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Statistical methods for program evaluation with nonexperimental data have been studied by
economists and econometricians over the last 20 years. These methods are concerned with laying
out the precise circumstances under which valid nonexperimental estimates of the effects of an
intervention can be obtained, and then with methods for determining when and if those
circumstances hold. This article provides a simple exposition of the methods of identification
that have been developed and draws the lessons of those methods for future evaluation designs,
data collection, and analysis.
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E conomists and econometricians have been studying statistical meth-
ods for program evaluation with nonexperimental data for at least
20 years. The major historical impetus for interest among economists was
provided by the need to evaluate many of the social programs of the 1960s,
particularly those designed to aid the low-income population with educa-
tional programs, training programs, and transfer benefits. Early studies by
Goldberger (1972) and Cain (1975) were followed by many others, including
those of Ashenfelter (1978) and the studies surveyed by Barnow (1987). A
major shift in the econometric literature occurred with the introduction of
“selectivity bias” methods (Gronau 1974; Lewis 1974; Heckman 1974),
whose implications for program evaluation were first drawn by Barnow,
Cain, and Goldberger (1980) and were later surveyed in textbook form by
Maddala (1983). The most recent and most complete discussion of econo-
metric methods for program evaluation has been provided by Heckman and
Robb (1985a, 1985b).!

This article provides an exposition of these methods in relatively simple
terms and without much of the technical language employed in the literature
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and is designed to make the issues in the literature more accessible. The first
issue discussed here is the precise delineation of the conditions under which
estimates of the program impact derived from nonexperimental data are
“valid” in a sense defined below. Following that, the article discusses how it
can be determined whether or not those conditions are met. Finally, the article
discusses the implications of the delineation and testing of the conditions for
the design of future evaluations and the types of data that should be collected.

The outline of the article is as follows. In the next section, the nature of
the evaluation problem is defined and the econometric solutions to that
problem are presented. The third section provides discussion of methods of
testing different assumptions, particularly in the manner recently developed
by Heckman, Hotz, and Dabos (1987) and Heckman and Hotz (1989), and
shows the importance of data availability in that testing procedure. The
implications of the methods for future program evaluation are discussed in
the final section.

IDENTIFYING PROGRAM IMPACTS
WITH NONEXPERIMENTAL DATA

THE PROBLEM

Suppose that we wish to evaluate the effect of a particular intervention
(i.e, a treatment) on individual levels of some outcome variable. Let Y be the
outcome variable and make the following definitions:

Yi = level of outcome variable for individual i at time t if he or she has
not received the treatment

Yi = level of outcome variable for same individual i at same time t if
he or she has received the treatment at some prior date.

The difference between these two quantities is the effect of the treatment,
denoted o

Yi'=Yi+a n
or

o=Yiy - Yi. 2
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The aim of the evaluation is to obtain an estimate of the value of a, the
treatment effect. The easiest way to think about what we seek in an estimate
of a is to consider individuals who have gone through a program and
therefore have received the treatment, and for whom we later measure their
value of Y;. Ideally, we wish to know the level of Y;; for such individuals —
that is, we would like to know what their level of Y would have been had
they not gone through the program. If Y; could be known, the difference
between it and Y would be a satisfactory estimate of a.?

The difficulty that arises does so because we do not observe Y;, directly,
but only the values of Y for nonparticipants of the program. Define a dummy
variable for whether an individual has or has not received the treatment:

d, = 1 if individual i has received the treatment
= 0 if individual i has not received the treatment.

Then an estimate of o could be obtained by estimating the difference be-
tween Y; and Y;, for those who did and did not go through the program,
respectively:

G=E(Yi |di=1)-E(Yi|di=0) 3]

where E(Y: | d; = 1) is the expected, or average, value of Y;, of those who
have received the treatment and E (Y3 | d; = 0) is the expected, or average,
value of Y;, for those who have not received the treatment. Unfortunately,
this is not what we wish to calculate, for we wish to calculate the difference
between the expected value of Yy for those with d; = 1 and the expected value
of Y}, that would have obtained for those with d; = 1 as well — that is, the value
of Y that would have arisen if those who did go through the program had not
gone through it. That is, we would like to know

a=E(Y} |di=1)-E(Y}|d=1). [4]

The estimate @ in (4) is, in fact, the estimate that would be obtained if we
had successfully administered a randomized controlled trial for the evalua-
tion. For example, as individuals come in through the door of the program,
they would be randomly assigned to treatment status or control status, where
the latter would involve receiving none of the services of the program. At
some later date we could measure the levels of Y for the two groups and
calculate (4) to obtain an estimate of the effect of the program.’
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When will the estimate we are able to calculate, @, equal the estimate we
would have obtained with a randomized trial, a? Comparison of (3) and (4)
shows that the two will be equal if and only if the following condition is true:

E(Yi|di= 1) = E(Yi | di = 0). [5]

In words, the two estimates of « are equal only if the expected value of Yi
for those who did not take the treatment equals the expected value of Yj that
those who did take the treatment would have had, had they not gone through
the program.

The heart of the nonexperimental evaluation problem is reflected in
equation (5), and an understanding of that equation is necessary to understand
the pervasiveness and unavoidability of what is termed the selection bias
problem when nonexperimental data are employed. The equation will fail to
hold under many plausible circumstances. For example, if those who go
through a health counseling program designed to encourage the adoption of
better health practices happen to be those especially concerned with their
bealth, and who have already begun adopting good health practices even
before entering the program, they will be quite different from those who do
not go through the program even prior to receiving any program services.
Hence equation (5) will fail to hold because those who go through the
program have different levels of Y;, that is, different levels of good health
behavior even in the absence of 1 receiving any program services. The estimate
of a will be too high relative to a, for the greater level of good health behavior
observed for the treatment group subsequent to receiving services was
present even prior to the treatment and is therefore not necessarily a result of
the treatment itself. Those who are observed to have actually gone through
the program are therefore a “self-selected” group out of the pretreatment
population, and the estimate of & is contaminated by selectivity bias because
of such self-selection. Put differently, the population of nonparticipants
constitutes a “nonequivalent” comparison group.

