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1. Introduction

“There was a time where there was a tight connection between unemployment and inflation.

That time is long gone.” (Jerome Powell, 2021.)1

The Phillips curve is a key element of the New-Keynesian macroeconomic model and is

critical in how central banks think of the macroeconomy. Recently there has been much

debate about a potential flattening of the Phillips curve, which could, in turn, hinder the

central banks’ ability to control inflation and, thus, have major policy implications. The

goal of this paper is to examine the strength of the empirical evidence on changes to the

slope of the Phillips curve across multiple panel data sets covering industries, cities, states

and countries, and prices as well as wages. Coupled with a novel, flexible panel estimation

methodology, we provide the most complete picture available on instabilities in the Phillips

curve.

Examining disaggregate data, whether categorized by industry, by region, or by country,

offers notable advantages. First, the presence of cross-sectional heterogeneity can shed light

on the causes of changing Phillips curves. Second, since different regions and sectors expe-

rience different business cycles, there is extra information in disaggregate data that enables

us to identify slope coefficients and regime changes more precisely than using aggregate data

alone. Third, several recent papers (e.g. Hooper et al. (2020), Fitzgerald et al. (forthcoming)

and McLeay and Tenreyro (2020)) have pointed out that if the central bank is successfully

targeting inflation, then this creates an endogeneity bias in the slope of the Phillips curve,

biasing the coefficient towards zero. The use of disaggregate data in conjunction with the

inclusion of time fixed effects avoids this problem, because the central bank does not specif-

ically target inflation in any one particular region or sector.2

Building on these insights, in this paper we apply a novel Bayesian panel estimation ap-

proach to study breaks in Phillips curve inflation dynamics. Our analysis offers three central

new insights. First, all the existing literature on regional or sectoral Phillips curves requires

a common slope coefficient (complete pooling). If series display heterogeneous dynamics,

however, pooled estimates will be biased (Canova forthcoming). Alternatively, estimating

1This quote is from Federal Reserve Chair Jerome Powell’s press Conference, March 17, 2021;
https://www.federalreserve.gov/mediacenter/files/FOMCpresconf20210317.pdf.

2The problem would not be solved with disaggregate data without time fixed effects, because in that case
some of the identification would come from the time series dimension where there is endogeneity.
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the Phillips curve for each industry or region separately gives up a lot of information. Our

approach instead allows us to pursue a middle ground, partial pooling, while allowing for

cross-sectional variation in the slope coefficients. For example, our methodology allows us to

consider groupings by industry or geographic region, with different slope coefficients apply-

ing to each group. We can impose the groupings a priori, or the grouping structure can be

estimated as part of the modeling process. If the data support a homogeneous Phillips curve

that is identical across all units, only a single group will be identified. Conversely, strong

heterogeneity in Phillips curves across industries or regions will lead to a model in which

each group comprises a single unit. Our methodology endogenously determines whether

any of these special cases or an intermediate scenario with multiple units in each cluster, is

supported by the data, adapting to the degree of heterogeneity found. We find that partial

pooling with a structure comprising a small number of groups is supported empirically in

most cases as parameters are not completely homogeneous.

Secondly, while many researchers have considered time-variation in Phillips curves, they

do so by assuming that the parameters of the Phillips curve follow a random walk (Ball and

Mazumder 2011; Matheson and Stavrev 2013; Blanchard 2016; Inoue et al. 2022), or are

subject to breaks at pre-specified dates or dates determined by the single-breakpoint test of

Andrews (1993) or based on regressions with rolling windows (Roberts 2006; Coibion et al.

2013; Coibion and Gorodnichenko 2015; Leduc et al. 2017; Ball and Mazumder 2019; Gaĺı

and Gambetti 2019; Gilchrist and Zakraǰsek 2019; Del Negro et al. 2020; Fitzgerald et al.

forthcoming; Hooper et al. 2020; Cerrato and Gitti 2022; Hazell et al. 2022).3 However, break

tests conducted on individual inflation series have low power, making it difficult to detect

breaks in the Phillips curve. As argued by Bai et al. (1998) and Smith and Timmermann

(2021), imposing common timing of breaks for panel data can increase not only the power

of tests for breaks but also the precision of break date estimates. Our study is the first

to formally consider panel data estimation of Phillips curves with multiple breaks.4 We

estimate the number of breaks to the Phillips curve and the time of their occurrence, which

would be infeasible to do with any precision with aggregate data or individual inflation

series. We discuss interpretations of changes in the slope of the Phillips curve. Ball et al.

(1988) argue that a higher level and volatility of inflation leads to a steeper Phillips curve.

A complex set of other factors could be at play, including changes in unionization and

3Barnichon and Mesters (2021) use a subsample split to track time-variation in the Phillips multiplier.
Table 1 contains a list of some of the main studies on variation in the Phillips curve.

4Allowing for multiple breaks is also crucial when considering long time series.
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wage indexation, exposure to international trade, and even labor market integration. We

also consider an extension that allows breaks to affect individual inflation series at different

times, in a “non-common breaks” specification, uncovering lead-lag dynamics that can help

identify the underlying economic causes of instability.

Thirdly, we demonstrate a close tie between instability in the slope of the Phillips curve

and nonlinearity reflecting the steepness of this curve at low levels of unemployment. Consis-

tent with the recent inflationary experience, we find that the Phillips curve steepens notably

in very tight labor markets and show that this effect tends to be stronger over the most

recent period.

In our empirical work, we consider US price Phillips curves using disaggregation at the

industry and MSA level, and wage Phillips curves at the state level. We also examine Phillips

curves at the country level within the European Union.

In US industry data covering the sample 1959Q1-2022Q3, we find two regime changes in

the Phillips curve; a steepening around 1972 and a flattening in 2001. Moreover, the recent

flattening of the Phillips curve is more pronounced for goods prices than for services prices.

The steepening around 1972 comes after a period when inflation had been trending up for

some years and when indexation of wage contracts, either implicit or explicit, became more

common. This would in turn steepen the Phillips curve. Meanwhile, the subsequent flatten-

ing corresponds to a time of greater import penetration, especially from China, with China

joining the World Trade Organization in 2001.5 While economic intuition might suggest

that changes to the slope of the Phillips curve would occur gradually, China’s accession to

the WTO may have caused more of a sudden break with quite sharp effects documented in

studies such as Bena and Simintzi (2022).6 The rise in the level and volatility of inflation

in the 1970s, and their subsequent declines in the 1990s can also be thought of as drivers of

the steepening and subsequent flattening of the Phillips curve as higher and more volatile

inflation leads firms to adjust prices more frequently (Ball et al. 1988). Declining unioniza-

tion is also a possible partial explanation for the flattening of the Phillips curve.7 These

5Auer et al. (2017), Gilchrist and Zakraǰsek (2019), Firat (2020), and Stock and Watson (2020) all show
how greater trade openness can flatten the Phillips curve.

6While our breakpoint approach assumes that the Phillips curve undergoes an instant shift, it does incor-
porate uncertainty surrounding the break date into the parameter estimate. Greater uncertainty surrounding
the break date will lead to a smoother evolution of the Phillips curve slope which might be observationally
approximate to a slow-evolving parameter approach such as a time-varying parameter model. Of course, the
two approaches are philosophically distinct.

7While we do find a flattening break in the wage Phillips curve (estimated with state data over the sample
1980Q1 - 2019Q4), it is of smaller magnitude than for the price Phillips curve.

3



regime changes that we detect are broadly consistent with much of the existing literature

(e.g. Hooper et al. (2020)), although we estimate the break dates much more precisely.

US regional (MSA) data are not available as far back in time, spanning the shorter sample

1980-2022. This means that we cannot examine the presence of Phillips curve breaks in the

1970s for this data. Still, even with this shorter sample coverage, we manage to identify a

regime change around 2000. Further, we find that MSAs with above (below) median rates of

import penetration from China have experienced a considerably stronger (weaker) flattening

of their price Phillips curve. These findings are consistent with more goods competition from

China explaining a part of the flattening of the price Phillips curve.

Broadly similar patterns are found in the EU for a sample that begins in 1986 and ends

in 2021. For this data we find evidence of a single break which we estimate occurs in 2004

at which point the slope of the Phillips curve flattens significantly. Using our clustering

methodology, we find that the Phillips curve used to be particularly steep in poorer (mostly

East European) countries prior to the 2004 break, but has flattened by more in those coun-

tries, consistent with clear evidence of Phillips curve convergence across countries that, early

in our sample, used to display a very different inflation-unemployment trade-off.

We also study nonlinearity of the Phillips curve, which, as noted by Hooper et al. (2020),

is much easier to do with disaggregate data since the national labor market has not really

been tight since the late 1960s, whereas many individual MSAs have had tight labor markets

in this time period. Since the current policy debate is focused on such tight values of the

labor market, regional data seem likely to be helpful here. We consider a kink in the Phillips

curve at threshold unemployment rates of 5 or 4.2 percent.8 Using these thresholds, we find

that the Phillips curve is steeper in a tight labor market. Hooper et al. (2020), Babb and

Detmeister (2017) and Leduc et al. (2019) also find that the Phillips curve is steeper in a

tight labor market but do not consider subsample instability.

Next, we explore some implications of our Phillips curve estimates for the recent inflation

experience. Our estimates for both the US and the EU imply essentially no missing disinfla-

tion during the Great Recession and no missing reinflation during the subsequent recovery

years. In addition, we find that a steeper (nonlinear) Phillips curve in hot labor markets

combined with a higher natural rate of unemployment (Crump et al. 2022) can explain al-

most half of the surge in U.S. inflation between 2020 and 2022.9 Our methodology provides

8For comparison, Stock and Watson (2009) define a tight labor market as an unemployment gap below
minus 1.5 percent while Babb and Detmeister (2017) use the same thresholds as we do.

9The kinked (nonlinear) Phillips curve effects are an important part of this explanation.
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a tool for early detection shifts in the Phillips curve going forward, which is especially useful

if we are entering a period of greater structural change as conjectured by Lagarde (2023).

Our analysis adopts a Bayesian approach so a natural concern is to what extent our

empirical results hinge on our choice of priors. We choose uninformative priors centered on

zero for the critical slope parameters of the Phillips curve, thus, if anything stacking the odds

against finding breaks.10 The Bayesian approach does, however, offer key advantages over

more traditional panel estimation methods. First, by explicitly accounting for parameter

and model (break) uncertainty, the Bayesian approach allows us to characterize important

features such as the degree of precision with which we estimate the number of breaks to the

Phillips curve and their location. Second, it allows us to combine a lot of features such as

group structure and heterogeneity in the timing of breaks that would be very hard to do in a

frequentist setting. A third advantage is that our approach can be used to examine possible

breaks at different frequencies by varying the expected time between breaks. Our main

analysis assumes a regime duration of twenty years and so focuses on infrequent, “secular”

shifts, filtering out noise in the short-term relationship between inflation and labor market

tightness. However, we also implement our analysis with a prior expected regime duration

of only five years. We show that this facilitates better real-time stability monitoring and

allows us to identify a break and significant steepening of the Phillips curve in 2020Q1 for

the sectoral CPI and PCE data.

The remainder of the paper proceeds as follows. Section 2 introduces the panel data

sets used in our analysis while Section 3 explains our Bayesian panel approach, including

estimation, model selection and choice of priors. Section 4 presents our main empirical results

on breaks in the industry and regional Phillips curves, and Section 5 discusses implications of

our results for the recent inflation experience. Section 6 conducts a set of robustness exercises,

while Section 7 concludes. Additional empirical results are presented in an Appendix.

2. Data

This section introduces our data along with the data sources used in our empirical anal-

ysis. We begin by introducing our price and wage series before describing our aggregate

unemployment gap measures, unemployment rate, and NAIRU measures.

10Moreover, Jones et al. (2021) note that priors have relatively little influence on posteriors when estimating
regional/sectoral Phillips curves (with pooled parameters) as we do.
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2.1. Price and Wage Data

2.1.1. MSA level

We source monthly total CPIs for 22 MSAs from the BLS. We construct annual levels as the

average of all monthly observations in the corresponding year and compute annual inflation

rates as log(CPIit/CPIit−1)× 100 in which CPIit denotes the level for the ith MSA in year

t.11 Our sample for these data begins in 1980 and ends in 2022, but for many MSAs the

data only start in 1990.

2.1.2. Industry level

We use quarterly Personal Consumption Expenditures price indexes (PCE) for 16 industry

components, similar to those analyzed by Stock and Watson (2020), sourced from the Bureau

of Economic Analysis (BEA).12 Our sample is 1959:Q1 - 2022:Q3. We construct annualized

quarterly inflation rates as log(PCEi,t/PCEi,t−1)× 400.

From the BLS, we source monthly CPI inflation for 31 “level 3” industries, as currently

formulated, beginning in January 1954 and ending in September 2022, though not all series

go all the way back. We construct our annualized quarterly inflation rate observations from

end of quarter monthly observations as log(CPIi,t/CPIi,t−4)× 400.

2.1.3. EU data

We source headline (as well as total goods and total services) annual inflation rates for our

28 countries (the 27 current members and the UK) from the ECB statistical warehouse. Our

sample begins in 1986 and ends in 2021.

2.1.4. Wage data

Following Hooper et al. (2020), we compute average hourly earnings (AHE) for each of

the 50 states and the District of Columbia using the latest (2019) CEPR uniform extract

11Data for all but a few MSAs are collected only in either odd or even months. See
https://www.bls.gov/opub/hom/cpi/pdf/cpi.pdf for details of the complete methodology and
https://www.bls.gov/cpi/additional-resources/geographic-sample.htm. for the geographic definitions.

12The two categories – Housing and Household utilities – have since been replaced by one: Housing and
utilities.
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from the Current Population Survey (CPS)13. Aggregating from monthly data, we construct

quarterly data from 1980:Q1 through 2019:Q4, from which we construct quarterly annualized

wage inflation.

2.2. Unemployment rates, NAIRU, and Inflation Expectations

We use the end-of-quarter monthly aggregate unemployment gap, measured as the difference

between the unemployment rate from the U.S. Bureau of Labor Statistics (BLS) and the

NAIRU estimate (from the Congressional Budget Office). These data begin in January 1949

and end in September 2022.

We source the annual country-level unemployment rate and NAIRU estimates for the 28

EU member countries (the current 27 plus the UK which was a member until recently), and

hence the unemployment gaps, for the sample period 1965-2021 from the DG ECFIN/AMECO—

the European Commission’s macroeconomic database.14

For the regional analysis, we obtain annual unemployment rate data from 1980 to 2022

for 22 MSAs from the BLS. We also use the end of quarter monthly unemployment rate for

all 51 states (including the District of Columbia), also obtained from the BLS. These data

begin in January 1980 and end in December 2019.

We source four-quarter-ahead Consumer Price Index (CPI) inflation expectations from

Blue Chip Economic Indicators. These data go back to 1985. Between 1980 and 1985, we

use Producer Price Index (PPI) inflation expectations from the same source. Before 1980,

we use data from Livingston which is only updated every six months and so we simply

repeat observations in the two corresponding quarters, effectively assuming that inflation

expectations remain the same in each 6-month period. Because U.S. inflation expectations

are only measured for the aggregate price index as opposed to at the regional or sectoral

level, we can only use these inflation expectations data in specifications without time fixed

effects.

2.3. Group structure

We will be interested in group heterogeneity, with either the group allocation imposed ac-

cording to pre-determined selection criteria, or determined by the Bayesian algorithm as part

13The data are available from https://ceprdata.org/cps-uniform-data-extracts/.
14We thank Michele Lenza for helping us access these country-level NAIRU estimates.
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of the estimation process.

