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Abstract

This is a study of probabilistically sophistication choice with incomplete prefer-

ences. Invoking the analytical framework of Anscombe and Aumann (1963) and build-

ing on the work of Machina and Schmeidler (1995), the paper provides an axiomatic

characterization of the general multi-prior multi-utility probabilistically sophisticated

representation. In addition, the paper lays axiomatic foundations for two special cases:

complete beliefs and complete tastes. In the former case, the incompleteness is due to

ambiguous tastes and in latter case it is due to umbiguous beliefs.
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1 Introduction

Choice-based definition of subjective probabilities presumes that when facing a choice

among courses of action whose consequences decision makers form of beliefs about the

likely realization of the consequences, and that these beliefs are quantifiable by probabili-

ties. Because the beliefs are personal, their representation is dubbed subjective probabili-

ties. This idea, due originally to Ramsey (1931) and de Finetti (1937), found its ultimate

expression in the seminal works of Savage (1954) and Anscombe and Aumann (1963). A

common feature of these works is that the subjective probabilities are defined in the con-

text of expected utility theory. In other words, the aforementioned works confound the

definition of subjective probabilities with the notion that individual preferences among un-

certain prospects are representable by a functional that is linear in the probabilities. Upon

reflection, however, it seems obvious that the representation of a decision maker’s beliefs

by subjective probabilities and the notion of expected utility maximizing choice behavior

are two separate ideas.

Machina and Schmeidler (1992, 1995) model of probabilistically sophisticated choice

provides a choice-based definition of subjective probabilities that does not required that

the decision maker’s preferences be consistent with expected utility theory. According to

Machina and Schmeidler the subjective probabilities transform acts (that is, mappings from

the state space to the set of consequences) into lotteries (that is, probability distributions

on the set of consequences) and choice behavior is represented by a utility function over

the set of lotteries.

An important tenet of both the expected utility models and the probabilistically so-

phisticated models is the assumption that all alternative courses of action are comparable.

That this presumption is not tenable as a general depiction of real-life decision making was

recognized by von Neumann and Morgenstern who wrote “It is conceivable — and may even

in a way be more realistic — to allow for cases where the individual is neither able to state

which of two alternatives he prefers nor that they are equally desirable.” (von Neumann

and Morgenstern [1947] p. 19). Aumann (1962) finds universal comparability not only

inaccurate description of real-life decision making but also lacking normative appeal. In

his words, “Of all the axioms of utility theory, the completeness axiom is perhaps the most

questionable. Like others of the axioms, it is inaccurate as a description of real life; but

unlike them, we find it hard to accept even from a normative viewpoint.” (Aumann [1962],
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p. 446). The main empirical manifestation of incomplete preferences is indecisiveness or

inertia.

Considering the restrictive nature of completeness requirement, I examine, in this paper,

the implications of relaxing the completeness axiom for the existence and meaning of sub-

jective probabilities in the probabilistic sophistication model of Machina and Schmeidler

(1995). Invoking the analytical framework of Anscombe and Aumann (1963), I explore

conditions under which incomplete preference relations admit a multi-utility multi-prior

probabilistic sophisticated representation. I also explore additional conditions that charac-

terize two special cases: Knightian uncertainty and single-prior multi-utility representation.

The former special case attributes the incompleteness to the decision maker’s ambiguous

beliefs and that latter to his ambiguous tastes.

The main analytical difficulty introduced by allowing for the preference relation to be

incomplete is due to the non-transitivity of the incomparability relation. When the prefer-

ence relation is complete, indecisiveness arises only when the decision maker is indifferent

among the alternatives under consideration. Since indifference is an equivalence relation,

it is transitive. Machina and Schmeidler (1995) exploit the transitivity of the indifference

relation to link general Anscombe-Aumann acts to constant acts that are convex combi-

nations of the state-contingent payoffs of the original acts. This link is severed when the

incomparability relation is non-transitive. To compensate for this, the preference structure

is enhanced by the introduction of two new axioms, dubbed replacement acyclicity and

constant-act comparability. Replacement acyclicity requires that the incomparability rela-

tion restricted to replacement paths be acyclic. Constant-act comparability requires that

one act be strictly preferred over another if and only if the induced constant acts that are

non-comparable to the former are strictly preferred to those induced by the latter.