The selection bias problem can also be thought of as an omitted variable
or missing-data problem, in this case the omitted variable being Yi. In the
example just given, it may be that prior health practices can be an adequate
proxy for Y}, and hence inclusion of that variable will eliminate the bias, but
this will not always be the case. The use of preprogram information on Y, is
discussed in detail in the next section.

The unavoidability of the potential for selectivity bias arises because the
validity of equation (5) cannot be tested, even in principle, for the left-hand
side of that equation is inherently unobservable. It is impossible in principle
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to know what the level of Y; for those who went through the program would
have been had they not gone through it, for that level of Y: is a “counterfac-
tual” that can never be observed. We may know the pretreatment level of Y,
for those who later undergo treatment, but this will often not be the same as
the Y;, we seek — for the left-hand side of (5), we need to know the level of
Y for program participants that they would have had at exactly the same
time as Y;; is measured, not at some previous time.*

Before discussing the solutions to this identification problem in the lit-
erature, it is important to point out that the object of the estimation — the true
impact of the treatment on Y —may differ across persons. Equation (2), by
omitting a subscript on ., implicitly assumes that the treatment impact is the
same for all. An alternative is to replace a by oy:

=Y -Y;. (6]

To keep matters simple, equation (2) will be assumed in the analysis below
rather than (6). However, it is important to note that equation (6) is not only
more plausible than (2), but it has a critical bearing on the implications of
any evaluation. Equation (6) is more plausible because it seems intuitive that
many individuals will react to a particular treatment differently, for reasons
that may be, in principle, measurable but that will often not be measured in
the data available. The implications for program evaluation are critical
because the estimate of program impact obtained in any particular evaluation
will depend on which individuals, among all those in the population of
interest, have been administered the treatment. For example, if an evaluation
of a small program present in only a single local area of the country is
conducted, and if the small size of the program has been achieved by
admitting only high-impact individuals, the estimated treatment effect may
differ considerably from that which would obtain if the program were
implemented nationally, on a larger scale, and if, therefore, individuals with
lower impacts were brought in. In general, the difference between (2) and (6)
is of critical importance for the extrapolation of the results of a particular
evaluation to other areas, other populations, national programs, or programs
of a different scale.’

SOLUTIONS

There are three general classes of potential solutions to the selection bias
problem (Heckman and Robb 1985a, 1985b).° Each defines circumstances
under which the problem could be eliminated and what type of estimation
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method would do so. The question is then whether it can be determined
whether those circumstances hold, a question addressed in the next section.
It is important to note that two of the three solution methods, the first and
second in the order listed below, have important implications for evaluation
design because they require the collection of certain types of data. These
implications will be drawn out in the final section.

Solution Method 1: Identifying variables (Z’s). The selection bias problem
can be solved if a variable Z, is available, or one can be found, that satisfies
two conditions: (a) It affects the probability that an individual receives the
treatment, but (b) it has no direct relationship to Yy (e.g., no direct relationship
to individual health practices in the example discussed previously). What is
an example of such a Z;? Suppose that a health counseling program is funded
by the federal government and that the government funds the program in one
neighborhood of a city and not in another neighborhood for political or
bureaucratic reasons unrelated to the health needs of the populations in the
two areas— and therefore unrelated to the health practices of the individuals
in the two. If arandom sample of the populations or subpopulations of interest
were conducted in the two neighborhoods and if data on Y, were collected
(the data would include both participants and nonparticipants in the neigh-
borhood where the program was funded) a comparison of the mean values
of Y, in the two would form the basis for a valid estimate of o.” The variable
Z, in this case should be thought of as a dummy variable equal to 1 in the
neighborhood with the program and O in the other. The variable satisfies the
two conditions given above — it obviously affects whether individuals in the
two areas receive the treatment, because if Z; = 0, no treatment is available,
and it is unrelated to the level of Yy in the two areas because the funding
decision was made for reasons unrelated to health practices. This is a case of
what is often termed a natural experiment, similar to an experiment inasmuch
as the probability of having the treatment available is random with respect
to the outcome variable under study as a result of natural variation.® This
estimation method is also termed an instrumental-variable method in econo-
metrics, where Z, is the instrument. Indeed, the method of instrumental
variables in econometrics is, in a fundamental sense, a generalization of the
concept of a natural experiment.’

What is an example of an illegitimate Z;? The same dummy variable just
defined in the previous example would be illegitimate if the government
funding decision were based not on political or bureaucratic decisions but on
the relative level of health practices in the two areas, for example, if the health
counseling program were placed in the neighborhood with the higher rate of
illness. In that case, the dummy variable Z; would not be independent of
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Yi:— the presence of the program in a neighborhood would be associated with
lower levels of good health behavior not because of a negative causal effect
of the treatment but because of the reason for its placement.

Many other examples could be given as well. For example, it is possible
that individual, rather than geographic characteristics could serve as legiti-
mate instruments. If participation rates in a program differ for individuals
with different age or educational levels, for example, variation in values of
Y, across those groups will provide a valid estimate of program impact,
provided that those same characteristics do not directly affect Y, in the
absence of the program. However, for a Y defined as a variable measuring
health practices, age and education are unlikely to satisfy the latter require-
ment. It is variation in the availability, rather than the actual receipt, of
treatment across the population that is more likely to provide a legitimate Z
in this case. Other examples include cases where Z, is continuous rather than
dichotomous. For example, if government funding levels of a health program
are nonzero in all neighborhoods, but funding decisions are made for political
and bureaucratic reasons, the level of funding itself defines a legitimate Z,.
In this case, rather than comparing the levels of Y, for each different
neighborhood with a different level of Z,, some smoothing technique such as
regression analysis could be used.