The 16 PCE sectors are split into goods – Motor vehicles and parts, Furnishings and

durable household equipment, Recreational goods and vehicles, Other durable goods, Food

and beverages purchased for off-premises consumption, Clothing and footwear, Gasoline and

other energy goods, and Other nondurable goods – and services – Housing and utilities,

Health care, Transportation services, Recreation services, Food services and accommoda-

tions, Financial services and insurance, Other services, and NPISH.

We also split the 28 EU countries into rich and poor countries with rich countries defined

as countries with real GDP per capita deflated by PPP in 2019 above the EU average and

poor countries defined as the rest. The rich countries include Luxembourg, Ireland, Denmark,

Netherlands, Austria, Germany, Sweden, Belgium, Finland, France, and UK.15

3. Methodology

Our analysis examines three different Bayesian panel specifications. The first is our base-

line pooled panel model with multiple breakpoints. This model applies the methodology

developed by Smith and Timmermann (2021) to exploit information in the cross-section and

obtain increased power to detect structural breaks. Breaks are assumed to be common, i.e.,

they hit every series in the cross-section at the same time. To summarize, this model assumes

homogeneity both in the timing of any breaks and in their impact on individual variables.

To gain further insight into the break dynamics, our second model relaxes the common

break-timing assumption, allowing series to be hit at different times. We accomplish this

using the methodology developed by Smith (2018) which is designed to detect lead-lag rela-

tions in the impact of breaks across different variables in the cross-section. This approach

can, thus, shed light on the diffusion of breaks and the speed at which different sectors,

regions, or countries are affected by breaks to their Phillips curves.

Our third model endogenously estimates both the number of groups and the assignment

of each series to a group using the methodology developed by Smith (2023). Relative to

the baseline model that pools parameters across the entire cross-section, this model pools

parameters across all series within a group, but allows the parameters to differ across groups.

This provides an effective way to allow for heterogeneity in the impact of breaks on individual

15The poor countries therefore include Malta, Italy, Czech Republic, Spain, Cyprus, Slovenia, Slovakia,
Romania, Portugal, Poland, Bulgaria, Estonia, Lithuania, Latvia, Hungary, Greece, and Croatia.
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variables.16 The baseline homogeneous (pooled) panel model arises as a special case of this

specification when the data only identifies a single group. At the other extreme, a model

where each series in the cross-section gets assigned to its own individual group would allow

for complete heterogeneity.

3.1. Common breakpoint model

The first–baseline–model we take to the data allows for an unknown number of K breaks

occurring at unknown times τ = (τ1, . . . , τK) which are assumed to be common to all i =

1, . . . , N series in the cross-section.17 Our first specification is for the Phillips curve at the

MSA level. The data are annual, and the model for the kth regime takes the form (for

k = 1, . . . , K + 1):

πit = αi + γt + ρkπit−1 + λkURATEit + εit, t = τk−1 + 1, . . . , τk (1)

in which πit denotes the inflation rate for the ith series at time t, αi and γt denote two-

way fixed effects, πit−1 is the lagged inflation rate for variable i, URATEit denotes the

unemployment rate for the ith series at time t, and εit is the residual for the ith series at

time t which is assumed to be normally distributed εit ∼ N(0, σ2
ik), so we allow volatility to

vary across individual variables.18

The parameters ρk, λk, and σ2
ik are all allowed to shift across regimes separated by a

break, but the former two are assumed to be identical across all series within a given regime,

effectively following step functions that shift at τk. Hall (2023) argues that the Phillips

curve is steeper in times of high volatility because volatile price determinants reduce price

stickiness as a larger fraction of sellers elect to reset their prices. Allowing volatility to vary

across breaks could thus be important in identifying shifts in the steepness of the Phillips

curve slope.

16We generally condition on the regimes identified by the baseline model when implementing this third
model in our empirical analysis.

17For simplicity our notation uses N as the cross-sectional dimension, but our approach can readily handle
unbalanced panels with a time-varying dimension, Nt.

18This specification corresponds to Equation (19) of Hazell et al. (2022) and so we are estimating “ψ” in
their terminology rather than “κ” from their Equation (17). Like Cerrato and Gitti (2022), we choose this
specification because estimating the latter requires dropping the final 5-10 years of data which is problematic
when estimating breaks in the Phillips curve, particularly when the latter part of the sample includes
the inflationary surge unleashed by the COVID-19 pandemic. Note that we omit the relative price of
nontradeables and replace it with lagged inflation.
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Our baseline model assumes that the residuals εit are cross-sectionally and serially un-

correlated. This assumption means that we are not required to estimate the N(N − 1)/2

covariance terms in each break segment but may not be empirically valid in some empirical

applications. Section 6 discusses how to test the validity of this assumption. More broadly,

we can allow for cross-sectional correlation in εit through a common factor structure that

allows for heterogeneity in factor loadings across units but assumes that the idiosyncratic

shocks that remain, after accounting for the common factors, are orthogonal across i.

The specification in Equation (1) uses the unemployment rate rather than the unemploy-

ment gap as the slack measure. At the MSA level, there are no estimates of the natural rate

of unemployment and while we could HP detrend the city-level unemployment data, such

estimates would be sensitive to the bandwidth parameter. We instead rely on the two-way

fixed effects to absorb variation in the natural rate across time and cities. Common time

variation in inflation expectations in Equation (1) is also absorbed by the time fixed effects.

The same model is applied to the EU-level data, except that the unemployment gap

replaces the unemployment rate since we have NAIRU estimates for EU countries unlike for

the US MSAs:

πit = αi + γt + ρkπit−1 + λkUGAPit + εit, t = τk−1 + 1, . . . , τk. (2)

For the US industry-level data, using either PCE or CPI, we do not observe industry-

level unemployment rates, let alone a NAIRU estimate.19 For this case, we substitute the

aggregate unemployment gap, UGAPt, for the disaggregate unemployment gap in Equation

(2). This means we must drop the time fixed effects which are not separately identifiable

from the aggregate unemployment gap. Finally, we include four-quarter-ahead CPI inflation

expectations, BCt, which are identified in the absence of time fixed effects, yielding the

model:

πit = αi + ρkπit−1 + λkUGAPt + ψkBCt + εit, t = τk−1 + 1, . . . , τk. (3)

Note that in this specification, the data are at a quarterly frequency.

19BLS does have some data on industry-level unemployment, in the sense of breaking out unemployment
by the sector of the unemployed worker’s last job, but this data only goes back to 2000, and the concept of
unemployment by sector is inherently hard to measure.
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3.1.1. Implied aggregate Phillips curve slopes

Hazell et al. (2022) show that the regional Phillips curve slope can be divided by the expen-

diture share on nontradeables to obtain the national Phillips curve slope. We use the 31 CPI

industry weights to compute the expenditure share on nontradeables. We follow Hazell et al.

(2022) by assigning the following series to nontradeables: Full Service Meals and Snacks,

Limited Service Meals and Snacks, Food at employee sites and schools, Food from vend-

ing machines and mobile vendors, Other food away from home, Electricity, Utility (piped)

gas service, Water and sewer and trash collection services, Household operations, Medical

care services, Transportations services, Recreation services, Education and communication

services, Other personal services, and Shelter. The expenditure share on nontradeables is

therefore 69.1 percent.

This scaling approach is applied to our regional Phillips curve estimates using MSA-

level data to infer the U.S. aggregate Phillips curve slope coefficient when we consider the

aggregate implications of our estimates in Section 5.20 We apply the same scaling approach

to infer the EU aggregate Phillips curve from our EU country-level estimates.21

3.2. Noncommon breakpoint model

For parsimony, we only formally exposit the noncommon breakpoint model that generalizes

the common breakpoint model detailed in Equation (1).22 The only difference is that the

break timing, which was previously common (τk), is now allowed to differ across series (τik).

Formally, for the MSA-level annual data the model is (for regimes k = 1, . . . , K + 1)

πit = αi + γt + ρkπit−1 + λkURATEit + εit, t = τik−1 + 1, . . . , τik. (4)

20We do not infer the U.S. aggregate Phillips curve slope from our U.S. sectoral estimates for the aggregate
implications because the absence of time fixed effects means that the argument for identifying the Phillips
curve from disaggregate data does not go through.

21Hazell et al. (2022)’s theory requires that all regions/countries belong to a single monetary union. Since
several EU countries are not in the eurozone, one might be concerned that monetary policy might in fact
respond to their country-specific shocks. However, some of these countries effectively peg their currency to
the euro (e.g. Denmark) and others are heavily influenced by it. The assumption that monetary policy
does not respond to their country-specific shocks therefore seems reasonable. Also, our results that follow
are essentially unchanged when we omit the UK, which is the country in our sample that most obviously
conducts independent monetary policy.

22The models that use either EU data – displayed in Equation (2) – or U.S. industry-level data – displayed
in Equation (3) – generalize in the obvious way.
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While this specification does not impose that the timing of the breaks is identical across

all variables, we control the degree of heterogeneity in the timing of breaks across units by ef-

fectively only considering “local” variation in the break timing, i.e., breaks whose occurrence

is close to the break date for the majority of variables. This prevents our approach from

identifying idiosyncratic breaks in the individual series and enables us to use cross-sectional

information to more accurately identify clusters of breaks whose impact can spread across

units at different speeds.

Intuitively, the approach works by identifying break windows rather than single break

points. Variables can be hit at any time within a given break window. For example, a com-

mon break approach might identify a break around the Global Financial Crisis in September

2008 when Lehman Brothers failed. The break window approach, however, might identify

a local break window of, say, 6-12 months during which firms were hit by the break at dif-

ferent times as the financial crisis cascaded through the economy. We control the degree of

heterogeneity in the timing of breaks across series through the prior, detailed in Section 3.4.

3.3. Grouped heterogeneity model

So far we assumed homogeneity in the regression coefficients and, consequently, in the effect

of breaks on individual variables. However, in many cases both the slope coefficients and

the impact of breaks may differ across sectors, regions, or countries. For such cases, it

is important to allow for heterogeneous parameters. We accomplish this by assuming the

existence of Gk groups or clusters of variables and allowing parameters to vary across groups

while they are the same within groups. Each unit in the cross-section belongs to a single

group (i ∈ gk) and, by estimating this algorithm conditional on the regimes identified by the

baseline breakpoint model, both the group membership and the number of groups is allowed

to vary across regimes. This approach offers a flexible specification. For example, we can

allow for full heterogeneity in a given regime by setting Gk = N , whereas homogeneity

within the regime corresponds to Gk = 1. Values of Gk between these extremes indicate

some degree of clustering within that regime. Moreover, variation across regimes in the

number of clusters can provide important information about issues such as convergence (or

lack thereof) in the Phillips curves across units.

Using the model for the EU-level data as our lead example, we estimate the following

model in each of the k = 1, . . . , K + 1 regimes identified by the baseline model23

23The models that use industry-level data are not formally exposited for simplicity, but follow the same
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πit = αi + γt + ρgkπit−1 + λgkUGAPit + εit, t = τk−1 + 1, . . . , τk, (5)

where εit ∼ N(0, σ2
ik). The parameters ρgk and λgk are pooled across all series within the

gkth group, but differ across the Gk different groups. The number of groups and the series

assigned to each group can be either specified a priori or alternatively determined as part

of the estimation. In the latter case, our priors lean against identifying groups that contain

only a single series, thus reducing the likelihood of simply identifying outliers in the data.24

3.4. Prior distributions

Our Bayesian panel break approach requires us to specify priors on the regime durations

and regression parameters. Using the baseline model as our lead example, we next explain

how these priors are set. We further specify our priors on the break lags in our second,

noncommon breaks, model and our priors on the clustering (grouping) model.

3.4.1. Prior on regime durations

Following Koop and Potter (2007), the regime durations, lk = τk − τk−1, follow a Poisson

prior distribution

p(lk | ζk) = Po(ζk), k = 1, . . . , K + 1, (6)

where the intensity parameter ζk follows a conjugate Gamma prior distribution

p(ζk) = Ga(c, d), k = 1, . . . , K + 1, (7)

and c and d are the hyperparameters of ζk. These hyperparameters only determine the

average regime duration since the expected regime durations are allowed to differ across

breaks, with each individual regime having its own unique intensity parameter.

Our analysis calibrates the prior hyperparameters determining the regime duration so

that breaks occur, on average, every twenty years. We achieve this by setting d = 2 and

structure.
24Our Bayesian approach has two features that help determine the number of groups. First, the marginal

likelihood guiding the estimation prefers fewer groups and penalizes additional groups since these require
estimating more parameters. Second, we use a prior that an average of five series comprise a group and apply
a penalty to very small and very large groups although these are not ruled out. Still, our prior is towards
not having groups with just a single member. In cases where we find empirically that some groups have just
a single or very few members, the empirical evidence therefore strongly supports separating these units.
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c = 40 (c = 160) for the annual (quarterly) data, respectively. Our priors are thus set to

focus on rare, “secular”, breaks in the Phillips curve.25

3.4.2. Priors on regression parameters

For regimes k = 1, . . . , K + 1, we follow conventional practice and specify an inverse gamma

prior distribution over the residual variances

p(σ2
ik) ∼ IG(a, b), i = 1, . . . , N, (8)

while we assume a Gaussian prior on the regression coefficients

p(λk) ∼ N(0, σ2
λ),

p(ρk) ∼ N(0, σ2
ρ). (9)

Here σ2
λ and σ2

ρ are hyperparameters that control the degree to which λk and ρk are shrunk

towards their prior means of zero.26

Our analysis sets a = 2 and b = 1, while σ2
λ and σ2

ρ, which control the degree to which

λk and ρk are shrunk towards their prior means (zero), are both set equal to 0.1. These are

fairly uninformative priors which allow the autoregressive parameter and the slope of the

Phillips curve to vary with the data.

3.4.3. Priors on heterogeneity in break dates

Our second specification allows for differences in the point in time when breaks affect the

individual series within a break window, the length of which is estimated. Let τk denote the

date at which the kth break window begins. The lag with which the ith series is hit by the

kth break is denoted ∆ik = τik − τk which can be zero (hit immediately at the beginning of

the break window) as well as positive (hit with a lag). We specify a Poisson prior over such

break delays

p(∆ik | δk) ∼ Po(δk), k = 1, . . . , K, i = 1, . . . , N. (10)

25Setting these priors to focus on breaks at higher frequencies (e.g., once every couple of years) tends to
produce noisy regimes whose parameters and inflation dynamics are difficult to interpret economically.

26The grouped heterogeneity model specifies a normal prior over the coefficients λgk and ρgk .
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We assume that the average expected lag with which the N series are hit by the kth break,

δk, has a conjugate Gamma prior distribution

p(δk) ∼ Ga(e, f) k = 1, . . . , K. (11)

The hyper parameters e and f again control the average degree of heterogeneity in break

dates across series and the lag in individual series’ break dates from the beginning of the

break window τk is allowed to vary across breaks. Some breaks might spread very rapidly

across all series, while others may undergo a slower diffusion process.

For the quarterly data, we set e = 8 and f = 1 such that the prior expected break lag

for each series is eight quarters (two years). Similarly, for the annual data we set f = 1 and

e = 2.

3.4.4. Priors on heterogeneity and grouping structure

Our third specification introduces heterogeneity through an endogenous break clustering

structure. We accomplish this by placing a Poisson prior over the number of series included

in the gkth group, Ngk
27

p(Ngk | ψk) ∼ Po(ψk), gk = 1, . . . , Gk + 1, k = 1, . . . , K + 1, (12)

where the expected number of series in every group, ψk, has a conjugate Gamma prior

p(ψk) ∼ Ga(h, j). (13)

The prior hyper parameters h, j control the average expected number of groups in the prior.

To determine group size for this specification, we set h = 5 and j = 1 to reflect our prior

belief that there are, on average, five series in each group. This choice of prior on the groups

thus leans towards not having a single series comprise a group.