2 The Model

2.1 Analytical framework

Let  = {1 } be a finite set of states and  a set of outcomes. Denote by ∆ the set

of simple probability distributions on  Elements of ∆ are lotteries. Let  be the set

of mappings on  to ∆ Elements of  are acts defined by Anscombe-Aumann (1963).

The constant acts are identified with elements of ∆ hence, ∆ ⊂  Let Â be a binary
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relation on  referred to as strict preference relation. The relation Â is bounded on  if

there are ̄ and  in  such that ̄ Â  Â  for all  ∈ \{̄ } where  ∈ ∆ is the

degenerate lottery that assigns the unit probability mass to  Define the incomparability

relation, ³ on  as follows: For all   ∈   ³  if ¬( Â ) and ¬( Â ) Clearly, ³
is symmetric an reflexive but is not necessarily transitive.

2.2 The axiomatic structure

The following axioms depict the preference structure.

(A.1) (Strict partial order) The strict preference relation Â is transitive and irreflexive.

(A.2) (Archimedean) For all    ∈  if  Â  and  Â  then there exist   ∈ (0 1)
such that  + (1− ) Â  Â  + (1− ).

The statement of the next two axioms invokes the following additional notations and

definitions. For every event  (that is, a subset of ) and   ∈  let  ∈  be

the a act that coincides with  on  and with  on \ An event  is said to be

null if ¬(̄ Â 

) Following Machina and Schmeidler (1995) the lottery  is said to

dominates the lottery  according to first-order stochastic dominance, denoted  1  if

Σ{Â} () ≥ Σ{Â} ()  for all  ∈  with strict inequality for some  ∈  The

next axiom requires that first-order stochastically dominating lotteries be preferred.1

(A.3) (Monotonicity) For all   ∈ ∆ if  1  then  Â  for all nonnull  ⊂ 

and all  ∈ .

The next axiom is a reformulation of the Horse/Roulette Replacement axiom of Machina

and Schmeidler (1995) where the incomparability relation replaces the indifference relation.

(A.4) (Replacement) For every finite partition (1  ) of  if

̄

³




´
³ ¡̄ + (1− ) 

¢
∪



1The same property, implied by their adoption of Savage’s P3, is a tacit aspect of Machina and Schmei-

dler (1992). Grant (1995) characterized probabilistically sophisticated preferences that do not satisfies

monotonicity with respect to first-order stochastic dominance, thus separating the idea of proabilistic so-

phisticated choice from yet another tenet of subjective expected utility theory.
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for some  ∈ [0 1] then


¡


¢ ³ (+ (1− ) )
∪



for all   ∈ ∆ and  ∈ 

The next axiom imposes acyclicity of the incomparability relation along the replacement

path.2

(A.5) (Replacement acyclicity) For all  ∈  if

 (1){1}
³
 (2){2} 

´
³ (1 (1) + (1− 1)  (2)){12}

 ³

³ 2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3){123}  ³

3 (2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3))+(1− 3)  (4){1234}  ³  ³
||X
=1

 

then

 ³
||X
=1

 

where 1 = ||−1 ·||−2 ··1   = ||−1 ·||−2 ··(1−−1)  = 2  (|  | −1) 
and  || = (1− ||−1)