It is also important to note that a particular Z; variable would still be
legitimate if it were only partly unrelated to the value of Yh, at least if that
part could be isolated in the analysis. For example, if funding decisions are
made by ranking areas by the level of Y}, with funding starting at, say, the
lowest Y (e.g., the lowest level of good health practices) and moving up the
list, no legitimate Z, could be based on funding. But if areas were grouped
into categories —say, “high,” “medium,” and “low” Yi—and if funding
decisions were made for political or bureaucratic reasons within each of the
categories, the variation in funding within category (i.e., conditional on
category) would furnish a legitimate Z,. Thus it is only necessary that some
portion of the variation in the variable be isolated that satisfies the require-
ments for a legitimate Z,.'°

Provided that a legitimate Z; is found, there are a variety of estimation
techniques available." Econometric practice typically employs linear re-
gression formulations in which the influences of variables other than the
treatment are controlled by least squares and where a formal instrumental-
variables estimation procedure is used to remove the endogeneity of the
treatment variable. Corresponding nonlinear procedures are available for
nonlinear models. In some cases, particularly where the treatment impact
varies across individuals in a random fashion (see equation [6]), other
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two-stage methods such as the “lambda” technique may be used (Heckman
1979; Maddala 1983). In the absence of a distributional assumption — neither
normality nor any other distribution has been assumed in any of the discus-
sion thus far— it is the availability of a legitimate Z; that permits the identi-
fication of the treatment impact in this estimation method as well.”?

Clearly, the most important question is whether such a Z; is available. But
how is the investigator to know if a particular candidate for Z, is or is not
legitimate? This issue will be discussed in the next section.

Solution Method 2: Availability of cohort data. A second solution method
requires the availability of “cohort,” “longitudinal,” or “panel” data, that is,
data on the same individuals at several points in time before and after some
of them have undergone the treatment. In the simplest case, data on Y are
available not only after the treatment but also before, giving a data set with
one pretreatment observation and one posttreatment observation for each
individual, both participants and nonparticipants. In the more general case,
three or more points in time may be available in the data.

The advantage of such data is that the past values of Y, for an individual,
those prior to the receipt of the treatment, may provide a good measure of
the unobservable Y. Suppose, for example, that different individuals differ
in their inherent healthiness, and that individuals select themselves into
treatment on the basis of some permanent, unchangeable level of health (e.g.,
the least healthy are more likely to enroll in a health program). Then it may
be that differences in past health practices of (future) participants and
nonparticipants in a health program may adequately control for their differ-
ences in Y}, the unobservable component of health. If so, the availability of
longitudinal data can eliminate the selectivity bias that would be present in
only a single cross section of data.

The use of such longitudinal data is sufficiently important to warrant an
extended discussion. To illustrate this method, first consider the situation that
would arise if data at two points in time were available, one before the
treatment and one after it. Let “t” denote the posttreatment point and “t —1”
denote the pretreatment point. Then, analogously with the cross-sectional
case considered previously,

Y} -Yii-1 = changein Y; from t — 1 to t in the absence of having
undergone the treatment

Y - Yii-1 = changein Y} from t— 1 to t if having undergone the
treatment.
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Then the effect of the treatment is o, and
Yi.l‘-Yi.,t-l'(Yi.!-Yi..l-l)'F(!. [7]

Because Yi,.; cancels out on both sides of (7), it is the same as (1) and
therefore the true effect, o, is the same.

We can use the data on Yj available from nonparticipants before and after
the treatment to estimate the program effect as follows:

G=E(Yi - Yii1|di=1)-E(Yi-Yii_|di=0). [8]

This estimator & is often called a “differences” or “change” estimator because
itis computed by comparing the first-differenced values of Y for participants
and nonparticipants. As before, a preferred estimate of the effect of the
program would be obtained by a randomized controlled trial in which those
wishing to undergo the treatment (d, = 1) are randomly assigned to partici-
pation or nonparticipation status. With data on both pretreatment and post-
treatment Y, the estimate of the program effect could be calculated as

&-E(Yi}'—Yf,t_lldi-1)—E(Yi’.-Y{,_1|d;-1). [9]

Unfortunately, with nonexperimental data the second term on the right-hand
side of (9) is not measurable because, once again, we cannot measure Y; for
those who undergo the treatment.

The estimate we are able to obtain in (8) will equal that we could have
obtained in the randomized trial, (9), if and only if

E(Yi-Yii1ldi=1)=E(Yi-Yi_1|di=0). [10]

Equation (10) is the key equation for the two-data-point case and is the
analogue to equation (5) in the single-post-treatment-data-point case. The
equation shows that a data set with a pretreatment and posttreatment obser-
vation will yield a good estimate of o if the change in Y; from pre to post
would have been the same for participants, had they not undergone the
treatment, as it actually was for nonparticipants. Sometimes the change in
Yi is referred to as the “growth rate” of Yj, in which case we may say that
our nonexperimental estimate requires that the growth rate of Y for partici-
pants and nonparticipants be the same in the absence of the treatment.
Perhaps the most important point is that this condition may hold even
though condition (5) does not. Equation (5), the condition that must hold for
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the nonexperimental estimate in a single posttreatment cross section to be
correct, requires that the levels of Y, be the same for participants and
nonparticipants in the absence of the treatment. Equation (10), on the other
hand, only requires that the growth rates rates of Y;, be the same for par-
ticipants and nonparticipants in the absence of the treatment, even though the
levels may differ. The latter is a much weaker condition and will more
plausibly hold in many situations.

