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Abstract

This is a study of probabilistically sophisticated choice behavior with incomplete

preferences. Invoking the analytical framework of Anscombe and Aumann (1963) and

building on the work of Machina and Schmeidler (1995), the paper provides an ax-

iomatic characterization of the general multi-prior multi-utility probabilistically so-

phisticated representation. In addition, the paper lays axiomatic foundations for two

special cases: complete beliefs and complete tastes. In the former case, the incomplete-

ness is due to ambiguous tastes and in latter case it is due to umbiguous beliefs.
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1 Introduction

Choice-based definition of subjective probabilities presumes that when called upon to de-

cide among courses of action whose consequences are not known in advance, decision mak-

ers form of beliefs about the likely realization of the consequences, and that these beliefs

are quantifiable by probabilities. Because the beliefs are personal, their representation is

dubbed subjective probabilities. Borel (1924), Ramsey (1931) and de Finetti (1937) were

first to proposed the key idea that subjective probabilities may be inferred from the odds a

decision maker is willing to offer when betting on events or the truth of propositions. This

idea found its ultimate expression in the seminal works of Savage (1954) and Anscombe

and Aumann (1963). A common feature of these works is that the subjective probabilities

are defined in the context of expected utility theory. Consequently, these works confound

the definition of subjective probabilities with the hypothesis that individual choice among

uncertain prospects is representable by a functional that is linear in the probabilities. How-

ever, the representation of a decision maker’s beliefs by subjective probabilities and the

notion of expected utility maximizing choice behavior are two separate ideas.

Machina and Schmeidler (1992, 1995) severed this connection by proposing a model,

dubbed probabilistic sophistication, in which choice-based subjective probabilities are de-

fined without requiring that the decision maker’s preferences respect the strictures of ex-

pected utility theory. According to Machina and Schmeidler subjective probabilities trans-

form acts (that is, random variables on state space that take their values in the set of

consequences) into lotteries (that is, the corresponding probability distributions on the

set of consequences) and preferences are represented by a utility function over the set of

lotteries.

An central tenet of both the expected utility models and the probabilistically sophisti-

cated models is that all alternative courses of action are comparable. That this presumption

is not tenable as a general depiction of real-life decision making was recognized by von Neu-

mann and Morgenstern who wrote “It is conceivable — and may even in a way be more

realistic — to allow for cases where the individual is neither able to state which of two al-

ternatives he prefers nor that they are equally desirable.” (von Neumann and Morgenstern

[1947] p. 19). Aumann (1962) finds universal comparability not only inaccurate description

of real-life decision making but also lacking normative appeal. In his words, “Of all the

axioms of utility theory, the completeness axiom is perhaps the most questionable. Like
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others of the axioms, it is inaccurate as a description of real life; but unlike them, we find it

hard to accept even from a normative viewpoint.” (Aumann [1962], p. 446). Empirically,

the main manifestation of incomplete preferences is indecisiveness or inertia.

Considering the restrictive nature of completeness requirement, the objectives of this

paper is to examine the implications of relaxing the completeness axiom for the existence

and meaning of subjective probabilities in the probabilistic sophistication model of Machina

and Schmeidler (1995) and to study the representations of ambiguous beliefs and tastes in

this model. More specifically, invoking the analytical framework of Anscombe and Aumann

(1963), I explore conditions under which incomplete preference relations admit a multi-

utility multi-prior probabilistic sophisticated representation and explore the conditions

that characterize two special cases: Knightian uncertainty and single-prior multi-utility

representation. The former special case, first explored by Bewley (2002) in the context of

expected utility theory, attributes the incompleteness to the decision maker’s ambiguous

beliefs and that latter, explored by Shapley and Baucells (1998) and Dubra, Maccheroni,

and Ok (2004), to his ambiguous tastes.

