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Abstract

This is a study of the nature and prevalence of persistent fraud in a compet-

itive market for credence-quality goods. We model the market as a stochastic

game of incomplete information in which the players are customers and sup-

pliers and analyze their equilibrium behavior. Customers characteristics, idio-

syncratic search cost and discount rate, are private information. Customers

do not possess the expertise necessary to assess the service they need either

ex ante or ex post. We show that there exists no fraud-free equilibrium in the

markets for credence-quality goods and that fraud is a prevalent and persistent

equilibrium phenomenon.
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kets; Search with learning;
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1 Introduction

Customers seeking to purchase services that require specialized knowledge are sus-

ceptible to fraud by suppliers who prescribe unnecessary services. Examples include,

medical tests and treatments, auto repairs, equipment maintenance, and taxi cab

service. In these markets the service suppliers make diagnostic determinations of the

service required and offer to provide it, and the customers must decide whether to

purchase the prescribed service or to seek, at a cost, a second service prescription.

Typically in these situations, the customer can judge, ex post, whether or not the

service provided was sufficient to solve the problem, but is unable to assess whether

the prescribed service was also necessary.

Darby and Karni (1973) were the first to identify the fundamental ingredients of

the problem underlying the provision of what they dubbed credence-quality goods.

First, information asymmetry between the customer who lacks the expertise ne-

cessary to assess the service needed and service provider who possess the required

expertise and, second, the cost saving of the joint provision of diagnosis and services.1

They proceeded to discuss and analyze the economic implications of transactions in-

volving this type of asymmetric information. Specifically, Darby and Karni argued

that in competitive market equilibrium for credence-quality goods there is persistent

tendency of suppliers to over-prescribe services (that is, to prescribe services that

are sufficient but are unnecessary to solve the problem at hand).

The nature and extent of fraudulent practices depend on the specific characterist-

1This bundling of information and service is crucial. See Wolinsky (1993) for an analysis of the

implication of separation of diagnosis and service.
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ics of the credence-good market. For example, the demand for auto repair at a given

service station depends on the waiting time (that is, the length of the queue of cus-

tomers waiting to be served) which is not an issue when it comes to taxi cab service.

It also depends on the information the customer may acquire before choosing the

service provider and the cost of seeking a second opinion. For instance, in medical

diagnosis that requires an invasive procedure the cost of obtaining a second opinion

is prohibitively high. It is obvious, therefore, that modeling of credence-goods mar-

kets, while incorporating the fundamental ingredients of the problem — information

asymmetry and the bundling of diagnosis and service — must be based on the spe-

cifics of the market under consideration. In this paper we focus on markets for the

provision of services, such as auto-repair services, in which the capacity limitations

may result in waiting for service. We underscore this point to avoid the impression

that this is a general model of credence-good markets. We believe, however, that the

game-theoretic approach invoked here is not specific to the analysis of the model we

study in this paper, rather it is a natural framework for the analysis of credence-good

markets in general.

Since the publication of Darby and Karni (1973), numerous studies confirm

the prevalence of fraudulent behavior in the markets for credence-quality goods.2

For medical services, especially physicians’ services, over treatment, a phenomenon

known in medical literature as supplier induced demand, is widely documented (see

McGuire [2000], Currie, et. al [2011], Dranove [1988]). Domenighetti (1993) found

that in Swiss canton of Ticino on average the population has one third more oper-

2Dulleck and Kerschbamer (2006) includes a survey of the literature and provides numerous

references.

3



ations than medical doctors and their relatives, suggesting that greater information

symmetry tends to reduce overprescription of surgical procedures. The same type of

conclusion was reached by Balafoutas et al. (2013). They report the results of a nat-

ural field experiment on taxi rides in Athens, Greece, designed to measure different

types of fraud and to examine the influence of passengers’ presumed information on

the extent of fraud. Their findings indicate that passengers with inferior information

about optimal routes are taken on significantly longer detours. Iizuka (2007) finds

physicians drugs prescriptions are influenced by markup. Schneider (2012) reports

the results of a field experiment designed to assess the accuracy of service provision

in the auto repair market. He finds evidence for over prescription of services as

well as under prescription. Beck et. al (2014) reports that in experimental setting,

car mechanics are significantly more prone to supplying unnecessary services than

student subjects.