The nature of the condition is illustrated in panels a and b of Figure 1. In
panel a, the pretreatment levels of nonparticipants and participants, Aand A’,
respectively, are quite different— participants have a higher level of Y, as
would be the case, for example, if those who later undergo a health program
have higher levels of good health practices in the first place. Fromt—1tot,
the level of Y for nonparticipants grows from A to B, as might occur if
everyone in the population under consideration were increasing their level
of good health practices even without participating in a program. The figure
shows, for illustration, a growth rate of Y for participants from A’ to C, which
is a larger rate of growth than for nonparticipants. The estimate of the
treatment effect, &, is also shown in the figure and is based on the assumption
that, in the absence of undergoing the program, the Y of participants would
have grown from A’ to B' —in other words, by the same amount as the Y of
nonparticipants grew. Of course, this assumption cannot be verified because
point B' is not observed; it is only a counterfactual. But clearly the estimate
in the figure would be a much better estimate than that obtained from a single
posttreatment cross section, which would take the vertical distance between
B and C as the treatment estimate. This would be invalid because equation
(5) does not hold.

Panel b in Figure 1 shows a case where condition (10) breaks down. In
that panel, a case is shown in which the Y of participants would have grown
faster than that for nonparticipants even in the absence of treatment (A’ to B’
is greater than A to B). This might arise, for example, if those individuals
who choose to undergo a health counseling program are adopting better
health practices more quickly than are nonparticipants. In this case, the
estimate of @ is too high, because it measures the vertical distance between
B” and C instead of between B’ and C. Neither B’ nor B” is observed, so we
cannot know which case holds.

A major conclusion to be drawn from this discussion is that a superior
estimate of program effect may, under certain conditions, be obtainable with
more data.”® Adding a single pretreatment data point permits the computation
of an estimate of the treatment effect — the differences estimator in (8) — that
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Figure 1: Alternative Trends for Participants and Nonparticirants

may be correct in circumstances in which the estimator using a single
posttreatment is not. The importance of having additional data on the histo-
ries of Y, for example, stands in contrast to the situation faced when conduct
ing a randomized trial, where, strictly speaking, only a single posttreatmen
cross section is required. Thus is can be concluded that more data may be
required for valid inference in nonexperimental evaluations than in experi-
mental evaluations. .

This point extends to the availability of additional pretreatment observa-
tions." If, for example, levels of health are not constant and immutable, as
discussed previously, but are instead changing over time, it may be that
participants and nonparticipants select themselves into participation in a
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program on the basis of the growth rates, not the levels, of Yi. Additional
pretreatment observations permit this issue to be examined. If an additional
pretreatment observation is available at time t -2, for example, the estimate
permitted in a nonexperimental study is

a'E[(Yi.t. _Yi‘,!—l) '(Yi..l—l - Yi..l-Z)ldi" 1]“

- L] L] * [11]
E[(Yi- Yii-1) - (Yie-1- Yii-2)|di=0],
whereas the estimate permitted in a randomized trial is
o =E[(Y - Yiio) = (Yiea - Yiu-2) [ di=1]- [12]

E[(Yi- Yiia) = (Yie-1- Yie-2) [di=1].

This estimator in (11) is often termed a differences-in-differences estimator
because it computes the treatment effect by comparing the “change in the
change” of Y for participants and nonparticipants.

The two estimators will be equal if and only if

E[(Yi.l'Yil—l)-(Yi.,l-l -Yii-2)|di=1]=

* L] . * [13]
E[(Yi - Yii-1) = (Yie-1- Yiu-2) |di=0].

Equation (13) shows that a correct program impact estimate will be obtained
only if the change in the growth rate of Y would have been the same for
program participants in the absence of their having undergone treatment as
it actually was for nonparticipants. Panel ¢ of Figure 1 illustrates the situation
when this condition holds. For both participants and nonparticipants, Y
grows at an increasing rate over time as, for example, would occur if the
adoption of good health practices were accelerating in the population. For
nonparticipants, Y; grows by 1 fromt~2tot-1(Ato B) and by 2 from
t—1 to t (B to C). For participants, Y, grows by 3 fromt-2tot—1 (A' to
B") and by 8 from t — 1 to t (B’ to D). The estimate of program effect, shown
in the figure, is therefore 4 because it is assumed that the growth rate of Y,
for participants in the absence of the treatment would have accelerated by
the same amount as it did for nonparticipants, namely, by 1— from a growth
rate of 3 between t—2 and t—1 to a growth rate of 4 between t—1
and t (B' to C'). Panel d shows a case where condition (13) does not
hold —there, the growth rate of Y, for participants accelerates by more even
in the absence of the treatment than it did for nonparticipants (B’ to C' is
greater than B to C).

The conclusion to be drawn from this discussion is that the availability of
three points of data permits us to obtain an estimate of program effect that



Moffitt / EVALUATION WITH NONEXPERIMENTAL DATA 303

may be valid in circumstances in which the estimate possible with two points
of data is incorrect. For example, the application of the differences estimator
in (8) to the datashown in panel c would give an incorrect estimate of program
effect, for, in the absence of the treatment, the growth rates of Y; for
participants and nonparticipants between t — 1 and t (B’ to C' and B to C,
respectively) are not equal (e.g., because unobserved levels of health grow
at different rates and individuals select themselves into program participa-
tion on the basis of their growth rates). In fact, this is the case illustrated in
panel b, where the differences method gives an incorrect estimate. Thus, once
again, the conclusion to be drawn is that more data permit the calculation of
program effects that may be valid in circumstances in which the estimate
available with less data is not.