To state the next axiom which is not in the original axiomatic structure of Machina

and Schmeidler, I introduce the following additional notations. Let ∆ := { ∈ [0 1] |
Σ=1 = 1} For each  ∈  and  ∈ ∆ define  = Σ=1 ()  Informally, 

 is the

lottery in ∆ corresponding to the constant act induced by the act  and the probability

distribution  on  through the reduction of compound lotteries

(A.6) (Constant-act comparability) For all   ∈   Â  if and only if  Â  for

all  ∈ ∆ such that  ³  and  ³ 

2A binary relation 1 on a set  is acyclic if 1 1 2 1 1  implies that 1 1  for all {1} ⊆
 In Machina and Schmeidler (1995) the transitivity of the indifference relation implies that repacement

acyclicity is an implication of their repalcement axiom.
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3 Representations

3.1 Multi-prior multi-utility representation

The model admits two sources of ambiguity, namely, ambiguous tastes and ambiguous

beliefs. The first result is a representation of a preference relation whose incompleteness is

due to both sources of ambiguity. The representation involves a set V of utility functions
on ∆ and a set Π of probability measures on  such that one act is strictly preferred over

another if an only if the utility of each lottery induced by the reduction of the the former

act is larger than that of the corresponding lotteries induced by the reduction of second

act according to every the probability measure in Π

To state the main result I invoke the following definitions: A function  is mixture con-

tinuous if  (+ (1− ) ) is continuous in  for all   ∈ ∆. It is strictly monotonic
if  () ≥  () whenever  dominates  according to first-order stochastic dominance, with

strict inequality in the case of strict dominance.

Theorem 1 Let Â be a binary relation on  then the following two conditions are

equivalent:

() Â is bounded on  and satisfies (A.1) - (A.6).

() There exist a set, V, of real-valued, mixture continuous, strictly monotonic func-
tions,  on ∆ and a convex set, Π of probability measures on  such that, for all

  ∈ 

 Â  ⇔  (Σ∈ ()  ())   (Σ∈ ()  ()) ∀ ( ) ∈ V ×Π (1)

and, for all  ∈ 


¡
̄
¢
  (Σ∈ ()  ())   () , ∀ ( ) ∈ V ×Π (2)

To describe the uniqueness of the representation (1) I adopt the notations of Evren

and Ok (2011). Given any nonempty subset U of R∆  define a map ΓU : ∆ → RU by

ΓU () = () :=  () 

Theorem 2 Let Â be a binary relation on  that is bounded on  and satisfies (A.1)

- (A.6). Two pairs of multi-utility muti-prior (VΠ) and (V∗Π∗) represent Â if and only
if Π = Π∗ and there exists  : ΓV (∆)→ ΓV∗ (∆) such that: () ΓV∗ =  ◦ΓV and ()
for every   ∈ ΓV     if and only if  ()   () 
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3.2 Complete tastes: Definition and representation

Consider next the special case in which the decision maker is confident about her tastes

and the indecisiveness is due solely to her ambiguous beliefs. This corresponds to the

situation described by Bewley (2002) as Knightian uncertainty.3 The next axiom rules out

ambiguity regarding the decision maker’s tastes.

(A.7) (Complete tastes) On the subset of constant acts in  Â is negatively transitive.

With this in mind we have a probabilistically sophisticated version of Knightian uncer-

tainty.

Theorem 3 Let Â be a binary relation on , then the following two conditions are

equivalent:

() Â is bounded on  and satisfies (A.1) - (A.7).

() There exist a real-valued, mixture continuous, strictly monotonic function  on

∆ and a convex set Π of probability measures on  such that, for all   ∈ 

 Â  ⇔  (Σ∈ ()  ()) ≥  (Σ∈ ()  ())  ∀ ∈ Π (3)

and, for all  ∈ 


¡
̄
¢
  (Σ∈ ()  ())   () , ∀ ∈ Π (4)

The function  is unique up to strictly monotonic increasing continuous transformation,

and Π is unique.

3.3 Complete beliefs: Definition and representation

The next axiom, due originally to Galaabaatar and Karni (2013), formalizes the idea of

complete beliefs. In other words, the decision maker’s beliefs are characterized by a unique

prior and his indecisiveness is due entirely to his ambiguous tastes.