The work of Darby and Karni, while calling attention to a neglected aspect of eco-

nomic interactions that results in market failure, lacks the formal structure necessary

to derive more subtle implications of the concept they introduced. In this work we

take a step towards a more formal analysis of markets for credence-quality services

with some specific characteristics. Specifically, taking a game-theoretic approach we

analyze the equilibrium behavior in a market in which two suppliers operating service

stations are engaged in Bertrand competition. The suppliers are assumed to be ex

ante identical in every respect. The sole asymmetry between the suppliers, which

arises endogenously, is the lengths of their queues (i.e., the waiting time for service).

The critical aspect of the model is the information asymmetry regarding the service
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that is required to address the problem at hand. The suppliers are supposed to

possess the expertise necessary to assess the required service while the customers do

not.

Customers heterogeneity is the consequence of idiosyncratic costs of seeking a

second prescription and of waiting for service. We assume that these costs are the

customers’ private information. The customers are assumed to discover the lengths

of the suppliers queues (that is, the waiting time) only when they visit the supplier’s

service outlet.

We study the market in a stationary symmetric equilibrium in which normal

profits discourage entry or exit.3 In other words, the idle time at the service stations

is short enough so that no supplier loses money but is sufficiently long so as to

discourage new entries or installing additional service capacity. In addition to proving

its existence, we show that there exists no fraud-free equilibrium in this market, that

the level of fraud committed by the two suppliers depends on the lengths of their

queues, and that the short-queue supplier is more likely to overprescribe service

than the long-queue supplier. These conclusions highlight the message of this work,

namely, that the fraud committed in credence good markets depends on the market’s

specific characteristics, suggesting that the study of these markets, while maintaining

the unifying characteristics, information asymmetry and the bundling of diagnosis

and service, should proceeds on a case by case basis.

In the next section we describe the credence good market. The equilibrium ana-

lysis appears in section 3. Some economic implications of our analysis are discussed

3We confine our analysis to symmetric equilibria. The analysis of possible non-symmetric equi-

libria is beyond the scope of the this paper.
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in section 4. Section 5 includes a discussion of related literature and some concluding

remarks. To allow for uninterrupted reading we collected the proofs in section 6.

2 The Credence Good Market

2.1 Overview

Consider a market for credence-quality service populated by a finite number, ̄ of

customers and two suppliers,  and . The information asymmetry in this market is

two sided. The customers’ private information consists of their idiosyncratic search

cost and discount rate. The suppliers possess expertise that the customers do not

have, which allows them to observe the actual state of disrepair and assess the service

required to fix the problem. Let e denote a discrete random variable representing

the true state of disrepair expressed as the necessary and sufficient number of service

hours required to address the problem. We normalize e to take values in Ω :=

{1  }, where 0  1      14 Denote the distribution of e by  ∈
∆ (Ω)  where ∆ (Ω) denotes the simplex in R, and assume that  is exogenous and

commonly known

Like the states of disrepair, the prescribed service, denoted by  is specified in

discrete quantities and, to simplify the exposition, we suppose that the prescribed

service levels correspond to the states.5 Moreover, we assume that the prescribed

service must fix the problem (e.g., malfunction) or the customer refuses payment.

4As will become clear later, the assumption of discrete state space has implications for the

customers perception of the difference between the suppliers strategies.
5In view of the common practice of informing the customers what are the parts that need to be

fixed or replaced before the actual work begins, this assumption is realistic.
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Formally, if the state is  then  ∈ {  }6 The two suppliers are identical
in every respect except the lengths of their queues, which are expressed in terms of

service hours committed to serving waiting customers. We assume that the suppliers

observe each other’s queue and that customers only discover the length of a supplier’s

queue when they show up at the supplier’s service station.7 Let  () and  ()

denote the lengths of the suppliers queues at time  and suppose that the market is

such that the lengths of the queues are bounded by ̄.8 Formally, ( ()   ()) ∈
 := {( ()   ()) ∈ R2+ |  () + () ≤ ̄}, for all  ∈ R9 Let  be endowed
with the Borel −algebra B ()  A customer’s arrival on the market in a state of
disrepair,  ∈ Ω sets up a stage game Γ