3.5. Estimation

Each of our models is estimated using a multi-step reversible jump Markov chain Monte

Carlo algorithm (Carlin and Chib 1995; Green 1995). Estimation of the baseline model

27This specification of multiple independent Poisson distributions is inferentially equivalent to a specifica-
tion that uses a single Multinomial distribution.
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consists of three steps. First, we estimate the regression coefficients from their full conditional

distributions using a Gibbs step. Next, we estimate the break locations using a random-walk

Metropolis-Hastings algorithm. Finally, the third step estimates the number of breaks using

a reversible jump step. This latter step introduces the number of breaks K as a parameter

and repeatedly attempts to “jump” to different values of K, with the proportion of iterations

spent at each value of K approximating the posterior model probabilities.28

Estimation of the second, noncommon breaks, model proceeds in the same manner as for

the baseline model, except it includes an additional Metropolis-Hastings step that estimates

the exact break location for each series in the cross-section.

Finally, estimation of the third, grouping, model combines the first step of estimating

the baseline model with a second reversible jump step that introduces the number of groups

Gk as a parameter in the model and repeatedly attempts to ‘jump’ to different values of

Gk, with the proportion of iterations spent at each value of Gk approximating the posterior

model probabilities. The series are ordered with the first N1 series in group 1 and so on.

The ordering of the variables, and hence their group allocations, are further estimated using

a random walk Metropolis-Hastings algorithm.

4. Empirical Results

Having introduced our data and estimation approach, we next turn to the empirical analysis.

We begin with the industry-level data before turning to the MSA and EU country data.

4.1. Industry-level data

We separately analyze two panel data sets on industry-level inflation, namely 16 PCE infla-

tion rates and 31 CPI series.

4.1.1. PCE inflation rates

We first estimate Phillips curves on quarterly sectoral data spanning the sample 1959-2022.

Both the number of breaks and their location are very precisely estimated from the data:

Our model assigns nearly 100% probability to the presence of two breaks with negligible

28For full details on how our three models are estimated, we refer the reader to the articles cited in the
first paragraph of Section 3 and only provide a brief discussion here for completeness.
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uncertainty as to the timing of these breaks.29

Table 2 displays the baseline results for the 16 PCE industry-level inflation rates. The

first of the two breaks is a steepening in the Phillips curve around 1972. Prior to 1972,

the estimated slope of the Phillips curve is -0.48. This slope estimate steepens notably in

the 1972-2001 regime to -0.82.30 Coupled with an AR coefficient of 0.38, this implies a

dynamic slope of -1.33.31 Inflation volatility, computed as the square root of an industry-

weighted average of the individual σ2
ik estimates, is also notably higher in the 1972-2001

regime (2.91) than in the previous regime (1.58), consistent with major shocks to commodity

prices and sharp shifts in inflation expectations accompanying the marked changes to the

Federal Reserve’s monetary policy during this period.

Our Bayesian panel model identifies a second break in the industry PCE data in 2001.

After this break, the slope of the Phillips curve becomes insignificantly different from zero and

inflation dynamics become notably less persistent with an AR(1) estimate of 0.16 compared

with 0.38 in the regime prior to 2001.

The right-most column in Table 2 shows the equivalent panel estimate based on the full

sample 1959-2022, i.e., for a conventional Phillips curve model with no breaks. At -0.42, the

estimated full-sample slope shows that ignoring breaks results in a moderately steep Phillips

curve. This estimate can be thought of as a weighted average of the slopes in the underlying

regimes and so conceals the sharp differences in slope estimates across the more than six

decades covered by our sample.

Food and energy prices are known to be more volatile than prices in other (“core”) sectors.

Focusing on core, rather than headline, inflation is also a simple way to remove some of the

cost-push shocks that may affect headline inflation (McLeay and Tenreyro 2020). To examine

the price dynamics in core industries, the second panel in Table 2 reports the Phillips curve

slopes for a model estimated on all industries excluding food and energy. Excluding food and

energy changes the slope during the 1972-2001 period from -0.82 to -0.49 which is notably

flatter, but still quite steep. Moreover, this estimate continues to be steeper than that in both

29One might be concerned as to whether the identified breaks could be sensitive to the omission of time
fixed effects for the sectoral data. While we cannot test this directly, we estimated models with and without
time fixed effects for our MSA and EU country data examined below. For both data sets, we found that the
number of breaks and their location were not affected by the presence of time fixed effects. While the precision
of our estimated break location may partly hinge on the assumption of no cross-sectional dependence in the
residuals, we show in our robustness analysis that such dependencies are in fact quite weak in our data.

30The high inflationary environment during the 1970s may have increased the speed of Calvo (1983)
adjustment, consistent with the steepening of the Phillips curve that we find.

31The dynamic slope refers to the long-run effect of a sustained unit change in the unemployment gap.
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the first regime (1959-1972), which equals -0.32, and in the last regime (2001-2022) which

is -0.13. Excluding food and energy thus flattens the slope of the Phillips curve but the

evidence of a steeper unemployment-inflation trade-off in the “middle regime” (1972-2001)

continues to be strong.

To help interpret the underlying drivers of these breaks, we also report results separately

after pre-assigning the individual price indices into goods and services groups. For both of

these groups we obtain a similar pattern in slope coefficients with a steepening in 1972 and

a flattening in 2001. However, the shifts in the estimated slopes is much sharper among the

goods sectors (third panel in Table 2) as compared to the services sectors (bottom panel).

Specifically, for the goods sectors the slope coefficient steepens from -0.59 in the first regime

(1959-1972) to -1.09 between 1972 and 2001, only to flatten to a statistically insignificant

value of -0.32 after 2001. For the services sectors, the corresponding slope estimates for the

three regimes are -0.34, -0.57, and -0.19. In addition, the goods and services slope coefficients

are significantly different from one another in the first two regimes (indicated through the

bold font of the services slope), but not in the final regime.

Across all data sets examined in Table 2, the full-sample estimates (reported in the

right-most column) imply a markedly flatter Phillips curve than the curve implied by the

estimates in the first two regimes, 1959-1972 and 1972-2001. The reason for this is that the

Phillips curve essentially becomes flat in the last period (2001-2022) which, when pooled

with the earlier samples, flattens the curve. Ignoring breaks would therefore lead to the

wrong conclusion of a rather flat Phillips curve and conceal the more complex story that,

while quite flat during the last twenty years, the Phillips curve has, historically, been quite

steep, especially during the nearly three decades 1972-2001. The full-sample estimates also

show that ignoring breaks conceals the significant differences between the goods and services

slopes that we find prior to 2001.

The disaggregate results in Table 2 assign industries to a set of pre-determined groups.

Our unobserved grouped heterogeneity model in Equation (5) instead endogenously assigns

industries to groups. Table 3 displays parameter estimates, along with the posterior mode

group allocation, from applying this approach to the 16 industry PCE series. Within all three

regimes, our approach identifies two groups with very different Phillips curve estimates. The

really steep Phillips curve in the 1972-2001 subsample is concentrated in a group (“Group 1”)

that includes Gasoline and other energy goods along with Financial services and insurance

and NPISH.

In fact, the behavior of the slope coefficient for Gasoline and other energy goods is so
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different from that of the other industries that this is the only sector to be included in Group

1 after 2001 and it is only grouped together with Financial services and insurance and NPISH

in the 1972-2001 regime. This narrow, unbalanced grouping only happens when the behavior

of a very small number of individual industries is truly different from that of the remaining

industries. This point is further highlighted by the extremely high volatility estimate (39.79)

for the Gasoline industry in the 2001-2022 regime which is more than twenty times higher

than that of the other industries (1.95).

By averaging the group-specific Phillips curve slopes in each regime, using the number

of series in each group as weights, we can back out the overall sectoral Phillips curve slope.

This approach shows that the slope shifts from -0.41 to -0.79 across the breakpoint in the

early-1970s. Comparing these values to the fully pooled estimates, we see that the fully

pooled estimates over-estimate the steepness of the Phillips curve in the first two regimes.

Using our baseline panel break model, the black line in the top panel of Figure 1 plots

the posterior mean of the Phillips curve slope within each of the three regimes with the

blue bands denoting 95 percent posterior intervals. These bands are clearly narrower in the

first regime and widest in the last regime after 2001. To illustrate the value of using cross-

sectional information to estimate the Phillips curve, the red dotted lines plot industry-level

estimates of the slope coefficients estimated separately for the three regimes identified by our

panel breakpoint model and reported in Appendix Table A1. Two points stand out. First,

consistent with the estimates in Table 3, we see strong evidence of variation in the industry-

level Phillips curves both over time and across industries. The majority of industries have a

significantly negative slope coefficient on the aggregate unemployment gap in the first regime:

9 of 16 slope estimates are negative and significant (at the ten percent level) for 1959-1972.

In contrast, no more than five industries generate a significantly negative slope coefficient in

either the final regime (2001-2022) or for the full sample (1959-2022). Second, we see that the

individual industry PCE Phillips curves are imprecisely estimated with estimates covering a

wide range of values that fall outside the 95% confidence band for our panel estimates. This

demonstrates the value of using cross-sectional information to estimate the Phillips curve in

a panel setting.

Figure 2 displays the posterior mode break dates for the 16 PCE industries obtained from

the generalized version of the baseline model displayed in Equation (3). This model allows

the break timing to vary across industries as described in Section 3.2. Industries that are hit
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first appear further to the left while industries hit later show up on the right in this figure.32

The top and bottom panels show results for the 1972 and 2001 breaks, respectively.

The earliest industries to be hit by the 1972 break are Financial Services, and Food and

Beverage. For these industries, the Phillips curve breaks in 1972Q3. Gasoline and NPISH

follow suit in 1972Q4. Eight of the industries are affected by the break in 1973Q3 or 1973Q4,

a full year later than the first-hit industries. Overall, the impact of the 1972 break to the

Phillips curve took six quarters to percolate through the economy.

The 2001 break hits Gasoline very early (2001Q1) and the remaining industries are all

hit in 2002. Thus, as for the first break an energy sector (Gasoline) is hit early, but there is

less dispersion in the timing of the break across industries for the 2001 break compared to

the 1972 break.

4.1.2. Results for individual inflation series

It is important to emphasize that our ability to detect breaks in the Phillips curve is closely

linked to our use of panel data in conjunction with the assumption that both the timing of

breaks and their impact on individual series is relatively homogeneous, i.e., there is a strong

common component in the breaks.

To highlight this point, we undertook a set of Phillips curve regressions on the individual

inflation series using the breakpoint methodology of Chib (1998). We fail to identify a

single break in any of the PCE inflation series. Next, we dispensed with the assumption

of homogeneous slope coefficients, imposing only that the timing of the break is identical

across all variables in the panel. Once again, we fail to find evidence of breaks to the Phillips

curves.

These results show that our ability to identify breaks in the Phillips curves hinges on the

ability of our panel estimation approach to efficiently exploit multivariate information in a

way that takes advantage of the relative homogeneity in both the timing and impact of the

breaks across industries. This increases the power of the panel break tests compared with

series-by-series approaches or approaches that rely on heterogeneous panels.

Next, we evaluate the ability of the frequentist breakpoint approach of Bai et al. (1998)

to detect breaks in the Phillips curve in the settings we consider. Since their approach only

permits a single break, the most direct comparison is with the data sets for which we identify

32The vertical ordering of industries is arbitrary.
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just one break, namely, the MSA- and EU country data. Their approach, which assumes

heterogeneous slope coefficients, does not detect a break in either data set, echoing what

we find when applying our approach with heterogeneous slope coefficients and no pooling

across variables. Indeed, the ability of our approach to exploit cross-sectional commonalities

in the timing and impact of breaks by (fully or partially) pooling parameters accounts for

the additional power our approach has to identify breaks.

4.1.3. CPI industry inflation

We next examine the results for the 31 CPI industry-level quarterly inflation rates (1954-

2022). Once again, there is very little uncertainty about the number and timing of breaks

and our model identifies two breaks–corresponding to three regimes–with posterior modes

in 1971 and 2001.

Table 4 displays the baseline results for the 31 CPI industry-level quarterly inflation rates

(1954-2022). The first of the three regimes (1954-1971) has a Phillips curve slope of -0.51.

The second regime (1971-2001), has a very steep Phillips curve with an estimated slope of

-1.46, while the third regime has a flat Phillips curve with an insignificant slope estimate of

-0.27. Autoregressive dynamics are generally quite weak with estimates of 0.09 in the first

regime, 0.23 in the middle regime and 0.07 in the last one.

Table 4 also reports results on the model that excludes food and energy prices (second

panel). Here, we find a pattern of a Phillips curve that flattens across both breaks in 1971

and 2001. While the slopes of the CPI Phillips curves fitted to core and all prices are similar

in the first and third regimes, the core CPI Phillips curve is noticeably flatter than the curve

fitted to all prices in the middle regime (-0.49 versus -1.46). The third and fourth panels

show inflation estimates generated separately for goods and services. In the two regimes

prior to 2001, the Phillips curve is steeper for goods than for services. Conversely, the slope

of the Phillips curve is insignificantly different from zero (at the 5 percent level) in the last

regime for both goods and services.

Table 5 displays the results from the unobserved grouped heterogeneity model that uses

the 31 CPI industries.33 Our approach identifies a single group in the first regime but

two groups in the second and third regimes. In the second regime (1971-2001), there is a

group with an especially steep Phillips curve (slope estimate of -1.73 versus -0.26 for the

33Some industries do not have inflation data in the early parts of our sample and so cannot be allocated
to a group. These show up as missing observations in the first two regimes in the table.
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other group) which includes energy and some food components of CPI. In the third regime

(2001-2022), two groups are again identified, both with flat Phillips curves and only the first

group generates a significant slope estimate. While certain food and energy items are again

overrepresented in the second (smaller) group of industries identified for this regime, others

are included in the first group and, as a result, the group structure in the third regime is

quite different from that in the second.34

The overall CPI sectoral Phillips curve slope implied by these grouped estimates is -1.09

in the second regime, considerably flatter than the fully pooled estimate. The fully pooled

model therefore overstates the steepening that occurred in the early 1970s.

Appendix Table A2 examines the heterogeneity in further detail by estimating univariate

Phillips curve time-series regressions separately for each of the three regimes identified by

our panel break method as well as for the full sample. Many of the CPI series are not

available in the first two regimes which limits the comparisons across time and industries.

Nevertheless, for 18 of the 23 industry CPI series for which we have estimates for both the

middle and last regime, the Phillips curve is steeper in the former (1971-2001) than in the

latter (2001-2022) period. This again is strong evidence of a flattening of the Phillips curve

at the industry level.

Figure 3 displays the posterior mode break dates for the 31 CPI industries based on the

model that allows the break timing to vary across industries. Our findings are in line with

what we found for the PCE industries: For the 1971 break (top panel), Food prices (Meats,

Poultry, Fish and Eggs and Fruits and Vegetables) are the first categories to be affected in

1971:Q3, followed by food items and various energy sectors whose break date is estimated

to occur in 1972. For the majority of industries, the break date is 1974:Q3, a full three

years after the first sectors are affected, suggesting that it took a long time for this break to

percolate throughout the economy.

The 2001 break (bottom panel) initially affects fuel sectors (Motor Fuel and Utility

(piped) gas service) in 2001:Q1, followed by Fuel oil and other fuels and various food in-

dustries. Once again, the impact plays out over three years with the majority of industries

34Our approach allows all parameters to shift across regimes and clusters. Which cluster a particular
industry gets assigned to will therefore depend on its persistence, slope, and volatility parameter. For
example, in the third regime, group 1 has an AR slope of 0.30 with a t-statistic of 12.51 while Group 2 has
a comparatively modest AR slope of 0.08 with a t-statistic of 1.92. Group 1 therefore tends to consist of
industries with more persistent inflation dynamics. Similarly, among the food industries, those allocated to
group 2 (the high-volatility cluster) have volatility estimates of 6.84 (Meats), 7.83 (Dairy), 7.80 (Fruits), and
25.65 (Food at employee sites). The remaining food sectors have much lower volatility estimates close to 2.5.
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experiencing the break only in 2004:Q1.

