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This is a study of probabilistically sophisticated choice behavior when the preference relation is
incomplete. Invoking the analytical framework of Anscombe and Aumann (1963) and building on
the work of Machina and Schmeidler (1995), the paper provides an axiomatic characterization of the
general multi-prior multi-utility probabilistically sophisticated representation. In addition, the paper
examines the axiomatic foundations for two special cases: complete beliefs and complete tastes. In the
former case, the incompleteness is due to ambiguous tastes and in latter case it is due to ambiguous
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1. Introduction

Choice-based definition of subjective probabilities presumes
that, when called upon to decide among courses of action whose
consequences are not known in advance, decision makers form
of beliefs about the likely realization of the consequences, and
that these beliefs are quantifiable by probabilities. Because the
beliefs are personal, their representation is dubbed subjective
probabilities. Borel (1924), Ramsey (1931) and de Finetti (1937)
were first to propose the key idea that subjective probabilities
may be inferred from the odds a decision maker is willing to
offer when betting on events or the truth of propositions. This
idea found its ultimate expression in the seminal works of Savage
(1954) and Anscombe and Aumann (1963). A common feature
of these works is that the subjective probabilities are defined
in the context of expected utility theory. Consequently, these
works confound the definition of subjective probabilities with
the hypothesis that individual choice among uncertain prospects
is representable by a functional that is linear in the probabili-
ties. However, the representation of a decision maker's beliefs
by subjective probabilities and the notion of expected utility
maximizing choice behavior are two separate ideas.

Machina and Schmeidler (1992, 1995) severed this connec-
tion by proposing a model, dubbed probabilistic sophistication,
in which choice-based subjective probabilities are defined with-
out requiring that the decision maker's preferences respect the
strictures of expected utility theory. According to Machina and
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Schmeidler subjective probabilities transform acts (that is, ran-
dom variables on a state space that take their values in the set of
consequences) into lotteries (that is, the corresponding probabil-
ity distributions on the set of consequences) and preferences are
represented by a utility function over the set of lotteries.

A central tenet of both the expected utility models and the
probabilistically sophisticated models is that all alternative
courses of action are comparable. That this presumption is not
tenable as a general depiction of real-life decision making was
recognized by von Neumann and Morgenstern who wrote “It is
conceivable - and may even in a way be more realistic - to allow
for cases where the individual is neither able to state which of
two alternatives he prefers nor that they are equally desirable”
(von Neumann and Morgenstern, 1947, p. 19). Aumann (1962)
finds universal comparability not only an inaccurate description
of real-life decision making but also lacking normative appeal.
In his words, “Of all the axioms of utility theory, the complete-
ness axiom is perhaps the most questionable. Like others of the
axioms, it is inaccurate as a description of real life; but unlike
them, we find it hard to accept even from a normative viewpoint”
(Aumann, 1962, p. 446). Empirically, the main manifestation of
incomplete preferences is indecisiveness or inertia.

Considering the restrictive nature of the completeness re-
quirement, the objectives of this paper are to examine the im-
plications of relaxing the completeness axiom in Machina and
Schmeidler’s theory of probabilistically sophistication choice, and
to study the representations of ambiguous beliefs and tastes
in this model. More specifically, invoking the analytical frame-
work of Anscombe and Aumann (1963), I explore conditions un-
der which incomplete preference relations admit a multi-utility



multi-prior in the probabilistically sophisticated representation.’
In addition, I explore the conditions that characterize two special
cases: Knightian uncertainty and single-prior multi-utility repre-
sentation. The former case, first explored by Bewley (2002) in the
context of expected utility theory, attributes the incompleteness
to the decision maker's ambiguous beliefs and the latter, explored
by Shapley and Baucells (1998) and Dubra et al. (2004), to his
ambiguous tastes.