(A.8) (Complete beliefs) For all events  and  ∈ [0 1]  either ̄+(1− )  Â ̄


or ̄
 Â 0̄ + (1− 0)  for all   0

3See also Galaabaatar and Karni (2013). Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) depict

the unanimity rule implied by Knightian uncertainty as a model of objective rationality.
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The following theorem characterizes tastes ambiguity.

Theorem 4 Let Â be a binary relation on  then the following two conditions are

equivalent:

() Â is bounded on  and satisfies (A.1) - (A.6) and (A.8).

() There exist a set, V, of real-valued, mixture continuous, strictly monotonic func-
tions,  on ∆ and a probability measure,  on  such that, for all   ∈ 

 Â  ⇔  (Σ∈ ()  ())   (Σ∈ ()  ())  ∀ ∈ V (5)

and, for all  ∈ 


¡
̄
¢
  (Σ∈ ()  ())   () , ∀ ∈ V (6)

Moreover, V∗ is another set of utility functions on ∆ and a probability measure ∗ on 

represent the preference relation Â in the sense of (5) if and only if  ∗ ∈ V∗ if and only
if there exists  : ΓV (∆) → ΓV∗ (∆) such that: () ΓV∗ =  ◦ ΓV and () for every
  ∈ ΓV     if and only if  ()   () 

4 Concluding Remarks

4.1 Weak preferences and their representation

Given Â on  Karni and Galaabaatar (2013) defined the weak preference relation <

and indifference relation ∼ on  as follows: For all   ∈   <  if, for all

 ∈   Â  implies  Â  and  ∼  if  <  and  <  Note that <

on  is a preorder (that is, transitive and reflexive). According to these definitions, the

representations of the weak preference and indifference relations that display both belief

and tastes ambiguity, corresponding to (1) are as follows: For all   ∈ 

 <  ⇔  (Σ∈ ()  ()) ≥  (Σ∈ ()  ()) ∀ ( ) ∈ V ×Π (7)

and

 ∼  ⇔  (Σ∈ ()  ()) =  (Σ∈ ()  ()) ∀ ( ) ∈ V ×Π (8)

The corresponding representations of the weak preference and indifference relations in the

special cases of belief ambiguity and ambiguity of tastes are obtained when the V and Π
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respectively, are singleton sets in these representations. Finally, it is worth noting that, for

all   ∈   ³  if and only if there is  ∈ V such that  () =  () 

Define a correspondence  :  ³ I, where I denotes the set of closed intervals in
[0 1]  by  () = { ∈ [0 1] |  ³ ̄ + (1− ) }, ∀ ∈  By Lemma 1 below,

 () =
£
  ̄

¤ ⊆ [0 1]. The non-comparability relation ³ on , satisfies  ³  if and

only if  () ⊆  () or  () ⊇  ()  Define binary relations B and D on  as follows: For

all   ∈  (a)  () B  () if    and ̄  ̄ (b)  () D  ()  if ̄ = ̄ and

 ≥  or ̄ ≥ ̄ and  = . If  () D  () and  () D  () then  () =  ()  In

this case we consider  and  as equivalents. Evidently, there is an equivalence between the

weak preference relation, <  and the weak dominance relation. Specifically,  <  if

and only if  () D  ()  for all   ∈  Similarly,  ∼  if and only if  () =  (),

for all   ∈ 

4.2 A topological approach

In this paper I followed Machina and Schmeidler in employing the algebraic approach to

modeling probabilistic sophisticated choice behavior. Alternatively, one could invoke a

topological approach by imposing a topological structure on the choice space  and on

the preference relation < on  Since the main point here is illustrative, to simplify

the exposition suppose that  is finite and let ∆ be endowed with the R topology.

Then,  = (∆)|| a compact subset of a Euclidean space. Suppose that < on  is a

continuous preorder (that is, for all  ∈  the upper and lower contour sets < () :=

{ ∈  |  < } and < () := { ∈  |  < }, respectively, are closed and
< is a closed subset of  ×).