The main analytical difficulty introduced by the incompleteness of the preference re-

lation is due to the non-transitivity of the incomparability relation. When the preference

relation is complete, indecisiveness arises only when the decision maker is indifferent among

the alternatives under consideration. In Machina and Schmeidler (1995) the indifference is

an equivalence relation, hence it is transitive. They exploit the transitivity of indifference to

link general Anscombe-Aumann acts to constant acts that are convex combinations of the

state-contingent payoffs of the original acts. This link is severed when the incomparability

relation is non-transitive. To compensate for the loss of transitivity, the preference struc-

ture is enhanced by the introduction of two new axioms, dubbed replacement acyclicity

and constant-act comparability. Replacement acyclicity requires that the incomparability

relation restricted to replacement paths be acyclic. Constant-act comparability requires

that one act be strictly preferred over another if and only if the induced constant acts that

are non-comparable to the former are strictly preferred to those induced by the latter.
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2 The Model

2.1 Analytical framework

Let  = {1 } be a finite set of states and  a set of outcomes. Denote by ∆ the set

of simple probability distributions on  Elements of ∆ are lotteries. Let  be the set

of mappings on  to ∆ Elements of  are acts defined by Anscombe-Aumann (1963).

The constant acts are identified with elements of ∆ hence, ∆ ⊂  Let Â be a binary
relation on  referred to as strict preference relation. The relation Â is bounded on  if

there are ̄ and  in  such that ̄ Â  Â  for all  ∈ \{̄ } where  ∈ ∆ is the

degenerate lottery that assigns the unit probability mass to  Define the incomparability

relation, ³ on  as follows: For all   ∈   ³  if ¬( Â ) and ¬( Â ) Clearly, ³
is symmetric and reflexive but is not necessarily transitive.

2.2 The axiomatic structure

The following axioms depict the preference structure.

(A.1) (Strict partial order) The strict preference relation Â is transitive and irreflexive.

(A.2) (Archimedean) For all    ∈  if  Â  and  Â  then there exist   ∈ (0 1)
such that  + (1− ) Â  Â  + (1− ).

The statement of the next two axioms invokes the following additional notations and

definitions. For every event  (that is, a subset of ) and   ∈  let  ∈  be the a

act that coincides with  on  and with  on \ An event  is nonnull if (̄ Â 

)

and is null otherwise Following Machina and Schmeidler (1995) the lottery  is said to

dominates the lottery  according to first-order stochastic dominance, denoted  1  if

Σ{Â} () ≥ Σ{Â} ()  for all  ∈  with strict inequality for some  ∈  The

next axiom requires that first-order stochastically dominating lotteries be preferred.1

(A.3) (Monotonicity) For all   ∈ ∆ if  1  then  Â  for all nonnull  ⊂ 

and all  ∈ .

1The same property, implied by their adoption of Savage’s P3, is a tacit aspect of Machina and Schmei-

dler (1992). Grant (1995) characterized probabilistically sophisticated preferences that do not satisfies

monotonicity with respect to first-order stochastic dominance, thus separating the idea of proabilistic so-

phisticated choice from yet another tenet of subjective expected utility theory.
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The next axiom is a reformulation of the Horse/Roulette Replacement axiom of Machina

and Schmeidler (1995) replacing the indifference with the incomparability relation.

(A.4) (Replacement) For every finite partition (1  ) of  if

̄

³




´
³ ¡̄ + (1− ) 

¢
∪



for some  ∈ [0 1] then


¡


¢ ³ (+ (1− ) )
∪



for all   ∈ ∆ and  ∈ 

The following axiom imposes acyclicity of the incomparability relation along a replace-

ment path.2

(A.5) (Replacement acyclicity) For all  ∈  there are 1 2  −1 such that if

 (1){1}
³
 (2){2} 

´
³ (1 (1) + (1− 1)  (2)){12}

 ³

³ 2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3){123}  ³

3 (2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3))+(1− 3)  (4){1234}  ³  ³
X
=1