4.2. MSA-level data

The top panel of Table 6 displays the baseline results for the 22 annual MSA-level inflation

rates (1980-2022).35 We identify a single break in 2000, with a marginal flattening of the

Phillips curve which goes from a pre-break slope estimate of -0.26 to a post-break estimate

of -0.21, with both being highly significant. The slope, scaled by the expenditure share on

non-tradeables to give an implied aggregate Phillips curve slope (as discussed in subsection

3.1.1) flattens from -0.39 before the break to -0.31 after it. The persistence of the inflation

process, measured through the autoregressive parameter, increases significantly from 0.23

before the break to 0.39 afterwards.

The MSA data suggests a much flatter slope of the Phillips curve in the pre-2000 period

than that identified with either PCE or CPI sectoral data. There are a number of reasons

for this. First, the sectoral Phillips curve is particularly steep in the period after the early

seventies and the MSA data only starts in 1980. Consistent with this, sectoral Phillips curves

are flatter if estimated only on data starting in 1980. Second, the MSA data are observed only

at the annual frequency whereas sectoral data are quarterly, further attenuating the impact

of the periods that experienced the steepest inflation-unemployment dynamics. Third, the

MSA-level results apply to the slope of the regional Phillips curve and the implied national

Phillips curve is steeper as we noted earlier.

To examine a possible source of breaks to the Phillips curve, the middle panel in Table

6 displays results when, conditional on the regimes identified by the baseline model, we

estimate the Phillips curve regression separately for MSAs located in states with below

and above median rates of import penetration from China based on the state-level import

penetration rates calculated by Riker (2022).36 We find that the flattening of the Phillips

curve is concentrated in cities with above-median rates of import penetration. Specifically,

whereas the slope of the Phillips curve changes only marginally from -0.16 to -0.15 for MSAs

with below-median import penetration from China, it declines from -0.41 to -0.24 in cities

with above-median import penetration from China. This finding lends credence to the role

35The number of breaks and break dates are, once again, very precisely estimated.
36Riker (2022) estimates these values using a structural econometric model that exploits data on the

location of import entry, domestic shipments, and distances between states. The MSAs that comprise the
below median group are Detroit-Warren-Dearborn, MI, Dallas-Fort Worth-Arlington, TX, Denver-Aurora-
Lakewood, CO, Philadelphia-Camden-Wilmington, PA-NJ-DE-MD, and St Louis, MO-IL.
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of international trade as an explanation for the flattening of the Phillips curve. Moreover,

the slope coefficients for the two groups are significantly different from one another in both

regimes and in the full-sample results.37

The overall regional Phillips curve slope implied by these grouped estimates are -0.35

in the first regime and -0.22 in the post-2000 regime. The fully pooled model therefore

under-estimates how much the Phillips curve has flattened.

In Appendix Table A3 we report the results from a series of MSA-level Phillips curve

regressions on the two regimes identified by our benchmark model, i.e., 1980-2000 and 2001-

2022, as well as for the full sample, 1980-2022. Importantly, when we conduct the break-point

estimation for individual MSAs, we fail to find significant evidence of breaks for any of the

series. This reflects the weak power of break tests conducted on individual (univariate) time

series which fail to exploit information in the cross-section to identify breaks. However, we

can still use the breaks identified by our panel model to examine evidence of time-variation

in Phillips curve slope estimates across time and cities. Only 7 MSAs have a significant

negative Phillips curve over the full sample, compared with six in each of the two regimes,

suggesting that Phillips curves are poorly identified using inflation series at the individual

MSA-level. Possible explanations for this include non-stationarities in the data and the

relatively small samples (at most 43 observations) available at the annual frequency.

The top panel of Figure 4 displays the Phillips curve slope coefficient estimated on MSA

data throughout our sample using the model specification displayed in Equation (1), but

estimating it as a panel no-break OLS regression with two-way fixed effects using a ten-year

rolling window exponentially down-weighting older data according to a decay parameter

equal to 0.8. We see that the Phillips curve reached its steepest point for windows ending in

the early-2000s and flattened thereafter. We find a similar pattern for the EU data (bottom

panel). This suggests that a shift at 1990 as other studies have implemented might be too

early, and that the shift occurs a little later as our breakpoint model suggests. Note that the

volatility in the rolling window estimates with a steepening of the Phillips curve followed by a

flattening is caused by the fixed window length, leading to “base” effects as observations drop

out of the window as it is recursively rolled forward. This clearly illustrates why a formal

breakpoint approach like our method is required to accurately estimate time-variation in the

Phillips curve. Finally, the rapid steepening of the Phillips curve suggests that a breakpoint

37Many MSAs have missing data from the 1980s. This makes it difficult for our endogenous clustering
approach to identify groups of cities with distinctly different Phillips curve dynamics, so we do not apply
our grouping approach to the MSA-level data.
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approach may better capture variation in the data than a time-varying parameter model

with slowly-evolving coefficients, aside from also being easier to interpret. We do a formal

comparison of time-varying parameters and discrete break models in subsection 6.3 below,

and find that discrete break models fit the data better.

Other studies have found evidence of a flattening Phillips curve. Using a simple subsample

split on state-level data, Hazell et al. (2022) find that the Phillips curve flattens by about 50%

post-1990, but that it was already quite flat and the change is not statistically significant.

We estimate our breakpoint approach using their data and corroborate their findings with

a single break, except the break date is estimated to occur in 2000, aligned with the date

estimated from our other data sets.38 In both regimes, we observe a flat Phillips curve with

the slope estimate being marginally insignificant in the first regime (1978-2000) and clearly

insignificant in the second (2001-2017). Note that the data of Hazell et al. (2022) excludes

shelter and so it is not surprising that the slope is much flatter than when we estimate it

from our MSA-level data since shelter is one of the most cyclically sensitive categories (Stock

and Watson 2020) and comprises about 30 percent of CPI.

4.3. Nonlinear Phillips Curve

Tests for breaks are conducted in the context of, and conditional upon, the maintained model

specification, in our case a linear Phillips curve model. It is possible that our findings on the

presence of breaks to this model reflect omitted non-linearities in the inflation-unemployment

trade-off. Previous studies such as Babb and Detmeister (2017) have in fact identified non-

linearities in the Phillips curve.

To examine this possibility, while still allowing for the possibility of breaks, we generalize

the linear Phillips curve specification in Equation (1) to allow the unemployment-inflation

trade-off to have a kink at a pre-specified threshold, θ, so that for regimes k = 1, . . . , K + 1

and t = τk−1 + 1, . . . , τk,

πit = αi + γt + ρkπit−1 + λkURATEit + ωk(URATEit − θ)1URATEit<θ + εit. (14)

Note that there is no discontinuity at the threshold point (θ) but the degree of steepening in

38Specifically, using the baseline model in Equation (1) on the state-level core CPI data from Hazell et al.
(2022), we regress the 34 state-level nontradeables inflation rates from 1978 through 2017 on the lagged
state-level unemployment rates and an autoregressive term while allowing for two-way fixed effects. The
four-quarter inflation rate in each year is regressed on the four-quarter inflation rate in the previous year
and the average monthly unemployment rate computed over the 12 months of the previous year.
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the Phillips curve can differ across regimes. This allows us to examine if nonlinearities were

more or less important in regimes with a steep or flat Phillips curve.

Because we only have aggregate measures of slack for the sectoral (PCE and CPI) data, we

cannot estimate the model in Equation (14) on these data. Conversely, the MSA-level data

has city-level unemployment rate data and so can be used to examine nonlinear (threshold)

effects.

We exploit regional variation in labor market tightness to identify nonlinearities in the

Phillips curve, which is crucial since the US national labor market has experienced relatively

few episodes of being very tight. For example, the black circles in the top panel of Figure 5

plot the annual aggregate headline CPI inflation rate against the lagged annual unemploy-

ment rate during our sample period from 1980 through 2022. There are few observations

corresponding to very tight labor markets. On the other hand, there are many observations

in which labor markets have been very tight in the MSA-level data (green circles).

The lower panel of Table 6 displays results from estimating Equation (14) with threshold

values for the unemployment rate (θ) of 5% (top panel) and 4.2% (second panel), respectively.

These are the thresholds considered by Babb and Detmeister (2017).39 In the post-2000

regime, at an unemployment rate below 4.2 percent, the slope is -0.44 versus -0.20 at higher

unemployment rates. The estimated size of the post-2000 kink is notably bigger than the

kink estimated without allowing for any regime change (-0.24 versus -0.17). This is consistent

with a time-varying non-linearity and shows that, at least for the MSA data, the Phillips

curve has become notably steeper after 2000 at low levels of unemployment.

Table A4 in the Appendix, shows that the nonlinearity not only interacts with regimes,

but also with clusters of MSAs. In the post-2000 regime, we document that in a hot labor

market the group of MSAs with below median rates of import penetration has an additional

Phillips curve slope that is approximately three times as steep and significantly different

from that of the group of remaining MSAs. This finding is clearly relevant to current policy

debates about costs and benefits of a hot labor market.40

39We condition on the two regimes identified by the Phillips curve fitted to the MSA-level inflation data,
but the break dates remain the same if we estimate the model augmented to allow for the kink.

40There is mounting evidence that households experience different inflation rates (Kaplan and Schulhofer-
Wohl 2017; Jaravel 2019; Cavallo 2020; Argente and Lee 2021). Meanwhile, the Federal Reserve and the
European Central Bank recently committed to “inclusive” monetary policy, emphasizing lower income house-
holds (Powell et al. 2020; Schnabel 2021). If these MSAs groupings have different representations of lower
income households, then the central bank may wish to put more weight on the trade-off from running a hot
labor market in those MSAs.
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4.4. Wage Phillips curves

The top panel of Table 7 displays results for the wage Phillips curve when using the 51 state-

level (including the District of Columbia) quarterly wage inflation rates from 1980 through

2019. We identify a single break in 2000Q2. This break results in a flattening of the wage

Phillips curve with the estimated slope falling from -0.47 to -0.38 which is less dramatic than

for some of the price Phillips curves as noted by Rognlie (2019) and Hooper et al. (2020),

perhaps because in the price Phillips curves markups can absorb some of the effects of wage

changes, especially with considerable global competition in product markets.

Table 7 also considers the same kind of non-linearity in the wage Phillips curve that we

earlier examined for prices at the MSA level in Table 6, i.e., using thresholds of 5% (middle

panel) and 4.2% (bottom panel). For both threshold values, we find very strong evidence

of a much steeper wage Phillips curve in tight labor markets. For example, the slope of the

Phillips curve after 2000 is -0.36 when the unemployment rate exceeds 4.2% but, at -0.98,

is nearly three times steeper when unemployment falls below this level. Moreover, for this

data, the steep threshold effect holds in both the early and late regimes and is even slightly

stronger in the earlier data.

4.5. EU Data

Table 8 displays the baseline results for the 28 EU country-level annual inflation rates (1986-

2021). Our model identifies a single break in 2004. Before the break, the slope of the

Phillips curve is -0.78 with an AR coefficient of 0.10, implying a dynamic slope coefficient of

-0.87. After the break, the slope coefficient declines to -0.14 with an AR coefficient of 0.51,

implying a dynamic slope coefficient of -0.29. Both estimates are significant, so the inflation-

unemployment trade-off remains valid, but the Phillips curve becomes much flatter after the

break. Scaling by the expenditure share on nontradeables, the implied euro-area Phillips

curve slope flattens from -1.11 to -0.20. Grouping the countries into “rich” and “poor”

nations, based on whether GDP per capita deflated by PPP is above or below average, we

find that the poor countries had a significantly steeper Phillips curve in the first subsample

(1986-2003), whereas the slopes of the Phillips curve are the same, and flat, for the two

groups in the second subsample (2004-2021). This finding is consistent with the greater

goods and labor market integration of countries in Southern and Eastern Europe seen in

recent years. The overall Phillips curve slope implied by these rich versus poor grouped
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estimates are -0.48 in the first regime and -0.09 in the second regime. The fully pooled

model therefore over-estimates how much the Phillips curve has flattened, primarily because

it over-estimates the steepness of the Phillips curve in the first regime.

To further track how the heterogeneity in Phillips curve slopes evolves over time, the

black line in the lower panel of Figure 1 graphs the evolution of the posterior mean of the EU

Phillips curve slope over time with blue bands denoting the 95 percent posterior interval and

red lines tracking the Phillips curves estimated country-by-country. Uncertainty about the

panel estimate of the Phillips curve slope is much stronger in the first regime and considerably

smaller after 2001. As for the PCE inflation series, we see that the individual country-level

Philips curves are imprecisely estimated and often fall outside the 95% posterior interval.

The lower panel of Table 8 displays results for the full sample, as well as separately

in the two regimes identified by the baseline model, for a Phillips curve that uses either

country-level total goods inflation, or total services inflation as the dependent variable. The

flattening of the Phillips curve after 2004 is apparent for both goods and services inflation.

Interestingly, while flatter in absolute terms, the Phillips curve remains significantly steeper

for services inflation in the second regime (slope estimate of -0.22 versus -0.09), consistent

with what we found for the US. For the full sample, the Phillips curve estimated on services

inflation is significantly steeper than the curve estimated on goods inflation (slope estimates

of -0.24 versus -0.11).

Table 9 uses the group heterogeneity model that endogenously determines if there are

differences in individual countries’ Phillips curves and how these are affected by breaks. We

identify two groups of countries in the first regime that ends in 2003.41 One group (labeled

group 1 in the table) has a relatively steep Phillips curve before 2004 with a slope of -0.42.

This cluster mainly comprises countries on the European periphery, including Bulgaria,

Estonia, Ireland and Portugal. The second group has a much flatter Phillips curve with an

estimated slope of -0.08 which fails to be significant. In the post-2004 regime, we identify a

single group, whose estimated slope is -0.14.

To further understand this heterogeneity, Appendix Table A5 reports country-level esti-

mates of the Phillips curve coefficients estimated separately for the two regimes (1986-2003,

2004-2021) and for the full sample (1986-2021). Only six countries (the Netherlands, Finland,

Lithuania, Latvia, Austria, and Cyprus) generate a significantly negative estimate over the

full sample (1986-2021), versus five countries in the early period and seven countries for the

41Inflation in Romania contains extreme outliers during the post-Communist transition, so this country is
in a group of its own during the early sample. We simply mark it as missing in the table.
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regime that starts in 2004. This demonstrates two important points. First, Phillips curves

are poorly identified using inflation series at the individual country-level. Second, break

tests conducted at the univarate level tend to have weak power. As for the U.S. data, break

tests conducted at the individual country level based on the break estimation methodology

proposed by Chib (1998) fail to find significant evidence of breaks for any of the countries.

This point is linked to the large estimation errors associated with the country-level Phillips

curves and shows up in the form of quite large variation in coefficient estimates across the

two regimes for individual countries.42

In summary, our estimates for the EU Phillips curve suggest that in addition to a flat-

tening of the Phillips curves, there has been some “convergence” in Phillips curve slopes

with the flattening being most pronounced in countries that previously had steep Phillips

curves. European integration thus appears to have been associated with a convergence of the

slopes of country-level Phillips curves, consistent with what we found for “rich” and “poor”

countries in Table 8 above.

To examine possible nonlinearities in the EU Phillips curve, the results displayed in the

final panel of Table 8 allow for a single kink at an unemployment gap threshold below -1.5%

as in Equation (14).