The main analytical difficulty introduced by the incomplete-
ness of the preference relation is due to the non-transitivity of the
incomparability relation. When the preference relation is com-
plete, indecisiveness arises only when the decision maker is in-
different among the alternatives under consideration. In Machina
and Schmeidler (1995) the indifference is an equivalence relation,
hence it is transitive. They exploit the transitivity of indifference
to link general Anscombe-Aumann acts to constant acts that are
convex combinations of the state-contingent payoffs of the origi-
nal acts. This link is severed when the incomparability relation is
non-transitive. The loss of transitivity requires that the preference
structure is enhanced by the introduction of two new axioms
dubbed replacement acyclicity and constant-act comparability.
Replacement acyclicity requires that the incomparability relation
restricted to replacement paths be acyclic. Constant-act compa-
rability requires that one act be strictly preferred over another if
and only if the induced constant acts that are non-comparable to
the former are strictly preferred to those induced by the latter
using the same reduction process.

2. The model
2.1. The analytical framework

Let S = {sy....s,} be a finite set of states and X a set of
outcomes. Subsets of § are events. Denote by AX the set of simple
probability distributions on X. Elements of AX are lotteries. Let H
be the set of mappings on S to AX. Elements of H are acts defined
by Anscombe and Aumann (1963). Constant acts are identified
with elements of AX, hence, AX C H. Let = be a binary relation
on H. The relation > is bounded on X if there are X and x in X
such that §* > §* > 8% for all x € X\[x, x}, where §* € AX is
the degenerate lottery that assigns the unit probability mass to x.
I assume throughout that > is bounded.

2.2. The axiomatic structure
The following axioms depict the preference structure.

(A.1) (Strict partial order) The strict preference relation > is
transitive and irreflexive.

The binary relation > on H that satisfies (A.1) is referred to it
as strict preference relation. Define the incomparability relation, =
on H as follows: Forallf,g e H, f < g if =(f > g) and —(g > f).
Clearly, = is symmetric and, since > is irreflexive, it is reflexive
but is not necessarily transitive.

(A.2) (Archimedean) For all f,g,h € H, if f > g and g > h then
there exist @, 8 € (0, 1) such that of + (1 —a)h > g >
Bf+(1 -4 h

1 n seu theory this issue was explored in Seidenfeld et al. (1995), Nau (2006)
and Galaabaatar and Karni (2013).
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The statement of the next two axioms invokes the following
additional notations and definitions. For every event E and f. g €
H, let frg € H be the act that agrees with f on E and with g on
S\E. An event E is null if =(3%f > Bgf), forallf € H, and is nonnull
otherwise. Following Machina and Schmeidler (1995) the lottery
p is said to dominates the lottery qaccording to first-order stochastic
dominance, denoted p >! g, if T 0p(2) > Ez0q (2), for
all x € X with strict inequality for some x € X. The next
axiom requires that first-order stochastically dominating lotteries
be preferred.2

(A.3) (Monotonicity) For all p, g € AX, if p >! q then pgh > ggh,
for all nonnull E C S and all h € H.

The next axiom is a reformulation of the Horse/Roulette Re-
placement axiom of Machina and Schmeidler (1995) replacing the
indifference with the incomparability relation. The idea captured
by the Horse/Roulette Replacement axiom is that one can use
a probability mixture of the lottery payoffs p and g of the act
PE; (quh) to define a payoff contingent on the event E; U E; as
an estimate the probabilities of the disjoint events E; and E;
conditional on their union. The replacement axiom below extends
this idea to estimate the sets of probabilities that represent the
decision maker's ambiguous beliefs about the likely realization of
these events conditional on their union. Formally,

(A.4) (Replacement) For every finite partition (Eq, ..., E,) of S,
if
X (X ox) (5% _ X X
55 (89) = (@8 + (1 - )8 o)

for some « € [0. 1] and pair of events E; and E;, then
Pg; (agh) = (@p+ (1 —a) Dy
for all p,q € AX and h € H.

The Horse/Roulette Replacement axiom of Machina and Schmei-
dler (1995) invokes the transitivity of the indifference relation.
Since the incomparability relation is non-transitive their chain
of replacements by which an act is reduced to an equivalent
constant act does not apply. The following axiom replaces the
transitivity of indifference with acyclicity of the incomparability
relation that is required to hold solely along replacement paths.’
This requirement assures that the set of probabilities representing
the decision maker's ambiguous beliefs is consistently main-
tained when the event-contingent payoffs of acts are replaced
by their corresponding mixtures conditional on the unions of the
underlaying events. Formally,

(A.5) (Replacement acyclicity) For all f € H, if there are o, «a,
..., 0n 1 such that