An analogous implication holds if we consider four, five, or many points
of preprogram data. More periods of data make possible estimates of treat-
ment effects that are equal to those obtainable from a randomized trial
under weaker and weaker conditions, thereby strengthening the reliability of
the nonexperimental estimator. In the general case, a slight modification in
the model allows us to write the estimate of the treatment effect as the
following:"

a-E(YI.I.ldI - 1) Yi‘,t-l in.,(-Zy e ’Y;,l-k)_

. - - * [14]
E(Ya]di=0, Yiear, Yit-2,..., Yir)

assuming that data are available for k pretreatment periods. This estimator
will equal that obtainable in a randomized trial if and only if the following
condition holds:

E(Yi‘(ldi'l,Y:(-],...,Yi.,t_k)’-'-‘

1] . 2] [15]
E(Yaldi=0,Yi-1,..., Yitw)-

This condition can be interpreted as requiring that the values of d; and Y;
must be independent of one another conditional on the history of Y; up to
t — 1. Put differently, it must be the case that if two individuals are observed
at time t — 1 who have exactly the same history of Y, up to that time (e.g.,
the exact same history of health practices) — and who therefore look exactly
alike to the investigators —they must have the same value of Y} in the next
time period regardless of whether they do or do not undergo the treatment.
If, on the other hand, the probability of entering a health counseling program
is related to the value of Y; they would have had if the treatment were not
available, the condition in equation (15) will not hold and the nonexperimen-
tal estimate will be inaccurate.
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Solution Method 3: Parametric distributional assumptions on Y*. In both
solution methods discussed thus far, no parametric distributional assump-
tions have been placed on Y; or on any of the other variables in the analysis.
By implication, valid treatment impact estimates are obtainable by the use of
nonparametric estimating procedures. The variable Y; is unobservable in
principle, as stressed at the beginning of the discussion; solution Methods 1
and 2 both provide valid impact estimates because an observed variable or
set of variables is available that is independent of the unobservable Y;. In the
first solution method, a legitimate Z; is one that is observable (obviously) and
independent of the unobservable Y3, whereas in the second solution method,
treatment status (d,) is independent of Y; conditional on a particular observed
Y history. The second method is, in fact, a special case of the first, where Z,
is defined as the treatment variation conditional on the Y history (i.e., the
residual treatment variation).

A third solution to the selection bias problem can be achieved if the
distribution of the unobservable Y; conditional on d, is known directly or can
be determined with reasonable certainty. For example, if Y;; follows a normal,
logistic, or some other distribution with a finite set of parameters, identifica-
tion of a program effect free of selection bias is often possible.'® It is often
thought, for example, that certain inherent biological traits are distributed
normally in the population. If it can be assumed with relative certainty that
the distribution of Y;, in the absence of the treatment (i.e., Yy) is so distributed,
this approach is possible. Implicitly, the approach measures the effect of the
treatment by deviations from normality of the distribution of Y, within the
sample of participants. A more formal method of thinking about estimation
in this case can be obtained by considering a method-of-moments estimation
method in which not only the difference in the means of Y;, for the participant
and nonparticipant populations is used in the analysis but also the difference
inthe higher-order moments of Y. With knowledge of a particular parametric
distribution for Y, these higher-order moments will take on particular
functional forms that may permit the identification of the parameters of the
distribution and therefore the degree of selection bias present.

Unfortunately, this method will not be especially useful for most interven-
tions because we usually do not have firm prior knowledge regarding the
distribution of the unobservable Y; (i.., the distribution of Y, in the entire
population in the absence of the treatment). Although it is fairly clear how
outside information on the nature of the funding process can inform choice
of potential Z; variables, for example, and how outside information on the
nature of the Y;, process can inform assumptions regarding similarity of Y,
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histories for participants and nonparticipants, it is unclear how outside
information can be obtained to inform assumptions regarding the distribution
of Yi. In most cases, distributional information will be available only for
self-selected groups of nonparticipants, or for participants and nonpartici-
pants ata time prior to the intervention, neither of which provides necessarily
accurate information on the distribution of Y}, because of the possibility of
selection bias already discussed. The only population from which firm
knowledge of the distribution of Y; can be obtained is from a true control
group, which is not available by assumption, or from a population group
defined by a legitimate Z;, in which case the Z, can be used to identify the
treatment impact rather than a distributional assumption on Y;. Given these
difficulties, this solution method will not be considered further.!”

THE ROLE OF TESTING OF ASSUMPTIONS
AND ITS RELATIONSHIP TO DATA AVAILABILITY

The discussion thus far has demonstrated that the availability of certain
types of data—information on legitimate Z variables, or on individual
histories — is related to the conditions that must hold, and the assumptions
that must be made, to obtain an estimate of program effect similar to that
obtainable in a randomized trial. However, the delineation of these conditions
and assumptions is not particularly useful unless some means is developed
for determining which, if any, of the conditions are met and which, if any, of
the assumptions hold. Otherwise, the assumptions made by any particular
investigator will be arbitrary and may differ across investigators. This section
lays out the formal mechanism for conducting the necessary testing, based
largely on the work of Heckman, Hotz, and Dabos (1987) and Heckman and
Hotz (1989). The following section discusses the implications of these testing
procedures for design strategy and data collection. The most important point
will be that the type of data collection undertaken in any investigation bears
importantly on the ability to test which of the conditicus hold and which
assumptions are met.

The formal answer to the question of whether and when assumptions can
be tested is that “overidentifying” assumptions can be tested but that “just’
identifying” assumptions cannot be. An overidentifying assumption is one
that could be dropped and a valid treatment estimate still obtained without
it; a just identifying assumption is one that cannot be dropped because a valid
treatment estimate could not be obtained without it. Whether an assumption
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is overidentifying or just identifying depends on the data set available, for an
assumption can be dropped — and therefore tested — if the available data are
a bit more than are actually needed to estimate the model in question. As
more data become available, many just identifying assumptions — which
cannot be tested— can be turned into overidentifying assumptions — which
can be tested.