Under normal labor market conditions, we find a significantly negative and very steep

Phillips curve in the first regime (1986-2003) with a slope estimate of -1.15. Conversely,

the Phillips curve in a tight labor market (UGAP < −1.5%) is poorly identified in this

subsample, likely because Europe had so few cases with very tight labor markets in this

time period. Turning to the second regime (2004-2021), there is a significant steepening of

the Phillips curve which goes from -0.07 (flat) to -0.63 (steep) in tight labor markets. The

full sample kink (-0.17) is insignificant, underscoring again the insights from considering

nonlinearity and structural stability jointly.

These findings are consistent with the US findings and support the presence of a Phillips

curve trade-off over the last two decades but only in tight labor markets.

The top panel of Figure 6 displays the posterior mode break dates for the 28 EU countries

based on the generalized version of the baseline model in Equation (2) that allows the break

timing to vary across countries as described in Section 3.2. As in the earlier figures, circles to

the left (right) indicate countries that are affected first (last) by a break. The vertical array

of circles to the far left of the figure comprises all the advanced, early EU members which,

42We also fail to identify breaks in a panel break model with heterogeneous slope coefficients. Hence, it is
exploiting cross-sectional information and pooling parameters that generates break detection power.
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thus, are affected first by the break to the Phillips curve in 2003. Countries such as Estonia,

Poland, and Latvia follow in 2004. With a five-year delay, Romania and Bulgaria are the

last countries to exhibit flattening of their Phillips curves. The Bayesian algorithm has no

knowledge of the timing of EU accession, but it is noteworthy that these two countries were

the last to join the EU, in 2007. This points to EU membership, and the associated trade

linkages and freedom of movement of labor, as possible factors associated with the observed

flattening and convergence of the Phillips curves.

The lower panel displays how the corresponding Phillips curve slope coefficients for two

countries – Germany (red line) and Estonia (black line) – evolve over time, incorporating

uncertainty surrounding the break dates estimated from the noncommon breaks model. We

see that the slope for Germany adjusts quite rapidly, while the slope for Estonia evolves

much more gradually. An attractive feature of our Bayesian noncommon break methodology

is that it not only allows the break dates to differ across series, but it also captures the

uncertainty surrounding the estimated break date for each series. The latter feature allows

series to differ in how quickly their parameters evolve.

5. Accounting for recent inflation experience

In this section we explore implications of our findings for the recent inflation experience,

including evidence of missing disinflation and the recent inflationary surge.

5.1. Missing disinflation, reinflation and the recent inflationary surge

The top panel of Figure 7 displays the Phillips curve fit from our linear MSA breakpoint

model (black line). Specifically, in each year this is our prevailing regime-specific MSA

regional linear Phillips slope coefficient divided by the nontradeables share and multiplied

by the lagged national unemployment rate gap. The red line graphs the annual national

headline CPI inflation rate minus long term inflation expectations, which are 10-year ahead

SPF CPI inflation expectations.43

If there were missing disinflation during the Great Recession we would expect to see the

black line run below the red line. Likewise, we would expect the black line to run above

the red line if there were a missing reinflation during the recovery years following the Great

Recession. In fact, the black line tracks the red line closely and so there appears to be little

43Missing observations prior to 1991 Q4 are filled using linear interpolation.
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evidence of missing disinflation and missing reinflation according to the fit of our Phillips

curve model. This echoes the results of Ball and Mazumder (2019) and Hazell et al. (2022).

The dotted black line graphs the implied estimates from our nonlinear Phillips curve

estimates in the second regime using MSA-level data and increasing the noncyclical rate of

unemployment (NROU) in 2021 and 2022 to the estimates from Crump et al. (2022) who

argue that NROU has risen temporarily since COVID-19.44 The dotted black line increases

just under half as much as the red line between 2020 and 2022, suggesting that a steeper

Phillips curve in hot labor markets combined with a higher NROU can explain a bit less

than half of the recent inflationary surge. If we were to instead use a linear Phllips curve,

shown by the solid black line, we would explain almost none of the pandemic era inflation

surge.

We repeat this exercise for the EU and display the results in the lower panel of Figure 7.

The black line uses estimates from our linear breakpoint Phillips curve model. The red line

uses the EU inflation rate and long term (five-year ahead) Eurozone inflation expectations

from the ECB SPF which goes back to 2002 Q3. Prior to this, we use one-year ahead

expectations, going back to 1999 Q1.45 We average expectations across the four quarters

in a given year. Once again, we see little evidence of missing disinflation during the Great

Recession or missing reinflation during the subsequent recovery.

5.2. Break monitoring and the prior for regime duration

As we will discuss more fully in subsection 6.4 below, in most respects our results are not

sensitive to the priors. However, an exception to this is the prior expected regime duration.

So far we assumed a prior expected regime duration of 20 years which is suitable for a

longer-term historical analysis aimed at detecting “secular” breaks. This choice of prior does,

however, make it hard to detect any breaks near the end of the sample due to insufficient

observations in the new regime (Bai and Perron 1998). This matters because monetary

policy-makers and financial market participants must make decisions in real-time and so are

more focused on monitoring for recent breaks.

Our methodology is flexible enough to also be used to detect breaks emerging towards

the end of the sample.46 This is particularly salient in light of the post-pandemic inflationary

44Specifically, we use their 5.9 percent estimate in 2021 and a value of 5.6 percent in 2022 which is about
the middle of their range of forecasts.

45Eurozone expectations data are sourced from the ECB statistical data warehouse.
46Previous studies have focused on detecting recent structural changes due to, for example, the implosion
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surge and the possibility that the Phillips curve has steepened in the COVID era, as doc-

umented in other studies (Cerrato and Gitti 2022; Inoue et al. 2022). Unfortunately, these

studies either impose ad hoc subsample splits or use time-varying parameter models which

allow for drifting coefficients but do not have a formal statistical procedure to determine

whether changes in coefficients truly reflect a shift to a new mean. Conversely, our panel

data approach leverages cross-sectional information to deal with the weaker power of tests

targeting break detection towards the end of the sample.

The simplest way we can modify our baseline model to detect a possible break towards

the end of our sample is by reducing our prior expected regime duration. Specifically, we

reduce this from 20 to five years.

Table 10 shows the resulting estimates based on our sectoral CPI data. In all, five

regimes are found, with the most recent break date in 2020:Q1. In this post-pandemic

regime, the Phillips curve slope coefficient is estimated as a significant -1.6 after having been

essentially flat for two decades. Excluding the volatile food and energy sectors which, as

noted earlier, can help to remove some of the supply shocks that undoubtedly played a role

during the pandemic era, we still uncover a steepening of the Phillips curve to a significant

value of -1.16 in the COVID era. Splitting the sectors into goods and services, we find that

the steepening of the Phillips curve is concentrated in the goods sector, with the services

slope being insignificant. The steepening of the goods Phillips curve may have been driven

by the rotation of consumption from services towards goods that accompanied lockdowns

and the persistence of work from home policies. Of course, supply side disruptions such

as the chip shortage that caused motor vehicle prices to skyrocket may be playing a role.

Still, removing the transportation commodities less motor fuel category does not materially

change our results.

Turning to the sectoral PCE data, our approach with the five-year regime duration prior

identifies the same terminal break date as the CPI sectoral data, namely 2020:Q1. In Table

11, we report the estimated slope of the Phillips curve in this post 2020:Q1 period only for

PCE sectoral data, with the corresponding results for the CPI data repeated as a memo item.

For the PCE data, there is again a considerable steepening. And again this holds when we

exclude food and energy sectors, and is concentrated in goods sectors. Excluding the motor

vehicle and parts category has a greater impact here: the slope for all sectors excluding food

and energy is a significant -1.45, quite a bit flatter but still a marked steepening relative

of financial bubbles or COVID-19 (Phillips and Shi 2018; Bardwell et al. 2019; Otto and Breitung 2022).
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to the Phillips curve slope seen over the two decades that preceded the pandemic. Taken

together, these estimates imply a considerable steepening of the Phillips curve in the US in

the COVID era.

Turning to the EU data, since we are using annual data even our algorithm cannot

detect a break with so few observations in the post-pandemic regime. We therefore impose

the break date identified from our US Phillips curves, and find that the EU Phillips curve

has steepened to a significant -0.51, as also shown in Table 11. Once again, this steepening

is concentrated in goods rather than services sectors. We also find that the steepening is

concentrated in poorer countries (as also found by Baba et al. (2023)), and these are the

countries that experienced most of the flattening in the early-2000s. The strains from Covid

on supply chains may have, at least for a while, reversed some of the impacts of European

integration. Finally, when estimating our nonlinear Phillips curve on EU data in the final

regime we find that the slope is considerably steeper in hot labor markets.47 This nonlinear

Phillips curve is similar in magnitude to the slope estimated for the US using the CPI sectoral

data. This implies not only that the EU has moved onto the steeper part of the Phillips

curve, but also that the Phillips curve in hot labor markets has got steeper.

An advantage of having a steep Phillips curve is that the increase in slack to bring inflation

back to target does not need to be that big. A concern for policy makers going forward is

that the Phillips curve could experience another break and revert to a flatter Phillips curve

with lower persistence. In this scenario, the COVID era would have represented a short-

lived regime related to the unusual shock that the pandemic had on the macroeconomy.

Unfortunately, this would mean that inflation would prove harder to dislodge.

6. Robustness checks

In this section, we perform a number of robustness checks on our results. Specifically, we

first consider the possible effect on our panel break estimates of serial correlation or cross-

sectional error dependence in the residuals. Next, we evaluate whether our panel break model

better fits the data than a time-varying parameter model with smoothly-evolving coefficients.

Finally, we consider the effect of adopting alternative specifications for the priors.

47We are considering the nonlinear specification only for EU data because we need regional slack measures
for strong identification of the nonlinear model. Recall that our state-level wage data only go through 2019
and so are not suited to analysis of the COVID period.
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6.1. Serial correlation

Serial correlation in the residuals of our model could potentially result in misleading inference.

Across all four data sets, the top panel of Appendix Table A6 shows that the p value of

the Durbin and Watson (1950) test statistic fails to reject the null hypothesis of no serial

correlation in the Phillips curve residuals within every regime across the four data sets (CPI

and PCE sectoral, MSA-level, and EU country-level) we consider in our analysis.

6.2. Cross-sectional error dependence

Next, we consider the possibility of cross-sectional error dependence in the residuals from our

model. In applications with reasonably large cross-sections, weak dependence or dependence

that is confined to a relatively small number of series will not pose serious estimation and

inferential problems and only pervasive cross-section dependence is problematic (Pesaran

2015). Moreover, if cross-sectional dependence is caused by unobserved common factors

that are uncorrelated with the regressors, our estimator remains consistent, though some of

the efficiency gains from pooling may be lost and the standard error estimates may be biased

(Phillips and Sul 2003; Chudik and Pesaran 2013).

We test for cross-sectional error dependence using the test statistic proposed by Juodis

and Reese (2022) which is a bias-corrected version of the original CD test statistic proposed

by Pesaran (2021). Results are reported in the lower panel of Appendix Table A6. We

cannot reject the null hypothesis of no cross-sectional error dependence in any regime across

the four data sets, although we are on the borderline of rejecting the null in the third regime

for CPI data. If we exclude the Motor Fuel category in this regime when computing the

test statistic, however, we cannot reject the null, suggesting that the cross-sectional error

dependence is not pervasive. Reassuringly, the estimates from the CPI sectoral data in the

third regime follow the same basic pattern as the PCE sectoral data (which has no cross-

sectional error dependence), namely a flattening curve in the final regime. We therefore

conclude that any cross-sectional error dependence is insufficiently pervasive to cause serious

inferential problems in our settings.

6.3. Time-varying parameters

Finally, we compute Bayes factors for the baseline panel model with discrete breaks versus

the same model estimated using a time-varying parameter (TVP) specification. Bayes factors
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are constructed using the marginal likelihood of each model computed using the methodology

of Chib (1995), for our four price Phillips curve data sets (at the PCE and CPI sectoral-

level, the MSA-level, and the EU country-level). Bayes factor values between 1 and 3 are

inconclusive, values between 3 and 20 indicate positive evidence in favor of the restricted

model, while values between 20 and 150 indicate strong evidence in support of the restricted

model (Kass and Raftery 1995). The TVP model can be viewed through the lens of our

breakpoint model, but imposes that a (typically small) break occurs every period. We do

not impose this assumption. Instead we estimate the number of breaks, specifying a prior

on the regime duration that places relatively little weight on very short regimes and so our

framework tends to reveal few (typically large) breaks.

Across all four data sets we find Bayes factors above 20, suggesting strong evidence in

favor of modeling time variation in the Phillips curve as discrete breakpoints rather than

smoothly-evolving changes.

6.4. Alternative prior specifications

Our analysis uses fairly uninformative priors on the key parameters of the Phillips curve

such as ρk and λk, both of which are centered on zero. Effectively, this stacks the results

against finding a steep Phillips curve, but we mitigate such effects by allowing for relatively

large values of the prior variances σ2
ρ and σ2

λ. Because our priors are relatively uninformative,

changing the centering of either ρk or λk has little impact on our results.

Priors can also be used to incorporate economic beliefs into the model. For example,

truncating the prior on the slope of the unemployment rate at zero can be used to rule out

positive values for the Phillips curve slope coefficient. Empirically, we find that truncating

the prior has little impact on our baseline estimates of the price Phillips curve across all four

data sets. Specifically, the truncation never binds for the MSA-level data and only binds

for the CPI and PCE sectoral data sets in the final regime, causing their slope coefficients

to become slightly steeper but not affecting their significance. The truncation binds in each

regime for the EU data but only on a relatively small number of posterior draws, causing

the magnitude of the Phillips curve to steepen slightly without altering our conclusions in

any way. Overall, truncating the Phillips curve slope coefficient at zero has little impact on

inference in our study.

To evaluate the impact of the priors on our posterior estimates of the Phillips curve slope,

persistence, and volatility parameters, we next compute the formal prior informativeness (PI)
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measure of Müller (2012). The values are displayed in Table A7 for our PCE, CPI, MSA,

and EU data sets. Across all four data sets, the value of this PI measure implies that the

priors contribute less than 15 percent to the posterior estimates of these three parameters. We

conclude that our choice of priors over the regression coefficients is sufficiently uninformative,

contributing relatively little to the posterior estimates.

Our prior on the break frequency is more informative. We select it so a break is expected

to occur every 20 years. This means that our results tend to select relatively rare shifts

in the Phillips curve which are likely to be of a more secular nature, representing “trend

breaks”. Lengthening this prior regime duration to 40 years does not affect the results, but

shortening it by enough uncovers additional breaks as stated in the earlier post-pandemic

analysis. Our methodology therefore is flexible enough to focus on “trend” breaks or be used

for break monitoring purposes.

7. Conclusions

In this paper, we have applied new Bayesian panel methods with breakpoints to panel data

on inflation and unemployment from the U.S. and the European Union. Our approach brings

us three key insights.

Firstly, we consider a “partial pooling” approach that endogenously forms groups or

clusters of inflation series, allowing the Phillips curves to differ across clusters (but assuming

homogeneity within clusters). This approach is more flexible than conventional panel data

methods and yet more efficient than estimating separate time series regressions for each

region or industry. Our results provide motivation for future research on partial pooling.

Secondly, we allow for breaks in the slope of the Phillips curve and can estimate the

number of breaks, their location, as well as the magnitude of the shift in both slope and

volatility parameters. These breaks cannot be estimated with meaningful precision with

aggregate data or individual inflation series alone. We find evidence for up to two breaks;

one in the early 1970s and the other around 2000. The Phillips curve steepened after the

first break, and flattened after the second. The flattening around 2000 is greater for goods

than for services, is greater for MSAs with above-median rates of imports from China than

for MSAs with below-median rates, is greater in price Phillips curves than in wage Phillips

curves, and is greater in poorer EU countries than in richer ones. We identify a distinct

pattern of convergence in EU country Phillips curve slope coefficients, consistent with greater

geographic mobility. We also consider an extension that allows breaks to affect individual
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inflation series at different points in time.