F 1)y (F (52)15, ) = (@af (51) + (1 — 1) f (s2))
= oty (a1f (51) + (1 —ay) f (52))

+ (1 _a2)f (53){51552_33|f =
as (az (arf (51) + (1 —ap) f(s2)) + (1 — ) f (s3))

+ (1—a3)f (54){51.52.53_541f ==X erpl
i=1

fio=

Is1.52}

2 The same property, implied by their adoption of Savage's P3, is a tacit
aspect of Machina and Schmeidler (1992). Grant (1995) characterized probabilis-
tically sophisticated preferences that do not satisfy monotonicity with respect
to first-order stochastic dominance, thus separating the idea of probabilistically
sophisticated choice from yet another tenet of subjective expected utility theory.

A binary relation = on a set A is acyclic if a; 5 @ =, ..., = a, implies that
= (ap > ay), for all {a,...ap} €T A, n € N. In Machina and Schmeidler (1995) the
transitivity of the indifference relation implies that replacement acyclicity is an
implication of their replacement axiom.
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then

n
f= Z TiPi.
i1

where 17 = a1 027 1, TG = Oy 1-Cp_2-...-(1—aj_1),
h=(1—ap-1)andp;=f (), i=2,.... n.

Corresponding to every act there is a set of constant acts
(i.e., elements of AX) that are non-comparable to it. These sets
of constant acts are the manifestation of the decision maker's
ambiguous beliefs. The next axiom requires that these ambigu-
ous beliefs be consistent in the sense that one act is strictly
preferred over another if and only if each constant acts that is
non-comparable to the former is strictly preferred to the constant
act that is non-comparable to the latter that is obtained by the
same reduction process. This does not mean that the sets of
constant acts corresponding to the two acts under consideration
are necessarily disjoint. It only requires that for every possible
belief the decision maker entertains, there is no reversal of order
of the ranking of the two constant acts obtained by the reduction
of the original acts invoking that belief. To state the axiom, I
introduce the following additional notations. Let A" = {o €
[0,1]" | ¥ 0 = 1}. Foreach h € H and a € A", define
h* = 2 aih (). Informally, h* is the lottery in AX induced by
applying the reduction of compound lotteries to the compound
lottery whose first stage is the probability distribution & on S and
the second stage consists of the state-contingent lottery payoffs
of the act h.

(A.6) (Constant-act comparability) Forallf.g e H,f > gifand
only if f* > g% for all « € A" such that f = f* and g =< g“.

3. Representations
3.1. Multi-prior multi-utility representation

The model admits two sources of ambiguity, tastes and be-
liefs. The first result is a representation of a preference relation
whose incompleteness is due to both sources of ambiguity. The
representation involves a set V of utility functions on AX and a
set [1 of probability measures on S such that one act is strictly
preferred over another if and only if the utility of each lottery
induced by the reduction of the former act is larger than that of
the corresponding lottery induced by the reduction of latter act
according to the every probability measure in /7 and every utility
function in V.

To state the main result | invoke the following definitions: A
function V' is mixture continuous if V (ap + (1 — «) q) is contin-
uous in «, for all p,q € AX. It is strictly monotonic if V(p) >
V(q) whenever p dominates g according to first-order stochastic
dominance.

Theorem 1. Let = be a binary relation on H then the following two
conditions are equivalent:

(i) = is bounded on X and satisfies (A.1)-(A.6).

(ii) There exist a set, V, of real-valued, mixture continuous, strictly
monotonic functions, V on AX,and a convex set, 1, of probability
measures on S such that, for all f,g € H,

f>8 6V (Zest (5)f(5) > V(s (5)g (), V(V.m) e v x Il
(1)

and, for all f € H\{8%, 8%}

V (8%) > V(Zsesm (5)f (5)) > V (8%),V(V,m) e V x 1. (2)

To describe the uniqueness of the representation (1) I adopt
the notations of Evren and Ok (2011). Given any nonempty subset
U of R#X, define a map [}, : AX — R% by I3, (p) = (u) :=u(p).
Note that for every p € AX, u(p) is a real-valued function on .