The weak preference relation < on  is said to have continuous multi-utility repre-

sentation if it there is a set U of continuous real-valued functions on such that  <  if

and only if  () ≥  ()  for all   ∈  Since,  is compact subset of Euclidean space

and < on  is a continuous preorder, it has continuous multi-utility representation (see

Evren and Ok [2011] Corollary 3). Applying the argument in the proof of Lemma 3, there

exists a set Π ⊂ ∆ of additive probability measures on  such that, for all   ∈ 

 <  if and only if Σ
||
=1 ()  () ≥ Σ||=1 ()  ()  for all  ∈ Π Combining these

results we obtain the following:

Corollary: Let < be a binary relation on  then < is continuous preorder
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that is bounded on  and satisfies monotonicity, replacement, replacement acyclicity and

constant act comparability if and only if there exist a convex set, V, of real-valued, mixture
continuous, strictly monotonic functions,  on ∆ and a convex set, Π of probability

measures on  such that, for all   ∈ 

 <  ⇔  (Σ∈ ()  ())   (Σ∈ ()  ()) ∀ ( ) ∈ V ×Π (9)

and, for all  ∈ 


¡
̄
¢
  (Σ∈ ()  ())   () , ∀ ( ) ∈ V ×Π (10)

Finally we note that Evren and Ok (2011) show that, under appropriate topological

conditions the representation (9) can be extended to more general choice set 

5 Proofs

5.1 Proof of Theorem 1

()⇒ ()  Sufficiency is an implication of the following lemmata:

Lemma 1: For each  ∈  the set  () := { ∈ [0 1] |  ³ ̄ + (1− ) } is a
closed interval,

£
  ̄

¤ ⊆ [0 1] 
Proof. Let  = sup{ ∈ [0 1] |  Â ̄+ (1− ) } That  exists follows form the

fact that the set is bounded and is non-empty ( = 0 is in the set). Moreover, by (A.3),

 is unique. By similar argument, ̄ := inf{ ∈ [0 1] | ̄ + (1− )  Â } exists and
is unique.

Next we show that  ³ ̄
̄ + (1− ̄ ) 

 We need to show that ¬( Â ̄
̄ +

(1− ̄ ) 
) and ¬(̄̄+(1− ̄ ) 

 Â ) If  Â ̄
̄+(1− ̄ ) 

 then, since ̄ Â  by

(A.2) there exist   ̄ such that  Â ̄ + (1− ) . But, by (A.3) and the definition

of ̄ , for all   ̄  
̄ + (1− )  Â  A contradiction. If ̄

̄ + (1− ̄ ) 
 Â

 then, since  Â  by (A.2) there is   ̄ such that 
̄ + (1− )  Â  This

contradicts the definition of ̄  Hence,  ³ ̄
̄ + (1− ̄ ) 

. By a similar argument,

 ³ 
̄ +

¡
1− 

¢


Let  ∈ ¡
  ̄

¢
 Then, by definition of ̄ and  , respectively, ¬( Â ̄ +

(1− ) ) and ¬(̄ + (1− )  Â ) Hence,  ³ ̄ + (1− ) . 4

10



Lemma 2: There exists a convex set, V, of strictly monotonic, mixture continuous
functions  :  → [0 1] such that, for all   ∈   Â  if and only if  ()   ()  for

all  ∈ V.
Proof. For each  ∈ [0 1]  define a function  :  → [0 1] by  () = ̄ +(1− ) 

for  ∈ . Let V := { |  ∈ [0 1]}.
Suppose that  Â  Since  Â  by (A.2) and (A.3), for every  ∈ (0 1) such that