Thirdly, we consider a nonlinearity in the Phillips curve whereby hot labor markets are

associated with a steeper Phillips curve and find that the evidence for this nonlinearity at

the end of the sample is strengthened by allowing for regime breaks.

Our estimates imply essentially no missing disinflation during the Great Recession and no

missing reinflation during the subsequent recovery. Combining nonlinearity in the Phillips

curve with a higher estimate of the natural rate, we can explain about half of the recent

surge in U.S. inflation.
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Table 1: Summaries of existing papers on instability in the Phillips curve

Authors Sample Method Finding Notes
Ball and Mazumder (2011) 1960-2010 Random Walk parameter Steepening around 1970,

flattening in 80s
Lower and more stable inflation
both flatten curve. Paper uses
median and core CPI

Slope coefficient linear
function of level and
variance

Ball and Mazumder (2019) 1985-2015 Sup Wald test Flattening break in 1995 Break identified indirectly from
expectations formation. Paper
uses median CPI.

Perron and Yamamoto (2015) 1960-1997 Sup Wald test Break in 1991 Uses GDP deflator.
Matheson & Stavrev (2013) 1961-2012 Random Walk parameter Flattening in 80s Uses headline CPI inflation.
Gali and Gambetti (2019) 1964-2017 Regimes with fixed dates Flattening in 2007 Wage Phillips curve
Leduc and Wilson (2017) 1991-2015 Regimes with fixed dates Flattening in 2009 Wage Phillips curve
Hooper et al. (2019) 1961-2018 Regimes with fixed dates Flattening in 1988 Uses headline and core PCE

and average hourly earnings and
MSA panel data.

Coibion & Gorodnichenko (2015) 1961-2007 Regimes with fixed dates Possible break in 1985;
mixed evidence

No break if augmented with
household expectations. Uses
various aggregate inflation mea-
sures (CPI, core CPI...)

Coibion et al. (2013) 1968-2013 Regimes with fixed dates Flattening break in 1985 Break in price Phillips curve not
wage Phillips curve

Roberts (2006) 1960-2002 Regimes with fixed dates Flattening break in 1983 Uses core PCE inflation.
Hazell et al. (2002) 1978-2018 Regimes with fixed dates Break in 1990 but not sig-

nificant
State level panel data

Cerrato and Gitti (2022) 1990-2022 Regimes with fixed dates Flattening in pandemic;
steepened after

MSA level panel data

Fitzgerald et al. (2023) 1977-2018 Regimes with fixed dates No significant break MSA level panel data
Williams (2006) 1980-2016 Recursive regressions Flattening in the 90s Core CPI and PCE
Del Negro et al. (2020) 1964-2019 Regimes with fixed dates Break in 1990 Estimated in VAR
Barnichon & Mesters (2021) 1969-2007 Regimes with fixed dates Break in 1990 Phillips multiplier not slope of

curve. Uses headline PCE
Gilchrist & Zakrajsek (2019) 1962-2017 Sup-Wald test Mixed results; possible

break in 80s
Panel and aggregated data (CPI
and PPI)

Interact gap with trade
share

Inoue et al. (2022) 1970-2021 IV estimation with ran-
dom walk parameters

Flattening until early
2000s; then steepening

Uses core PCE

Blanchard (2016) 1960-2014 Random walk parameter Flattening in the 1980s Uses headline CPI
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Table 2: Quarterly 16 PCE industry-level inflation rates (1959-2022)

1959-1972 1972-2001 2001-2022 1959-2022

All industries
PC -0.48∗∗∗ -0.82∗∗∗ -0.28∗ -0.42∗∗∗

AR 0.33∗∗∗ 0.38∗∗∗ 0.16∗∗∗ 0.25∗∗∗

vol. 1.58 2.91 3.03 2.89

All industries (ex. food and energy)
PC -0.32∗∗∗ -0.49∗∗∗ -0.13∗∗ -0.24∗∗∗

vol. 1.43 2.41 1.96 2.18

Goods
PC -0.59∗∗∗ -1.09∗∗∗ -0.32 -0.52∗∗∗

AR 0.05∗∗ 0.38∗∗∗ 0.15∗∗∗ 0.23∗∗∗

vol. 1.9 3.44 4.01 3.57

Services
PC -0.34∗∗∗ -0.57∗∗∗ -0.19∗∗∗ -0.27∗∗∗

AR 0.59∗∗∗ 0.37∗∗∗ 0.38∗∗∗ 0.43∗∗∗

vol. 1.39 2.34 1.41 2.07

Note: The top panel of this table displays estimates of the slope coefficients on the aggregate unem-
ployment gap (PC) and the autoregressive term (AR) from the baseline model displayed in Equation
(3). Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. The reported volatility
(vol.) is the weighted average of the sectoral-level volatility estimates, weighted using the 2022:Q1 ex-
penditure weights. This model regresses the 16 PCE sector quarterly inflation rates from 1959 through
2022 on an autoregressive term, the aggregate unemployment gap, and long-term inflation expectations,
including industry fixed effects. We display results for the three regimes identified by the model, and for
the full sample (by estimating the model but precluding any breaks). The second panel displays results
when food and energy sectors are excluded from the model. The third and fourth panels display results
when estimating the same model separately for goods and services sectors, while precluding breaks and
conditioning on either the regimes identified by the baseline model or on the full sample. The goods
group consists of Motor vehicles and parts, Furnishings and durable household equipment, Recreational
goods and vehicles, Other durable goods, Food and beverages purchased for off-premises consumption,
Clothing and footwear, Gasoline and other energy goods, and Other nondurable goods. The services
group consists of Housing and utilities, Health care, Transportation services, Recreation services, Food
services and accommodations, Financial services and insurance, Other services, and NPISH. Values in
bold font denote that the services PC is significantly different from the goods PC at the 95% confidence
level.
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Table 3: Grouped heterogeneity estimates: Quarterly 16 PCE industry-level inflation rates (1959-2022)

1959-1972 1972-2001 2001-2022 1959-2022

Parameter Estimates

Group 1
PC -0.51∗∗∗ -2.25∗∗∗ -2.32 -0.96∗

vol. 3.13 9.31 39.79 11.09

Group 2
PC -0.37∗∗∗ -0.45∗∗∗ -0.12∗∗ -0.23∗∗∗

vol. 1.20 1.89 1.95 1.93

Weighted average
PC -0.41 -0.79 -0.26 -0.32

Group Allocation Estimates

Motor vehicles and parts 1 2 2 2
Furnishings and durable household equipment 2 2 2 2

Recreational goods and vehicles 2 2 2 2
Other durable goods 1 2 2 2

Food and beverages purchased for off-premises consumption 1 2 2 2
Clothing and footwear 2 2 2 2

Gasoline and other energy goods 1 1 1 1
Other nondurable goods 2 2 2 2

Housing and utilities 2 2 2 2
Health care 2 2 2 2

Transportation services 2 2 2 2
Recreation services 2 2 2 2

Food services and accommodations 2 2 2 2
Financial services and insurance 2 1 2 1

Other services 2 2 2 2
NPISH 1 1 2 2

Note: The top panel of this table displays estimates of the slope coefficient on the aggregate unem-
ployment gap (PC) from the model that estimates an unobserved grouping structure as described in
Section 3.3. We also display the average slope across groups, weighted by the number of series in each
group. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. This model regresses
the 16 PCE industry-level quarterly inflation rates from 1959 through 2022 on an autoregressive term,
the aggregate unemployment gap, and long-term inflation expectations, including industry fixed effects.
We also report the industry-weighted volatility (vol.) estimate within each group, using the 2022:Q1
expenditure weights. The model is estimated within the three regimes identified by the baseline model
displayed in Equation (3) that uses the 16 PCE sector inflation rates, and for the full sample. The lower
panel displays the corresponding posterior mode group allocations.
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Table 4: 31 CPI industry-level quarterly inflation rates (1954-2022)

1954-1971 1971-2001 2001-2022 1954-2022

All industries
PC -0.51∗∗ -1.46∗∗∗ -0.27 -0.43∗∗∗

AR 0.09∗∗ 0.23∗∗∗ 0.07∗∗∗ 0.13∗∗∗

vol. 1.98 3.69 5.20 5.24

All industries (ex. food and energy)
PC -0.64∗∗∗ -0.49∗∗∗ -0.12∗∗ -0.21∗∗

AR 0.40∗∗∗ 0.36∗∗∗ 0.08∗∗∗ 0.23∗∗∗

vol. 1.34 1.69 2.22 2.53

Goods
PC -0.53∗ -1.91∗∗∗ -0.19 -0.54∗∗∗

AR 0.07 0.19∗∗∗ 0.02 0.09∗∗∗

vol. 1.94 4.68 6.74 5.41

Services
PC -0.40∗∗∗ -0.43∗∗ -0.32∗ -0.28∗∗∗

AR 0.36∗∗∗ 0.57∗∗∗ 0.25∗∗∗ 0.29∗∗∗

vol. 1.04 1.69 3.85 3.07

Note: The top panel of this table displays estimates of the slope coefficients on the aggregate unem-
ployment gap (PC) and the autoregressive term (AR) from the baseline model displayed in Equation
(3). Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. The reported volatility
(vol.) is the weighted average of the sectoral-level volatility estimates, weighted using the October 2022
relative importance weights. This model regresses the 31 CPI sector quarterly inflation rates from 1954
through 2022 on an AR term, the unemployment gap, and long-term inflation expectations, including
industry fixed effects. We display results for the three regimes identified by the model, and for the
full sample (estimating the model but precluding any breaks). The other panels display results when
excluding food and energy sectors, and running the models separately for goods and services sectors,
conditioning on either the regimes identified by the baseline model or on the full sample. The services
group consists of Full Service Meals and Snacks, Limited Service Meals and Snacks, Food at employee
sites and schools, Food from vending machines and mobile vendors, Other food away from home, Utility
(piped) gas service, Shelter, Water and sewer and trash collection services, Household operations, Med-
ical care services, Transportation services, Recreation services, Education and communication services,
and Other personal services. The remaining sectors comprise the goods group. Values in bold font
denote that the unemployment gap slope for services is significantly different from that of goods at the
95% confidence level.

46



Table 5: Grouped heterogeneity estimates: 31 CPI industry-level quarterly inflation rates (1954-2022)

1954-1971 1971-2001 2001-2022 1954-2022

Parameter Estimates

Group 1
PC -0.51∗∗∗ -1.73∗∗∗ -0.17∗∗ -0.27∗∗∗

vol. 1.63 10.79 3.48 5.80

Group 2
PC -0.26∗∗∗ -0.81 -0.63∗∗∗

vol. 0.77 16.87 13.12

Weighted average
PC -0.51 -1.09 -0.27 -0.44

Group Allocation Estimates

Cereals and Bakery Products 2 1 1
Meats, Poultry, Fish and Eggs 1 1 2 2
Dairy and Related Products 1 2 1

Fruits and Vegetables 1 1 2 2
Nonalcoholic Beverages and Beverage Matls 1 1 1 2

Other Food At Home 1 1 1 2
Full Service Meals and Snacks 2 1 1

Limited Service Meals and Snacks 1 2 1 1
Food at employee sites and schools 2 2 1

Food from vending machines and mobile vendors 2 1 1
Other food away from home 2 1 1

Fuel oil and other fuels 1 1 2 2
Motor fuel 1 1 2 2
Electricity 1 1 1 2

Utility (piped) gas service 1 1 2 2
Household furnishings and supplies 1 1

Apparel 1 1 1 2
Transportation commodities less motor fuel 2 1

Medical care commodities 1 2 1 2
Recreation commodities 1 1

Education and communication commodities 1 1 1
Alcoholic beverages 1 1 1 2

Other goods 1 1
Shelter 1 1 1 2

Water and sewer and trash collection services 2 1 1
Household operations 2 1 1
Medical care services 1 2 1 2

Transportation services 1 1 1 2
Recreation services 1 1

Education and communication services 1 1
Other personal services 1 1

Note: The top panel of this table displays estimates of the slope coefficient on the aggregate unemploy-
ment gap (PC) from the model that estimates an unobserved grouping structure as described in Section
3.3. We also display the average slope across groups, weighted by the number of series in each group.
Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. The reported volatility
(vol.) is the weighted average of the sectoral-level volatility estimates within each group, weighted using
the October 2022 relative importance weights. This model regresses the 31 CPI industry-level quarterly
inflation rates from 1954 through 2022 on an autoregressive term, the aggregate unemployment gap,
and long-term inflation expectations, including industry fixed effects. The model is estimated within
the three regimes identified by the baseline model displayed in Equation (3) that uses the 31 CPI sector
inflation rates, and for the full sample. The lower panel displays the corresponding posterior mode group
allocations. Missing group allocations indicate that the corresponding series had no inflation observations
in the regime and so was not assigned to any group.
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Table 6: Annual 22 CPI MSA-level inflation rates (1980-2022)

1980-2000 2001-2022 1980-2022

All MSAs

PC -0.26∗∗∗ -0.21∗∗∗ -0.21∗∗∗

PC (scaled) -0.39 -0.31 -0.32
AR 0.23∗∗∗ 0.39∗∗∗ 0.34∗∗∗

vol. 0.63 0.65 0.65

Above and below median rate of import penetration from China

PC (above) -0.41∗∗∗ -0.24∗∗∗ -0.26∗∗∗

PC (below) -0.16∗∗ -0.15∗ -0.15∗∗

Weighted average -0.35 -0.22 -0.24

Kink at 5% or 4.2% U rate

PC -0.26∗∗∗ -0.18∗∗∗ -0.19∗∗∗

Extra PC (U. rate <5%) -0.22∗∗ -0.28∗∗∗ -0.19∗∗∗

AR 0.21∗∗∗ 0.36∗∗∗ 0.33∗∗∗

PC -0.27∗∗∗ -0.20∗∗∗ -0.20∗∗∗

Extra PC (U. rate <4.2%) -0.29∗∗ -0.24∗∗ -0.17∗

AR 0.21∗∗∗ 0.37∗∗∗ 0.33∗∗∗

Note: The top panel of this table displays estimates of the slope coefficients on the MSA-level unemploy-
ment rates (PC) and the autoregressive term (AR) from the baseline model that includes two-way fixed
effects displayed in Equation (1). Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and
∗∗∗. We also report the slope scaled by the expenditure share on nontradeables to map the regional PC
slope into the national PC slope as suggested by Hazell et al. (2022). The reported volatility (vol.) is the
equal-weighted average of the series-specfic volatility estimates. We display results for the two regimes
identified by the model, and for the full sample (by estimating the model but precluding breaks). The
middle panel displays corresponding results when, conditional on the regimes identified by the baseline
model and for the full sample, we estimate the regression separately for those MSAs that correspond to
states with above or below median rates of import penetration from China based on the state-level import
penetration rates estimated by Riker (2022) who estimates these values using a structural econometric
model that exploits data on the location of import entry, domestic shipments, and distances between
states. The MSAs that comprise the below median group are Detroit-Warren-Dearborn, MI, Dallas-Fort
Worth-Arlington, TX, Denver-Aurora-Lakewood, CO, Philadelphia-Camden-Wilmington, PA-NJ-DE-
MD, and St Louis, MO-IL. Values in bold font denote that the PC slope for the below median rate
of import penetration group is significantly different from that of the above median group. We also
display the average slope across groups, weighted by the number of series in each group. The lower panel
displays results, conditional on the regimes identified by the baseline model and for the full sample,
from estimating the nonlinear Phillips curve in Equation (14), using a kink at unemployment rate values
below either five or 4.2 percent.
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Table 7: Wage Phillips curve: 51 state-level quarterly wage inflation rates (1980-2019)

