
How Does Medical Innovation Create Value?
Health, Human Capital and the Labor Market∗

Nicholas W. Papageorge�

May 2, 2012

Abstract: This paper develops a dynamic framework to value medical innovation that takes
explicit account of the link between health, human capital and the labor market. Using a
characteristics approach, I model medical innovation as increased efficacy or reduced side
effects. The framework is applied to HIV treatments, including a 1996 medical breakthrough
(HAART) that transformed HIV infection from a virtual death sentence into a manageable,
chronic condition. The main findings are (1) For an HIV+ individual, HAART introduction
was worth between $20,000 and $340,000, with higher values corresponding to younger agents
or agents with greater work experience. (2) A counterfactual version of HAART without side
effects is worth up to an additional $375,000. (3) When no treatment dominates others in
terms of efficacy and side effects, agents optimally cycle among available options. In general,
sicker agents choose effective treatments despite harsh side effects, but switch to less effective
drugs with fewer side effects once their health improves. (4) Treatment cycling is partly
determined by the labor market. If non-wage income declines, agents are compelled to work,
increasing their frequency of switching to treatments with fewer side effects. More aggressive
treatment cycling, in turn, diminishes average health and reduces survival probability.

JEL Classification: I1 J2

∗Special thanks go to my dissertation committee: Barton Hamilton, Tat Chan, Mariagiovanna Baccara,
Sebastian Galiani, Juan Pantano and Robert Pollak. I gratefully acknowledge invaluable comments from:
Melanie Blackwell, Janet Currie, Amy Finkelstein, Stephanie Heger, Karim Lakhani, Glenn MacDonald,
Harry Paarsch, Carl Sanders and participants in the Work, Families and Public Policy Seminar and the 2011
North American Summer Meetings of the Econometric Society, both at Washington University in St. Louis,
the Health and Human Capital Conference at the ZEW in Mannheim and the Roundtable on Engineering
Entrepreneurship Research (REER) at Georgia Institute of Technology. All errors are my own.

�Department of Economics, Washington University in St. Louis. Email: papageorge@wustl.edu.



1 Introduction

1.1 Overview

Biomedical research expenditures in the U.S. currently exceed $100 billion each year. Re-

sulting medical innovation creates value through its impact on how patients live and how

they work. Increased life-expectancy is an undeniable source of such value.1 Less understood

are the myriad mechanisms through which medical innovation improves the quality-of-life.2

Quality-of-life includes how a patient feels, but it also reflects the impact of health on other

facets of life, like consumption, income and employment.3 Insofar as the labor market in-

teracts with health and shapes medical decision-making, it helps to determine how medical

innovation creates value.

This paper develops a general framework to measure the value of medical innovation,

taking explicit account of the links between health, human capital and the labor market. A

cornerstone of the approach is that treatments are measured along two dimensions: (a) effec-

tiveness at improving underlying health, which governs both symptoms and life-expectancy

and (b) propensity to cause side effects. Symptoms and side effects manifest as physical

’ailments’ and these ailments affect patient utility.

Forward-looking consumers choose treatments fully anticipating the impact on their health.

Effective treatments often entail harsh side effects and patient decisions reflect this trade-off.

For example, a cancer patient might eschew a highly effective treatment (like chemotherapy)

in favor of a less effective treatment with fewer side effects (like radiation therapy or even

surveillance). This choice may prevent the immediate utility cost of side effects, but the

patient risks recurrence later on, which could entail symptoms and a shorter lifespan.

The labor market plays a key role in this trade-off. Ailments induced by symptoms or

side effects are potentially debilitating and painful unto themselves. They also influence the

quality-of-life through their impact on labor choices and outcomes. In particular, poor health

can lower productivity, depress income and exacerbate the utility cost of work. Forward-

looking agents respond by shifting employment, fully aware that their decisions affect current

consumption, the accumulation of human capital and future income streams.

1Murphy and Topel (2006) study the value of longevity gains attributed to biomedical research on heart
disease. A more detailed discussion is found in the literature review (Section 1.2).

2An exception is the literature on quality-adjusted life-years (QALYs), which studies a broad array of
interactions between health and quality-of-life. Relying on stated or elicited preferences, QALYs measure the
value of a given health state, weighted by mortality and probabilities of reaching different health states in
future periods. See, for example, Lipscomb et al. (2009)

3Grossman (1972) treats health like a form of capital stock in which agents invest. In his framework, good
health is valuable since it increases agents’ healthy time, which can be used to produce and consume market
goods.
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The dynamic trade-off between symptoms and side effects becomes a permanent fixture of

agent decision-making in the case of chronic diseases or conditions that can be managed, but

not cured (e.g. diabetes, multiple sclerosis, and HIV). Chronically ill, forward-looking agents

develop complex employment and treatment plans to balance their long-term demand for

consumption, physical comfort and, ultimately, longevity. I apply the framework developed in

this paper to a chronic condition, studying treatment and employment decisions of HIV+ men.

I use data from the Multi-Center AIDS Cohort Study, an ongoing investigation (beginning in

1984) of HIV infection in homosexual and bisexual men. Information is collected on objective

hematological health measures like HIV status and CD4 count. Throughout this paper,

underlying health is proxied by CD4 count, which measures immune system functionality.

Data are also collected on individual reports of physical ailments like nausea and fever, medical

treatment choices, employment decisions and labor market outcomes including income.

HIV and the AIDS epidemic provide a natural setting to study how medical innovation

interacts with the labor market since identifying this link requires health status variation

strong enough to affect employment. Untreated, HIV infection leads to immune system

deterioration (known as AIDS) where fairly routine infections can lead to grave symptoms,

illness and death. Absent treatment, a newly infected HIV+ subject lives an average of

11 years. Additionally, phases of the AIDS epidemic are distinguished by wide variability

in treatments available to infected subjects. Key to identifying model parameters is that I

observe treatment and employment choices both before and after a medical breakthrough

known as HAART.4 A treatment regime introduced in 1996, HAART effectively transformed

HIV infection from a virtual death sentence into a chronic and manageable condition, though

at the cost of harsh side effects.5

The econometric model is specified so that patients have preferences over physical ailments

(manifestations of symptoms, side effects or both) and consumption.6 They choose medical

treatments to maximize utility as opposed to immune system health or survival probability.

This distinction is crucial - if agents optimally avoid an effective treatment due to its harsh

side effects, its value as a medical innovation is limited.7 Moreover, each medical treatment

4Another study that exploits pre- and post-HAART observations to study how a medical breakthrough
can affect outcomes is Duggan and Evans (2005).

5HAART stands for highly active anti-retroviral treatment. There is no vaccine or cure for HIV or AIDS,
but HAART is the current standard treatment. In general, 1996 is marked as the year when two crucial
clinical guidelines that comprise HAART came to be commonly acknowledged. First, protease inhibitors
(made widely available towards the end of 1995) would be an effective HIV treatment. Second, several
anti-retroviral drugs taken simultaneously could indefinitely delay the onset of AIDS.

6The structural framework also permits state-dependent utility, allowing health to shift both level utility
and the marginal utility of consumption.

7This framework echoes earlier work on agent decision-making when faced with the risk of HIV infection.
In particular, observed risky sexual decisions are not consistent with maximization of health or longevity, but
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is modeled according to its propensity to produce health and physical ailments (through

efficacy and side effects). This characteristics approach to estimating demand permits valu-

ation of counterfactual treatment innovations, each defined as a bundle of characteristics. In

particular, the framework allows a counterfactual innovation to be valued in light of its own

effectiveness and side effects profile, the profiles of other existing or counterfactual treatments,

agent preferences and the labor market environment.

The model is also designed to capture several interactions between health and employment.

First, physical ailments can shift the utility cost of work. Second, health status is interacted

with income, a link that likely works through health-induced productivity changes. Third,

illness can induce costly gaps in employment. In particular, income is allowed to vary by

experience and the model permits endogenous human capital accumulation, measured by

observed periods of full-time work. Employment decisions therefore contain a forward-looking

component: work experience can enhance human capital and future wages via on-the-job

training. If ill agents do not work, they might arrest this process, which implies an additional

avenue through which medical innovation can create value: by preventing health-induced

employment gaps.

Reduced-form data analysis of treatment choices highlights an important pattern. Sicker

agents tend to use more effective treatments like HAART and effective treatments are as-

sociated with better health. The dynamic choice model explains these patterns as part of

a long-term optimal plan of treatment cycling. This behavior is driven by three principle

factors: observed persistence in immune system health, a non-convexity in treatment choice

due to discrete options and patient distaste for side effects. In general, cycling reflects how

agents treat their underlying health as a form of capital stock. Agents in poor health choose

effective treatments despite harsh side effects since they face a high marginal benefit of invest-

ing in their health ’stock’. Once their health improves, agents exploit persistence in health,

switching to less effective drugs with fewer side effects. In essence, they reap the benefits of

earlier health stock investments to enjoy periods free of costly physical ailments. In so do-

ing, agents anticipate switching back to harsher treatments once their health deteriorates. I

henceforth call this phenomenon Optimal Treatment Cycling or OTC. Cycling off of the most

effective treatment available (sometimes known as taking a ’drug holiday’) is often deemed

to be suboptimal behavior that should be curbed. In the framework developed in this paper,

such cycling behavior is part of a dynamically optimal treatment plan.8

A second and more puzzling pattern in the data involves the interaction between treatment

choices and labor supply. Although full-time employment is associated with better health,

reflect trade-offs between current and future utility (Philipson and Posner, 1993).
8See, for example, Sabate (2003) on treatment non-compliance.
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the use of HAART is negatively associated with employment. The dynamic choice model

reveals that physical ailments are a crucial factor in determining employment decisions. For

about half of agents (distinguished by their latent preference type) the utility cost of work is

negatively affected by physical ailments arising from symptoms or side effects. When faced

with a high probability of physical ailments, these agents reduce full-time employment. For

example, a counterfactual policy experiment shows that if HAART had never been introduced,

employment would have been about 30% lower after 1996. This finding reflects that, despite

its harsh-side effects, HAART led to a net decrease in ailments through health improvements.

The net reduction in ailments encouraged full-time employment, which increased average

income and accelerated human capital accumulation.

Main results of this study begin with a valuation of HAART introduction. Modeling

treatment and employment decisions for agents at different stages of their career and life-

cycle reveals striking heterogeneity in the value of HAART introduction. For an HIV+

individual, HAART was worth between $25,000 and $350,000, with greater value associated

with younger agents and those with high human capital.9 Moreover, a decomposition exercise

shows that up to 20% of the value of HAART is attributable to labor market factors. This

portion is higher for younger agents since they face a long work life. It is also higher for

agents with higher human capital since they earn more in each life-year gained.

The characteristics approach to estimating demand means that the model can be used to

analyze counterfactual treatment innovations defined by their side effects and efficacy profiles.

Three key results emerge. First, side effects reductions are potentially very valuable. Assum-

ing HAART is the baseline technology, agents who are young or who have high human capital

value the introduction of a version of HAART with no side effects at about $375,000. This

result underscores the importance of including quality-of-life measures to fully understand

the value of medical innovation. It also calls into question standard critiques of so-called

“me-too” or “follow-on” drugs. Defined as treatments that are not clinically superior to

existing treatments, “me-too” drugs are seen to diminish incentives for innovation without

providing therapeutic benefit to consumers.10 I find that a treatment that is therapeutically

equivalent to HAART, but that entails fewer side effects, is valuable.

Second, young agents value a counterfactual, highly effective version of HAART at about

$1,200,000. For forward-looking consumers, a portion of this value comes from the utility

gained from foregoing that treatment, coupled with the possibility of choosing it when needed.

In other words, the option value of a highly effective treatment consists in making milder

treatments viable choices. The mechanism behind this phenomenon is optimal treatment

9Values throughout this paper are in 2003 dollars.
10For a critique of me-too drugs, see for example Angell (2000).
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cycling: if agents anticipate a high probability of restored health by using effective treatment,

cycling off effective treatment becomes part of a safe and viable dynamic plan. Third, the

value of a potential medical innovation depends on existing treatments. For example, if a

highly effective version of HAART already exists, the invention of a version of HAART with

few side effects adds little value. The logic here is straightforward: if highly effective HAART

is available, agents exploit its option value by cycling off treatment altogether when their

health improves, thereby avoiding any and all side effects. In this context, a treatment with

low side effects is fairly redundant.

Changes in the labor market environment influence patient outcomes through their impact

on optimal treatment cycling. To highlight cyclical treatment choice behavior given varied

labor market conditions, I simulate an environment in which agents face two counterfactual

treatment technologies: one that has the same side effects as HAART, but is highly effective

and another that has the same efficacy as HAART, but no side effects. Next, I simulate a

decline in non-wage income, i.e., agents earn less if they choose to not work full-time. Since

agents suffering HIV/AIDS are permitted to collect disability payments, this counterfactual

scenario mimics an environment where public transfers are reduced and agents are more

compelled to work. In response, agents in relatively good health increase their frequency

of switching to treatments with fewer side effects. More aggressive treatment cycling does

indeed lead to higher employment and income and accelerates the accumulation of human

capital. However, it also entails worse health and decreased survival.