¡
 ()   ()

¢
parametrized by the

triplet
¡
 ()   ()

¢ ∈ Ω× 

Let Ω be endowed with the discrete topology and  with the R2 topology. Let

(Ω× B (Ω× )) and (B ()) be a measurable spaces, where B (Ω× ) and B ()
denotes the Borel −algebras on Ω×  and  respectively. Denote by V the set of
probability measures on (B ()) 

6This assumption is dubbed liability in the literature (see Dulleck and Kreschbamer [2006], Fong

an Liu [2016] and Fong et al. [2017]).
7The assumption that the suppliers observe each other’s queue expresses the presumption that

survival in competitive markets requires the players to keep tab of their rivals positions and actions.

Relaxing this assumption would require a modification of the suppliers strategies described below,

and will complicate the analysis without yielding new insights.
8This assumption corresponds to the empirical fact that market sizes are finite. In our case,

̄ = ̄ From the analytical point of view this assumption implies the compactness of the

domain of the joint distribution of the lengths of the queues. It is worth underscoring that ̄ is not

a capacity constraint. Rather it a parameter that depicts the total possible demand in the market.
9Insofar as the analysis is concerned, attaining the bounderies of the set  poses no problem.

In particular, if  () = ̄ (that is, all the customers need maximal service and they all flock

to supplier ) then  () = 0 In this case, any customer who decides to switch from  to  is

served immediately If  () + () = ̄ and  () ∈ (0 ̄) then, again, customers may switch
between the suppliers.
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A customer’s type, ( )  consists of idiosyncratic search cost,  and discount

rate, , both taking values in [0 1]  Thus, the set of customers’ types is  = [0 1]
2


Let B ( ) be the Borel −algebra on  and denote by  a continuous probability

measure on the measurable type space (B ( ))
New customers arrival times is a stochastic process. We assume that the cumu-

lative distribution function (CDF) depicting the delay in the customers arrival times

depends on the total number of customers that are waiting in the service queues. Spe-

cifically, in the number of customers in the two queues at time  is  then  (· | )
is absolutely continuous with respect to the Lebesgue measure on R and has full

support in R++ and  (0 | )   (0 |  0)  for all 0 ∈ R++ and  0   When

the analysis does not require an explicit reference to the total number of customers

in the line, we simplify the notations by writing  (·) instead of  (· | ) 
When a new customer shows up at a service station, the supplier observes the

state of disrepair  and, consequently, the state
¡
 ()   ()

¢
. The suppliers

do not observe the customer’s type. Customers know their types but not the state

, and they discover the length of a supplier’s queue upon visiting a service station

and receiving a diagnosis. In other words, a customer may discover the lengths of

the suppliers queues sequentially, during the service search process. Insofar as the

customers are concerned, what matters are the lengths of the queues and not the

identity of the suppliers. This assumption rules out suppliers’ identity or reputation

as a possible factor.10

Assume that the installed capacity of the two suppliers is the same, that the

10We revisit the issue of reputation in the discussion section.
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hourly service price is the same for the two suppliers regardless of the lengths of

their queues, and is known to the customers.11 Assume further that the price is

normalized so that the profit generated by servicing customers for a fraction,  of

an hour is 

We model the credence service market as a stochastic game of incomplete inform-

ation and analyze it using the concept of stationary Markovian symmetric equilibria.

The players in this game are the two suppliers and a finite set of potential customers.

We assume that the suppliers earn normal profits, so that there is no incentive for

either new suppliers to enter the market or for a current supplier to exit the market

or change the level his service capacity. A customer’s arrival on the market at time

 in a state of disrepair  when the suppliers queues are  () and  () initiates a

dynamic stage game, Γ
¡
 ()   ()

¢
 depicting the interaction among the cus-

tomer and the two suppliers At a state  ( ) :=
¡
 ()   ()

¢
the suppliers

and the customer make their decisions, after which the game proceeds to the next

state as follows. If the next customer arrives at time 0 in a state 0 and accepts the

prescription  of supplier  then the new state is

 (
0 0) :=

¡
0max{ ()−∆0 +  0 + }max{ ()−∆0 0}¢ 

where ∆0 := 0−  and if she accepts the prescription  of supplier  then the new

state is

 (
0 0) :=

¡
0max{ ()−∆0 0}max{ ()−∆0 +  0 + }

¢


11One interpretation is that the price is regulated (e.g., metered cab fare).
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The transition probability from the state  ( ) to the state  (
0 0) is the product

of the probability that the next customer arrives at time 0, the probability that

the state of disrepair is 0 the probability that supplier  prescribes , and the

probability that the newly arrived customer accepts the prescription .
12 The rest

of the elements of the stochastic game, the players strategies and payoffs are described

next.