1980:1-2000:1 2000:2-2019:4 1980:1-2019:4

Linear model

PC -0.47∗∗∗ -0.38∗∗∗ -0.40∗∗∗

AR 0.01 0.07∗∗∗ 0.04∗∗∗

Nonlinear model

Kink at 5%

PC -0.41∗∗∗ -0.32∗∗∗ -0.35∗∗∗

Extra PC (U < 5%) -0.54∗∗∗ -0.48∗∗∗ -0.52∗∗∗

AR 0.00 0.06∗∗∗ 0.04∗∗∗

Kink at 4.2%

PC -0.43∗∗∗ -0.36∗∗∗ -0.37∗∗∗

Extra PC (U < 4.2%) -0.74∗∗ -0.62∗∗∗ -0.69∗∗∗

AR 0.00 0.06∗∗∗ 0.04∗∗∗

Note: The top panel of this table displays estimates of the slope coefficient on the state-level unem-
ployment rate (PC) and the autoregressive term (AR) when regressing the 51 (including the District of
Columbia) state-level quarterly wage inflation rates (growth rates of average hourly earnings of produc-
tion and nonsupervisory workers) from 1980 through 2019 on an autoregressive term and the state-level
unemployment rates, including industry and time fixed effects. Significance at the 10, 5, and 1 percent
levels are denoted by ∗, ∗∗, and ∗∗∗. We display results for the two regimes identified by the model.
Average Hourly Earnings of production and nonsupervisory workers are at the quarterly frequency be-
ginning in 1980:Q1 and ending in 2019:Q4, sourced from the CEPR extract of the underlying CPS data.
The middle and lower panels display estimates when including a kinkpoint for unemployment rate values
below 5 or 4.2 percent, and conditioning on either the full sample or the two regimes identified by the
baseline model.
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Table 8: Annual 28 EU countries inflation (1986-2021)

1986-2003 2004-2021 1986-2021

All countries
PC -0.78∗∗ -0.14∗∗∗ -0.23∗∗

PC (scaled) -1.11 -0.20 -0.33
AR 0.10 0.51∗∗∗ 0.53∗∗∗

vol. 2.37 1.04 1.78

Rich vs poor

PC (rich) -0.19∗∗ -0.07 -0.12∗∗

PC (poor) -0.92 -0.11∗∗∗ -0.23
Weighted average -0.48 -0.09 -0.16

Goods vs services

PC (servs.) -0.26∗∗∗ -0.22∗∗∗ -0.24∗∗∗

PC (goods) -0.29∗∗ -0.09∗∗∗ -0.11∗∗∗

Kink at -1.5%
PC -1.15∗∗∗ -0.07∗∗ -0.21∗

Extra PC (UGAP < -1.5%) 3.28 -0.56∗∗∗ -0.17
AR 0.09 0.49∗∗∗ 0.53∗∗∗

Note: The top panel of this table displays estimates of the slope coefficient on the country-level unem-
ployment gaps (PC) and the autoregressive term (AR) from the baseline model displayed in Equation
(2). Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. We also report the
slope scaled by the expenditure share on nontradeables to map the country-level PC slope into the EU
aggregate PC slope as suggested by Hazell et al. (2022). The reported volatility (vol.) is the weighted
average of the country-level volatility estimates, using HICP country weights. This model regresses the
28 EU (including the UK) country-level annual inflation rates from 1986 through 2021 on an autore-
gressive term and the country-level unemployment gaps, including two-way fixed effects. We display
results for the two regimes identified by the model, and for the full sample (by estimating the model but
precluding any breaks). The second panel displays results when estimating the same model separately
for rich and poor countries – while precluding breaks and conditioning on either the regimes identified
by the baseline model or on the full sample. Rich countries are defined as countries with real GDP per
capita deflated by PPP in 2019 above the EU average and poor countries are defined as the rest. We
also display the average slope across rich vs poor groups, weighted by the number of series in each group.
The third panel displays results when using either total services or total goods inflation, rather than
total inflation for each country. Values in bold font denote that the PC for goods (poor countries) is
significantly different from that of services (rich countries) at the 95% confidence level. The final panel
displays results, conditional on the regimes identified by the baseline model and for the full sample, when
including a kink at an unemployment gap below minus 1.5 percent as displayed in Equation (14).
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Table 9: Grouped heterogeneity estimates: Annual 28 EU countries inflation (1986-2021)

1986-2003 2004-2021

Parameter Estimates

Group 1
PC -0.42∗∗ -0.14∗∗∗

vol. 1.81 1.04

Group 2
PC -0.08
vol. 0.67

Group Allocation Estimates

Germany 2 1
Belgium 2 1
Bulgaria 1 1
Cyprus 1 1
Croatia 2 1

Czech Republic 1 1
Denmark 2 1
Estonia 1 1
Spain 2 1

Finland 2 1
France 2 1
Greece 2 1

Hungary 2 1
Ireland 1 1
Italy 2 1

Lithuania 2 1
Latvia 2 1

Luxembourg 2 1
Malta 2 1

Netherlands 2 1
Austria 2 1
Poland 1 1

Portugal 1 1
Romania 1
Sweden 1 1
Slovenia 2 1
Slovakia 1 1

United Kingdom 2 1

Note: The top panel of this table displays estimates of the slope coefficient on the EU country-level
unemployment gaps (PC) from the model that estimates an unobserved grouping structure as described
in Section 3.3. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. The reported
volatility (vol.) is the weighted average of the country-level volatility estimates within each group,
using HICP country weights. This model regresses the EU country-level annual inflation rates from 1986
through 2021 on an autoregressive term and the country-level unemployment gaps, and includes two-way
fixed effects. The model is estimated within the two regimes identified by the baseline model displayed
in Equation (2). The lower panel displays the corresponding posterior mode group allocations. Due to
high volatility and extreme outliers, Romania was omitted from the analysis in the first regime.

51



Table 10: Phillips curve estimates with 31 CPI industry-level inflation rates and shorter prior regime duration

1954-1971 1971-2001 2001-2007 2007-2019 2020-2022

All industries (CPI)
-0.51∗∗ -1.46∗∗∗ 0.11 -0.02 -1.60∗∗∗

All industries (ex. food and energy)
-0.64∗∗∗ -0.49∗∗∗ -0.39∗ -0.04 -1.16∗∗∗

Goods
-0.53∗ -1.91∗∗∗ 0.06 0.23 -1.73∗∗

Services
-0.40∗∗∗ -0.43∗∗ 0.36 -0.29∗ -1.24

Note: The top panel of this table displays estimates of the slope coefficients on the aggregate unemploy-
ment gap from the baseline model displayed in Equation (3), but using a prior expected regime duration
of five years rather than 20 years, when regressing the 31 CPI sector quarterly inflation rates from 1954
through 2022 on an AR term, the unemployment gap, and long-term inflation expectations, including
industry fixed effects. We display results for the five regimes identified by the model. Coefficients other
than the Phillips curve slope are not reported. Significance at the 10, 5, and 1 percent levels are de-
noted by ∗, ∗∗, and ∗∗∗. The other panels display results when excluding food and energy sectors, and
running the models separately for goods and services sectors, conditioning on the regimes identified by
the baseline model. The services group consists of Full Service Meals and Snacks, Limited Service Meals
and Snacks, Food at employee sites and schools, Food from vending machines and mobile vendors, Other
food away from home, Utility (piped) gas service, Shelter, Water and sewer and trash collection services,
Household operations, Medical care services, Transportation services, Recreation services, Education
and communication services, and Other personal services. The remaining sectors comprise the goods
group. Values in bold font denote that the unemployment gap slope for services is significantly different
from that of goods at the 95% confidence level.
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Table 11: Post-pandemic Phillips curve slope estimates (beginning 2020:Q1)

EU PCE CPI

All sectors and ex. food and energy
All sectors -0.51∗∗ -2.39∗∗ -1.60∗∗∗

ex. food and energy - -2.38∗∗ -1.16∗∗∗

Goods and services sectors
Goods -0.59∗∗∗ -3.69∗∗ -1.73∗∗

Services -0.40 -0.29∗ -1.24

Rich and poor countries
Rich -0.02 - -
Poor -0.50∗∗∗ - -

Nonlinear PC
PC -0.43∗∗ - -

extra PC (UGAP <1.5%) -0.87∗∗ - -

Note: The final two columns of the top row of this table display estimates of the slope coefficients
on the aggregate unemployment gap from the baseline model displayed in Equation (3) using all of the
(PCE or CPI) sectoral US inflation data in the final regime identified when using a prior expected regime
duration of five years rather than 20 years. The break date that marks the final regime is identified in
2020:Q1 in both cases. The results for CPI are the same as in Table 10 for the last regime, but are
repeated as a memo item. The next three rows display results when excluding food and energy, services,
and goods sectors. The first column displays corresponding results for the EU when imposing the break
date identified from the US sectoral data sets, such that the regime begins in 2020. For the EU, we also
display results when using only rich or poor countries. The bottom panel displays results for the EU
in the pandemic regime using the nonlinear Phillips curve specification with a threshold that defines a
hot labor market as one with an unemployment rate gap below -1.5 percent. Significance at the 10, 5,
and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. Values in bold font denote that the unemployment
gap slope for services sectors (rich countries) is significantly different from that of goods sectors (poor
countries) at the 95% confidence level.
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Figure 1: The black line in the top panel of this figure graphs the evolution of the posterior mean Phillips
curve slope over time estimated from our baseline breakpoint model displayed in Equation (3) using the
PCE sectoral data. The blue bands cover the corresponding 95 percent posterior interval of the estimates.
The red dotted lines graph the OLS time series estimates for each individual sector, conditioning on each of
the regimes identified by our breakpoint model. For illustrative clarity, the red dotted lines are not allowed
to overlay the blue shaded area. The lower panel displays the same information but uses the EU data and
the breakpoint model displayed in Equation (2).
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Figure 2: This figure displays the posterior mode break dates estimated from the model that regresses the 16
PCE industry-level quarterly inflation rates from 1959 through 2022 on an autoregressive term, the aggregate
unemployment gap, and long-term inflation expectations, including industry fixed effects, and allowing the
timing of the breaks to vary across industries as described in Section 3.2. The top panel displays results for
the 1972 break, and the lower panel displays results for the 2001 break.
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Figure 3: This figure displays the posterior mode break dates estimated from the model that regresses the 31
CPI industry-level quarterly inflation rates from 1954 through 2022 on an autoregressive term, the aggregate
unemployment gap, and long-term inflation expectations, including industry fixed effects, and allowing the
timing of the breaks to vary across industries as described in Section 3.2. The top panel displays results for
the 1971 break, and the lower panel displays results for the 2001 break.
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Figure 4: The top panel of this figure displays the Phillips curve slope coefficient estimated throughout our
sample using the MSA-level data and the model specification displayed in Equation (1), but estimating it as
a panel no-break OLS regression with two-way fixed effects with a ten-year rolling window that exponentially
down-weights older data using a decay parameter of 0.8. Coefficient estimates are plotted against the end
date of the rolling window. The bottom panel displays corresponding estimates using EU country-level data
and the model specification displayed in Equation (2).
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Figure 5: The green (black) circles in the top panel of this figure plot the annual headline CPI inflation rate
against the annual unemployment rate for the 22 MSAs (national aggregate) during our sample period from
1980 through 2022. The green (black) circles in the bottom panel plot the annual inflation rate against the
annual unemployment gap for each of the EU countries (the EU aggregate) in our sample from 1986 through
2021. Due to extreme outliers, Romania is excluded from the plot.
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Figure 6: The top panel of this figure displays the posterior mode break dates estimated from the model
that regresses the 28 EU country-level annual inflation rates from 1986 through 2021 on an autoregressive
term and the country-level unemployment gaps, including industry and time fixed effects, and allowing the
timing of the breaks to vary across countries as described in Section 3.2. The lower panel displays how the
corresponding Phillips curve slope coefficients for two countries – Germany (red line) and Estonia (black line)
– evolve over time, incorporating uncertainty surrounding the break date estimated from the noncommon
breaks model.

59



−
2

0
2

4

Year

P
er

ce
nt

1980 1990 2000 2010 2020

Inflation less long term inflation expectations
Phillips curve fit (linear)
Phillips curve fit (nonlinear & COVID u star)

(a) Headline CPI

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Year

P
er

ce
nt

2001 2011 2021

Inflation less long term inflation expectations
Phillips curve fit

(b) EU

Figure 7: The top panel of this figure displays the linear Phillips curve fit from our MSA breakpoint model
(solid black line). Specifically, in each year this is our prevailing regime-specific MSA regional Phillips slope
coefficient divided by the nontradeables share multiplied by the national unemployment gap. The red line
graphs the annual national headline CPI inflation rate minus long term inflation expectations, which are
10-year ahead SPF CPI inflation expectations back to 1991 Q4. Missing observations prior to 1991 Q4 are
filled using linear interpolation. The dotted black line uses our implied national PC slopes from the nonlinear
Phillips curve estimated in the second regime using MSA-level data and replacing the noncyclical rate of
unemployment in 2021 and 2022 with the higher estimates from Crump et al. (2022). The lower panel plots
the same information for the EU. Specifically, the black line is our estimated prevailing regime-specific EU
linear PC slope coefficient multiplied by the EU unemployment gap. The red line uses the EU inflation rate
and long term (five-year ahead) Eurozone inflation expectations from the ECB SPF which goes back to 2002
Q3. Prior to this, we use one-year ahead expectations, going back to 1999 Q1. Eurozone expectations data
are sourced from the ECB statistical data warehouse. We average expectations across the four quarters in a
given year. 60



Appendix A. Appendix Tables

Table A1: Time series regressions: 16 PCE industry-level quarterly inflation rates (1959-2022)

1959-1972 1972-2001 2001-2022 1959-2022 1959-1972 1972-2001 2001-2022 1959-2022
Motor vehicles and parts Furnishings and durable household equipment

PC -0.04 0.07 0.37 0.22 -0.32∗∗∗ -0.09 -0.17 -0.13
corr -0.03 0.21 0.14 0.14 -0.61 0.19 -0.19 -0.11

Recreational goods and vehicles Other durable goods
PC -0.10 -0.07 -0.13 -0.09 -0.54∗ -0.14 -0.04 -0.13
corr -0.18 0.27 -0.25 -0.14 -0.33 0.04 -0.03 -0.08

Food and beverages purchased for off-premises consumption Clothing and footwear
PC -0.87∗∗∗ -0.54∗∗ -0.06 -0.23∗ -0.61∗∗∗ -0.01 -0.27 -0.39∗∗∗

corr -0.34 -0.29 -0.07 -0.17 -0.73 0.03 -0.11 -0.19
Gasoline and other energy goods Other nondurable goods

PC -1.02∗ -3.19∗∗ -2.05 -1.69 -0.29∗∗ -0.18 -0.02 -0.09
corr -0.20 -0.27 -0.11 -0.12 -0.52 0.21 0.01 0.04

Housing and utilities
PC -0.14 0.03 -0.14∗∗ -0.05
corr -0.22 0.33 -0.62 0.02

Health care Transportation services
PC -0.76∗∗∗ -0.16 -0.01 -0.09 -0.38 -0.09 -0.35 -0.17
corr -0.58 0.39 -0.02 -0.00 -0.29 0.07 -0.21 -0.10

Recreation services Food services and accommodations
PC -0.24∗ -0.06 -0.27∗∗∗ -0.11∗ -0.53∗∗∗ -0.18 -0.14 -0.12∗∗

corr -0.29 0.06 -0.37 -0.16 -0.59 -0.06 -0.35 -0.21
Financial services and insurance Other services

PC -0.31 1.07∗∗ 0.03 0.06 -0.29 -0.00 -0.11 -0.09
corr -0.35 0.18 -0.03 0.02 -0.36 0.18 -0.19 -0.04