Finally, the cost of HIV treatment faced by consumers is much lower than the actual costs

paid by both public and private insurances. A final policy experiment simulates agent choices

and outcomes in an environment where treatment cost subsidies disappear. Unsurprisingly,

agents engage in more aggressive treatment cycling, switching off treatment with increased

frequency when in good health. More pronounced cycling does lower average health, though

only slightly, and has little effect on survival probability. Perhaps more surprisingly, agents

who dislike working with ailments are more likely to work since fewer periods on treatment

entails a lower probability of suffering side effects. In general, both of the aforementioned

policy experiments illustrate how chronically ill patients balance demand for consumption,

physical comfort and longevity through their long-term treatment and employment plans.

They also reflect the role of optimal treatment cycling in determining how agents invest in

their health stock.
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1.2 Literature Review

An extensive literature in economics asks if medical research investments are worthwhile, rely-

ing on two dominant approaches to measure the value of medical innovation. The first focuses

on value accruing through increased life expectancy and finds large returns to biomedical re-

search. In the case of heart disease treatment advances, Murphy and Topel (2006) show that

the life-expectancy benefits far outweigh the research costs.11 The second approach to valuing

medical innovations goes beyond longevity to consider a much broader array of health-related

outcomes, using stated or elicited preferences to compute the value of quality-adjusted life

years or QALYs (Lipscomb et al., 2009). The framework I develop differs from both ap-

proaches in that it values both longevity and quality-of-life benefits of medical innovation,

relying on revealed preferences (through observed choices) to estimate demand. This method

avoids some of the problems associated with stated or elicited preferences. A key example is

context dependence that can undermine generalizability. Moreover, estimating demand using

observed choices permits a study of how treatment choices interact with other decisions, like

employment. Designed this way, the estimated model can be used to perform counterfactual

policy experiments that capture how changes to either the health or labor environment can

affect both health and labor choices and outcomes.

Starting with Grossman (1972), the connection between health, human capital and labor

has been examined in numerous studies. Recent research develops this line of inquiry, en-

visioning health as a form of human capital stock in terms of labor market outcomes (e.g.:

Becker (2007), Heckman and Cunha (2007), Currie (2009) and Conti et al. (2010)). Currie

and Madrian (1999) provide a survey of literature on the health-labor link, highlighting an

empirical consensus that poor health has a negative impact on: productivity, earnings and

labor supply. These findings are reflected in the context of HIV and HAART. Goldman and

Bao (2004) consider joint employment and treatment decisions of HIV+ men after HAART

is introduced, finding that HAART-use is associated with a higher likelihood of remaining

employed.12

Health and labor market activity can be linked in two important ways. First, poor health

can exacerbate the utility cost of work, thereby discouraging employment. This phenomenon

is suggested by studies showing that medical technology improvements in the context of

chronic illness can increase labor supply. Key examples are Kahn (1998) (who studies labor

supply of diabetics facing insulin innovations) and Garthwaite (2010) (who considers nearly-

elderly men’s labor supply vis a vis Vioxx, a drug that reduces pain and inflammation).

11A collection of papers that take a similar approach is found in (Murphy and Topel, 2003).
12Further examples from other fields include Blalock et al. (2002), who studies whether HIV patients benefit

psychologically from remaining employed.
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Both studies are relevant to the present investigation since they highlight how labor supply is

sensitive not only to underlying health per se, but also to how chronically ill or aging patients

feel. A second link between health and labor is through wage, which can be affected by illness,

since poor health potentially decreases productivity. For example, Levine et al. (1997) and

Cawley (2004) study the negative impact on wages of smoking and obesity, respectively. In

general, these links suggest specific mechanisms through which medical innovation creates

value via its effect on labor market choices and outcomes.

Current employment decisions also contain a forward-looking component since work expe-

rience can enhance human capital and future wages via on-the-job training. Imai and Keane

(2004) show that failure to account for returns to work accruing through human capital ac-

cumulation leads to erroneous estimation of the wage elasticity of labor supply. Endogenous

human capital accumulation implies an important additional cost of health-induced employ-

ment gaps (Mincer and Polachek (1974) and Becker (1985)). Related to the present study,

Eckstein and Wolpin (1989) model labor supply and allow for endogenous human capital

accumulation in the context of females who face the decision of having children. Though

pregnancy is certainly not a chronic illness, women contemplating child-bearing face a choice

that is somewhat similar to chronically ill patients who choose effective medication with harsh

side effects. Both decisions imply a future payoff (i.e., children or better health) at the cost

of current-period consumption. However, it is crucial to capture that both decisions entail

an additional cost in the form of employment gaps, which slow the process of human capital

accumulation.

Symptoms or side effects can lower utility, altering patient treatment choices. Also impor-

tant is how illness shifts the marginal utility of consumption, which could affect employment

decisions. Failure to account for this shift could bias the estimated utility cost of work-

ing while ill.13 Research on health-state dependent utility often exploits within-individual

changes in utility proxies (such as measures of subjective well-being or of depression-like

symptoms) at different health states (e.g.: Smith et al. (2005)). A potential drawback is

that poor health might lower consumption (e.g.: due to reduced income or employment or

increased medical expenditures) so that parameters measuring state-dependence could be

confounded with differences in the marginal utility of consumption at different consumption

levels (Smith, 1999)14. Finkelstein et al. (2008) counter these potential problems by focusing

13How consumption utility changes with health is a priori unclear. Agents who largely consume comple-
ments to health (e.g. outdoor activities or nightlife) would exhibit lower marginal utility of consumption
as their health deteriorates; agents consuming mostly substitutes to good health (e.g. air-conditioning or
taxi-cabs) would experience the opposite.

14Another approach uses survey data on the willingness-to-pay for lower risk of exposure to certain types
of illness or injury at different wealth levels (e.g. Evans and Viscusi (1991), Viscusi and Evans (1990) and
Sloan et al. (1998)).
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on agents who are both retired and insured so that they would presumably avoid large con-

sumption shifts induced by illness.15 Since I account for employment decisions and resulting

income shifts and include data on medical expenditures, I avoid bias by essentially controlling

for the impact of health status on consumption levels.16

Previous work on how patients choose medication focuses largely on experimentation and

learning, both of which are found to be important in explaining medical treatment decisions

(Crawford and Shum (2005), Fernandez (2008), Chan and Hamilton (2006) and Chintagunta,

Jiang and Jin (2009)). Common to this line of inquiry is that underlying health enters

patients’ utility function. The approach taken in the present investigation is different in that

patients have preferences over consumption and physical comfort, both of which are affected

by underlying health. This distinction is important. Patients might generally behave in

accordance with a desire to improve their underlying health. However, counterfactual policy

experiments aimed at capturing the health-labor link require a precise specification of patient

preferences that captures the various reasons why health is valuable.17

The remainder of this paper is organized as follows: Section 2 describes the data; Section

3 presents the model; Section 4 explains the estimation procedure and discusses parameter

estimates and model fit; Section 5 presents a valuation of HAART; Section 6 describes findings

from counterfactual policy experiments and Section 7 concludes.

2 Data

2.1 The Multi-Center AIDS Cohort Study

I use the public data set from the Multi-Center AIDS Cohort Study (MACS), an ongoing

study (beginning in 1984) of the natural and treated histories of HIV infection in homosexual

and bisexual men conducted at four sites: Baltimore, Chicago, Pittsburgh and Los Angeles.18

15Their main finding is that poor health lowers the marginal utility of consumption by about 11%.
16Finkelstein et al. (2008) point out that a further potential drawback to this approach of inferring state

dependence is that it is sensitive to assumptions on agents’ bequest motives. The fact that subjects in my
analysis are gay men suggests that they likely will not have children so that bequest motives may not play
an important role in how consumption is allocated across health states.

17Chan and Hamilton (2006) take a step in this direction by modeling patient preferences over both side
effects and underlying health. They show that patients - especially those in better health - are willing to
forego treatment effectiveness for reductions in side effects. This finding is reflected in the results of the
present study.

18Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) with centers
(Principal Investigators) at The Johns Hopkins Bloomberg School of Public Health (Joseph B. Margolick,
Lisa P. Jacobson), Howard Brown Health Center, Feinberg School of Medicine, Northwestern University,
and Cook County Bureau of Health Services (John P. Phair, Steven M. Wolinsky), University of California,
Los Angeles (Roger Detels), and University of Pittsburgh (Charles R. Rinaldo). The MACS is funded by the
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At each biannual visit, data are collected on: treatment choices, employment decisions, labor

market variables and health status, which includes CD4 count (a measure of immune system

health) and subject reports of ailments. Ailments can be either symptoms of HIV or side

effects of treatment. The data is a panel, which permits analysis of agent decisions both

before and after HAART introduction and also allows the model to account for unobserved

heterogeneity.

The full MACS data set contains information on 5,622 subjects at 41 possible visits for

a total of 98,886 subject-visits. Since treatment information is somewhat sporadic before

1990, I focus on the years 1990 to 2003. In each period after 1990, agents report all med-

ications they have used since their previous interview. As there are dozens of medications

used to fight HIV infection, I follow medical literature on HIV treatment (see, for example,

Detels et al. (2001)) in creating four broad and mutually exclusive treatment categories: no

treatment, mono-therapy, combo-therapy and HAART.19 To create a measure for experience,

I use potential experience (current age minus 25) up until the start of the AIDS epidemic

(corresponding to the baseline sample period) and thereafter construct employment histo-

ries using observed labor supply choices. Although more specific data is available for some

sample periods, I model employment choices to be dichotomous: full time or not full time.

Finally, in constructing the analysis sample, I drop all HIV− subjects or positive subjects

while they are HIV−, observations lacking crucial health or employment information and

observations where period-to-period transitions are unclear due to missed interviews. The

resulting analysis sample is an unbalanced panel of 8,300 observations: 743 subjects over 26

visits.20

In subsequent analysis, HAART introduction is treated as a quasi-experiment.21 Two

National Institute of Allergy and Infectious Diseases, with additional supplemental funding from the National
Cancer Institute. UO1-AI-35042, 5-MO1-RR-00052 (GCRC), UO1-AI-35043, UO1-AI-35039, UO1-AI-35040,
UO1-AI-35041. Website located at http://www.statepi.jhsph.edu/macs/macs.html.

19An agent with the label “none” may take medications to fight opportunistic infections, such as pneumonia.
Mono-therapy denotes a regimen consisting of a single nucleoside reverse transcriptase inhibitor (NRTI).
Combo-therapy consists of several NRTIs. HAART has a more complex definition that includes several drug
regimens, most of which include a protease inhibitor in combination with an NRTI or a non-nucleoside reverse
transcriptase inhibitor (NNRTI).

20Employment histories are constructed using all available data, including observations when positive agents
were observed negative, if applicable, and observations with up to two missed subsequent visits, in which case
I assume that agents engage in the same employment status as in the last observed period. For analysis,
however, model specification requires that for each observation the subject be observed in the following period.
Dropping observations that do not fit these criteria leads to an unbalanced panel.

21This assumption implies the need for caution in applying the framework developed in this paper to cases
where medical innovation is anticipated. A possible generalization of the current model would permit agents
to expect an improvement in medical technology with a small probability in each period. Such an extension
would be most salient for chronic conditions where agents are expected to remain alive for many periods so
that they would reasonably expect to be alive to enjoy an innovation in the distant future and might alter
their current behavior accordingly. For HIV/AIDS, pre-HAART life expectancy was so low that this was
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observations justify this approach. First, HAART was not a single medication developed and

improved over time such that subjects might update their beliefs and anticipate higher future

efficacy. Rather, HAART introduction was abrupt and many components of HAART already

existed prior to 1996. The key insight involved the union of several existing technologies,

none of which was particularly effective on its own. Second, subject reports from survey

questions asking about their hopefulness about the future are not consistent with anticipation

of HAART. Specifically, one in a battery of questions meant to assess depression asks subjects

how often in the week preceding their interview they felt hopeful about the future.22 Figure

1 plots the probability that subjects answer, “all or most of the time” over time. Note the

pre-HAART flat (or even downward) trend followed by a break and reversal coinciding with

HAART introduction. Importantly, if the effectiveness of HAART had been anticipated, this

upward shift in hopefulness should have occurred before HAART introduction.23

To illustrate the variation used to identify structural parameters, Figures 2-4 depict the

impact of HAART on a variety of measures-of-interest. Figure 2 plots death probability over

time among HIV+ subjects in the analysis sample and, for comparison, HIV− subjects in

the MACS data set. HAART introduction coincided with a drastic decrease in deaths so that

the death rate for HIV+ subjects plunged to levels not far above those of HIV− subjects.