̄+(1− )  Â  there is 0 ∈ (0 ) such that ̄+(1− )  Â 0̄+(1− 0)  Â 

Hence, by definition of ̄ there is ̂ ≤ ̄ such that ̂
̄ + (1− ̂)  Â  Thus, by

definition of ̄, ̂
̄ + (1− ̂)  Â ̄

̄ + (1−) ̄  Hence, by (A.3), ̄ ≥ ̂  ̄ By

similar argument,    Hence, by definition of V,  ()   ()  for all  ∈ V.
Suppose that  ()   ()  for all  ∈ V. If  Â  then by sufficiency ¬( Â ),

 ()   ()  for all  ∈ V, a contradiction. If  ³  then there is ̂ ∈ V such that
̂ () = ̂ ()  a contradiction. Hence,  Â  4

Let   ∈ ∆ such that  1  By (A.3),  Â  We identify  with the constant act

that pays off  in all  ∈  Hence,  ()   () for all  ∈ V. Thus, the functions in V
are monotonic.

By (A.2), for all   ∈  and  ∈ (0 1),  + (1− )  is continuous in  (that

is, if a sequence () converges to  then lim→∞  + (1− )  =  + (1− ) )

Moreover, ̄+(1−) is continuous in  (that is, if a sequence () converges to  then

lim→∞ ̄+(1−) = ̄+(1−) By the same argument +(1−) is continuous in 

Since, for all  ∈ V  ( + (1− ) ) = ̄+(1−) + (1− )+(1−)  is mixture

continuous. N
Lemma 3. There exists a set Π ⊂ ∆ of additive probability measures on  such that,

for all   ∈   Â  if and only if Σ
||
=1 ()  () Â Σ||=1 ()  ()  for all  ∈ Π

Proof. For each  ⊆  let Π () := { () ∈ [0 1] | ̄{} ³  () ̄+(1−  ()) }
By (A.2) and (A.3), for each event  Π () is a well-defined closed and bounded interval

in [0 1]. Moreover, since ̄{}
 Â  if  is nonnull it follows that  is null (that is,

¬
³
̄{}

 Â 
´
) if and only if  () = 0 for all  ∈ Π () 

Let  ∈  be a non-constant act. By repeated applications of the replacement axiom,

(A.4), we get:

 ³ (1 (1) + (1− 1)  (2)){12}
 ³

³ 2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3){123}  ³
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3 (2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3))+(1− 3)  (4){1234}  ³  ³
||X
=1

  () 

where 1 = ||−1 ·||−2 ·  ·1   = ||−1 ·||−2 ·  ·(1−−1)  = 2  (|  | −1)  and
 || = (1− ||−1) In general, ( )

||
=1 is not unique. Let  denote the set of  := ( )

||
=1

constructed in this manner then, for all  ∈  Σ=1  = 1

By replacement acyclicity, (A.5),  ³ Σ||=1  ()  for all  ∈  Moreover,  is null

if and only if for each  ∈  the −th coordinate of     = 0. For each  ∈  let

 () := {  | 1       || ∈ } Consider the act ̄{} By the argument above,
̄{}

 ³  
̄ + (1−  ) 

 for  = 1  |  | and   ∈  ()  Hence, by definition,

 () = Π ({})  for all  = 1  |  | and Π =  Then Π is the set of probability

distributions on  such that  ³ Σ||=1 ()  ()  for all  ∈ Π
By (A.6),  ³ Σ||=1 ()  () and  ³ Σ||=1 ()  (), for all  ∈ Π implies that,

 Â  if and only if Σ
||
=1 ()  () Â Σ||=1 ()  () for all  ∈ Π N

By Lemma 2, Σ
||
=1 ()  () Â Σ||=1 ()  () if and only if  (Σ

||
=1 ()  ()) 

 (Σ
||
=1 ()  ()) for all  ∈ V Since, by Lemma 3,  Â  if and only ifΣ

||
=1 ()  () Â

Σ
||
=1 () ()  for all  ∈ Π it holds that  Â  if and only if  (Σ

||
=1 ()  ()) 