Theorem 2. Let > be a binary relation on Hthat is bounded on X and
satisfies (A.1)-(A.6). Two pairs of multi-utility multi-prior (V, IT)
and (V*, IT*) represent > if and only if [T = IT* and there exists
F: Iy (AX) — I'y= (AX) such that: (i) Iy = F o Iy, and (i) for
every x,y € I, (AX), x > y if and only if F (x) > F (y).

3.2. Complete tastes: Definition and representation

Consider the special case in which the decision maker is con-
fident about her tastes and her indecisiveness is due solely to her
ambiguous beliefs. This corresponds to the situation described by
Bewley (2002) as Knightian uncertainty.4 The next axiom rules
out ambiguity regarding the decision maker’s tastes.

(A.7) (Complete tastes) On the subset of constant acts in H, > is
negatively transitive,

With this in mind we have a probabilistically sophisticated
version of Knightian uncertainty.

Theorem 3. Let = be a binary relation on H then the following two
conditions are equivalent:

(i) = is bounded on X and satisfies (A.1)-(A.7).

(ii) There exist a real-valued, mixture continuous, strictly mono-
tonic function V on AX and a convex set [1of probability measures
on S such that, for all f,g € H,

f>g &V (Zesm (5)f(8) >V (Zses (5)g(5)) . VT €11 (3)
and, for all f € H\ (8%, 6%} ,

V(%) > V (Zsesm (5)f (5) > V (8%), v e I1. (4)
The function V is unique up to strictly monotonic increasing contin-
uous transformation, and I is unigque.

3.3. Complete beliefs: Definition and representation

The next axiom, due originally to Galaabaatar and Karni (2013),
formalizes the idea of complete beliefs. In other words, the
decision maker’s beliefs are characterized by a unique prior and
her indecisiveness is due entirely to her ambiguous tastes.

(A.8) (Complete beliefs) For every event E and « € [0, 1], either
o8+ (1 — ) 8 > 858% or §50% > /8% + (1 — ') &, for all
o> a

The following theorem characterizes tastes ambiguity.

Theorem 4. Let = be a binary relation on H then the following two
conditions are equivalent:
(i) = is bounded on X and satisfies (A.1)-(A.6) and (A.8).
(ii)There exist a set, V of real-valued, mixture continuous, strictly
monotonic functions, Von AX and a probability measure  onS such
that, forall f.g € H,

fr8 6 V(Zesm (5)f(5) >V (Zses (5)8(5)), VW €V (5)
and, for all f € H\{8*, 8%} ,
V(8) > V (Zsesm (5)f (5) > V (8%), WV € v. (6)

4 Gilboa et al. (2010) depict the unanimity rule implied by Knightian
uncertainty as a model of objective rationality.



Moreover, V* is another set of utility functions on AX and a prob-
ability measure * on S that represent the preference relation >
in the sense of (5) if and only if 1 = x* and there exists F :
Iy, (AX) — I'ys (AX) such that: (i) I = F o Iy, and (ii) for
every X,y € I, (AX), x > y if and only if F (x) > F (y).

4. Concluding remarks
4.1. Weak preferences and their representation

Given > on H, Galaabaatar and Karni (2013) defined the weak
preference relation =¢x and indifference relation ~¢x on H as
follows: For all f.g € H,f =cx g if forallh € H h > f
implies h = g, and f ~¢x g if f =¢x g and g =g« f. Note
that »=¢x on H is a preorder (that is, transitive and reflexive).
According to these definitions, the representations of the weak
preference and indifference relations that display both belief and
tastes ambiguity, corresponding to (1) are as follows: For all f,
geH,

freak 8 V(Zesmt 8)f(5) > V(Zsesm (5) 2 (5).Y(V. ) e Vv x 11,
(7)

and

froakg e V(Zaest (5 f () =V (Zsest (g (). V(V,m) eV xIT.
(8)

The corresponding representations of the weak preference and
indifference relations in the special cases of belief ambiguity and
ambiguity of tastes are obtained when the Vv and I7, respectively,
are singleton sets.

4.2. A topological approach

In this paper [ followed Machina and Schmeidler in employing
the algebraic approach to modeling probabilistically sophisticated
choice behavior. Alternatively, one could invoke a topological
approach by imposing a topological structure on the choice space
H and on the preference relation :=cx on H. Since the main point
here is illustrative, to simplify the exposition suppose that X is
finite and let AX be endowed with the R" topology. Then, H =
(AX)™ is a compact subset of a Euclidean space. Suppose that =
on H is a continuous preorder (that is, for all f € H, the upper
and lower contour sets U, (f) = {h € H | h =g f} and
L. (f):==1{h € H|[ =cx h}, respectively, are closed and ¢k is
a closed subset of H x H).