 

then

 ³
X
=1

 

where 1 = −1 ·−2 ··1   = −1 ·|−2 ··(1−−1) and  = (1−−1) and
1 = 1 (1) + (1− 1)  (2)    = −1 + (1− )  (+1)   = 2  (− 1) 

To state the next axiom, I introduce the following additional notations. Let ∆ := { ∈
[0 1] | Σ=1 = 1} For each  ∈  and  ∈ ∆ define  = Σ=1 ()  Informally, 



is the lottery in ∆ induced by applying the reduction of compound lotteries to compound

lottery that whose first stage is the probability distribution  on  and the second stage

consists of the state-contingent lottery payoffs of the act .

(A.6) (Constant-act comparability) For all   ∈   Â  if and only if  Â  for

all  ∈ ∆ such that  ³  and  ³ 

2A binary relation 1 on a set  is acyclic if 1 1 2 1 1  implies that 1 1  for all {1} ⊆
 In Machina and Schmeidler (1995) the transitivity of the indifference relation implies that repacement

acyclicity is an implication of their repalcement axiom.
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3 Representations

3.1 Multi-prior multi-utility representation

The model admits two sources of ambiguity, namely, ambiguous tastes and ambiguous

beliefs. The first result is a representation of a preference relation whose incompleteness is

due to both sources of ambiguity. The representation involves a set V of utility functions
on ∆ and a set Π of probability measures on  such that one act is strictly preferred over

another if an only if the utility of each lottery induced by the reduction of the the former

act is larger than that of the corresponding lotteries induced by the reduction of second

act according to every the probability measure in Π

To state the main result I invoke the following definitions: A function  is mixture con-

tinuous if  (+ (1− ) ) is continuous in  for all   ∈ ∆. It is strictly monotonic
if  () ≥  () whenever  dominates  according to first-order stochastic dominance, with

strict inequality in the case of strict dominance.

Theorem 1 Let Â be a binary relation on  then the following two conditions are

equivalent:

() Â is bounded on  and satisfies (A.1) - (A.6).

() There exist a set, V, of real-valued, mixture continuous, strictly monotonic func-
tions,  on ∆ and a convex set, Π of probability measures on  such that, for all

  ∈ 

 Â  ⇔  (Σ∈ ()  ())   (Σ∈ ()  ()) ∀ ( ) ∈ V ×Π (1)

and, for all  ∈ 


¡
̄
¢
  (Σ∈ ()  ())   () , ∀ ( ) ∈ V ×Π (2)

To describe the uniqueness of the representation (1) I adopt the notations of Evren

and Ok (2011). Given any nonempty subset U of R∆  define a map ΓU : ∆ → RU by

ΓU () = () :=  () 

Theorem 2 Let Â be a binary relation on  that is bounded on  and satisfies (A.1)

- (A.6). Two pairs of multi-utility muti-prior (VΠ) and (V∗Π∗) represent Â if and only
if Π = Π∗ and there exists  : ΓV (∆)→ ΓV∗ (∆) such that: () ΓV∗ =  ◦ΓV and ()
for every   ∈ ΓV     if and only if  ()   () 
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3.2 Complete tastes: Definition and representation

Consider the special case in which the decision maker is confident about her tastes and

her indecisiveness is due solely to her ambiguous beliefs. This corresponds to the situation

described by Bewley (2002) as Knightian uncertainty.3 The next axiom rules out ambiguity

regarding the decision maker’s tastes.

(A.7) (Complete tastes) On the subset of constant acts in  Â is negatively transitive.

With this in mind we have a probabilistically sophisticated version of Knightian uncer-

tainty.

Theorem 3 Let Â be a binary relation on  then the following two conditions are

equivalent:

() Â is bounded on  and satisfies (A.1) - (A.7).