Figure 3 plots treatment choices over time. It appears that agents substitute HAART for

other treatments and that those who refrained from using earlier, less effective treatments

chose HAART after 1996. This figure also hints at a high degree of persistence in medication

usage. A transition matrix (Table 1) verifies this persistence, though does indicate some

cycling behavior both among treatments and on and off treatments. Figures 4 depicts labor

supply decisions over time. HAART coincides with a break in the decreasing trend of full-time

employment in the aging sample. To underline the significance of this break, I extrapolate

the pre-HAART full-time employment trend until 2001.24 This exercise suggests that a

counterfactual world without HAART may have witnessed lower employment among HIV+

men. Finally, Table 2 shows transitions in and out of the labor force. Transitions highlight

a higher degree of persistence in employment decisions, suggesting possible heterogeneity in

likely not the case.
22Questions are from a depression screening tests known as the Center for Epidemiological Studies Depres-

sion (or CES-D) scale. See, for example, Ostrow et al. (1989), for an example of CES-D scale use with the
MACS data set.

23One concern is that hopefulness is highly correlated with health so that the trend reversal simply reflects
HAART-induced health improvements. To account for this, I control for a polynomial in CD4 count and age
in a regression where the regressand is a dichotomous variable for being hopeful about the future ’most or all
of the time’. Plotted residuals show a similar trend reversal at, but not before, HAART introduction.

24In particular, I regress pre-HAART employment decisions on age, age-squared and a linear time trend
and then use these parameters to predict employment decisions in the post-HAART era, taking post-HAART
age profiles as given.
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the utility cost of work.

Summary statistics for the full sample and then separately for the periods before and

after HAART and by work status are presented in Table 3. In the full sample, subjects are

about 32-years-old at the start of the AIDS epidemic (1984). The main health measure is

CD4 count, a measure of immune system functionality. Healthy HIV− individuals generally

present a CD4 count of between 500 and 1500 units per mm3 of blood. The sample average is

slightly lower: about 450. For subsequent analysis, I construct a binary measure of health that

indicates whether patient CD4 count is low enough to indicate AIDS (< 250). According to

this measure, about one quarter of observations exhibit AIDS-level CD4. Subjects also report

a number of ailments, which may indicate symptoms of AIDS, side effects of medications (or

both). I construct an indicator variable for symptoms and side effects, which takes the value

0 if agents report persistently experiencing one of the following ailments: fatigue, diarrhea,

headaches, fever or drenching sweats. About 60% of subjects report that they are free of such

ailments (i.e. F = 1). Finally, death probability is about 4% over the entire sample period.

Considering the pre-HAART and post-HAART eras separately, there are important dif-

ferences. Foremost are improvements in health measures (CD4 count) although the same

proportion of agents suffer ailments. This is likely due to the increase in subjects using harsh

treatment so that side effects replace symptoms. The increase in treatment costs supports

this. There is some post-HAART movement towards public insurance (in favor or private

or no insurance) which could reflect changes to laws governing disability or an aging pop-

ulation. In either case, this suggests that changes in insurance provision are an important

factor to account for in subsequent analysis. Finally, death probability plunges after HAART

introduction. Next, comparing agents by their employment status, there is a clear indication

that good health (both CD4 count and lack of ailments) predict employment. Curiously, the

likelihood of HAART use is higher among non-workers than workers, which could reflect a

number of factors, such as an aging cohort. It may also reflect that effective treatments en-

tail side effects that discourage employment even though good health ultimately encourages

full-time work.

Annual individual gross income is presented in Table 3 (as reported and in 2003 dol-

lars).25 Average reported income is about $38,000. Income reported by non-workers (about

$26,500), though lower than that reported by full-time workers (about $44,000), may seem

high, but reflects that HIV/AIDS is considered a disability, which opens up the possibility

of social security disability payments and private pensions. In support of this possibility,

HIV+ agents’ non-wage income is positively correlated to their wage income in periods be-

25Income is a categorical variable. To convert per-period income into dollars, I take the midpoint of each
category and then divide it by 2.
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fore they were infected with HIV.26 In the model, allowing non-working agents to collect high

income essentially assumes that public and private disability payments can be collected with

no transaction costs.27

2.2 Labor Supply and Treatment Choices

Reduced form analysis of labor supply, pre-HAART treatment and post-HAART treatment

choices are found in Tables 4 - 6. Results suggest that agents are highly persistent in their

labor supply choices. Experience and good health, including both CD4 count and absence of

ailments, predict employment. Post-HAART estimates relating labor and treatment choices

(Column (5)) suggest a negative relationship between treatments and labor supply. These

estimates suggest a puzzling dynamic. First, working agents who go onto HIV treatment are

less likely to work in the following period. Second, treatments improve health. Third, healthy

agents are more likely to work.

Results from (multinomial logit) regressions of treatment choices for before and after

HAART introduction are found in Tables 5 and 6, respectively. Column (1) of Table 5

regresses treatment choice on CD4 count and previous-period choices For both the pre- and

post-HAART eras, estimates suggest that treatment choice exhibits high persistence and that

agents with low CD4 count are more likely to go onto treatment. The same holds for subjects

with public insurance and higher human capital. In general, these results point to a cyclical

component of treatment choice: agents who are less healthy go onto treatment; treatments

improve health; and agents who are healthier are less likely to use treatment.

Consider Column (4) of Table 6, where employment is included as a regressor. Again,

there is a negative relationship between employment and HIV treatment and this relationship

is significant in the case of HAART. The result is puzzling since although health and employ-

ment are positively correlated, effective treatment and employment are negatively correlated.

A possible explanation is that although improved health encourages employment by reducing

symptoms, side effects have the opposite effect. Also, these results suggests that the cyclical

component of treatment-use may have an impact on employment decisions. The structural

model is designed to shed light on these patterns, explaining how agents formulate dynamic

26Note that part-time work is counted as “not-full-time”, but excluding individuals reporting part-time
work does not appreciably affect these averages.

27How public disability payments relate to labor supply has been studied in detail in a number of contexts.
Singleton (2011) finds fewer post-HAART reports of disability among HIV+ agents. He also finds persistence
among agents who were receiving disability payments prior to HAART introduction and suggests that this
reflects difficulties in applying for such payments. French and Song (2010) finds that agents receiving disability
payments subsequently supply less labor than similar agents who are not accepted into the program. In
the present investigation, transaction costs associated with disability payments are captured by preference
parameters for labor supply.
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treatment and employment plans given the trade-off between symptoms and side effects.

3 Model

In each period, agents enjoy flow utility, a function of current choices and state variables. Be-

fore retirement at age 65, agents choose treatments and employment at each period. Agents

are forward-looking, so their choices maximize the present discounted value of future utility.

Agents retire at age 65 and cease making employment decisions, but continue to make treat-

ment decisions. Period t state variables are a function of previous-period states and choices.

I solve the dynamic programming problem of agents using backward induction.

3.1 Choices and Flow Utility

At each period t and until retirement agents choose a pair dit ≡ (dL
it, d

M
it ), where dL

it represents

the employment choice and dM
it the treatment choice. In particular, the possible choices on

each dimension are:

dL
it =

{
0 Not full time work

1 Full time work
and dM

it =


0 No Treatment

1 Mono-therapy

2 Combo-therapy

3 HAART (only after 1996)

(1)

Note that the set of choice pairs, which I denote Dt, is time-dependent since HAART is

available only after 1996. Specifically, denoting as DL
t and DM

t the set of labor and treatment

options available at period t, respectively, Dt ≡ DL
t × DM

t . Ailment status is given by

Fit ∈ {0, 1}, where 1 signifies being free of ailments and 0 signifies suffering ailments. Flow
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utility is given by:

U(Cit, Fit, dit) = u (Cit, Fit, γ(Fit))

+ θ1 × 1{Fit = 0}
+ θ2 × 1{dL

it = 1}
+ θ3 × 1{dL

it = 1} × 1{Fit = 0}
+ θ4 × 1{dM

i,t−1 = 0} × 1{dM
it 6= 0} × 1{Fit = 0}

+ θ5 × 1{dM
i,t−1 6= dM

it } × 1{Fit = 0}
+ θ6 × 1{dM

i,t−1 6= 0} × 1{dM
it = 0} × 1{Fit = 0}

+ θ7 × 1{dM
i,t−1 = 0} × 1{dM

it 6= 0} × 1{Fit = 1}
+ θ8 × 1{dM

i,t−1 6= dM
it } × 1{Fit = 1}

+ θ9 × 1{dM
i,t−1 6= 0} × 1{dM

it = 0} × 1{Fit = 1}
+ ε(dit)

(2)

This first term on the right-hand-side represents individual utility over consumption (Cit).

In particular, I assume that the marginal utility of consumption varies by ailment status and

that u(·) is a CRRA utility function with parameter γ(Fit) so that

u (Cit, Fit, γ(Fit)) =
1

1− γ(Fit)
C

1−γ(Fit)
it . (3)

The second term on the right-hand-side of Equation 2 represents the utility cost of suffering

ailments. The third term captures the utility cost of full-time work. The fourth stands for

the additional cost of working while suffering ailments.

Period t treatment choices affect long-term value (through their effect on health as mea-

sured by CD4 count) and current period flow utility (through ailments induced by side ef-

fects). Both of these processes will be explained in the following section. Treatment choices

also enter flow utility directly via switching costs, captured by the fifth through tenth terms

of the right-hand-side of Equation 2. Finally, ε(dit) is a choice-specific utility-shifter, which

captures factors that affect agent choices, but that are not observable to the econometrician.

In particular, εit : Dt → R and I use ε(dit) to denote the utility shifter associated with choice

dit. Moreover, εit(dit) are independent across time, agents and choices and Extreme Value

Type I distributed.28

Switching costs capture factors - beyond preferences over ailments and long-term health

- that affect agent treatment decisions, including doctors’ orders, treatment protocols and

28This assumption (along with assumptions on conditional independence of states and outcomes, which
will be formally stated later) follows assumptions maintained in Rust (1987).
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the social benefits of antiretrovirals. In particular, effective HIV treatments lower viral loads

(the amount of virus in a patient’s blood), which renders patients less infectious to HIV− sex

partners. Note that switching costs are generic, i.e., not specific to any particular treatment.

Instead, agents experience a cost of starting, switching or ending treatment. Moreover,

switching costs vary by ailment status.

Note that this specification of preferences amounts to a characteristics approach to model-

ing treatment. In other words, patients do not have preferences over a specific treatment like

HAART. Pioneered by: Stigler (1945), Lancaster (1966), Rosen (1974) and Gorman (1980),

this approach permits the valuation of counterfactual treatment innovations, each defined

by the probability distribution it implies over CD4 count and ailments.29,30 The processes

according to which choices and states generate ailments and consumption are described in

the following section.

3.2 States and Transitions

Upon entering period t, the agent learns his vector of period-t state variables (denoted Sit),

but he still faces uncertainty about ailments (Fit) and consumption (Cit), both of which are

realized only after he makes his labor supply and treatment decision. Therefore, the agent

evaluates expected flow utility conditional on his current choice dit and his vector of period-t

state variables, formally:

E[U(Cit, Fit, dit)|Sit]. (4)

The agent’s treatment and labor supply decision has a direct impact on the stochastic genera-

tion process of Fit and Cit. Finally, choices and current states jointly determine period-(t+1)

state variables.

State variables (Sit) include a vector of observables, denoted Xit, and a vector of unob-

servable utility shifters (εit). Specifically, Xit ≡ [Hi,t−1, Ai,t−1, Ei,t−1, vt−1], where:

Hi,t−1 ∈ {0, 1} : High (non-AIDS) CD4 count at t

Ai,t−1 ∈ {25, 25.5, 26, . . . , 65} : Age at t

Ei,t−1 ∈ {10, 20, . . . , 50} : Semesters of full-time experience at t

vt−1 ∈ {1, . . . , 15} : Period-t dummy

29Moreover, note that similarly to the approach in Lancaster (1966) ailments can be interpreted as outputs
of the activity ‘treatment consumption’.

30Further contributions using this approach include: Trajtenberg (1989) Bresnahan and Stern (1997) Petrin
(2004) and Chan (2006).
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Recall from Section 2 that HIV infection leads to a low CD4 count, which means that the

patient’s immune system is compromised.31 Sit also includes the unobserved, choice-specific

utility shifters (ε(dit)’s) defined in the previous section.

Next, the agent forms expectations on Fit and Cit, which are collected into a vector denoted

Yit so that: Yit = [Fit, Cit].
32 I assume conditional independence of Yit, i.e., outcomes are

independent of realizations of unobservable flow utility shifters. Formally:

E[Yit|Xit, dit, εit] = E[Yit|Xit, dit]. (5)

Ailments Fit evolve according to:

P
[
Fit = 1|XF

it ; θ
F
]

=
exp(XF

it θ
F )

1 + exp(·)
(6)

whereXF
it ≡

[
Hi,t−1, vi,t−1, Hi,t−1 × dM

it

]
and θF is a vector of parameters governing the process

generating ailments.

Consumption is equal to income (Iit) minus out-of-pocket treatment costs (pit).
33 For-

mally,

Cit = Iit − pit . (7)

Evaluating expected consumption requires several steps since the agent faces uncertainty on

both income and treatment costs. Agent income uncertainty reflects unanticipated shocks.