The relationship between testing of assumptions and data availability is
illustrated in Figure 2, which shows five different models that can be
estimated on different data sets. The model at the top of the figure can be
estimated on Data Set 1, while the two models below it can be estimated on
a richer data sct, Data Set 2, and the two models below that can be estimated
on a yet richer data set, Data Set 3. At the top of the figure, it is presumed
that the evaluator has a data set (Data Set 1) consisting of a single posttreat-
ment data point with Y, information, but no other variables at all—in
particular, no Z; variable is in the data set. The best the analyst can do in this
circumstance is to compare the Y, means of participants and nonparticipants
to calculate @ as in equation (4) above. This estimate will equal that obtain-
able from a randomized trial under the three assumptions shown in the box
for Model I in the figure: that the missing Z, is independent of Y}, conditional
on d; and that there is no selection bias in either levels of first differences.
The first assumption is necessary to avoid omitted-variable bias, the bias
generated by leaving out of the model an important variable that is correlated
with both the probability of receiving the treatment and Y;. Suppose, for
example, that Z; is a dummy for neighborhood location, as before. If location
is an important determinant of health behavior, and if the probability of
treatment also varies across areas, then not having a variable for city location
in the data set will lead to bias because the estimate of program impact (the
difference in mean Y, between participants and nonparticipants) reflects, in
part, interarea differences in health practices that are not the result of the
treatment but were there to begin with. The second and third assumptions are
necessary for the value of Y; for nonparticipants to be the proper counterfac-
tual, that is, for it to equal the value that participants would have had, had
they not undergone the treatment.®

Modes II and III in the figure can be estimated if the data set contains
information on a potential Z, like neighborhood location, but still only a
single posttreatment observation on Y, (Data Set 2). Each of these models
requires only two assumptions instead of three, as in Model I, but each model
drops a different assumption. Model I1 drops the assumption that there is
no selection bias in levels—that is, it drops the assumption that (5) holds.
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MODEL I

Al: zi independent of Y;t conditional on di
A2: No selection bias in levels: (10) holds
A3: No selection bias in differences: (13) holds

Data Set 1

Al holds Al does not hold
A2 does not hold Model II Model IIIX A2 holds
A3 holds A3 holds

Data Set 2

v

Al holds Al does not hold
A2 does not hold Model IV Model VvV A2 does not hold
A3 does not hold A3 holds

Data Set 3

Figure 2: Estimable Models With Different Data Sets
NOTE: Data Set 1: Single postprogram, no Z;. Data Set 2: Single postprogram, Z;.
Data Set 3: Preprogram and postprogram, Z;.

This assumption can be dropped because a Z; is now available and the
instrumental-variable technique described earlier as Solution 1 can now be
used alone to obtain a valid estimate of . In this method, the values of Y,
for participants and nonparticipants in a given neighborhood are not com-
pared to one another to obtain a treatment estimate — that estimate would be
faulty because participants are a self-selected group. Instead, mean values of
Y across neighborhoods are compared to one another, where the neighbor-
hoods differ in the availability of the treatment and therefore have different
treatment proportions (e.g., a proportion of 0 if the neighborhood has no
program at all, as in the example given previously). For the treatment-cffect
estimate from this model to be accurate still requires the assumption that the
Z;is a legitimate instrument — that the differential availability of the program
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across areas is not related to the basic levels of health behavior in each city
(i.e., that Z; and Y;, are independent).

Not only does Model II require one less assumption than does Model 1, it
also permits the testing of that assumption and therefore the testing of the
validity of Model 1. The test of the dropped assumption — that there is no
selection bias in levels— is based on a comparison of impact estimates ob-
tained from the two models. If the two are the same or close to one another,
then it must be the case that there is, in fact, no selection bias in levels —be-
cause the impact estimate in Model I is based on participant-nonparticipant
comparisons whereas that in Model I1 is not. If the two are different, then
there must be selection bias—if the participant-nonparticipant differences
within cities do not generate the same impact estimate as that generated by
the differences in Y, across different cities, the former must be biased because
the latter is accurate (under the assumption that the Z, available is legitimate).

Model III takes the opposite tack and drops the assumption that Z is
legitimate but maintains the assumption that there is no selection bias in
levels. The model estimates the treatment effect by making participant-
nonparticipant comparisons only within areas, that is, conditional on Z,. If
there are neighborhoods where the program is not present at all, data on Y,
from those neighborhoods is not used at all, unlike the method in Model II.
The Model III impact estimate will be accurate if there is no selection bias
into participation, but it will also be accurate even if interarea variation is not
a legitimate Z; (e.g., if program placement were based on prior health need).
In this case, a comparison of the impact estimate with that obtained from
Model I —where participants and nonparticipants across areas were pooled
into one data set and location was not controlled for because the variable
was not available —provides a test for whether interarea variation is a
legitimate Z. If it is not (e.g., if program placement across cities is based on
prior health need) —the Models I and I1I will produce quite different treat-
ment estimates, for Model I does not control for location but Model III does
(Model III eliminates cross-neighborhood variation entirely by examining
only participant-nonparticipant differences within neighborhoods). On the
other hand, if neighborhood location is a legitimate Z; (e.g., if program
placement is independent of prior health need) then the two estimates should
be close to one another.

The implication of this discussion is that Data Set 2 makes it
possible to reject Model 1 by finding its assumptions to be invalid. This testing
of Model I'is possible because Data Set 2 provides more data than is actually
necessary to estimate that model. Unfortunately, this data set does not allow
the evaluator to test the assumptions of Models II and III necessary to assure
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their validity. Each makes a different assumption — Model I assumes that Z,
islegitimate, whereas Model 111 assumes no selection bias to be present —and
the estimates from the two need not be the same. If they are different, the
evaluator must gather additional information.