 (Σ
||
=1 ()  ()) for all ( ) ∈ V ×Π. The proves the validity of (1).
To show that every  ∈ Π is additive, consider an event  and the act ̄

 Then, by

the argument above, ̄
 ³  () ̄ + (1−  ())  for all  ∈ Π But, by construction,

̄
 ³ Σ∈ () ̄ + Σ∈\ ()  for all  ∈ Π Hence, by (A.3), for all  ⊆ 

 () = Σ∈ ()  for all  ∈ Π Thus, every  ∈ Π is additive.
By definition of ̄ and , ̄̄ = ̄ = 1 and ̄ =  = 0 Hence, by (A.3),


¡
̄
¢
 

³
Σ
||
=1 ()  ()

´
  () for all  ∈ V and  ∈ Π. This proves the validity

of (2).

() =⇒ ()  That (A.1) and (A.2) hold is immediate. Monotonicity, (A.3) is implied

by the strict monotonicity of 

Given  ∈  ¬( ()   (Σ∈ ()  ())) and ¬ ((Σ∈ ()  ())   ())  for all

 ∈ V and  ∈ Π if and only if ¬( Â Σ∈ ()  ()) and ¬(Σ∈ ()  () Â ) for each

 ∈ Π Hence,  ³ Σ∈ ()  ()  for every  ∈ Π That the replacement axiom, (A.4),
holds is an immediate implication of the last observation.

To show that (A.5) holds, let 0 = 

1 = (1 (1) + (1− 1)  (2)){12}
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2 = 2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3){123}  

  ||−1 =
||X
=1

 

Then the sequence of incomparable acts

 ³ (1 (1) + (1− 1)  (2)){12}
 ³

³ 2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3){123}  ³

3 (2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3))+(1− 3)  (4){1234}  ³  ³
||X
=1

  () 

imply that for each two consecutive incomparable acts,  +1 in this sequence, either


¡

¢ ⊆ 

¡
+1

¢
or 

¡

¢ ⊇ 

¡
+1

¢
  = 0  |  | −1 Since none of these sets is

empty, their intersection, ∩||−1=1 
¡

¢
 in nonempty. Thus, there exist  ∈ V and  ∈ Π

such that

 () = 

⎛⎝ ||X
=1



⎞⎠ 

Hence,  ³P||
=1 

To show that (A.6) holds we note that by (1) Σ∈ ()  () Â Σ∈ ()  ()  for
all  ∈ Π if and only if  (Σ∈ ()  ())   (Σ∈ ()  ())  for all ( ) ∈ V × Π.
But, for all  ∈   ³  for all  ∈ Π. Hence,  (Σ∈ ()  ()) =  ()  for all

( ) ∈ V × Π Hence,  (Σ∈ ()  ())   (Σ∈ ()  ())  for all ( ) ∈ V × Π if
and only if  ()   () for all  ∈ V. By Lemma 2,  ()   () for all  ∈ V if and
only if  Â  Thus,  Â  if and only if Σ∈ ()  () Â Σ∈ ()  ()  for all  ∈ Π ¥

5.2 Proof of Theorem 2

To prove the uniqueness, suppose that there exist another set, Π∗ of probability measures

on  and a set, V∗ of mixture continuous, strictly monotonic utility functions that jointly
represent the preference relation Â where Π∗ is distinct from Π and V∗ may or may not
be distinct from V. This supposition implies that there exist ∗ ∈ Π∗\Π or  ∈ Π\Π∗.