For example, an agent may fall ill at some point before the end of period t and incur an

income loss for missing work days. Agents also form expectations on out-of-pocket treatment

costs (pit. These are a function of underlying health at the end of period t (Hit) and period-t

insurance provision (Nit), both of which are unknown at t. This setup reflects that, after

choosing a treatment category at t, out-of-pocket treatment costs will depend on their (as yet

unrealized) health state throughout the period. In summary, to derive expected consumption

given period-t choices and states, the agent must form expectations on income (Iit), insurance

(Nit), CD4 count (Hit) and out-of-pocket treatment costs (pit). Each of these stochastic

31To reduce the size of the state space, Hit is binary, but captures the most salient feature of CD4 count,
namely, whether it is low enough to suggest AIDS (i.e. <250). Transitions between binary health states are
fairly low, reflecting persistence in continuous CD4 count. However, dichotomous health does not reflect that
agents with CD4 counts near 250 face a higher probability of switching health states. An extension of the
current model would capture this difference by permitting Hit to take on more values.

32Note that Fit and Cit are not state variables so do not belong to Sit, but do affect utility. Such variables
are often deemed ‘payoffs’ or ’outcomes’.

33Agents in the model cannot save. The potential impact of this assumption is discussed as results are
presented.
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processes is explained in turn. Income is modeled as

Iit = XI
itθ

I + εIit (8)

where XI
it ≡

[
(Ei,t−1, E

2
i,t−1, Ai,t−1, Hi,t−1, vi,t−1)× dL

it

]
, εIit ∼ N (0, σ2

I ) and θI denotes a vector

of parameters governing the income process.34,35 Note that state variables affecting the income

process are interacted with period-t employment decisions. This reflects that an agent’s

current state can affect wage and non-wage income in different ways.

Insurance status (Nit) affects treatment costs and is also modeled as a process determined

by state variables and labor supply decisions.36 Formally,

P
[
Nit|XN

it ; θN
]

=
exp(XN

it θ
N)

1 + exp(·)
, (9)

where XN
it =

[
Hi,t−1, Ei,t−1, E

2
i,t−1, Ai,t−1, A

2
i,t−1, vi,t−1, d

L
it

]
and θN is a vector of parameters

governing the insurance process.

Underlying health, as measured by CD4 count, is affected by treatments. The salient

features to be captured are (a) whether treatment (or lack thereof) moves CD4 above or

below AIDS levels and (b) possible persistence in CD4 count. First, ∆Hit indicates whether

an agent’s CD4 increased (versus either decreased or remained unchanged) between periods

t and t+ 1. ∆Hit evolves according to

P
[
∆Hit = 1|X∆H

it , dM
it ; θ∆H

]
=

exp(X∆H
it θ∆H)

1 + exp(·)
, (10)

where X∆H
it ≡

[
Hi,t−1, vi,t−1, d

M
it ×Hi,t−1

]
. In other words, both treatments and period-t CD4

count determine if CD4 count increases or not. Then, period-t CD4 count and the direction

of change ∆Hit determine whether CD4 is above or below AIDS levels in t+1. In particular,

for parameters θH , the CD4 count process is modeled as:

P
[
Hit = 1|XH

it , d
M
it ; θH

]
=

exp(XH
it θ

H)

1 + exp(·)
(11)

34Income is a function of health at the beginning of the period Hi,t−1. This modeling choices reflects the
timing of income offers and employment decisions. After learning his health status, the agent faces income
offers for full-time employment. Employers know agent productivity, which is a function of health and human
capital. The employer does not, however, know which medications will be chosen, so the income offer is not
a function of expected ailment status.

35Main results of the paper are robust to different methods to capture progressive taxation.
36Insurance could also be modeled as a choice. However, MACS includes no data on insurance options.

Also, insurance provision is highly persistent in the data and largely dependent on employment, so I model
insurance provision as a process that agents indirectly control through their labor supply decisions.
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where XH
it ≡ [∆Hit ×Hi,t−1].

Out-of-pocket treatment costs are modeled as

pit = XP
it θ

P + εPit (12)

where XP
it ≡

[
Hit × Fit, Iit, Nit × dM

it , vit]
]
, εPit ∼ N (0, σ2

P ) and θP is a vector of parameters.37

Given the processes specified above, expected consumption is formally defined as:

E [Cit|Xit, dit] = E [Iit|Iit ≥ 0,Xit, dit]− E[pit |pit ≥ 0,Xit, dit] . (13)

Note that both income and treatment costs are assumed to be non-negative.

Until now, I have described the stochastic processes governing each component of flow

utility. The model is dynamic in the sense that, in making his current decision, the agent

must also evaluate how his choices and current state affect the distribution over future states.

Formally, define the state-to-state distribution function for current (observable) state Xit,

current choice dit and period-t+ 1 (observable) state Xi,t+1 as

GX(Xi,t+1|Xit, dit). (14)

I further assume that the distribution over future states is independent of current unob-

servable state variables ε(dit) conditional on current observable state variables and choices.

Formally,

E[Xi,t+1|Xit, dit, εit] = E[Xi,t+1|Xit, dit]. (15)

Furthermore, note that Hi,t−1 ∈ Xit evolves according to Equation 11.

Full-time work experience at t, Ei,t−1 increases by 0.5 for each period of full-time employ-

ment. Formally, Eit = Ei,t−1 + 0.5 × 1
[
dL

it = 1
]
. Next, age at t Ai,t−1 and the time dummy

vi,t−1 evolve deterministically. Specifically, Ait = Ai,t−1 + 0.5 and vit = vi,t−1 + 1.

Finally, the probability of dying between periods t and t+ 1 is denoted

P
[
Bit = 1|XB

it ; θ
B
]

=
exp(XB

it θ
B)

1 + exp(·)
(16)

where XB
it = [Hi,t−1, Ai,t−1, Hi,t−1 × Ai,t−1], Bit is an indicator function for death and θB is

a vector of parameters that govern death probability. Note that current period decisions do

not affect the probability of dying. In other words, upon entering the period and learning his

37Note that the costs process includes Iit to account for the possibility that treatments are subsidized
according to income.
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state variable realizations, the agent either continues on to enjoy period-t flow utility or dies,

in which case he receives flow utility 0 forever.

3.3 Parameters and Unobserved Heterogeneity

Flow utility parameters from Equation 2 are collected into a vector denoted θU . Parameters

governing processes and transition probabilities are denoted θXY so that

θXY ≡
[
θF , θI , θN , θH , θP , θB

]
. (17)

Collect these parameters into a vector θ so that θ ≡
[
θU , θXY

]
.

Unobserved heterogeneity is introduced in preference parameters via latent types, of which

there is a finite number K, and for the remainder of the paper, I set K = 2. I allow the

following preference parameters to vary by type: the utility cost of work, the cost of ailments,

the interaction between the two and the marginal utility of consumption for each ailment

status. This modeling decision arises from high observed persistence in labor supply choices

within individuals over time. This is consistent with heterogeneity in distaste for work.38 Let

θk denote type-k parameters, where k ∈ {1, . . . , K}. Denote agent i’s parameters as θi. Type

probabilities are given by

πk ≡ P[θi = θk]. (18)

The subject knows his type k, but the econometrician does not, which means that the distri-

bution over types must be integrated out and the πk’s jointly estimated. Finally, collect all

parameters to be estimated into a vector Θ, where

ψ =
[
θ1, . . . , θK , π1, . . . , πK

]
. (19)

This concludes the specification of the theoretical model. The following section describes how

ψ is estimated.

38In principle, all parameters could vary by latent type. A variety of specifications have permitted unob-
served heterogeneity in parameters governing both health and labor market processes. However, I cannot
reject that these parameters are the same for both types.
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4 Estimation

The vector of parameters ψ is estimated using a nested procedure.39 At the “inner” step

and given a proposed a set of parameters (denoted ψ(g)), the dynamic programming problem

is solved via backward induction for each set of observed state variables Xit. This yields a

set of transitions and choice probabilities, which maximize utility. At the “outer” step, the

algorithm searches for parameters that maximize a likelihood function computed from the

data

4.1 Value Functions

The structure of the value functions for retired and non-retired agents differs. First, I intro-

duce retirement value functions and then I describe value functions for non-retired agents.

The value of retirement is an infinite stream of average expected flow utility. Agents no longer

work, but do continue to optimally choose treatment. For retired agents and each treatment

choice dM
it , the probability of choosing that treatment is denoted PR(dM

it ). Exploiting distri-

butional assumptions on utility shifters, this probability is given by:

PR
(
dM

it |Xit

)
≡ exp(Ũ(Cit, Fit, d

M
it , d

L
it = 0|Sit))∑

dM∈DM
t

exp(Ũ (Cit, Fit, dM , dL
it = 0|Xit))

, (20)

where Ũ(·) is flow utility as defined in Equation 2 with the utility-shifter netted out. Using

these treatment probabilities, in each post-retirement period, agents receive:∑
dM

it ∈DM
t

U
(
Cit, Fit, d

M
it , d

L
it = 0|Sit

)
× PR

(
dM

it |Xit

)
. (21)

Agents receive this flow utility at all post-retirement ages, though in each period weighted by

the discount factor β and the probability of dying conditional on state variables at retirement

P[Bit = 1|·].40 Therefore, total retirement value is equal to an infinite sum, given by

V R(Ai,t−1 = 65, Sit) =

P[Bit|·]
1− β P[Bit|·]

×
∑

dM
it ∈Dt

U
(
Cit, Fit, d

M
it , d

L
it = 0|Sit

)
× P

(
dM

it |Xit

)
.

39I employ estimation methods developed by Rust (1987) and Hotz and Miller (1993) and surveyed in
Aguirregabiria and Mira (2010).

40The discount factor β is set to 0.975 per semester.
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Note that I assume that agents remain in the same health state at which they retire. This is

a reduced-form way to capture that good health is valuable at retirement.41

Let us now turn attention to non-retired agents. In every period t, they choose dit ∈ Dt

to maximize

E

[
Ti−1∑
j=0

βjU(Ci,t+j, Fi,t+j, di,t+j|Xit) + βTiV R(Ai,t−1 = 65, Sit)

]
(22)

where Ti ≡ (65 − Ait) × 2 represents the number of periods until retirement. Using the

Bellman principle, we can define the value function for periods before retirement as follows:

V (Sit) = maxdit∈Dt

{
E[U(Cit, Fit, dit] + β

∫
V (Si,t+1)dGX(Xi,t+1|Xit, dit)

}
(23)

where GX(Xi,t+1|Xit, d) is defined in Equation 14. Choice-specific value functions can be

written as:

v(Sit, dit) ≡ E[U(Cit, Fit, dit] + β
∑
Xi,t+1

V̄ (Xi,t+1)gX(Xi,t+1|d,Xit), (24)

where V̄ (·) is the expectation of the value function taken over the distribution of ε(dit) and

gX(·) is the transition density of Xit corresponding to transition distribution function GX(·).
Notice that V̄ (·) takes the form of an expected maximization since the agent does not know

future realizations of εit.

Given this setup, I obtain choice probabilities for each set of observable variables via

backward induction.42 For example, suppose that agent i enters period t at age 64.5, so

that Ai,t−1 = 64.5. Then, each choice will imply a probability distribution over Xi,t+1, from

which I compute expected retirement value. Given state-specific retirement value, I compute

choice-specific value functions for each state at age 64.5. Once I have obtained choice and

state-specific value functions for age 64.5, I can compute choice and state specific value

functions for age 64 using Equation 24 and so on until age 30. Note that I do not observe

41Allowing V R to be a function of both Sit and Ait is a slight abuse of notation since Ait is an element in
the vector dSit. Strictly speaking, Sit in this case refers to the vector of observable state variables without
Ait.

42Experience (Eit) is measured at five grid points, but estimation requires evaluating value functions
between these grid points. For example, if an agent with 10 periods of experience decides to work in period
t, his period-t + 1 experience will be 11. I use linear-spline interpolation (see Judd (1998)) to compute value
functions for state variable values that lie between grid points.
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εit(d), but know that its distribution implies the following choice probabilities:

P(dit|Xit) =
exp{Ṽ (Xit, dit)}∑

d
′
it∈Dt

exp{Ṽ (Xit, d
′
it)}

(25)

where Ṽ (·) is the net-of-error choice specific value function (i.e., Equation 24 minus εit(dit)):

Ṽ (Xit, dit) = E[U(Cit, Fit, dit)] + β
∑
Xi,t+1

V̄ (Xi,t+1)gX(Xi,t+1|d,Xit). (26)

Finally, note that in the preceding derivations, I have omitted notation identifying type-

specific parameters. For each set of suggested parameters ψ(g), the estimation routine includes

solving the dynamic programming problem to obtain choice probabilities for each set of type-

specific parameters θk.

4.2 The Likelihood Function

The likelihood contribution of individual i is:

Li(θ) =
∑K

k=1 πk[Π
Ti
t=1P(dit|Xit; θ

k)× ΠTi
t=1gY (Yit|Xit, dit; θ

XY )

× ΠTi−1
t=1 gX(Xi,t+1|Xit, dit; θ

XY )],
(27)

where gY denotes the density function derived from processes governing Fit and Cit and θXY k

denotes type-specific θXY . Recall, however, that only utility parameters are allowed to vary

by type. This means that the second two portions of Equation 27 can be pulled out of the

summation over k and the likelihood function can be rewritten as:

Li(θ) =
∑K

k=1 πk[Π
Ti
t=1P(dit|Xit; θ

k)]

× ΠTi
t=1gY (Yit|Xit, dit; θ

XY k)

× ΠTi−1
t=1 gX(Xi,t+1|Xit, dit; θ

XY k).