2.2 The customers

Upon identifying an equipment malfunction, the customer engages in sequential

search for repair service. Diagnosis of the problem and determination of the ser-

vice needed to solve it requires expert knowledge, which the customer does not have.

The customers’ strategies: Since the posted service prices are the same, the

customer chooses one of the two service outlets at random with equal probabilities.13

Upon visiting a service outlet the customer obtains a service prescription and the

length of the supplier’s queue, both expressed in terms of service-hours. The customer

must then choose between accepting the prescribed service and waiting in the queue,

and rejecting it in favor of seeking a second prescription. If she chooses the latter,

the customer visits the second supplier, receives a second prescription and observes

the length of the second supplier’s queue. The customer must then decide between

accepting the second prescription and waiting to be served and returning to the

12A detailed exposition of these probabilities and the stochastic evolution of the queues appears

in Section 3.1.3 below.
13This assumption does not rule out customers loyalty to suppliers or that each customer visits

first the supplier whose location is closer provided that the loyalty or proximity are equally devided

between the suppliers.
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first supplier. We assume that the search is with full and costless recall. Hence,

if the customer decides to seek a second prescription and then return to the first

supplier, she maintains her place in the queue and is entitled to obtain the service

prescribed by the first supplier.14 Formally, a customer’s search strategy is a mapping

 :  → Σ1 × Σ2 where Σ1 := {1 : Ω ×
£
0 ̄

¤ → {0 1}} Σ2 := {2 : Ω2 ×  →
{0 1}} In other words, the strategy assigns to a customer of type ( ) two acts
depicted by the functions 

()
1 : Ω × £0 ̄¤ → {0 1} and 

()
2 : Ω2 ×  → {0 1},

where 
()
1 (1 1) = 1 means that the customer accepts the prescription of the

first supplier she visits and terminates the search, and 
()
1 (1 1) = 0 means that

she seeks a second prescription. Similarly, 
()
2 (1 2 1 2) = 1 means that the

customer accepts the second supplier’s prescription and 
()
2 (1 2 1 2) = 0

means that she rejects the second supplier’s prescription and returns to the first

supplier. We denote by Σ the set of customers’ strategies. Let Σ denote the set of

customers strategies.

The customers’ beliefs: Since the customers do not observe the suppliers

queues, at the outset the customer’s information set is Ω ×  and her prior beliefs

are captured by  ∈ ∆ (Ω) and the  ∈ V. Upon observing the length of the first
supplier’s queue, 1 and obtaining a prescription, 1 ∈ Ω the customer updates her

beliefs about the state  and the waiting time at the second service station. In doing

14The assumption of full recall is intended to simplify the exposition. It is natural to suppose that

a customer who decides to return to the first supplier may find out that, with positive probability,

her place in the queue is taken. This would call for fomulating the customer decision as search with

uncertain recall à la Karni and Schwartz (1977). This would complicate the exposition without

adding insight or change the results. We commet on this alternative when we define the customers’

equilibrium strategies below.
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so, the customer applies Bayes’ rule.15 The updated belief regarding the state  and

the second supplier’s queue conditional on the first supplier’ prescription, 1 and

queue length, 1 is represented by the conditional distribution  (2 | 1 1) on

Ω× £0 ̄−1

¤
.16

The customers’ payoffs: Accepting a prescribed service  on her first visit

from a supplier whose queue length is , the utility of a customer of type ( ) is:

 () = (1− ) −17 Continuing the search entails a customer-specific additive

search cost,  ∈ [0 1].18 Thus, the utility of accepting the prescription 0 when the

queue of the second supplier is0 is () (0 0) = (1− 0) −
0−Returning to the

first supplier after visiting the second supplier, the customer’s payoff is (1− ) −−
19 If 1−   0 then the customer is better off not fixing the problem. Under our

assumptions Ω ⊂ [0 1]  implicitly, this presumes that   1 are states of disrepair

that are not worth fixing and, consequently, are not included in Ω.