Since Π is a convex set, if ∗ ∈ Π∗\Π then there exist  ∈  such that ∗ ()   () 

for all  ∈ Π. Hence, there is  such that ∗ ()     ()  for all  ∈ Π Consider that
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act ̄{}
 By the argument in the proof of Lemma 2, ̄{}

 ³  () ̄+(1−  ())  for

all  ∈ Π By (A.3), ̄ + (1− )  Â  () ̄ + (1−  ())  for all  ∈ Π Hence, by
(A.6), ̄ + (1− )  Â ̄{}



Since the lottery ∗ () ̄ + (1− ∗ ())  strictly first-order stochastically dominates

the lottery ̄ + (1− )  by strict monotonicity of  ∗,

 ∗
¡
∗ () ̄ + (1− ∗ ()) 

¢
  ∗

¡
̄ + (1− ) 

¢
 ∀ ∗ ∈ V∗ (11)

But ∗ ∈ Π∗ implies that ̄{}
 ³ ∗ () ̄ + (1− ∗ ())  Hence, it is not true

that  ∗(̄{}
)   ∗

¡
∗ () ̄ + (1− ∗ ()) 

¢
, ∀ ∗ ∈ V∗ Thus, for some  ∗ ∈ V∗

 ∗(̄{}
) ≥  ∗

¡
∗ () ̄ + (1− ∗ ()) 

¢
 But ̄+(1− )  Â ̄{}

 implies  ∗(̄{}
) 

 ∗
¡
̄ + (1− ) 

¢
 for all  ∗ ∈ V∗. Hence, (11) implies that  ∗(̄{})   ∗

¡
∗ () ̄ + (1− ∗ ()) 

¢
,

∀ ∗ ∈ V∗ A contradiction.
The uniqueness of V is an implication of Evren and Ok (2011) Remark 1. ¥

5.3 Proof of Theorem 3

()⇒ ()  Define a binary relationº on∆ by  º  if ¬( Â ) for all   ∈ ∆ Axioms

(A.1) and (A.6) imply that º is complete and transitive. Denote by∼ the symmetric part of
º  For each  ∈ ∆ define  by  ∼ 

̄+(1− ) 
 Define a function  : ∆ → [0 1]

by  () =  By (A.1) - (A.3)  is well-defined, mixture continuos, strictly monotonic

function on ∆ and  º  if and only if  () ≥  () 

By Theorem 1, there exists a unique set, Π of probability measures on  such that,

for all  ∈  and  ∈ Π,  ³ Σ
||
=1 ()  ()  For each  ∈ Π define a function

  :  → [0 1] by   () = 
³
Σ
||
=1 ()  ()

´
 for all  ∈  Let V := {  |  ∈ Π}.

But, by Lemma 1,  Â  if and only if   ()    ()  for all   ∈ V. Hence,  Â  if

and only if,  (Σ
||
=1 ()  ()) Â  (Σ

||
=1 ()  ()) for all  ∈ Π

That ()⇒ () and the uniqueness of the representation follow from the corresponding

parts in the proof of Theorem 1. ¥

5.4 Proof of Theorem 4

()⇒ ()  By (A.3), (A.8) and the argument in the proof of Lemma 2, Π is a singleton set.

Thus, by Theorem 1, for all   ∈   Â  ⇔  (Σ∈ ()  ())   (Σ∈ ()  ()) 
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∀ ∈ V, where V is a set of mixture continuos, strictly monotonic, real-valued functions
on ∆

()⇒ ()  That the axioms (A.1) - (A.6) are implied by the presentation follows form

Theorem 1. To show that (A.8) holds, let  ⊆  By strict monotonicity and mixture

continuity of  there is a unique ∗ such that 
¡
∗̄ + (1− ∗) 

¢
= 

¡
̄


¢
, for all

 ∈ V. Thus, if   ∗ then 
¡
̄ + (1− ) 

¢
 

¡
̄


¢
. If this is not the case,

then 
¡
̄ + (1− ) 

¢ ≤ 
¡
̄


¢
. Hence, by (A.3), and strict monotonicity of 


¡
0̄ + (1− 0) 

¢
 

¡
̄


¢
 for all ∗  

0
and  ∈ V. Thus, for each  ⊆ 

̄ + (1− )  Â ̄
 or ̄

 Â 0̄ + (1− 0)  for all   0

The uniqueness follows from Theorem 1. ¥
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