(28)

Since the final two portions of the likelihood function are outside of the summation over

k, the log likelihood function consists of three additively-separable components that can

be separately maximized. As such, parameters governing transitions probabilities and the

realizations of Fit and Cit can be estimated in a separate first step, which does not involve

solving the dynamic programming problem. In fact, given modeling assumptions, this step

requires estimation of a set of Tobit, logistic and multinomial logistic regressions, all of which

can be accomplished with standard statistical software. In the second step, I only need to

search for preference parameters θUk, which denotes type-specific θU , along with probability
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masses πk. This decreases the number of iterations, which greatly reduces computation

burden since each iteration includes solving the dynamic programming problem.

4.3 Identification

This section discusses how moments in the data identify estimated model parameters. In

the data, each period-t choice and state combination implies a probability distribution over

period-t+1 states and these moments identify parameters governing state-to-state transitions

and outcomes. Parameters in the flow utility function govern choice probabilities and are iden-

tified through agents’ observed state-dependent choices probabilities. The CRRA coefficient

γ, which measures the curvature in the utility function, is identified by differences in how

agents choose both treatments and employment at different consumption levels. Employment

decisions imply large changes in consumption and treatment choices, inducing variability in

medical expenditures, imply small changes in consumption. Insofar as choice probabilities for

given state variables change at different rates for different consumption levels, these choices

trace out the marginal utility of consumption. State-dependent utility parameters (γ(Fit)

are identified through differences in γ across health-status. Finally, parameters describing

the distribution of latent types and type-specific parameters are identified through repeated

observed choices of the same subject over time and given different values of state variables.

4.4 Parameter Estimates

This section presents parameter estimates from first-step regressions of state-to-state transi-

tions and outcomes (θX and θXY ). Next, I present preference parameter estimates (θU) and

go on to compute a posterior type probability for each individual in the dataset, which per-

mits investigation of how latent types relate to variables not included in the model. Finally,

I provide results from a model fit exercise.

According to a regression of the probability of a CD4-count increase (versus a decrease) on

treatment choices (see Table 7), HAART is the most effective treatment, especially for agents

with low CD4.43 Mono-therapy and combo-therapy, though less effective than HAART,

are more effective than no treatment. Next, predicted values from this regression are used

to explain period-t + 1 CD4 count. Specifically, Table 8 contains results from a logistic

regression of dichotomous CD4 (high verus low). Results indicate that high CD4 at t and a

43Tables contain results from multiple specifications. Parameter estimates from the right-most (final)
specification in each table correspond to the parameter values used in solving the dynamic programming
problem.
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CD4 increase independently predict high period-t+1 CD4 count.44 The former result reflects

persistence in underlying immune system health. Next, an absence of ailments is associated

with higher CD4, which reflects that agents in better health are less likely to suffer ailments,

i.e., symptoms (see Table 9 and recall that Fit = 1 indicates the absence of ailments during

period t). Treatments also cause ailments via side effects and it generally holds that more

effective treatments like HAART imply the harshest side effects. High CD4 count drastically

reduces death probability. Since higher age signals good health among HIV+ subjects, I

interact age with high CD4. The positive coefficient indicates that HIV+ subjects with high

CD4 counts face higher death probability as they age (see Table 10).

Income is modeled to be a function of: high CD4, experience, experience-squared, age, a

time-trend and current employment fully interacted with these variables. Income increases

with human capital (as measured by experience), but at a decreasing rate. Age indepen-

dently predicts a lower wage and good health is associated with higher income. The positive

relationship between experience and income for non-full-time workers is consistent with in-

creased non-wage income (e.g: disability payments) given a longer work history. For full-time

workers, and with the exception of health, these effects are more pronounced. The effect of

health on income is weaker for employed workers, which likely reflects that AIDS counts as

a disability so that unemployment benefits are high for sick agents (see Table 11).

Health insurance (public, private or no insurance, the latter being the base category) is

modeled as a function of CD4 count, age, labor supply and experience. Low CD4 and higher

age predict higher probability of public insurance, which may again reflect that AIDS is con-

sidered a disability and that medicare eligibility is age-dependent. Also, full-time employment

predicts private insurance provision, but predicts a lower probability of public insurance (see

Table 12). Finally, treatment costs are a function of treatment choice, health status and

insurance. Estimates indicate that HAART is more expensive than other treatments; costs

increase over time; healthier subjects spend less on their medications and higher income and

private insurance are associated with higher treatment costs (see Table 13).

Preference parameter estimates (found in Table 14) reveal that both Type I agents (con-

stituting 52% of the population) and Type II agents (48% of the population) experience a

utility cost of ailments, but an insignificant utility cost of working while not suffering ail-

ments.45 The key difference between the two types lies in the utility cost of working with

44This two-step method of obtaining transition probabilities among health states is meant to capture two
salient features of treatment technology without increasing the size of the state space, namely, treatment
effectiveness at increasing CD4 count and whether this increase brings agents to non-AIDS immune system
health.

45Standard errors are computed using numerical derivatives to form the outer product measure of the
covariance matrix. See Wooldridge (2002) pp. 395-396.
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ailments. For Type I agents, this cost is near zero; for Type II agents, this cost is large. This

difference has far-reaching consequences for agent behavior in counterfactual treatment and

labor market environments: given their preferences, Type II agents can essentially attenuate

the utility cost of ailments by choosing not to work.46 The marginal utility of consump-

tion increases with ailments, meaning that these agents consume goods that they value more

when they are sicker. Type II agents experience a slight decrease in the marginal utility of

consumption when they experience ailments, which means that they tend to consume goods

that are complements to good health.47 Finally, switching costs vary by ailment status: it

is costly to begin treatment and to switch treatment. For agents with ailments, beginning

treatment is costly, but ending treatment carries a benefit after controlling for the impact of

this choice on other components of agents’ utility, including health.

To gain further insight into the labor market heterogeneity captured by modeling two

latent types, I compute ’posterior’ type probabilities for each individual in the sample.48 This

permits an analysis of the correlation between unobserved latent type and observable labor

market factors not included in the state space. Results are presented in Table 17. The general

message is that latent Type II corresponds to lower education attainment and to occupations

that are less flexible and more strenuous, which may explain why they exhibit a disutility

of working with ailments. For example, individuals with a college degree are Type I with

probability 0.56 and Type II with probability 0.47; for high school graduates corresponding

probabilities are 0.41 and 0.54. Regarding broad occupation categories: individuals with

professional specialties (e.g.: lawyers, doctors or teachers) are marginally more likely to be

Type I than those in other occupations (54% versus 51%).49 Those with a professional craft

are also like to be Type I than those who are not (74% versus 52%). Waiters and individuals

working in extractive industries (e.g.: mining) or transport are less likely to be Type I.

Results from a model fit exercise are found in Tables 15 and 16 for labor supply and

treatment choices, respectively. Taking current states as given, agent choices are simulated

46It is possible that Type II agents are more likely to save while working so that they can live off of their
savings while not working. This would imply that the negative interaction between employment and ailments
is not purely a disutility of work, but also a propensity to save. Therefore, disutility of working while suffering
ailments might be smaller in magnitude. However, it is not zero since the action of saving while not suffering
ailments to avoid working with ailments implies some disutility. The question is whether key results would
change if the negative interaction between work and ailments were capturing both a disutility and a tendency
to save. This question will be addressed as results are presented.

47Type II agents exhibit a direction of state-dependence consistent with findings Finkelstein et al. (2008).
48Specifically, I construct type-specific likelihood contributions for each individual as if he were Type I and

then Type II, and then divide both numbers by the actual (mixed) contribution. The resulting ’posterior’
ratios indicate whether a given individual, given his behavior, is more likely to be a Type I or Type II
individual.

49Available data does not offer more specific occupational information. Moreover, occupation data is asked
only at baseline, so health-induced occupation change is impossible to measure.
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and then compared with state-dependent choices found in the data. Notice in Table 15 that

the model successfully matches dynamics found in the data. According to Table 16, the

model seems to confuse mono-therapy with combo-therapy. This is not unexpected since

their profiles of characteristics are similar.

5 The Value of HAART

This section converts the value of HAART into a measure of willingness-to-accept-payment

in dollars (henceforth: WTAP) and goes on to discuss what portion of this value can be

attributed to labor market factors. Finally, I examine how a dynamically optimal treatment

policy exhibits cycles. Specifically, sicker agents choose effective treatments despite harsh side

effects and switch to less effective drugs with fewer side effects once their health improves. I

refer to this phenomenon as Optimal Treatment Cycling or OTC.50

5.1 Willingness-To-Accept-Payment for HAART

To obtain WTAP for HAART, I compare computed value function values in the first post-

HAART period to analogous values under the counterfactual scenario in which HAART is

never introduced. Rather, a counterfactual treatment technology is introduced with the

same effectiveness and side effects profile as combo-therapy. Next, I compute what per-

period payment (similar to an annuity) under the counterfactual scenario is required to make

agents indifferent to HAART introduction. Finally, I compute the present discounted value

of this annuity using expected years of life, which is also simulated with estimated model

parameters. Results are presented in Figure 5, which graphs the present value of future per-

period payments for Type I agents of different ages and levels of human capital.51 Two key

findings emerge. First, HAART is very valuable, worth over $340,000 for a 38-year-old with

15 years of experience. Second, there is striking heterogeneity in the value of HAART. Older

agents value HAART less since their life horizon is shorter, implying fewer years during which

they benefit from HAART. This effect is compounded for younger agents since health gains

made earlier in life persist over time. Finally, agents with higher human capital value HAART

more since each life-year gained entails higher consumption. For example, a 45-year-old with

50Valuations of both factual and counterfactual treatment introductions capture present discounted value of
utility in all future periods, i.e., gains in years-of-life weighted by consumption over time. Transfers between
periods should not drastically change total value. Therefore, modeling savings behavior is not expected to
appreciably affect results.

51Type II agents value HAART slightly less since they can essentially attenuate the utility costs of ailments
by not working.
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high human capital values HAART at over $300,000, whereas a lower human capital agent

values it at about $50,000.

5.2 Decomposing the Value of HAART

This valuation exercise points to another question about the value of medical innovation,

namely, “How much of the value of medical innovation can be attributed to labor market

factors?”. One can address this question on both an individual and a societal level. The

latter perspective will be addressed in Section 7. The focus of this section is to decompose

the value created by HAART for an HIV+ individual. The full impact of HAART includes its

effect on: longevity, utility and labor market factors, the latter component working through

the utility cost of work and productivity-induced wage changes.

I compare the HAART-induced value increases under two scenarios: where health can

affect both longevity and utility via level effects and the marginal utility of consumption and

where health can also affect labor disutility and productivity. I then compare value gains

under both scenarios, the latter indicating how much additional value is created via the labor

market. The principle finding is that up to 20% of of the value of HAART (again depending

upon age and human capital) can be attributed to labor market factors. Figures 6 and 7

illustrate this point by graphing value decompositions for Type I agents of different age and

experience profiles. I normalize the value of HAART to 1 for a 30-year-old with 5 years of

experience. For young agents and agents with higher levels of human capital, up to about

22% of the value of HAART works through the labor market. For a 30-year-old with low

human capital, the impact of HAART working purely through labor market factors is worth

20% of $250,000, or about $50,000. For older agents or agents with less work experience,

this proportion is much smaller. This result suggests that the key labor market mechanism

through which medical innovation creates value is increased productivity and higher wage.

This benefits younger agents (who face a longer work history) and more experienced, higher-

income agents who are more likely to work.

For Type II agents (not shown), the decomposition exercise shows that only a small por-

tion of the value of HAART is attributable to the labor market. This result might seem

surprising since Type II agents exhibit a utility of cost of work that is sensitive to their ail-

ment status. However, recall that HAART side effects are harsh. Therefore, when Type II

agents use HAART, they face ailments due to side effects rather than symptoms. Another

key point emerges from this decomposition, namely, that the value of medical innovation

attributable to labor market factors is inherently self-limiting given estimated model param-

eters. A treatment cannot reduce the utility cost of labor without improving a representative
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patient’s estimated utility parameters. This is most clear for Type II agents since an ail-

ment reduction makes them better off regardless of their employment decisions, but increases

utility only if an agent decides to work.

5.3 Optimal Treatment Cycling

When no available treatment dominates along both dimensions of quality (efficacy and side

effects), agents optimally choose to cycle among available treatments. In other words, an

optimal treatment path is a non-stationary closed loop driven by three factors: (1) persistence

in health; (2) a non-convexity in discrete treatment choices; and (3) the disutility of ailments

induced by side effects. Details of cycling behavior indicate that agents with AIDS-level CD4

count are highly likely to switch to the more effective treatment (in this case HAART), akin to

a phase of investment in health ’stock’. While on HAART, agents face a higher probability

of health improvements. Once their health improves, agents switch back to less effective

treatment with fewer side effects (in this case, no treatment). During this phase, agents

essentially exploit previous investments in their health stock, trading a higher probability of

diminished future health for several periods with fewer side effects.