Such additional information may come from detailed institutional
knowledge — for example, knowledge of whether Z, is truly legitimate (e.g.,
detailed knowledge of how programs are placed across neighborhoods). But
another source of additional information is additional data, such as informa-
tion on a preprogram measure of Y,. For example, if Data Set 2 is expanded
by adding a preprogram measure of Y (Data Set 3 in Figure 2), the assump-
tions of Models I and I11 can be tested by estimating Models IV and V shown
in the figure. Each of these models drops yet another assumption, although
a different one in each case. Model IV drops the assumption that there is
no selection bias in differences but continues to make the assumption that
Z; is a legitimate instrument. The impact estimate is obtained by the
instrumental-variable technique, as in Model I1, but in this case by comparing
the means of (Y,- Y, _,) across neighborhoods, thereby eliminating selection
bias in levels if there is any. Model V drops the assumption that there is no
selection bias in levels by applying the difference estimator in (8) but still
assumes that there is no selection bias in differences.

Once again, the richer data set permits the testing of the assumptions that
went into Models II and ITI and therefore makes possible their rejec-
tion. The arrows in the figure between models show which models can be
tested against one another. A comparison of the estimates of Model IV to
those of Model II provides a test of the third assumption (that there is no
selection bias in differences); a comparison of the estimates of Model V and
Model II provides a test of the first assumption (that Z, is a legitimate
instrument); and a comparison of the estimates of Model V and Model HI
provides a test of whether the second assumption holds (that there is no
selection bias in levels). If each comparison indicates estimates that are
similar to one another, the relevant assumption in the more restricted model
(Model II or Model III) should be taken to be valid; when estimates differ,
however, the assumption involved should be taken as invalid and the more
restricted model should be rejected.

As before, Models IV and V now require certain assumptions for their
impact estimates to be valid. The estimates required for each are different,
but neither can be tested unless more information or more data are available.
With Data Set 3, they are nontestable, just identifying assumptions. An
additional preprogram data point or an additional Z, variable would enrich
that data set and would convert those assumptions to testable, overidentifying
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assumptions. New models made possible by increasing the richness of the
data set permit the evaluator to discard more and more assumptions and
therefore obtain impact estimates that are more and more reliable. This
strategy can be pursued until models are found that are not rejected by richer
data sets."”

IMPLICATIONS FOR
EVALUATION DESIGN AND DATA COLLECTION

The discussion in the second and third sections has many implications for
design of program evaluations and for data collection efforts. First, the
discussion in the second section indicates the directions that investigators
must take to search for means of identifying program impacts, namely,
toward the search for potential Z’s and the investigation of longitudinal
histories, both of which will require data collection. Second, the discussion
in the third section provides the basis for a design strategy in which data
~ collection of Z’s and histories is expanded until valid identifying variables
are found. This, in turn, provides important information for future evalua-
tions because it indicates which types of data are necessary, and which are
not, to obtain valid program impact estimates. Over the course of a sequence
of investigations in the same area, knowledge can thus be built up within
the evaluation community on the types of data necessary to obtain good
estimates.

The research agenda posed by this evaluation strategy is ambitious in its
scope. A search for Z’s will likely require detailed investigations of the
funding process, for example, and of the determinants of the allocation of
programs to different groups. More generally, as many past observers have
noted, the search for Z’s requires a detailed investigation of the selection
process itself (i.e., the process that determines who ends up in treatment and
who does not). However, more than an investigation of why particular
individuals do or do not enter treatment, the examples used here point more
toward an investigation of the reasons for the availability of programs in
different areas and to different groups. Such an investigation is likely to
involve field work to determine why programs are available in some neigh-
borhoods and cities and not in others, and to determine why different socio-
economic groups appear to have greater access than do others, even though
two different groups appear to reside in an area where the program is
available. For example, if a particular set of individuals has a low participa-
tion rate in a program because they are not served by appropriate public
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transportation to the program site, and if the lack of such transportation is
unrelated to the preprogram levels of Y, a legitimate Z variable will be
available. Investigations into possible individual characteristics as 2’s should
not be rule out, of course. But for many of the social programs investigated
by social scientists, individual socioeconomic characteristics, such as age,
sex, educational level, and the like, will not provide legitimate Z’s because
they will have a strong relationship to preprogram levels of Y.

The process of testing different assumptions is the most important part of
the research agenda because it is here that “bad” assumptions regarding what
is or is not a legitimate Z, and regarding whether or not particular types of
histories of Y for participants and nonparticipants are the same in the absence
of treatment, can be rejected and discarded. In any single investigation, the
systematic collection of additional data on potential Z’s and on additional
longitudinal histories must be conducted up until the point that acceptable
conditions for valid treatment-impact estimation can be found — that is,upto
the point where incorporation of additional Z information and longer histo-
ries has no impact on the estimate of treatment impact. But, more important,
the conduct of this type of investigation will provide future evaluations in
the same area with information on the types of data (Z’s, histories) that are
necessary to collect to obtain valid impact estimates. One can imagine a
sequential research strategy in which a particular data collection protocol is
adopted, the results analyzed, and tests for overidentifying restrictions con-
ducted as described in Section III, and the key sources of remaining sensi-
tivity to different just identifying, untestable assumptions are determined. A
subsequent new data collection protocol based on these results could then be
devised to test those assumptions and the process repeated. Thus the benefits
of a single investigation extend to other studies as well.