The weak preference relation =¢¢ on H is said to have contin-
uous multi-utility representation if it there is a set ¢ of continuous
real-valued functions on H such that f =¢x g if and only
if U(f) > U(g), for all U € u. Since, H is compact sub-
set of Euclidean space and :=¢¢ on H is a continuous preorder,
it has continuous multi-utility representation (see Evren and
Ok, 2011, Corollary 3). Applying the argument in the proof of
Lemma 3, there exists a set [T C AS of additive probability
measures on S such that, for all f,g € H, f =¢x g if and only
if /L, (si)f (8i) ok L, (5i) g (s7), for all @ € [1. Combining
these results we obtain the following:

Corollary. Let =cx be a binary relation on H then =i is continuous
preorder that is bounded on X and satisfies monotonicity, replace-
ment, replacement acyclicity and constant act comparability if and
only if there exist a convex set, V, of real-valued, continuous, strictly

2 11
3 11

monotonic functions, Von AX, and a convex set, I1,0f probability
measures on S such that, forall f,g € H,

[k 8 &V (Zesm () (8) =V (Zsesm (5)g(5)),V(V, ) e v x IT.
(9)
and, for all f € H\{8%, 5%} ,

V(6") > V(B ()f (5) >V (8%).V(V.m)evx M. (10

Finally we note that Evren and Ok (2011) show that, under
appropriate topological conditions the representation (9) can be
extended to more general choice sets.

5. Proofs
5.1. Proof of Theorem 1

(i) = (ii). Sufficiency is an implication of the following
lemmata:

Lemma 1. For each [ € H\{ 8, 8% the set A(f) == {a € [0, 1] |
f = a8+ (1 —a) 8%} is a closed interval, [gf. a| <o, 1]

Proof. Let «; = sup{e € [0, 1] | f > ad + (1 — &) 8%}. That o
exists follows form the fact that the set is bounded and is non-
empty (e = 0 is in the set). Moreover, by (A.3), o is unique.’ By
similar argument, a; := infle € [0,1] | a8 + (1 — )& > f}
exists and is unique.

Next we show that f = aps* + (1—a)s* (that is, =(f >
aps* + (1 —af) 8%) and —(a;8* + (1 —ay) 8 = f)). If f = a;6° +
(1 — @) 8% then, since §* > f, by (A.2) there exists > @ such
that f > B8% + (1 — B) 8% But, by (A.3) and the definition of &y,
B > ap implies that 86 + (1 — #)4&* > f. A contradiction. If
apd® + (1 — &f) 6% > f then, since f > &% by (A.2) there is # < &y
such that 8% + (1 — ) &* > f. This contradicts the definition
of &;. Hence, f = @& + (1 —a) 6% By a similar argument,
I = gfc?;‘ + (1 = gf) 8%,

Let o ei(gf, dvf) then, by deﬁnitiqn of a; and o, respectively,
=(f > ad* + (1 —a)s*) and —(«d* + (1 — @) 8* > f). Hence,
f = a8 + (1 — ) 8% Combining these results we conclude that
f=ad*+(1-a)sforalla el a] a

Lemma 2. There exists a convex set, V, of strictly monotonic,
mixture continuous functions V. : H — [0, 1] such that, for all
f.geH, f=gifandonlyif V (f) = V (q), forall V € v.

Proof. For each v € [0, 1] define a function V : H — [0, 1] by
V() =vay +(1— v) &y, forf e H. let v:={V | v € [0, 1]}.

Suppose that f > g. Since g > 8%, by (A.2) and (A.3), for every
e € (0,1) such that 8* 4+ (1 — ) 8% = f there is ¢ € (0,a)
such that ad* + (1 — &) 8* > a'8* + (1 — a’) 8* > g. By definition
of & there is @ < & such that &@8* + (1 —a) 8* > g. Thus, by
definition of @, &6* + (1 — &) 8% > &;8* + (1 — &) 6*. Hence, by
(A.3), af = & > dg. By similar argument, a; > o, Consequently,
by definition of V, V (f) > V (g), for all V € V.