() There exist a real-valued, mixture continuous, strictly monotonic function  on

∆ and a convex set Π of probability measures on  such that, for all   ∈ 

 Â  ⇔  (Σ∈ ()  ()) ≥  (Σ∈ ()  ())  ∀ ∈ Π (3)

and, for all  ∈ 


¡
̄
¢
  (Σ∈ ()  ())   () , ∀ ∈ Π (4)

The function  is unique up to strictly monotonic increasing continuous transformation,

and Π is unique.

3.3 Complete beliefs: Definition and representation

The next axiom, due originally to Galaabaatar and Karni (2013), formalizes the idea of

complete beliefs. In other words, the decision maker’s beliefs are characterized by a unique

prior and her indecisiveness is due entirely to her ambiguous tastes.

(A.8) (Complete beliefs) For all events  and  ∈ [0 1]  either ̄+(1− )  Â ̄


or ̄
 Â 0̄ + (1− 0)  for all   0

3See also Galaabaatar and Karni (2013). Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) depict

the unanimity rule implied by Knightian uncertainty as a model of objective rationality.
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The following theorem characterizes tastes ambiguity.

Theorem 4 Let Â be a binary relation on  then the following two conditions are

equivalent:

() Â is bounded on  and satisfies (A.1) - (A.6) and (A.8).

() There exist a set, V, of real-valued, mixture continuous, strictly monotonic func-
tions,  on ∆ and a probability measure  on  such that, for all   ∈ 

 Â  ⇔  (Σ∈ ()  ())   (Σ∈ ()  ())  ∀ ∈ V (5)

and, for all  ∈ 


¡
̄
¢
  (Σ∈ ()  ())   () , ∀ ∈ V (6)

Moreover, V∗ is another set of utility functions on ∆ and a probability measure ∗ on

 represent the preference relation Â in the sense of (5) if and only if  = ∗ and there

exists  : ΓV (∆)→ ΓV∗ (∆) such that: () ΓV∗ =  ◦ΓV and () for every   ∈ ΓV 
   if and only if  ()   () 

4 Concluding Remarks

4.1 Weak preferences and their representation

Given Â on  Karni and Galaabaatar (2013) defined the weak preference relation <

and indifference relation ∼ on  as follows: For all   ∈   <  if, for all

 ∈   Â  implies  Â  and  ∼  if  <  and  <  Note that <

on  is a preorder (that is, transitive and reflexive). According to these definitions, the

representations of the weak preference and indifference relations that display both belief

and tastes ambiguity, corresponding to (1) are as follows: For all   ∈ 

 <  ⇔  (Σ∈ ()  ()) ≥  (Σ∈ ()  ()) ∀ ( ) ∈ V ×Π (7)

and

 ∼  ⇔  (Σ∈ ()  ()) =  (Σ∈ ()  ()) ∀ ( ) ∈ V ×Π (8)

The corresponding representations of the weak preference and indifference relations in the

special cases of belief ambiguity and ambiguity of tastes are obtained when the V and Π
respectively, are singleton sets.
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4.2 A topological approach

In this paper I followed Machina and Schmeidler in employing the algebraic approach to

modeling probabilistic sophisticated choice behavior. Alternatively, one could invoke a

topological approach by imposing a topological structure on the choice space  and on

the preference relation < on  Since the main point here is illustrative, to simplify

the exposition suppose that  is finite and let ∆ be endowed with the R topology.

Then,  = (∆) is a compact subset of a Euclidean space. Suppose that < on

 is a continuous preorder (that is, for all  ∈  the upper and lower contour sets

< () := { ∈  |  < } and < () := { ∈  |  < }, respectively, are
closed and < is a closed subset of  ×).