As will become evident in the following section, optimal treatment cycling is the key

mechanism through which counterfactual environments affect agent choices and outcomes.

Consider figure 8, which shows the anatomy of optimal treatment cycling for simulated Type

I agents in an environment where available treatments correspond to options in the factual

post-HAART world: no treatment, mono-treatment, combo-treatment or HAART. Agents

respond to counterfactual environments primarily through shifts in the frequency of the first

step of the cycle, i.e., how often they switch to less effective treatments when in relatively good

health (11% in this case).52 Generally, once agents are off the most effective treatment, most

remain there until their health diminishes, at which point most resume effective treatment.

Treatment cycling is often considered to be a form of suboptimal non-compliance that

should be curbed (Sabate, 2003). Switching off of treatment is sometimes referred to as a

’drug holiday’ and some medical literature points to the dangers (both social and private)

of engaging in such behavior (Meredith, 1996). In contrast, I find that a cyclical treatment

pattern can be the result of optimal forward-looking behavior and refer to the phenomenon

as Optimal Treatment Cycling (OTC). Recent medical research on long-term, chronic illness

suggests adapting current treatments to patient responses to previous treatment (Murphy,

2005).53 OTC is similar in that current decisions reflect previous treatment outcomes, though

52For Type II agents, this figure is largely similar, though they switch off treatment with lower frequency
(7-8%) since they can attenuate utility loss from ailments by not working.

53Specifically, this line of research suggests designing medical trials involving multiple randomizations to
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it is driven by patient decision-making. OTC is also consistent with findings that medical

doctors, despite advocating highly effective treatments for their patients, often opt for less

effective drugs with fewer side effects when faced with similar medical conditions (Ubel et al.,

2011).

6 Policy Experiments

The framework developed in this paper - in particular, the characteristics approach to model-

ing treatments - is well-suited to evaluate health and labor outcomes in counterfactual treat-

ment and labor market environments. A key component of the framework is that treatment

innovations are modeled along two-dimensions: efficacy and side effects. Policy simulations

examine how these dimensions affect agent decision-making, health and labor market char-

acteristics. I present results on four exercises. First, I compute value (WTAP) for a variety

of counterfactual treatment innovations. Then, I study agent decisions and outcomes under

counterfactual: treatment technology, labor market and treatment cost environments. I focus

on Type II agents: since they exhibit a large utility loss from working with ailments, their

health and labor decisions are more tightly linked.

6.1 The Value of Treatment Innovation

Suppose that after HAART is introduced, patients are faced with an improvement on HAART

along one or both dimensions of drug-quality. One possibility is a version of HAART without

side effects. Computing WTAP as in Section 3.2, I compute agent valuations of such an inno-

vation, presenting results for low-human capital patients of different ages in Figure 9.54 Note

that black bars in the figure depict the value of HAART introduction. The white bars show

the value of HAART plus the value of an innovation supposing HAART already exists. In

other words, given HAART, the value of HAART without side effects is the difference between

the black and white bars. A version of HAART without side effects creates enormous value:

about $375,000 for a 30-year-old. As in previous results, older agents value the innovation

less since they have fewer periods to enjoy it.55 This result is especially striking since the

innovation entails no improvement on underlying health or longevity. In this sense, a version

of HAART without side effects could be seen as a “me-too” treatment since, by definition,

it is therapeutically equivalent to an existing treatment. Contrary to arguments that such

better formulate decision rules for adaptive treatments.
54I compute WTAP for Type I agents. Type II agents value treatments similarly.
55High-experience agents value the innovation higher than low-experience agents according to results that

are not shown.
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innovations offer little benefit to consumers, I find that a treatment that is therapeutically

equivalent to HAART, but entails fewer side-effects, is valuable.56

Suppose that instead of a reduction in side effects, HAART is improved along the efficacy

dimension. In particular, low-CD4 agents who use HAART face a 32% probability of non-

AIDS CD4 in the following period. Under the counterfactual improvement, this probability

is doubled to 67%. Figure 10 depicts how agents value this innovation. As in the previous

figure, the black bars show the value of HAART. For comparison, the grey bars show the

value of the side effects innovation, given that HAART already exists. The white bars show

the value of the efficacy innovation (again using HAART as the baseline technology) and this

value is large: upwards of $1,000,000 for a 30-year-old. Agents would be expected to place

high value on a life-improving and life-saving technology. What is more surprising is that

optimal treatment cycling underlies some portion of this value. In general, switching onto

milder treatments is risky since the full treatment cycle includes periods where CD4 count

is low and death probability is high. If a highly effective version of HAART exists, however,

agents anticipate fewer such periods. They respond by cycling more aggressively, i.e., by more

frequently switching to milder treatments once their CD4 count is high. In other words, the

value of an effective treatment includes the implied option value of optimally cycling off of it

in periods of relatively good health.

Another key finding is that the value of counterfactual treatments depend on existing

treatments. Suppose that the two aforementioned innovations (side effects and efficacy)

occur simultaneously in separate treatments, so that two new drugs are introduced. Figure

11 depicts how agents value these innovations. Notice that, as compared to the efficacy

innovation, the two innovations create little additional value. This finding is striking: a side

effects innovation is valuable absent an efficacy innovation, but creates little value compared

with a regime where HAART is highly effective. Again, the underlying mechanism is optimal

treatment cycling: if a highly effective version of HAART exists, agents can simply cycle

off of treatment altogether (avoiding all side effects), retaining the option value of resuming

treatment once their health deteriorates. A drug without side effects adds little additional

value in such a scenario.57 Nonetheless, combining an efficacy and side effects innovation into

a single drug does imply additional value since it permits agents to live without side effects,

but to avoid risks associated with cycling. Such an innovation starts to approximate a cure

and its value reflects this: about $1,400,000 for a 30-year-old (see Figure 12).

56See, for example, Angell (2000) on why “me-too” drug development should be curtailed.
57This does not necessarily imply that a private pharmaceutical firm would not profit from investing

in marginal improvements on either dimension of drug quality since a high proportion of patients would
presumably switch to the improved treatment despite the small implied value increase.
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6.2 Treatment Innovation, Choices and Outcomes

To gain insight into how counterfactual medical innovations create value, the next simulation

traces agent decisions, longevity, health and labor market characteristics from the time of

HAART introduction until the end of the sample period under regimes distinguished by

available treatment technologies.58 I compare three of the treatment scenarios outlined above.

The first is the baseline factual regime where HAART is introduced in 1996. In the second, a

treatment identical to combo-therapy is introduced at the time of HAART introduction. This

scenario mimics a continuation of the pre-HAART world in the sense that a new treatment

becomes available, but does not improve upon existing technology. In the third scenario, two

counterfactual treatments are simultaneously introduced: HAART with no side effects along

with a highly effective version of HAART with HAART-level side effects. This final scenario

illustrates behavior when innovations separately occur along two dimensions of treatment

quality. Note that agents are modeled to make optimal choices given each counterfactual

environment.59

Simulated death rates are found in Figure 13. A world without technology improvements

sees only a slight decline in death rates. Death rates under the observed introduction of

HAART are lower and death rates were HAART to be improved hover around 1%, i.e.,

survival is essentially that of HIV− subjects.60 The probability of suffering ailments (Figure

14) exhibits a more complex pattern since ailments reflect both symptoms of disease and side

effects of treatments. For several periods into the simulation, agents facing counterfactual

treatment technology improvements are free of ailments less often than their counterparts

facing existing HAART technology. This occurs since agents are more likely to choose a more

effective version of HAART and therefore suffer side effects with higher probability. However,

as time goes on, this dynamic reverses: ever more agents exhibit higher CD4 and so move

towards less effective drugs with fewer side effects, in effect living off of their health stock.

This pattern of physical ailments is reflected in employment decisions over time, which are

58Policy experiments take the distribution of state variables at the time of HAART introduction as given,
with the exception that all agents are modeled to have chosen “no treatment” in the previous period. This
facilitates comparisons across counterfactual treatment policies.

59In what follows, results are presented for Type II agents whose utility cost of work is exacerbated by
ailments. Results for Type I agents (available upon request) are generally similar in terms of treatment choice
and health measures. The key difference is that Type I agents are much less likely to change their employment
decisions in response to medical innovation since their utility cost of work remains essentially zero in spite of
ailments.

60The fact that death rates decline in a world where HAART is not introduced might seem surprising given
that the cohort is aging. This dynamic is found in the data. In particular, transition probabilities indicate
that older agents with low CD4 count have a slightly higher survival probability, a finding that might reflect
selection by age. In other words, low-CD4 agents who survive until they are older might be less susceptible
to AIDS-related illness than those who die when they are younger.
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depicted in Figure 15.61 In general, Type II agents exhibit a fairly low probability of working

full-time (between 25% and 35% versus 80% or more for Type I agents). This low probability

arises, in part, due to the timing of labor supply decisions: agents choose whether or not

to work for a full period before they know their ailment status. A high enough probability

of suffering ailments coupled with a high disutility of labor while suffering ailments, means

that Type II agents will often avoid employment. Further, Figure 15 illustrates that HAART

brought increases in labor supply. Keeping in mind that working agents pay taxes, this result

suggests that medical innovation creates value not just for the individual, but for society in

general. In particular, in 2002 HAART implies an increase in full-time employment from 22%

to 32%.

Next, it is unclear whether improvements in treatment technology compared to HAART

will increase labor supply. Given the third scenario where two treatment improvements are

introduced, a higher proportion of Type II agents use the version of HAART with greater

effectiveness, which induces heavier side effects, thereby reducing their employment. How-

ever, as their health improves and these agents face a lower probability of symptoms-induced

ailments, they increase their employment. Finally, this pattern of treatment and employment

decisions is reflected in expected income (Figure 16). Although average income increases as

treatments improve, human capital accumulation decreases. The latter results from compo-

sition effects: agents who do not work due to symptoms are more likely to die than agents

who do not work due to side effects. Therefore, effective treatment with heavy side effects

implies a greater number of living, but non-working agents.

6.3 A Decline in Non-Wage Income

The introduction of HAART occurred under very specific circumstances since HAART treats

a condition that is legally considered a disability, giving patients access to disability pay-

ments. Therefore, income remains fairly high for agents who choose not to work.62 The goal

of the following experiment is to ascertain agent choices and outcomes in a counterfactual

environment where non-wage income is lower. To highlight the role of cycling, available treat-

ments are: no treatment, HAART and the two counterfactual improvements upon HAART

61Would modeling savings behavior change the result that Type II agents tend to work more under a
medical technological improvement? Suppose the negative ailment-employment interaction partly captured a
tendency to save while working. Then, even a slight improvement in ailment status should imply even larger
gains to employment, in effect strengthening this result.

62Under the Americans with Disabilities Act, people living with HIV/AIDS qualify for social security
disability payments. These payments cover both symptoms of AIDS and side effects of treatment. More-
over, limited benefits can continue even if agents return to work, reflecting the cyclical nature of chronic
disease. For more information, see http://ssa.gov/pubs/10019.html. For payment calculations, also see:
http://www.ssa.gov/policy/docs/statcomps/supplement/2011/.
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discussed in the third scenario of the previous section. In the simulated environment, agents

face reductions in non-wage income, operationalized via decreased parameters of the income

process for agents not choosing full-time employment. In effect, non-wage income is reduced

20%, 40% and 60%.63

Facing lower non-wage income, Type II agents engage in more pronounced optimal treat-

ment cycling. In particular, the probability that high-CD4-count agents switch off of highly

effective treatment rises from 8% to 15%, 30% and 42% as non-wage income declines.64 The

mechanism is as follows: Type II agents, facing lower unemployment income, are compelled

to work. However, to avoid the high utility cost of working with ailments, they quickly cycle

onto treatments with fewer side effects when their CD4 count is high. More pronounced OTC

means they are more likely to be free of ailments (see Figure 17). Labor market outcomes

also improve. In particular, agents are much more likely to work: a 60% reduction in non-

wage income increases employment from about 30% to about 83% (see Figure 18). Average

income also increases (Figure 19). However, more pronounced optimal treatment cycling

carries some risk. Figure 20 compares death rates under full non-wage income versus a 60%

reduction and shows that this reduction ultimately increases death probability. This policy

experiment highlights the long-term trade-offs between comfort, consumption and longevity.

In particular, agents are willing to trade reduced longevity for increased consumption when

the labor market environment compels them to.

6.4 Unsubsidized Treatment Costs

Recall that HIV+ agents pay on average about $500 per year for treatment. However, the

actual costs, paid by insurance (both public and private) is much more. A year of HAART

therapy costs about $12,000. Combo-therapy costs $8,000 and mono-therapy $6000. What

would happen to agent choices and outcomes if they were compelled to pay these unsubsidized

costs? The following scenario answers this question, simulating environments where agents

would pay 33%, 66% or the full cost of treatment. Again, more pronounced optimal treatment

cycling is the key mechanism through which changes in the environment affect patient choices.