Suppose that V (f) > V(g) forall V € v. If g > f then, by
sufficiency, V (g) > V (f), for all V € v, a contradiction. Thus,
—(g=f).lfg=<fthenV(f) >V (g)ofsomeV € vVandV(g) >
V (f) of some V € V. In other words, [a;, @ | N [a,, @] # 2. Let

5 To see this, suppose by way of negation that there are g} > ap that
satisfy the definition. Let &’ € (g, o) then, by (A3), @8+ (1 — @} ) 8* > &'6"+
(1) 8" > a;6" + (1 — o) 8% By definition of o}, [ > /8" + (1—a')8* ~
g_]b‘* + (1 - gf) &%, which is a contradiction.



b € e, @] N[a,, @] and define V(f) = dag + (1 0) @; and
V(g) = g+ (1— 0) &,. Then V e v satisfies V (g) = V (f), a
contradiction. Thus, = (g =< f).But = (g > f) and = (g =< f) imply
f>g.

To show that all V € V are monotonic, let p, g € AX such that
p >1 q. By (A.3), p = q. We identify p with the constant act that
pays off p in all s € S. Hence, V (p) > V (q), for all V € V.

To show that all V € V are mixture continuous we ob-
serve that, by (A.2), for all f,g € H and B € (0,1), Bf +
(1—p)g is continuous in B (that is, if a sequence (f,) con-
verges to B then limy .o Buf + (1 =B g = Bf + (1—B)g).
Moreover, agry(1-py 1S continuous in B (that is, if a sequence
(Bn) converges to B then limy oo Gguri1-pg = @pfi(1—prg- BY
the same argument Lori(1-pie is continuous in B. Since, for all
_V € _Vv vV (Bf +(1 —B1g) = vagria-pe + (1 — U)Eﬁfﬂ]fﬁ)g- 4
is mixture continuous. a

Lemma 3. There exists a set I1 C AS of additive probability
measures on S such that, for all f,g € H, f = g if and only if
X (s)f (s) > X m(s) g (s), forall e 11
Proof. For each E C S let [T (E) := {mw (E) € [0,1] | SfE}SE =
7 (E)8* + (1 — 7 (E)) 8). By (A.2) and (A.3), for each event E,
IT (E) is a well-defined closed and bounded interval in [0, 1].
Moreover, since for E is nonnull §{;,6* > % it follows that E is
null, that is, = (8},8% > &) if and only if 7 (E) 8% + (1 — 7 (E)) 8*
= 8% if and only if 7 (E) = 0. Thus, if E is null then I7 (E) is a
singleton set whose element is {z (E) = 0}.

Let f € H be a non-constant act. By repeated applications of
the replacement axiom, (A.4), we get:

fxlf G+A—a)fG))  f=
= o (aif (s1) + (1 —a)f (52)) + (1 —e2) f (53)(s; 55651 f =
as (o2 (oerf (51) + (1 —ap) f (s2)) + (1 —a2) f (s3)

=+ (] = 04.’3)f (54)[51,52.53_54}f == ZTLf (Si) ,
i=1

where 11 = @y 1-@p 2+ ... 01, TG = @p 1 Wy 2 ... - (1 —0aj 1),
i=2,...,(n—1),and 1, = (1 — ap_1). In general, (7;)[, is not
unique. Let T denote the set of  := (r;)!_; constructed in this

manner and, for each t € T, let 7; (r) denote the ith coordinate
of . Then, forallt e T, I/ 7 (r) = 1.

By replacement acyclicity, (A.5), f = X[ 7 () f (s), for all
t € T. Moreover, s; is null if and only if for each ¢ € T, the
i—th coordinate of 7, t; = 0. For every event E € 2° let 7 (E) =
Xseeti(t) and T (E) == {r (E) | T € T}. By the argument above,
8§83 =1 (E)8* + (1 —1(E))8, forall E € 25 and 7 (E) € T (E).
Hence, by definition of 17 (E), T(E) = 1 (E), for all E € 25,
Thus, [T =T is the set of probability distributions on S such that
f=XL ms)f (sp), forall w e 1.