The weak preference relation < on  is said to have continuous multi-utility repre-

sentation if it there is a set U of continuous real-valued functions on such that  <  if

and only if  () ≥  ()  for all   ∈  Since,  is compact subset of Euclidean space

and < on  is a continuous preorder, it has continuous multi-utility representation (see

Evren and Ok [2011] Corollary 3). Applying the argument in the proof of Lemma 3, there

exists a set Π ⊂ ∆ of additive probability measures on  such that, for all   ∈ 

 <  if and only if Σ=1 ()  () ≥ Σ=1 ()  ()  for all  ∈ Π Combining these
results we obtain the following:

Corollary: Let < be a binary relation on  then < is continuous preorder that is

bounded on  and satisfies monotonicity, replacement, replacement acyclicity and constant

act comparability if and only if there exist a convex set, V, of real-valued, continuous, strictly
monotonic functions,  on ∆ and a convex set, Π of probability measures on  such

that, for all   ∈ 

 <  ⇔  (Σ∈ ()  ())   (Σ∈ ()  ()) ∀ ( ) ∈ V ×Π (9)

and, for all  ∈ 


¡
̄
¢
  (Σ∈ ()  ())   () , ∀ ( ) ∈ V ×Π (10)

Finally we note that Evren and Ok (2011) show that, under appropriate topological

conditions the representation (9) can be extended to more general choice sets
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5 Proofs

5.1 Proof of Theorem 1

()⇒ ()  Sufficiency is an implication of the following lemmata:

Lemma 1: For each  ∈  the set  () := { ∈ [0 1] |  ³ ̄ + (1− ) } is a
closed interval,

£
  ̄

¤ ⊆ [0 1] 
Proof. Let  = sup{ ∈ [0 1] |  Â ̄+ (1− ) } That  exists follows form the

fact that the set is bounded and is non-empty ( = 0 is in the set). Moreover, by (A.3),

 is unique. By similar argument, ̄ := inf{ ∈ [0 1] | ̄ + (1− )  Â } exists and
is unique.

Next we show that  ³ ̄
̄ + (1− ̄ ) 

 (that is, ¬( Â ̄
̄ + (1− ̄ ) 

) and

¬(̄̄ + (1− ̄ ) 
 Â )) If  Â ̄

̄ + (1− ̄ ) 
 then, since ̄ Â  by (A.2) there

exist   ̄ such that  Â ̄+(1− ) . But, by (A.3) and the definition of ̄    ̄

implies that ̄+(1− )  Â  A contradiction. If ̄
̄+(1− ̄ ) 

 Â  then, since  Â
 by (A.2) there is   ̄ such that 

̄+(1− )  Â  This contradicts the definition

of ̄  Hence,  ³ ̄
̄ + (1− ̄ ) 

. By a similar argument,  ³ 
̄ +

¡
1− 

¢


Let  ∈ ¡  ̄¢ then, by definition of ̄ and  , respectively, ¬( Â ̄+(1− ) )

and ¬(̄ + (1− )  Â ) Hence,  ³ ̄ + (1− )  Combining these results we

conclude that  ³ ̄ + (1− )  for all  ∈ £  ̄¤  4
Lemma 2: There exists a convex set, V, of strictly monotonic, mixture continuous

functions  :  → [0 1] such that, for all   ∈   Â  if and only if  ()   ()  for

all  ∈ V.
Proof. For each  ∈ [0 1] define a function  :  → [0 1] by  () = ̄ + (1− ) 

for  ∈ . Let V := { |  ∈ [0 1]}.
Suppose that  Â  Since  Â  by (A.2) and (A.3), for every  ∈ (0 1) such that

̄+(1− )  Â  there is 0 ∈ (0 ) such that ̄+(1− )  Â 0̄+(1− 0)  Â 

By definition of ̄ there is ̂ ≤ ̄ such that ̂
̄ + (1− ̂)  Â  Thus, by definition

of ̄, ̂
̄ + (1− ̂)  Â ̄

̄ + (1−) ̄  Hence, by (A.3), ̄ ≥ ̂  ̄ By similar

argument,    Consequently, by definition of V,  ()   ()  for all  ∈ V.
Suppose that  ()   () for all  ∈ V. If  Â  then, by sufficiency,  ()   () 

for all  ∈ V, a contradiction. Thus, ¬ ( Â ). If  ³  then there is ̂ ∈ V such that
̂ () = ̂ ()  a contradiction. Thus, ¬ ( ³ )  But ¬ ( Â ) and ¬ ( ³ ) imply  Â 

