible to obtain pdfs at

horizons of a few months and for real interest rates at the seven-year maturity. This

contrasts with the situation for nominal interest rates, where there is a wide range of

expiration times and underlying maturities.

The pdfs that I obtained imply high uncertainty about real rates, especially in

2009-2011. As is well known, options-implied pdfs embed risk premia, and I have

shown direct evidence that they should not be interpreted as physical density fore-

casts. Risk-neutral pdfs overweight high marginal utility states of the world, relative

to their actual physical probabilities. The high marginal utility states of the world

appear to be associated with high real interest rates. However, Feldman et al. (2015)
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make a strong case that policymakers should actually want risk-neutral probabilities,

weighted by marginal utility, rather than physical probabilities.

I hope that the pdfs for index-linked bond yields provided here can be useful

to central banking practice, and can be used and analyzed more extensively as the

market in TIPS options matures. Since 2009 TIPS and nominal interest rate implied

volatilities have diverged at times, and might do so more in the future. Uncertainty

about future real interest rates can now—subject to many limitations—be directly

reverse-engineered from asset prices.
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Table 1: Options Summary Statistics

Mean SD Min Max

Trades

Daily Call Volume 28 106 0 2528

Daily Put Volume 21 71 0 1175

Quotes

Moneyness (Call) 0.94 0.07 0.57 1.14

Moneyness (Put) 1.03 0.06 0.79 1.34

Maturity 102 73 1 243

Bid-Ask Spread (%) 18.4 11.2 0.9 50.0

Notes: Volume represents the total volume per day in number of contracts. Each
contract is for 100 units in the ETF. Moneyness is the ratio of the strike price to
the underlying price for all trades. Maturity is measured in days. Bid-Ask Spread is
measured as the ask price less the bid price, divided by the midpoint, and multiplied
by 100 to be in percentage points.

Table 2: Options Fitting Errors

State Variables S1 S2

Median Absolute Error 2.38 2.06

R-squared 75.6 82.0

Notes: The median absolute error is the median absolute difference between actual
and fitted options prices, in percentage points. The fitted options prices are Black-
Scholes prices, with volatility given by equation (1). The R-squared is the ratio of
the variance of fitted implied volatilities to observed implied volatilities, in percentage
points.
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Figure 1: Implied Volatility of TIPS Options
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Note: This figure plots the annualized volatility of TIPS implied by the Black-Scholes formula
averaged over all options within a month, using only options with moneyness between 0.9 and 1.1.
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Figure 2: Implied Volatility of Nominal Treasury Options
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Note: This figure plots the annualized volatility of ten-year nominal Treasury futures contracts
implied by the Black-Scholes formula averaged over all options within a month, using only options with
moneyness between 0.9 and 1.1.
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Figure 3: Implied Volatility of TIPS Options
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Note: This figure plots the annualized volatility of TIPS implied by the Black-Scholes formula
averaged across the whole sample by moneyness bin. The moneyness is the ratio of the strike price to
the underlying price.
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Figure 4: 3-month-ahead PDF For Real Rates: State Variables S1
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Note: This figure plots the three-month-ahead pdf for seven-year TIPS yields constructed by the
method described in the paper using the state variable S1. The pdfs are shown as of the first day in
each year. Red dashed lines are asymptotic 95% confidence intervals. The estimation of the implied
volatility function in equation (1) is done for each calendar month separately.
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Figure 5: 3-month-ahead PDF For Real Rates: State Variables S2
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Note: This figure plots the three-month-ahead pdf for seven-year TIPS yields constructed by the
method described in the paper using the state variable S2. The pdfs are shown as of the first day in
each year. Red dashed lines are asymptotic 95% confidence intervals. The estimation of the implied
volatility function in equation (1) is done for each calendar month separately.
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Figure 6: 6-month-ahead PDF For Real Rates: State Variables S1
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Note: This figure plots the six-month-ahead pdf for seven-year TIPS yields constructed by the
method described in the paper using the state variables S1. The pdfs are shown as of the first day in
each year. Red dashed lines are asymptotic 95% confidence intervals. The estimation of the implied
volatility function in equation (1) is done for each calendar month separately.
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Figure 7: 6-month-ahead PDF For Real Rates: State Variables S2
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Note: This figure plots the six-month-ahead pdf for seven-year TIPS yields constructed by the
method described in the paper using the state variables S2. The pdfs are shown as of the first day in
each year. Red dashed lines are asymptotic 95% confidence intervals. The estimation of the implied
volatility function in equation (1) is done for each calendar month separately.
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Figure 8: Histogram of the Probability Integral Transform
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Note: This figure shows the histogram of the probability integral transform of three-month-ahead
density forecasts of TIPS yields. As described in Diebold et al. (1998), with an optimal density forecast,
these should be uniform on the unit interval in population. The density forecasts are made at the end
of each quarter from 2009Q1 to 2015Q4, for a total of 28 forecasts, using state variables S1.
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Figure 9: Physcial PDF For Real Rates: 3-month horizon
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Note: This figure plots the three-month-ahead pdf for seven-year TIPS yields constructed from
fitting a t-EGARCH model to daily changes in seven-year TIPS yields, as described in the text. The
pdfs are shown as of the first day in each year.
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Figure 10: Empirical Pricing Kernels: 3-month horizon

1.5 2 2.5 3
0

1

2
21−Jan−2009

0.5 1 1.5 2
0

1

2
04−Jan−2010

0 0.5 1 1.5
0

1

2
03−Jan−2011

−1 −0.5 0 0.5
0

1

2
03−Jan−2012

−2 −1.5 −1 −0.5
0

1

2
02−Jan−2013

−0.5 0 0.5 1
0

1

2
02−Jan−2014

−0.5 0 0.5 1
0

1

2
02−Jan−2015

0 0.5 1 1.5
0

1

2
04−Jan−2016

Note: This figure plots the 3-month empirical pricing kernels as a function of seven-year TIPS
yields, constructed as described in section 5. Results are shown using state variable S1 (solid blue line)
and state variable S2 (dashed red line). The empirical pricing kernels are shown as of the first day in
each year.
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