NPISH
PC -0.19 -1.09∗∗∗ -0.45∗ -0.50∗∗∗

corr -0.26 -0.40 -0.33 -0.32

Note: This table displays estimates of the slope coefficient on the aggregate unemployment gap (PC)
when estimating OLS time series regressions of each of the 16 PCE sector quarterly inflation rates from
1959 through 2022 on an intercept, an autoregressive term, the aggregate unemployment gap, and long-
term inflation expectations. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and
∗∗∗. We estimate the model conditioning on each of the three regimes identified by the baseline PCE
model displayed in Equation (3), and for the full sample. Within each of the three regimes, and for
the full sample, we also report the correlation between the industry’s inflation rate and the aggregate
unemployment gap.
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Table A2: Time series regressions: 31 CPI industry-level quarterly inflation rates (1954-2022)

1954-1971 1971-2001 2001-2022 1954-2022 1954-1971 1971-2001 2001-2022 1954-2022 1954-1971 1971-2001 2001-2022 1954-2022
Cereals and Bakery Products Meats, Poultry, Fish and Eggs Dairy and Related Products

PC -0.16 -0.01 -0.06 -6.64∗∗∗ -2.32∗∗ 0.71∗ -0.45 -1.47 -0.30 -0.41
corr 0.22 -0.11 -0.09 -0.52 -0.15 0.12 -0.06 -0.15 -0.11 -0.13

Fruits and Vegetables Nonalcoholic Beverages and Beverage Matls Other Food At Home
PC 0.01 -2.93∗∗∗ -0.38 -0.87∗∗ -0.93 -0.15 -0.16 -0.25 -0.86 -1.33∗∗ -0.10 -0.49∗∗

corr -0.01 -0.10 -0.06 -0.05 -0.09 0.03 -0.13 0.00 0.19 -0.14 -0.08 -0.12
Full Service Meals and Snacks Limited Service Meals and Snacks Food at employee sites and schools

PC 0.54 -0.07 -0.04 -1.42 -0.06 -0.04 5.19 -0.56 -0.45
corr 0.17 -0.36 -0.29 -0.24 -0.15 -0.08 0.33 -0.06 -0.06

Food from vending machines and mobile vendors Other food away from home Fuel oil and other fuels
PC -0.89 -0.24 -0.10 -0.62 -0.24 -0.23∗ -0.44 -6.53∗∗∗ -0.58 -1.41
corr -0.21 -0.12 -0.04 -0.11 -0.19 -0.20 -0.20 -0.29 -0.09 -0.12

Motor fuel Electricity Utility (piped) gas service
PC -0.04 -5.74∗∗∗ -1.22 -2.07 0.07 -1.18∗∗∗ -0.43 -0.22 0.44 -0.20 -1.24 -0.43
corr 0.03 -0.24 -0.04 -0.08 0.04 0.07 -0.26 0.01 0.14 0.15 -0.15 -0.03

Household furnishings and supplies Apparel Transportation commodities less motor fuel
PC 0.28 0.28 -0.96∗∗∗ -0.71∗∗∗ 0.03∗∗∗ -0.42 0.49∗ 0.49∗

corr -0.11 -0.11 -0.66 0.02 -0.02 -0.15 0.05 0.05
Medical care commodities Recreation commodities Education and communication commodities

PC -0.00 -0.14 0.08 0.08 -0.07 -0.07 0.29 0.29
corr 0.26 0.45 -0.01 0.19 -0.14 -0.14 0.13 0.13

Alcoholic beverages Other goods Shelter
PC -0.25 -0.65∗∗∗ -0.08∗∗ -0.29∗∗∗ -0.27 -0.27 -0.93∗∗∗ -1.56∗∗∗ -0.33∗∗ -0.55∗∗∗

corr -0.01 -0.01 -0.13 -0.11 -0.28 -0.28 -0.55 -0.09 -0.73 -0.19
Water and sewer and trash collection services Household operations Medical care services

PC -0.26 0.17∗ 0.21∗∗∗ -3.46 -0.81∗∗∗ -0.78∗∗∗ -0.45∗∗ -0.30∗ -0.09 -0.21∗∗∗

corr 0.14 0.26 0.37 -0.45 -0.41 -0.40 -0.43 0.35 -0.17 -0.01
Transportation services Recreation services Education and communication services

PC -0.39 -0.31 -0.52 -0.39∗∗∗ -0.28∗ -0.28∗ 0.18 0.18
corr -0.25 0.23 -0.19 -0.08 -0.23 -0.23 0.23 0.23

Other personal services
PC -0.27∗ -0.27∗

corr -0.32 -0.32

Note: This table displays estimates of the slope coefficient on the aggregate unemployment gap (PC)
when estimating OLS time series regressions of each of the 31 CPI sector quarterly inflation rates from
1954 through 2022 on an intercept, an autoregressive term, the aggregate unemployment gap, and long-
term inflation expectations. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and
∗∗∗. We estimate the model conditioning on each of the three regimes identified by the baseline CPI
model displayed in Equation (3), and for the full sample. Within each of the three regimes, and for
the full sample, we also report the correlation between the industry’s inflation rate and the aggregate
unemployment gap. Missing values indicate that the industry has insufficient inflation observations in
the corresponding regime to either estimate the regression or compute the correlation.
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Table A3: Time series regressions: 22 CPI MSA-level annual inflation rates (1980-2022)

1980-2000 2001-2022 1980-2022 1980-2000 2001-2022 1980-2022
Urban Alaska Atlanta-Sandy Springs-Roswell, GA

PC -0.46 -0.89∗ -0.41 -0.17 -0.48∗∗ -0.34
corr -0.08 -0.40 -0.18 0.39 -0.53 -0.28

Boston-Cambridge-Newton, MA-NH Baltimore-Columbia-Towson, MD
PC 0.54 -0.51∗∗∗ -0.24∗ -0.33∗∗ -0.47∗ -0.40∗∗∗

corr 0.75 -0.60 -0.39 0.44 -0.36 0.16
Chicago-Naperville-Elgin, IL-IN-WI Detroit-Warren-Dearborn, MI

PC -0.09 -0.29∗ -0.19∗ -0.03 -0.19∗ -0.13∗

corr 0.38 -0.39 0.05 0.11 -0.42 -0.24
Denver-Aurora-Lakewood Houston-The Woodlands-Sugar Land, TX

PC 0.14 -0.52∗ -0.36∗ 0.47∗∗ -0.33∗ -0.28∗

corr 0.42 -0.42 -0.29 0.65 -0.37 -0.37
Los Angeles-Long Beach-Anaheim, CA Miami-Fort Lauderdale-West Palm Beach, FL

PC 0.07 -0.24 -0.12 -0.33∗∗ -0.29∗∗∗ -0.25∗∗∗

corr 0.33 -0.23 -0.12 -0.11 -0.57 -0.49
Minneapolis-St Paul-Bloomington, MN-WI Dallas-Fort Worth-Arlington, TX

PC 0.07 -0.48 -0.36 -0.57 -0.45 -0.40
corr 0.26 -0.59 -0.46 0.32 -0.42 -0.06

New York-Newark-Jersey City, NY-NJ-PA Philadelphia-Camden-Wilmington, PA-NJ-DE-MD
PC -0.25 -0.15 -0.15 -0.39 -0.34∗ -0.31∗∗

corr 0.08 -0.29 -0.16 0.15 -0.41 -0.31
Phoenix-Mesa-Scottsdale, AZ Riverside-San Bernardino-Ontario, CA

PC -0.56∗∗ -0.56∗∗ -0.35 -0.35
corr -0.57 -0.57 -0.33 -0.33

San Diego-Carlsbad, CA San Francisco-Oakland-Hayward, CA
PC -0.53∗∗∗ -0.29∗∗ -0.27∗∗∗ -0.44∗∗∗ -0.35∗∗∗ -0.33∗∗∗

corr 0.21 -0.55 -0.12 -0.56 -0.68 -0.66
St Louis, MO-IL Seattle-Tacoma-Bellevue WA

PC -0.10 -0.21 -0.17 -0.46 -0.44
corr 0.51 -0.27 0.22 -0.59 -0.55

Tampa-St Petersburg-Clearwater, FL Washington-Arlington-Alexandria, DC-VA-MD-WV
PC -0.26∗ -0.23 -0.69∗∗∗ -0.38 -0.36∗∗

corr -0.44 -0.39 0.20 -0.39 -0.13

Note: This table displays estimates of the slope coefficient on the MSA-level unemployment rate (PC)
when estimating OLS time series regressions of each of the 22 MSA-level annual inflation rates from
1980 through 2022 on an intercept, an autoregressive term, and the MSA-level unemployment rate.
Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. We estimate the model
conditioning on each of the two regimes identified by the baseline MSA model displayed in Equation
(1), and for the full sample. Within each of the two regimes, and for the full sample, we also report
the correlation between the MSA’s inflation rate and its unemployment rate. Missing values indicate
that the MSA has insufficient inflation observations in the corresponding regime to either estimate the
regression or compute the correlation.
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Table A4: Annual 22 CPI MSA-level inflation rates (1980-2022)

1980-2000 2001-2022 1980-2022

Above median rate of import penetration from China

PC -0.39∗∗∗ -0.21∗∗∗ -0.23∗∗∗

Extra PC (U. rate < 5%) -0.21 -0.22∗∗ -0.13∗

PC -0.39∗∗∗ -0.23∗∗∗ -0.25∗∗∗

Extra PC (U. rate < 4.2%) -0.26 -0.17 -0.11

Below median rate of import penetration from China

PC -0.16∗∗ -0.15∗ -0.15∗∗∗

Extra PC (U. rate < 5%) -0.09 -0.51∗∗ -0.41∗∗

PC -0.16∗∗∗ -0.16∗ -0.16∗∗∗

Extra PC (U. rate < 4.2%) -0.02 -0.55∗ -0.41∗

Note: The top panel of this table displays estimates of the slope coefficients on the MSA-level unemploy-
ment rates from the nonlinear Phillips curve displayed in Equation (14) using – a kink at unemployment
rate values below either five or 4.2 percent – and only those MSAs that correspond to states with above
median rates of import penetration from China based on the state-level import penetration rates esti-
mated by Riker (2022) who estimates these values using a structural econometric model that exploits
data on the location of import entry, domestic shipments, and distances between states. We display
results conditional on the two regimes identified by the baseline model and for the full sample. Signifi-
cance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. The lower panel displays the same
results using only those MSAs with below median rates of import penetration from China. The MSAs
that comprise the below median group are Detroit-Warren-Dearborn, MI, Dallas-Fort Worth-Arlington,
TX, Denver-Aurora-Lakewood, CO, Philadelphia-Camden-Wilmington, PA-NJ-DE-MD, and St Louis,
MO-IL. Values in bold font denote that in the post-2000 regime, the additional Phillips curve slope in a
hot labor market for the below median rate of import penetration group is significantly different from
that of the above median group.
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Table A5: Time series regressions: 28 EU country-level annual inflation rates (1986-2021)

1986-2003 2004-2021 1986-2021 1986-2003 2004-2021 1986-2021
Germany Belgium

PC -0.43∗ -0.12 -0.31∗ -0.29 -0.74 -0.46∗

corr -0.46 -0.12 -0.34 -0.47 -0.35 -0.35
Bulgaria Cyprus

PC 0.49 -0.44 0.44 -0.54 -0.21∗ -0.24∗∗

corr -0.31 -0.30 -0.17 -0.23 -0.49 -0.47
Croatia Czech Republic

PC 2.22∗ -0.13 0.01 -0.79 -1.54∗∗∗ -1.15∗

corr 0.91 -0.17 0.04 -0.34 -0.66 -0.45
Denmark Estonia

PC -0.17 -0.18 -0.17 -0.31 -0.54∗ -0.48∗

corr -0.43 -0.19 -0.25 -0.52 -0.47 -0.39
Spain Finland

PC -0.04 -0.12 -0.07 -0.20∗∗∗ -0.70∗ -0.18∗∗∗

corr 0.36 -0.39 -0.12 -0.69 -0.53 -0.47
France Greece

PC -0.19 -0.58 -0.25 -0.54 -0.18∗∗∗ -0.09
corr -0.29 -0.51 -0.30 -0.29 -0.79 -0.45

Hungary Ireland
PC 0.62 -0.14 -0.19 -0.02 -0.41∗ -0.21
corr 0.89 0.26 0.17 -0.16 -0.49 -0.28

Italy Lithuania
PC -0.25 -0.25 -0.09 0.72∗∗∗ -0.38∗∗ -0.34∗∗∗

corr -0.34 -0.48 -0.01 -0.59 -0.32 -0.39
Latvia Luxembourg

PC -0.20 -0.65∗∗∗ -0.65∗∗∗ -1.29 -0.79 -0.67
corr -0.37 -0.54 -0.55 -0.51 -0.28 -0.29

Malta Netherlands
PC -1.41∗∗ -1.12 -1.11 -0.65∗∗∗ -0.35∗ -0.51∗∗∗

corr -0.89 -0.28 -0.26 -0.53 -0.32 -0.45
Austria Poland

PC -0.80∗ -0.84∗∗∗ -0.61∗∗ -1.08 -0.14 -0.22∗

corr -0.09 -0.54 -0.34 -0.89 -0.15 -0.35
Portugal Romania

PC -0.72 -0.02 -0.38 -3.47 -1.49∗∗∗ -2.35
corr -0.46 0.14 -0.18 -0.48 -0.03 -0.39

Sweden Slovenia
PC -0.36 -0.49∗∗∗ -0.33∗ -1.18 -0.27 -0.16
corr -0.46 -0.39 -0.39 -0.33 -0.41 -0.23

Slovakia United Kingdom
PC -0.02 -0.13 -0.10 -0.67∗∗ 0.27 -0.25
corr 0.07 0.05 0.26 -0.27 0.51 -0.00

Note: This table displays estimates of the slope coefficient on the EU country-level unemployment gap
(PC) when estimating OLS time series regressions of each of the 28 EU country-level annual inflation rates
from 1986 through 2021 on an intercept, an autoregressive term, and the country-level unemployment
gap. Significance at the 10, 5, and 1 percent levels are denoted by ∗, ∗∗, and ∗∗∗. We estimate the model
conditioning on each of the two regimes identified by the baseline EU model displayed in Equation (2),
and for the full sample. Within each of the two regimes, and for the full sample, we also report the
correlation between the country’s inflation rate and its unemployment rate gap.
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Table A6: Testing for error dependence

PCE CPI EU MSA

Durbin-Watson p-value
Regime 1 0.43 0.68 0.90 0.48
Regime 2 0.62 0.72 0.31 0.15
Regime 3 0.31 0.58

CD test statistic
Regime 1 0.89 0.32 1.58 1.75
Regime 2 1.48 1.57 0.29 0.58
Regime 3 0.17 1.35

Note: The top panel of this table reports the p-values from a Durbin-Watson test for serial correlation
in the residuals from our baseline panel breakpoint models across every regime and all four data sets we
consider for the price Phillips curve. Here, we exclude observations for Romania when computing the
p-value of the DW test in the first regime due to extreme and volatile outliers. The lower panel displays
the bias corrected CD test statistic, which has a standard Normal distribution, proposed by Juodis and
Reese (2022) in each regime across the same four data sets. The first ten time periods of the first regime
are excluded when computing the test statistic for the MSA data because more than half of the series
have missing observations.

Table A7: Prior informativeness

PCE CPI MSA EU

λ 0.07 0.13 0.04 0.14
ρ 0.05 0.03 0.03 0.09
σ2 0.06 0.14 0.03 0.06

Note: The first column of this table reports the prior informativeness (PI) measure of Müller (2012)
for the Phillips curve slope (λ), persistence parameter (ρ), and error variance (σ2) used in our baseline
common breakpoint model applied to the PCE data displayed in Equation (2). The next three columns
report the same information for the CPI, MSA, and EU data sets. The priors are the same across all
four data sets.
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