To show that all  ∈ V are monotonic, let   ∈ ∆ such that  1  By (A.3),  Â 
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We identify  with the constant act that pays off  in all  ∈  Hence,  ()   () for

all  ∈ V.
To show that all  ∈ V are mixture continuous we observe that, by (A.2), for all

  ∈  and  ∈ (0 1),  + (1− )  is continuous in  (that is, if a sequence ()

converges to  then lim→∞  + (1− )  =  + (1− ) ) Moreover, ̄+(1−) is

continuous in  (that is, if a sequence () converges to  then lim→∞ ̄+(1−) =

̄+(1−) By the same argument +(1−) is continuous in  Since, for all  ∈ V
 ( + (1− ) ) = ̄+(1−) + (1− )+(1−)  is mixture continuous. N

Lemma 3. There exists a set Π ⊂ ∆ of additive probability measures on  such that,
for all   ∈   Â  if and only if Σ=1 ()  () Â Σ=1 ()  ()  for all  ∈ Π

Proof. For each  ⊆  let Π () := { () ∈ [0 1] | ̄{} ³  () ̄+(1−  ()) }
By (A.2) and (A.3), for each event  Π () is a well-defined closed and bounded interval

in [0 1]. Moreover, since for  is nonnull ̄{}
 Â , it follows that  is null (that is,

¬
³
̄{}

 Â 
´
) if and only if  () = 0 for all  ∈ Π () 

Let  ∈  be a non-constant act. By repeated applications of the replacement axiom,

(A.4), we get:

 ³ (1 (1) + (1− 1)  (2)){12}
 ³

³ 2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3){123}  ³

3 (2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3))+(1− 3)  (4){1234}  ³  ³
X
=1

  () 

where 1 = −1 · −2 ·  · 1   = −1 · −2 ·  · (1 − −1)  = 2  (− 1)  and
 = (1 − −1) In general, ( )=1 is not unique. Let  denote the set of  := ( )


=1

constructed in this manner then, for all  ∈  Σ=1  = 1

By replacement acyclicity, (A.5),  ³ Σ=1  ()  for all  ∈  Moreover,  is null

if and only if for each  ∈  the −th coordinate of     = 0. For each  ∈  let

 () := {  | (1      ) ∈ } Consider the act ̄{} By the argument above,
̄{}

 ³  
̄ + (1−  ) 

 for  = 1   and   ∈  ()  Hence, by definition,  () =

Π ({})  for all  = 1   and Π =  Then Π is the set of probability distributions on

 such that  ³ Σ=1 ()  ()  for all  ∈ Π
By (A.6),  ³ Σ=1 ()  () and  ³ Σ=1 ()  () for all  ∈ Π imply that  Â 

if and only if Σ=1 ()  () Â Σ−1 ()  () for all  ∈ Π N
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By Lemma 2, Σ
|
=1 ()  () Â Σ=1 ()  () if and only if  (Σ=1 ()  ()) 

 (Σ=1 ()  ()) for all  ∈ V Since, by Lemma 3,  Â  if and only ifΣ=1 ()  () Â
Σ=1 () ()  for all  ∈ Π it holds that  Â  if and only if  (Σ=1 ()  ()) 

 (Σ=1 ()  ()) for all ( ) ∈ V ×Π. The proves the validity of (1).
To show that every  ∈ Π is additive, consider an event  and the act ̄

 By the

argument above, ̄
 ³  () ̄ + (1−  ())  for all  ∈ Π But, by construction,

̄
 ³ Σ∈ () ̄ + Σ∈\ ()  for all  ∈ Π Hence, by (A.3), for all  ⊆ 

 () = Σ∈ ()  for all  ∈ Π Thus, every  ∈ Π is additive.
By definition of ̄ and , ̄̄ = ̄ = 1 and ̄ =  = 0 Hence, by (A.3),


¡
̄
¢
  (Σ=1 ()  ())   () for all  ∈ V and  ∈ Π. This proves the validity

of (2).