By (A6). f = Z/L,m(s)f (5) and g = Z/,7 (s)g () for
all # € 71 imply that f > g if and only if X 7 (5;)f (5) >
Er m(spg(spyforallm e 1. a

By Lemma 2, /' 7 (5i) f (si) > Z 7 (5i) g (s;) if and only if
V(ZL (i) f (s) > V(ZL 7 (s) g (s1)), for all V € V. Since, by
Lemma 3,f = gifand only if X, (s;) f (si) > Z/L 7 (s7) (si), for
all w € [1, it holds that f > g if and only if V(XL 7 (si) f (51)) >
V(Z 7 (s;) g (sp)), forall (V, ) € V1. This proves the validity
of (1).

To show that every m € [T is additive, consider an event
E and the act 5%8%. By the argument above, §58* = m (E)&* +
(1 —m (E)) 8% for all # € [1. But, by construction, §§8* =
Zoepm (5) 8% + Yes\pr () 8%, for all = € [1. Hence, by (A.3), for

all E C S, w (E) = Xsepm (s), for all @ € I1. Thus, every m € IT is
additive.

By definition of §* and 8%, &5 = ae = 1 and &z = age = 0.
Hence, by (A3), V (§%) > V (ZIL,7 (s)f () > V (8% for all
V € vV and & e [1. This proves the validity of (2).

(ii) == (i). That (A.1) and (A.2) hold is immediate and
(A.3) is implied by the strict monotonicity of V. Given f € H,
SV () >V (Zsesm (5)f (5))) and = ((Zsesm (5) f (5)) = V (), for
all V. e vand mr € [, if and only if =(f = X (s)f (s)) and
—(Xses (5) f (s) = f) for each m € I1. Hence, f = X5 (5) f (5),
for every m € [1. That the replacement axiom, (A.4), holds is an
immediate implication of the last observation and the additivity
of 7.

To show that (A.5) holds, let fO = f,

fl=(@f s+ A—a)f ), f
fP=ap(enf (1) + (1 —a)f (s2)
+ (1= ) f )y sy fo - oS =) i

i=1

Let T denote the set of closed intervals in [0, 1]. Define a

correspondence ¢ : H » Tbhyo(f) = {@ € [0.1] | f =

ad* + (1 —a) 8%, Vf € H.By Lemma 1, ¢ (f) = [a;. & ] € [0, 1].

But, for all f,g € H, f =< g if and only if (pu‘f C ¢(g) or
¢ (f) 2 ¢ (g). Consider the sequence of incomparable acts

fxlaf )+ —anfs2),  f=
=g (enf (1) + (1 —a)f (s2) + (1 —a2)f (83)i5,.5555 f =
asz (e (@1f (51) + (1 —a1)f(s2)) + (1 —a2) f (53))

+ (1—a3)f (34)|s1,52,53.541f = =X ZTJ (si) .
i=1

Since each two consecutive acts, f*, f¥*1 in this sequence are
incomparable, either ¢ (f¥) < ¢ (F**7) or ¢ (f¥) 2 ¢ (f*'),
k = 0,00 n — 1. Because none of these sets is empty, their
intersection, Nj_{¢ (f¥), in nonempty. Consequently, there exist
V € v and & € I such that

i=1

Hence, f < Y I | mipi.

To show that (A.6) holds we note that by (1) X5 (s) f (5) >
Yesm (s) g (s), for all 4 € IT if and only if V (Zses (5)f (5)) >
V (Zsesm (5)g (s)), for all (V,7) € v x [1.But, forall f € H,
f = f™ forall # € I1. Hence, V (Xsesm (S)f (5)) = V (f), for all
(V.m) € V x [1. Hence, V (Zsesm (5) f (8)) > V (Zses (5) g (5)),
forall (V,7) e v x [1, ifand only if V (f) > V (g) forall V € V.
By Lemma 2, V (f) = V(g) forall V € v ifand only if f > g.
Thus, f > g if and only if YXses (5) f (5) = XZsesm (5) g (s), for all
rell. N1

5.2. Proof of Theorem 2

To prove the uniqueness, suppose that there exist another set,
IT7, of probability measures on S and a set, V¥, of mixture contin-
uous, strictly monotonic, utility functions that jointly represent
the preference relation >, where /7* is distinct from 7 and V*
may or may not be distinct from V. This supposition implies that
there exist 7* € [T*\I[1 or T € [I\IT".