2.3 The suppliers

At every point in time each supplier has a queue representing hours committed

to serving customers that have already accepted the supplier’s prescriptions. The

lengths of the queues are determined by the history of customers arrival, their service

prescriptions, and their acceptance decisions. In other words, the lengths of the

15This is the sense in which the search involves learning.
16We examine the updated beliefs in further details below.
17The particular functional form is chosen to simplify the exposition. The critical feature of

the customers’ payff for our analysis that are captured by this functional form are: The utility is

monotonic decreasing in the recommended repairs and in the length of the queue.
18Additive search cost is a standard assumption in the literature on optimal stopping rules.
19This is the sense in which the recall is costless.
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queues are determined by the realization of an exogenous stochastic process (that

is, the arrival rate and the random state ) and the endogenous decisions of the

suppliers and customers

The suppliers’ strategies: The suppliers’ mixed prescription strategies are

mappings  : Ω×  → G where G denotes the set of CDF on Ω20 Formally, for each
 ∈ Ω and ( −) ∈   ( −) () := Σ

=1 (
 −) ()  where

( ( −) (1)    ( −) ()) ∈ ∆ (Ω)   ∈ {} and  denotes the

distribution function that assigns the unit probability mass to  Because the asym-

metry between the suppliers is due solely to the lengths of their queues, the suppliers

prescriptions are distinct only as a result of the different of their queues and, in the

case of mixed strategies, the randomly selected prescription.

The suppliers’ payoffs: Before the start of a stage game Γ
¡
 

¢
at

time, say  = 0 supplier  anticipates that either his or his rival’s prescription be

accepted and, as a result, the state of the queues transitions from the current state

( ) to the state (̂ ̂) Following that there is a random waiting time 0  0

before the next customer arrives and initiates the stage game Γ
³
 ̂ − 0 ̂ − 0

´


The transition probabilities from ( ) to (̂ ̂), is determined by supplier’s

strategies  ( −)   ∈ {} and customer’s acceptance rule .
Let  : Ω ×  → R+ be a bounded measurable function representing suppliers’

anticipated expected discounted value before the start of a stage game. We show

next that the value function  exists and is unique.

Just before the start if the stage game Γ
¡
 

¢
, supplier  expects to receive

20We are restricting consideration to history-independent, or Markovian, symmetric strategies.
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a cash flow from servicing the customers in his queue while waiting the arrival of the

next customer, yielding a discounted value

Z min(̂ :0)

0

−

and the anticipated discounted expected value from the stage game that follows

given by, −
0
Σ∈Ω ( ̂ − 0 ̂− − 0) (). Thus, the total anticipated payoff

̂ ( −) from a stage game Γ( ) that is about to be played is:

̂ ( −) =

Z ∞

0

Z


[

Z min(̂ 0)

0

−+−
0
Σ0∈Ω (

0 ̂−0 ̂−−0) (0)](̂ ̂| )
³
̂ ̂

´
 (0) 

where the conditional transition probability (̂ ̂| ) is a shorthand for the

expression (̂ ̂|  0  ) that makes explicit the fact that the probab-

ility of the state
³
̂ ̂

´
of the queues conditional on the state

¡
 

¢
depends

on the state of disrepair and the suppliers and customers strategies. Note that the

payoff function ̂ is linear with respect to player’s strategies ( ) and also the

anticipated value function  . Moreover, if the players strategies ( ) and the an-

ticipated value function  are all bounded and measurable, then the payoff function

̂ is bounded measurable.