Specifically, facing high costs, agents are more likely to switch off of HAART once their health

improves. Recall that this occurs with a frequency of about 7% in the factual environment,

but increases to 32%, 58%, and 74% under the three counterfactual treatment costs. Agents

63As noted in Section 3, observed non-wage income is too high to solely reflect public disability payments.
Therefore, the experiment does not simulate an environment where non-wage income is driven to zero. The
simulated reductions are chosen to mimic an environment with reduced public payments.

64Type I agents’ response to low non-wage income is to slightly increase already high levels of employment.
They do not, however, appreciably shift their treatment cycling behavior since they do not experience a utility
cost of working with ailments.
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face lower average health, as seen in Figure 21, though survival probability remains largely

unchanged. Agents do exhibit an improvement in their side effects status, shown in Figure 22,

which encourages an increase in employment (Figure 23), resulting in higher income (Figure

24).65

These findings allude to an important aspect of medical decision-making, namely, the role

of estimated switching costs. A simulation where switching costs are set to zero results in more

pronounced treatment cycling, in the sense that patients are more likely to switch off harsh

treatment when their health improves. Suppose we accept that, beyond mere persistence or

transaction costs faced by agents switching treatments, switching costs also capture medical

protocols or doctors’ orders. Switching costs may also reflect the societal benefit of remaining

on effective treatment. For example, there is some evidence that treatment cycling lowers

drug effectiveness. Also, recent literature points out that consistent use of antiretrovirals

lowers the infectiousness of HIV+ individuals.66 Then, doctors function as imperfect agents,

essentially compelling agents to reduce their frequency of switching to less effective, lower

side effects treatment when in better health. Therefore, counterfactual unsubsidized costs

reflect an environment where the cost of disobeying doctors’ orders simply outweighs the

cost of following them. Moreover, more aggressive cycling does not lead to lower survival

probability, suggesting that disobeying doctors’ orders may not harm a patient in the long

run, even though it will lead to better labor market outcomes.

7 Conclusion

This project develops a general framework to value medical innovation, taking explicit account

of the link between health, human capital and the labor market. The framework is applied

to a chronic condition: HIV. In particular, I study the treatment choices and employment

decisions of HIV+ men. I find that a medical innovation known as HAART was worth

between $25,000 and $350,000, depending on age and human capital. I also find that agents,

when faced with treatments differing in their efficacy and side effects profiles, optimally

choose to cycle among available options. Exploiting the characteristics approach to modeling

treatments, I also evaluate counterfactual treatment innovations and find that agents place

high value on a version of HAART without side effects.

I also investigate how health and labor interact and show that OTC underlies dynamic

65How would modeling savings change this result? A potential pattern would be that agents save while
working (and not purchasing treatment) and then use savings to consume and purchase harsh treatments
while not working. Under this scenario, the link between not-working and harsh treatments would likely be
stronger. However, we would still expect less treatment use, resulting in higher employment.

66For an economic study on this phenomenon from the perspective of HIV− subjects, see Chan et al. (2011).

34



decision-making. Specifically, if non-wage income is so low that agents are compelled to work,

they switch to less effective drugs with higher probability when in relatively good health. Al-

though this behavior improves their labor market outcomes, it reduces both their underlying

average health and survival probability. In another simulation, I show that agents facing

unsubsidized drug costs quickly cycle off treatment once their health improves. This behav-

ior, though it reduces health measures, does not appreciably decrease survival probability.

However, it does reduce ailments induced by side effects. As a result, agents are more likely

to work, earning higher income and accelerating the accumulation of human capital.

A decomposition exercise shows that, from the perspective of the individual, up to 20%

of the value of HAART is created through labor market factors like increased employment

and higher income. However, policy experiments show significant behavior changes under

counterfactual environments and some of these changes would entail important social benefits.

For example, the HAART-induced 30% increase in employment among HIV+ Type II agents

presumably entailed an increase in income tax revenues. In other words, from a societal

perspective, the labor market portion of the value of HAART may have been much higher

than from the individual perspective. On the other hand, although OTC is optimal from

the individual perspective, there are important externalities that arise from implied lower

average CD4 counts, including higher infectiousness (due to higher HIV viral load). An

extension of the current model could address this possibility by including uninfected agents’

decision-making when faced with the risk of contracting HIV.

Given data on employment and treatment decisions, applying the framework developed

in this paper to other illnesses is straightforward, though some caveats apply. For example, a

long-term illness such as diabetes might prove problematic unless agents are allowed to form

and update expectations of an innovation. Further research could also extend the character-

istics approach to other dimensions of treatment quality. For example, in the context of HIV,

convenience is of ever greater importance. Early versions of HAART required that multiple

medications be taken in specific sequences. More recently, HAART often amounts to taking

a single tablet each day. Convenience, perhaps less important in the face of life-threatening

illness, becomes more salient once treatments are effective, side effects are manageable and

patients demand further improvements to their quality-of-life.

References

Aguirregabiria, V. and P. Mira, “Dynamic Discrete Choice Structural Models: A

Survey,” Journal of Econometrics 156 (2010), 38–67.

35



Angell, M., “The Pharmaceutical Industry To Whom Is It Accountable?,” New England

Journal of Medicine 342 (2000), 1902–1904.

Becker, G., “Human Capital, Effort, and the Sexual Division of Labor,” Journal of Labor

Economics 3 (1985), 33–58.

———, “Health as Human Capital: Synthesis and Extensions,” Oxford Economic Papers 59

(2007), 379–410.

Blalock, A., J. McDaniel and E. Farber, “Effect of Employment on Quality of Life

and Psychological Functioning in Patients with HIV/AIDS,” Psychosomatics 43 (2002),

400.

Bresnahan, M., T. Trajtenberg and S. Stern, “Market Segmentation and the Sources

of Rents from Innovation: Personal Computers in the Late 1980s,” RAND Journal of

Economics 28 (1997), 17–44.

Cawley, J., “The Impact of Obesity on Wages,” Journal of Human Resources 39 (2004),

451.

Chan, T., “Estimating a Continuous Hedonic-Choice Model with an Application to Demand

for Soft Drinks,” RAND Journal of Economics 37 (2006), 466–482.

Chan, T. and B. Hamilton, “Learning, Private Information, and the Economic Evaluation

of Randomized Experiments,” Journal of Political Economy 114 (2006), 997–1040.

Chan, T., B. Hamilton and N. Papageorge, “AIDS, Antivirals and Risky Behavior,”

mimeo (October 2011).

Chintagunta, P., R. Jiang and G. Jin, “Information, Learning, and Drug Diffusion:

The Case of Cox-2 Inhibitors,” Quantitative Marketing and Economics 7 (2009), 399–443.

Conti, G., J. Heckman and S. Urzua, “The Education-Health Gradient,” American

Economic Review 100 (2010), 234–38.

Crawford, G. and M. Shum, “Uncertainty and Learning in Pharmaceutical Demand,”

Econometrica (2005), 1137–1173.

Currie, J., “Healthy, Wealthy, and Wise: Socioeconomic Status, Poor Health in Childhood,

and Human Capital Development,” Journal of Economic Literature 47 (2009), 87–122.

Currie, J. and B. Madrian, Health, Health Insurance and the Labor Market, volume 3 of

Handbook of Labour Economics, chapter 50 (Elsevier, 1999), 3309–3416.

36



Detels, R., P. Tarwater, J. Phair, J. Margolick, S. Riddler and A. Muñoz, “Ef-
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8 Tables and Figures

Time (t+ 1)
None Mono Combo HAART

Pre-HAART

Time (t)

None 0.87 0.10 0.04 .
Mono 0.09 0.68 0.23 .
Combo 0.06 0.24 0.70 .

Post-HAART

Time (t)

None 0.82 0.02 0.05 0.12
Mono 0.03 0.63 0.09 0.25
Combo 0.03 0.03 0.66 0.29
HAART 0.02 0.04 0.01 0.93

Table 1: Transition matrix for HIV treatment choices.

Time (t+ 1)
Not Full Time Full Time

Pre-HAART

Time (t)
Not full time 0.86 0.14
Full Time 0.10 0.90

Post-HAART

Time (t)
Not full time 0.91 0.09
Full Time 0.06 0.94

Table 2: Transition matrix for employment decisions.
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Full Pre- Post- Full- Not Full-
Sample HAART HAART Time Time

Age at Baseline (Years) 32.71 33.16 32.30 32.40 33.32
CD4 count 448.76 392.54 500.37 490.57 366.12
High CD4 0.73 0.65 0.81 0.81 0.59
No Ailments 0.59 0.59 0.59 0.68 0.41
Death Probability 0.04 0.07 0.02 0.02 0.09
Treatment: None (t+1) 0.30 0.45 0.18 0.33 0.25
Treatment: Mono (t+1) 0.20 0.32 0.09 0.20 0.19
Treatment: Combo (t+1) 0.17 0.23 0.12 0.17 0.17
Treatment: HAART (t+1) 0.33 . 0.62 0.30 0.39
Income ($(2003)/year) 32,348.08 28,040.50 36,301.32 37,168.07 22,818.58
Out-of-Pocket Cost (2003$/year) 455.02 309 580.68 430.82 506.66
Experience (Years) 12.56 11.78 13.28 12.89 11.91
No Insurance 0.05 0.07 0.03 0.04 0.08
Private Insurance 0.81 0.84 0.79 0.92 0.59
Public Insurance 0.14 0.09 0.18 0.04 0.33
Not full time (t+1) 0.34 0.32 0.36 0.08 0.89
Full time (t+1) 0.66 0.68 0.64 0.92 0.11
N [time - t variables] 8,300 3,972 4,328 5,512 2,788
N [time - (t+ 1) variable] 7,954 3,694 4,260 5,335 2,500

Table 3: Summary statistics for the full analysis sample, for the pre- and post-HAART
eras and by current employment status at time - t. The number of observations (N)
for time - (t + 1) variables is smaller than the number of time - t observations
reflecting agents who die between t and (t + 1). Summary statistics are for 6-month
periods (corresponding to the frequency of MACS interviews) and units are (%/100)
unless otherwise indicated.
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Employment Choice (t+ 1)
(1) (2) (3) (4) (5)

Pre- Post-
HAART HAART

Full time (t) 4.26∗∗∗ 3.97∗∗∗ 3.97∗∗∗ 3.41∗∗∗ 4.47∗∗∗

Experience 0.11∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.2∗∗∗ 0.14∗∗∗

Exper. Squared -0.001∗∗∗ -0.0005 -0.0005 -0.0005 -0.0002
Age -0.11 -0.15 -0.15 -0.29 0.13
Age2 0.0000414 -0.001 -0.001 -0.0007 -0.004∗

High CD4 . 0.98∗∗∗ 0.95∗∗∗ 0.94∗∗∗ 0.83∗∗∗

No Symptoms . 0.56∗∗∗ 0.55∗∗∗ 0.61∗∗∗ 0.47∗∗∗

Haart Available . 1.02∗∗∗ 1.11∗∗∗ . .
Treatment: Mono (t+1) . . -0.008 0.26 -0.24
Treatment: Combo (t+1) . . -0.27∗∗ 0.2 -0.74∗∗

Treatment: HAART (t+1) . . -0.18 . -0.64∗∗

Treatment: Mono (t) . . . -0.23 -0.06
Treatment: Combo (t) . . . -0.41∗ 0.22
Treatment: HAART (t) . . . . 0.36
Observations 7954 7954 7954 3694 4260

Table 4: Reduced-form logistic regression of dichotomous employment choices.
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Treatment Choice (t+ 1)
(1) (2) (3) (4)

Mono:Treatment: Mono (t) 4.12∗∗∗ 4.12∗∗∗ 4.11∗∗∗ 4.08∗∗∗

Mono:Treatment: Combo (t) 3.47∗∗∗ 3.47∗∗∗ 3.45∗∗∗ 3.49∗∗∗

Mono:High CD4 -0.52∗∗∗ -0.51∗∗∗ -0.53∗∗∗ -0.59∗∗∗

Mono:No Symptoms . -0.04 -0.05 -0.1
Mono:Age . -0.004 -0.006 -0.19∗∗∗

Mono:Private Insurance . . 0.5∗∗ 0.42∗

Mono:Public Insurance . . 0.51∗ 0.68∗∗

Mono:Income/10000 . . 0.03 -0.02
Mono:Full time (t) . . . 0.19
Mono:Experience . . . 0.1∗∗∗

Combo:Treatment: Mono (t) 4.03∗∗∗ 4.05∗∗∗ 4.06∗∗∗ 4.04∗∗∗

Combo:Treatment: Combo (t) 5.52∗∗∗ 5.56∗∗∗ 5.54∗∗∗ 5.58∗∗∗

Combo:High CD4 -0.66∗∗∗ -0.71∗∗∗ -0.76∗∗∗ -0.82∗∗∗

Combo:No Symptoms . 0.2 0.16 0.12
Combo:Age . -0.005 -0.007 -0.07
Combo:Private Insurance . . 0.08 0.02
Combo:Public Insurance . . -0.02 0.07
Combo:Income/10000 . . 0.09∗∗ 0.05
Combo:Full time (t) . . . 0.28
Combo:Experience . . . 0.04
Observations 3694 3694 3694 3694