() =⇒ ()  That (A.1) and (A.2) hold is immediate and (A.3) is implied by the strict

monotonicity of 

Given  ∈  ¬( ()   (Σ∈ ()  ())) and ¬ ((Σ∈ ()  ())   ())  for all

 ∈ V and  ∈ Π if and only if ¬( Â Σ∈ ()  ()) and ¬(Σ∈ ()  () Â ) for each

 ∈ Π Hence,  ³ Σ∈ ()  ()  for every  ∈ Π That the replacement axiom, (A.4),
holds is an immediate implication of the last observation and the additivity of .

To show that (A.5) holds, let 0 = 

1 = (1 (1) + (1− 1)  (2)){12}


2 = 2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3){123}   
−1 =

X
=1

 

Let I denotes the set of closed intervals in [0 1]  Define a correspondence  :  ³ I by
 () = { ∈ [0 1] |  ³ ̄+(1− ) }, ∀ ∈  By Lemma 1,  () =

£
  ̄

¤ ⊆ [0 1].
But, for all   ∈ ,  ³  if and only if  () ⊆  () or  () ⊇  ()  Consider the

sequence of incomparable acts

 ³ (1 (1) + (1− 1)  (2)){12}
 ³

³ 2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3){123}  ³

3 (2 (1 (1) + (1− 1)  (2)) + (1− 2)  (3))+(1− 3)  (4){1234}  ³  ³
X
=1

  () 

12



Since each two consecutive acts,  +1 in this sequence are incomparable, either 
¡

¢ ⊆


¡
+1

¢
or 

¡

¢ ⊇ 

¡
+1

¢
  = 0  − 1 Because none of these sets is empty, their

intersection, ∩−1=1
¡

¢
 in nonempty. Consequently, there exist  ∈ V and  ∈ Π such

that

 () = 

Ã
X
=1



!


Hence,  ³P
=1 

To show that (A.6) holds we note that by (1) Σ∈ ()  () Â Σ∈ ()  ()  for
all  ∈ Π if and only if  (Σ∈ ()  ())   (Σ∈ ()  ())  for all ( ) ∈ V × Π.
But, for all  ∈   ³  for all  ∈ Π. Hence,  (Σ∈ ()  ()) =  ()  for all

( ) ∈ V × Π Hence,  (Σ∈ ()  ())   (Σ∈ ()  ())  for all ( ) ∈ V × Π if
and only if  ()   () for all  ∈ V. By Lemma 2,  ()   () for all  ∈ V if and
only if  Â  Thus,  Â  if and only if Σ∈ ()  () Â Σ∈ ()  ()  for all  ∈ Π ¥

5.2 Proof of Theorem 2

To prove the uniqueness, suppose that there exist another set, Π∗ of probability measures

on  and a set, V∗ of mixture continuous, strictly monotonic, utility functions that jointly
represent the preference relation Â where Π∗ is distinct from Π and V∗ may or may not
be distinct from V. This supposition implies that there exist ∗ ∈ Π∗\Π or  ∈ Π\Π∗.