One can also imagine building randomized triuls into this sequential
strategy of evaluation. For example, experimental trials could be reserved
only for situations in which a sequence of nonexperimental investigations of
the type just mentioned is unable to resolve differences across different just
identified models. Thus the experimental trial would only come at the end of
the research sequence. Alternatively, a randomized trial could be conducted
simultaneously with a nonexperimental evaluation to identify what set of Z’s
are legitimate and what assumptions regarding similarity of Y histories are
correct. This could be determined directly by determining which nonexper-
imental data yield the same estimate of program impact as that obtained from
the randomized trial. If future evaluations are planned in the same area, this
information could then be used to design future data collection protocols for
nonexperimental evaluations.
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NOTES

1. The econometric literature on selectivity bias methods is itself an outgrowth of the
econometrics of simultaneous equations. In selectivity bias models, the treatment variable is
assumed to be “endogenous” in a simultaneous-equations sense because causality may run from
the outcome variable to the probability of receiving treatment, not vice versa.

2. In most econometric practice, Yi: is set equal to Xp + £, where X is a vector of observed
variables, @ is its coefficient vector, and ¢ is an error term.

3. Because this article is concerned with nonexperimental evaluation only, the relative
advantages of experimental and nonexperimental techniques will not be discussed. Suffice it to
say only that there are many situations where experimental evaluations are difficult to conduct,
for either ethical or practical reasons. Nevertheless, a nonexperimental evaluation should aim
to obtain an estimate equal to that (asymptotically, at least) obtainable in a successful, or “ideal,”
experiment.

4. It may be noted that Manski (1990) has pointed out that if Y} is bounded (e.g., between
0Oand 1), a worst case/best case analysis can be conducted in which the unobserved counterfactual
is taken to equal each of the bounds in tumn. This gives a range in which the true effect must lie
instead of a point estimate.

5. Equation (6) underlies what is known as the random coefficient model in the econometric
literature. See Bjorklund and Moffitt (1987), Heckman and Robb (1985a, 1985b), and Moffitt
(1989, 1991).

6. Random sampling is assumed throughout, thus the issues arising from the use of
choice-based sampling (see Heckman and Robb 1985a, 1985b) are ignored. Identification with
repeated cross-sectional  data and contaminated data are also not addressed.

7. For example, if Y, is the mean value of the outcome variable in the neighborhood with
the program and Yo is the mean value in the neighborhood without one, and if p is the fraction
of the relevant subpopulation in the neighborhood that participated in the program, the impact
estimate would be calculated as (Y. 11— Yo)/p

8. The example extends to other geographic units, such as cities, as well. It should be noted
that a comparison of only two areas is likely to be hazardous because there could be chance
differences in health practices across the two areas prior to treatment. A much larger number of
areas (i.e., bigger sample size) is necessary to reduce the chance of random fluctuations in Y*
across treatment and nontreatment areas.

9. The instrumental-variable method, similar to two-stage least squares, is one of the most
common techniques for the estimation of simultaneous-equations systems. As noted in Note 1,
the selectivity bias model is a type of simultaneous-equations system, where the treatment
variable is endogenous and must be “instrumented.” A recent example of the use of the technique
within this framework is given in Angrist (1990).

10. This example is misleading in one sense, for the government cannot directly allocate
funds on the basis of Y* because it is an unobservable. However, it can allocate funds on the
basis of a number of indicators of Y*, which would have the same result. In principle, information
on those indicators can be collected by the evaluators and used in the analysis.

11. See Barnow, Cain, and Goldberger (1980) and Heckman and Robb (1985b) for a
discussion of alternative estimators. Heckman and Robb give precise conditions necessary for
instrumental variable estimation (p. 185) as well as a set of other estimators that make use of a
legitimate Z, (p. 167).
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12. For a recent application of a semiparametric lambda technique — that is, one where
identification is secured solely through the availability of a Z; variable and not from any
functional form or distributional assumption on the error term in a linear regression — see Newey,
Powell, and Walker (1990),

13. Having more data is not, in general, a guarantee that a better estimate can be obtained.
However, in a scnse to be defined more precisely in the third section, more data of a certain type
will always permit the investigator 1o test a wider variety of models.

14. Gathering additional posttreatment observations is easier but does not serve the appro-
priate control function. Prior to the treatment, it is known with certainty that the program could
have no true effect; after the treatment, it cannot be known with certainty what the pattern of the
effect is, assuming it has an effect. Consequently, participant-nonparticipant differences in Y;
after the treatment can never be treated with absolute certainty as reflecting selection bias rather
than a true effect.

15. This autoregressive model was estimated in an early economic study by Ashenfelter
(1978). A simpler model but one more focused on the evaluation question was also analyzed by
Goldberger (1972) in a study of methods of evaluating the effect of compensatory education
programs on test scores when the treatment group is selected, in part, on the basis of a pretest
score.

16. These statements are imprecise. To be exact, for identification, the functional form of
the conditional expectations of Yj shown in equation (3) need be known up to a finite set of
parameters (Heckman and Robb 1985b, 167). Knowledge of the full joint distribution of Yirand
d; is a stronger requirement that would also permit identification. There are a variety of other
distributional assumptions that can achieve identification (see Heckman and Robb).

17. To anticipate the next section, this solution method also differs from the first two
inasmuch as there is no obvious way to collect additional information or data to verify
distributional assumptions of unobservables.

18. In this case, the third assumption is technically redundant because there will be no
selection bias in differences if there is none in levels. This will not be true in other sets of three
assumptions. Note too that, of course, more than three assumptions must be made, but these
three are focused on for illustration because they are the three relevant to the richest data set
considered, Data Set 3. With yet richer data sets, additional assumptions could be examined.

19. Nevertheless, as has been stressed elsewhere (Moffitt 1989), at least one untestable
assumption must always be made in any nonexperimental evaluation. Only in a randomized trial
is such an assumption no longer necessary for valid impact estimates to be obtained.
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