Table 5: Reduced-form logistic regression of pre-HAART treatment choices.
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Treatment Choice (t+ 1)
(1) (2) (3) (4)

Mono:Treatment: Mono (t) 4.94∗∗∗ 4.93∗∗∗ 4.92∗∗∗ 4.94∗∗∗

Mono:Treatment: Combo (t) 1.83∗∗∗ 1.88∗∗∗ 1.91∗∗∗ 1.98∗∗∗

Mono:High CD4 -0.36∗ -0.3 -0.21 -0.22
Mono:No Symptoms . -0.56∗∗∗ -0.49∗∗∗ -0.44∗∗∗

Mono:Age . 0.04∗∗∗ 0.04∗∗∗ 0.11∗∗∗

Mono:Private Insurance . . 1.04∗ 1.13∗∗

Mono:Public Insurance . . 2.17∗∗∗ 2.00∗∗∗

Mono:Income/10000 . . 0.05 0.11∗∗

Mono:Full time (t) . . . -0.31
Mono:Experience . . . -0.05∗∗

Combo:Treatment: Mono (t) 3.37∗∗∗ 3.37∗∗∗ 3.38∗∗∗ 3.39∗∗∗

Combo:Treatment: Combo (t) 5.43∗∗∗ 5.44∗∗∗ 5.45∗∗∗ 5.45∗∗∗

Combo:High CD4 0.07 0.07 0.24 0.27
Combo:No Symptoms . -0.16 -0.07 -0.06
Combo:Age . 0.004 0.001 0.004
Combo:Private Insurance . . 0.62 0.65
Combo:Public Insurance . . 1.54∗∗∗ 1.47∗∗∗

Combo:Income/10000 . . -0.09∗ -0.06
Combo:Full time (t) . . . -0.24
Combo:Experience . . . -0.002
HAART:Treatment: Mono (t) 0.86∗∗∗ 0.85∗∗∗ 0.85∗∗∗ 0.86∗∗∗

HAART:Treatment: Combo (t) 1.09∗∗∗ 1.11∗∗∗ 1.14∗∗∗ 1.17∗∗∗

HAART:High CD4 -0.5∗∗∗ -0.43∗∗∗ -0.32∗∗ -0.3∗∗

HAART:No Symptoms . -0.49∗∗∗ -0.4∗∗∗ -0.38∗∗∗

HAART:Age . 0.01∗∗ 0.01 0.04∗∗

HAART:Private Insurance . . 0.95∗∗∗ 1.01∗∗∗

HAART:Public Insurance . . 2.09∗∗∗ 1.99∗∗∗

HAART:Income/10000 . . 0.02 0.07∗∗

HAART:Full time (t) . . . -0.29∗∗

HAART:Experience . . . -0.02∗

Observations 4260 4260 4260 4260

Table 6: Reduced-form logistic regression of post-HAART treatment choices.
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CD4 Count Increase
(1) (2) (3)

Treatment: Mono (t+1) 0.24∗∗∗ 0.22∗∗∗ .
Treatment: Combo (t+1) 0.38∗∗∗ 0.36∗∗∗ .
Treatment: HAART (t+1) 0.91∗∗∗ 0.9∗∗∗ .
High CD4 . -0.1∗ 0.07
Low CD4 (t) × mono . . 0.33∗∗

Low CD4 (t) × combo . . 0.25∗

Low CD4 (t) × HAART . . 1.41∗∗∗

High CD4 (t) × mono . . 0.24∗∗∗

High CD4 (t) × combo . . 0.46∗∗∗

High CD4 (t) × HAART . . 0.59∗∗∗

Time trend . . 0.02∗∗∗

Observations 7954 7954 7954

Table 7: Transitions: CD4 increase versus decrease

High CD4 Count
(1) (2) (3)

High CD4 4.33∗∗∗ 4.59∗∗∗ 5.51∗∗∗

CD4 Increase (Predicted) . 4.10∗∗∗ .
CD4 Increase × Low CD4 . . 4.69∗∗∗

CD4 Increase × High CD4 . . 2.70∗∗∗

Observations 7954 7954 7954

Table 8: Transitions: High CD4 at (t + 1)

No Ailments
(1) (2) (3) (4)

High CD4 0.99∗∗∗ 0.94∗∗∗ 1.41∗∗∗ 1.41∗∗∗

Treatment: Mono (t+1) . -0.44∗∗∗ . .
Treatment: Combo (t+1) . -0.48∗∗∗ . .
Treatment: HAART (t+1) . -0.46∗∗∗ . .
Low CD4 (t) × mono . . 0.06 0.07
Low CD4 (t) × combo . . -0.11 -0.1
Low CD4 (t) × HAART . . 0.12 0.07
High CD4 (t) × mono . . -0.58∗∗∗ -0.58∗∗∗

High CD4 (t) × combo . . -0.56∗∗∗ -0.57∗∗∗

High CD4 (t) × HAART . . -0.59∗∗∗ -0.66∗∗∗

Time trend . . . 0.006
Observations 7954 7954 7954 7954

Table 9: Transitions: Absence of ailments (symptoms or side effects).
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Death Probability
(1) (2) (3)

High CD4 . -3.17∗∗∗ -6.16∗∗∗

Age 0.009 -0.001 -0.01
Age × High CD4 . . 0.07∗∗∗

CD4 count -0.01∗∗∗ . .
CD4-squared 3.06e-06∗∗∗ . .
Observations 8300 8300 8300

Table 10: Transitions: Death probability.

Income
(1) (2) (3)

High CD4 2606.55∗∗∗ 1237.73∗∗∗ 1794.46∗∗∗

Experience 1476.84∗∗∗ 884.60∗∗∗ 838.61∗∗∗

Exper. Squared -6.28∗∗∗ -4.65∗∗∗ -5.99∗∗∗

Age -2050.10∗∗∗ -1066.34∗∗∗ -802.67∗∗∗

Time since combo 705.46∗∗∗ 443.96∗∗∗ 389.73∗∗∗

Full time (t+1) . 6861.13∗∗∗ 30923.38∗∗∗

Full time (t+1) × High CD4 . . -1128.23∗∗

Experience . . 205.08∗∗

Exper. Squared . . 2.52∗∗

Full time (t+1) × Age . . -718.44∗∗∗

Full time (t+1) × Time trend . . 156.45∗∗∗

Observations 7954 7954 7954

Table 11: Outcomes: Semester income.
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Insurance Choice
(1) (2) (3)

Private:Full time (t+1) 1.22∗∗∗ 1.27∗∗∗ 1.16∗∗∗

Private:High CD4 . -0.28∗∗ -0.5∗∗∗

Private:Experience . . 0.16∗∗∗

Private:Exper. Squared . . -0.002∗∗∗

Private:Age . . -0.3∗∗

Private:Age2 . . 0.002∗

Private:Time trend . . 0.07∗∗∗

Private:Time since HAART . . 0.02
Public:Full time (t+1) -1.30∗∗∗ -1.17∗∗∗ -0.88∗∗∗

Public:High CD4 . -0.69∗∗∗ -1.05∗∗∗

Public:Experience . . -0.03
Public:Exper. Squared . . -0.0000149
Public:Age . . 0.17
Public:Age2 . . -0.0008
Public:Time trend . . 0.1∗∗∗

Public:Time since HAART . . -0.05
Observations 7945 7945 7945

Table 12: Outcomes: Insurance type (public, private or no insurance).

Treatment Costs
(1) (2) (3) (4)

Treatment: Mono (t) 224.33∗∗∗ 201.32∗∗∗ 204.50∗∗∗ 438.73∗∗∗

Treatment: Combo (t) 255.40∗∗∗ 223.65∗∗∗ 225.94∗∗∗ 86.38
Treatment: HAART (t) 405.09∗∗∗ 380.45∗∗∗ 390.35∗∗∗ -62.94
High CD4 . -62.93∗∗∗ -66.59∗∗∗ -108.28∗∗∗

No Symptoms . -137.27∗∗∗ -142.73∗∗∗ .
Side-Effects (no AIDS) . . . 151.79∗∗∗

Symptoms (AIDS) . . . 123.70∗∗∗

Income/10000 . 49.23∗∗∗ 44.69∗∗∗ 38.81∗∗∗

Private Insurance . . -11.86 -62.23
Public Insurance . . -80.62∗∗ 73.04
Private × Mono . . . -206.55∗∗

Public × Mono . . . -441.04∗∗∗

Private × Combo . . . 159.28
Public × Combo . . . -136.07
Private × HAART . . . 350.54∗∗∗

Public × HAART . . . 52.93
Time trend . . . 15.62∗∗∗

Observations 8300 8300 8300 8300

Table 13: Outcomes: HIV treatment costs.
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Fit = 1 Fit = 0
(No Ailments) (Ailments)

Coefficients Error Coefficients Error

TYPE I
Constant 0 . -17.28 0.33
CRRA 0.90 0.54 0.84 0.02
Labor Disutility -0.13 0.16 0.84 0.25
Begin Treatment -1.85 0.42 -26.10 0.34
Change Treatment -5.24 0.15 3.50 0.17
End Treatment -0.69 0.25 16.65 0.25

TYPE II
Prob[Type II] 0.48 0.02
Constant 0 . -11.03 0.17
CRRA 0.89 0.17 0.90 0.50
Labor Disutility 0.10 0.02 -6.04 0.19
LL -12498.9

Table 14: Structural estimates of preference parameters.

Labor Supply (%)
Data Model

Full Sample 0.66 0.65
Pre-HAART 0.68 0.64
Post-HAART 0.64 0.66
Good health 0.72 0.71
Poor health 0.46 0.48
High Experience 0.70 0.68
Low Experience 0.63 0.63
Older than 50 0.59 0.63
50 or younger 0.68 0.66

Table 15: Model-fit exercise: Employment decisions.
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Treatment (%)
None Mono Combo HAART

Full Sample
Data: 0.30 0.20 0.17 0.33
Model: 0.31 0.11 0.21 0.37
Pre-HAART
Data: 0.45 0.32 0.23 .
Model: 0.44 0.20 0.36 .
Post-HAART
Data: 0.18 0.09 0.12 0.62
Model: 0.19 0.03 0.09 0.69

Table 16: Model-fit exercise: Treatment choices.

P[Type I]
Yes No

Education
≥ College degree 0.56 0.47
≤ High school diploma 0.41 0.54
Occupation
Prof. specialty 0.54 0.50
Administrative 0.52 0.53
Waiter 0.46 0.53
Craft / Construction 0.74 0.52
Extractive 0.41 0.53
Transport 0.45 0.53

Table 17: Posterior latent type probabilities. For clarification on reading this table,
consider the first category (college). Among individuals with a college degree (or
higher) the posterior probability of latent Type I is 0.56. Among non-college
graduates, i.e., agents with less than a college degree, the posterior probability of
latent Type I is 0.47.
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Figure 1: Trends: Probability of reporting being hopeful about the future ’most or all of
the time’ during the week prior to MACS interview.

Figure 2: Trends: Death Probability over Time
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Figure 3: Trends: Treatment Choices over Time

Figure 4: Trends: Labor Supply over Time
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Figure 5: Willingness-to-Accept Payment: HAART - by Age and Human Capital (×
$1,000)
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Figure 6: Decomposition: The Value of HAART: Low Experience

Figure 7: Decomposition: The Value of HAART: Low versus High Experience
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Figure 8: Anatomy of Optimal Treatment Cycling
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Figure 9: Willingness-to-Accept Payment for counterfactual treatment innovations and
HAART at different ages holding human capital constant (experience=5 years)

Figure 10: Willingness-to-Accept Payment for counterfactual treatment innovations
and HAART at different ages holding human capital constant (experience=5
years)
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Figure 11: Willingness-to-Accept Payment for counterfactual treatment innovations
and HAART at different ages holding human capital constant (experience=5
years)

Figure 12: Willingness-to-Accept Payment for counterfactual treatment innovations
and HAART at different ages holding human capital constant (experience=5
years)
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Figure 13: Simulation - Counterfactual Treatments: Death Probability, Type II

Figure 14: Simulation - Counterfactual Treatments: No Ailments Probability, Type
II
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Figure 15: Simulation - Counterfactual Treatments: Full Time Employment, Type II

Figure 16: Simulation - Counterfactual Treatments: Income, Type II
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Figure 17: Simulation - Counterfactual Treatments: No Ailments Probability, Type
II

Figure 18: Simulation - Counterfactual Treatments: Full Time Employment, Type II
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Figure 19: Simulation - Counterfactual Treatments: Semester Income, Type II

Figure 20: Simulation - Counterfactual Treatments: Death Probability, Type II
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Figure 21: Simulation - Non-Subsidized Drug Costs: High CD4 Probability, Type II

Figure 22: Simulation - Non-Subsidized Drug Costs: No Ailments Probability, Type II
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Figure 23: Simulation - Non-Subsidized Drug Costs: Full Time Employment, Type II

Figure 24: Simulation - Non-Subsidized Drug Costs: Semester Income, Type II
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