Since 71 is a convex set, if #* e [I*\/I then there exist
s € S such that 7* (s) > m (s), for all # € II. Hence, there is
p such that 7*(s) > p > m (s), for all # € I1. Consider the

act 8'{?5]65. By the argument in the proof of Lemma 2, stlﬁSl =



E
E. it/ Jotiiidn

7 (5) 85+ (1 — 7 (s)) 8% forall = € IT. By (A.3), p&*+(1 — p) 8% >
7 ()8 + (1 — 7 (s))d% for all 7 € 1. Hence, by (A.6), p&* +
(1—p) &%~ 6?‘3}85.

Since the lottery 7% (5) 8% + (1 — r* (s)) 8% strictly first-order
stochastically dominates the lottery p&¥ 4+ (1 — p) 8%, by strict
monotonicity of V*,

V(T () 8% + (1 — 7" (5)) 8%) > V* (p8" + (1 — p) &%) . VV* € V",
(11)

But 7* € IT*, implies that 8},8% = 7% (s) 8% + (1 — 7" (s)) 8%
Hence, it is not true that V¥(8%,8%) < V* (77 (s) 8% + (1 — 7% (s))
&%), VV* € v*. Thus, for some V* € V*, V*(§§;8%) > V* (x~ (5) ¥
+(1— 7% (5)) 8%. But p&* + (1 — p) 8* > &7,6* implies V*(57,6)
< V*(pd*+ (1 — p)8%), for all V* € V*. Hence, (11) implies
that V*(&,8%) < V= (7*(5) 8" + (1 — 7" (5)) 8%), VV* € V. A
contradiction.

The uniqueness of V is an implication of Evren and Ok (2011)
Remark 1. =

5.3. Proof of Theorem 3

(i) = (ii). Define a binary relation > on AX by p > ¢ if
=(g = p), for all p,q € AX. Axioms (A.1) and (A.6) imply that
> is complete and transitive. Denote by ~ the symmetric part of
>. For each p € AX define v, by p ~ vp8* + (1 — v,) 8% Define
a function V : AX — [0,1] by V (p) = vp. By (A.1)-(A3) V is
well-defined, mixture continuous, strictly monotonic function on
AX,and p = g if and only if V (p) = V (q).

By Theorem 1, there exists a unique set, [7, of probability
measures on S such that, for all f € Hand # € [I, f =
X 7 (si)f (si). For each m € 11, define a function V* : H —
[0, 1] by VT (f) = V (ZL, 7 (s)f (s0). Let Vv := {VT | = € [},
But, by Lemma 1, f > g if and only if V™ (f) > V7 (g), for
all V™ € V. Hence, f > g if and only if, V(X 7 (5)f (51)) >
V(ZL, 7 (si)g(s) forall w € 11.

That (ii)) = (i) and the uniqueness of the representation fol-
low from the corresponding parts in the proof of Theorem 1. W

5.4. Proof of Theorem 4

(iy = (ii). By (A.3), (A.8) and the argument in the proof
of Lemma 2, [T is a singleton set. Thus, by Theorem 1, for all
fi8eH f>8 &V (Zsm (5)f(5) >V (Zsesm (5)g(5), YV €
V, where V is a set of mixture continuous, strictly monotonic,
real-valued functions on AX.

Erarai | Inaiena I nf AMatham
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(ii)y = (i). That the axioms (A.1)-(A.6) are implied by the
presentation follows from Theorem 1. To show that (A.8) holds,
let E € S. By strict monotonicity and mixture continuity of V,
there is a unique o* such that V (e*8* + (1 — &) %) = V (536%),
for all V. € V. Thus, if @ > o~ then V (a8* + (1 —a)8%) >
V (856%) and V (a8 + (1 — ) %) < V (856Y), otherwise. Hence,
by (A.3) and strict monotonicity of V, V (¢/8 + (1 — ') 8%) <
V (836%) for all o* > o and V e V. Thus, for each E C S,
a8+ (1 — ) 8% > S55% or 8582 > o/8%+(1 — o') 8%, forall & > o',

The uniqueness follows from Theorem 1. H
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