Since Π is a convex set, if ∗ ∈ Π∗\Π then there exist  ∈  such that ∗ ()   () 

for all  ∈ Π. Hence, there is  such that ∗ ()     ()  for all  ∈ Π Consider that
act ̄{}

 By the argument in the proof of Lemma 2, ̄{}
 ³  () ̄+(1−  ())  for

all  ∈ Π By (A.3), ̄ + (1− )  Â  () ̄ + (1−  ())  for all  ∈ Π Hence, by
(A.6), ̄ + (1− )  Â ̄{}



Since the lottery ∗ () ̄ + (1− ∗ ())  strictly first-order stochastically dominates

the lottery ̄ + (1− )  by strict monotonicity of  ∗,

 ∗
¡
∗ () ̄ + (1− ∗ ()) 

¢
  ∗

¡
̄ + (1− ) 

¢
 ∀ ∗ ∈ V∗ (11)

But ∗ ∈ Π∗ implies that ̄{}
 ³ ∗ () ̄ + (1− ∗ ())  Hence, it is not true

that  ∗(̄{}
)   ∗

¡
∗ () ̄ + (1− ∗ ()) 

¢
, ∀ ∗ ∈ V∗ Thus, for some  ∗ ∈ V∗

 ∗(̄{}
) ≥  ∗

¡
∗ () ̄ + (1− ∗ ()) 

¢
 But ̄+(1− )  Â ̄{}

 implies  ∗(̄{}
) 

 ∗
¡
̄ + (1− ) 

¢
 for all  ∗ ∈ V∗. Hence, (11) implies that  ∗(̄{})   ∗

¡
∗ () ̄ + (1− ∗ ()) 

¢
,

∀ ∗ ∈ V∗ A contradiction.
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The uniqueness of V is an implication of Evren and Ok (2011) Remark 1. ¥

5.3 Proof of Theorem 3

()⇒ ()  Define a binary relationº on∆ by  º  if ¬( Â ) for all   ∈ ∆ Axioms

(A.1) and (A.6) imply that º is complete and transitive. Denote by∼ the symmetric part of
º  For each  ∈ ∆ define  by  ∼ 

̄+(1− ) 
 Define a function  : ∆ → [0 1]

by  () =  By (A.1) - (A.3)  is well-defined, mixture continuos, strictly monotonic

function on ∆ and  º  if and only if  () ≥  () 

By Theorem 1, there exists a unique set, Π of probability measures on  such that,

for all  ∈  and  ∈ Π,  ³ Σ=1 ()  ()  For each  ∈ Π define a function
  :  → [0 1] by   () =  (Σ=1 ()  ())  Let V := {  |  ∈ Π}. But, by Lemma
1,  Â  if and only if   ()    ()  for all   ∈ V. Hence,  Â  if and only if,

 (Σ=1 ()  ()) Â  (Σ=1 ()  ()) for all  ∈ Π
That ()⇒ () and the uniqueness of the representation follow from the corresponding

parts in the proof of Theorem 1. ¥

5.4 Proof of Theorem 4

()⇒ ()  By (A.3), (A.8) and the argument in the proof of Lemma 2, Π is a singleton set.

Thus, by Theorem 1, for all   ∈   Â  ⇔  (Σ∈ ()  ())   (Σ∈ ()  ()) 

∀ ∈ V, where V is a set of mixture continuos, strictly monotonic, real-valued functions
on ∆

()⇒ ()  That the axioms (A.1) - (A.6) are implied by the presentation follows form

Theorem 1. To show that (A.8) holds, let  ⊆  By strict monotonicity and mixture

continuity of  there is a unique ∗ such that 
¡
∗̄ + (1− ∗) 

¢
= 

¡
̄


¢
, for all

 ∈ V. Thus, if   ∗ then 
¡
̄ + (1− ) 

¢
 

¡
̄


¢
and 

¡
̄ + (1− ) 

¢ ≤

¡
̄


¢
 otherwise. Hence, by (A.3) and strict monotonicity of  

¡
0̄ + (1− 0) 

¢



¡
̄


¢
for all ∗  

0
and  ∈ V. Thus, for each  ⊆  ̄ + (1− )  Â ̄

 or

̄
 Â 0̄ + (1− 0)  for all   0

The uniqueness follows from Theorem 1. ¥
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