If supplier  anticipates correctly the strategies of his rival and the customers and
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chooses his best response, then the payoff function ̂ coincides with the hypothesized

anticipated value function  . Formally, for  ∈ {}

 ( −) =

max
∈G

Z ∞

0

Z


[

Z min(̂ 0)

0

−+−
0
 (

0 ̂−0 ̂−−0)](̂ ̂| )
³
̂ ̂

´
 (0) 

(1)

where Σ (
0 ̂ − 0 ̂− − 0) := Σ0∈Ω (0 ̂ − 0 ̂− − 0) (0)  The expres-

sion (1) is a contraction mapping, which implies the existence and uniqueness of 

Formally,

Proposition 1: There exists a unique value function  : Ω×  → R

3 Equilibrium Analysis

3.1 The players’ behavior and the evolution of the queues

We analyze the credence service market as Markovian sequential equilibrium of a

stochastic game of incomplete information. Given  ∈ Ω a strategy  is completely

mixed with modulus  if  () ≥ −1,  ≥  for all  ∈ Ω To start with, we study

the equilibria of the stage game Γ
¡
 

¢
in completely mixed strategies with

modulus  beginning with the behavior of the customers and the suppliers.
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3.1.1 The customers

The customers system of beliefs: At the start nature assigns the customers

their types, which is the customers’ private information. When a customer detects

a problem and seeks remedial service, she does not know which particular stage

game, Γ
¡
 

¢
 she initiates. Her prior beliefs are depicted by the distributions

 ∈ ∆ (Ω) and  ∈ V. In view of the ex-ante symmetry of the suppliers, insofar as
the customers are concerned,  is symmetric.21

Consider the state
¡
 

¢
and let  (

 −)   ∈ {} be the sup-
pliers completely mixed strategies with modulus  The customers are supposed to

know the strategies of the suppliers as functions of the states but not the current

state
¡
 

¢
 In particular, the customers do not know which is the short-queue

supplier and which is the long-queue supplier. Let (1 1) and (2 2) denote the

prescriptions obtained and queues observed by a customer in her first and second

visits, respectively.

Following her visit to the first supplier and having observed 1 regardless of

whether it is  or  the customer updates her beliefs about the state of disrepair,

 and the length of the queue of the second supplier by applying Bayes’ rule as

follows: For all  ≤ 1 and (1 2) ∈ 

 ( 2 | 1 1) =
1 ( 1 2) (1) () (2 1)R ̄

0
[Σ1≤≤11 ( 1 

0
2) (1) ()] (

0
2 1)

0
2

 (2)

where 1 ( 1 2) denotes the mixed strategy of the first supplier.
22

21Because  is part of the equilibrium, it will be shown later that this assumption is validated.
22For more details see section 3.1.3.
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The customers expected payoff and best response strategies: Given the

suppliers’ completely mixed strategies, , with modulus  we explore next the

optimal behavior of the customer in the subgame following her visit to the first

supplier and the evolution of her beliefs. Having obtained the prescription 1 and

observing the length of the queue, 1 a customer of type ( ) can accept the

prescription and stop the search or seek a second prescription. In the latter case the

customer accepts the second supplier’s prescription if (1− 2) 
−2 ≥ (1− 1) 

−1 .

Otherwise the customer exercises the recall option and returns to the first supplier

to obtain the payoff  (1 1)−  = (1− 1) 
−1 − .

Because in her second visit the customer is going to accept or reject the second

offer according to whether  (2 2) is greater or smaller than  (1 1), given

1 and 1 the reservation utility of a customer of type ( )  
()

 (1 1)  is given

by


()

 (1 1) = (3)

Σ1≤≤1Σ≤2≤[
Z ∞

0

max{ (2 2)  
 (1 1))} ( 2 1) (2)

 ( 2 | 1 1) 2−

Given her type, ( )  and the suppliers’ strategy,  the customer’s expected

payoff upon observing (1 1) given the reservation utility strategy 
()

 (· ·) in (3),
is:

̄ ( ( )  ) = 
()

1 (1 1)
 (1 1) +

³
1− 

()

1 (1 1)
´

()

 (1 1) 

(4)

Hence, the customer accepts the first supplier’s offer (that is, set 
()

1 (1 1) = 1)
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if  (1 1) ≥ 
()

 (1 1)  Otherwise, the customer continues the search (that

is, set 
()

1 (1 1) = 0). She accepts the second supplier’s offer (that is, set


()

2 (1 2 1 2) = 1) if  (2 2)   (1 1)  Otherwise, she exercises the

recall option (that is, set 
()

2 (1 2 1 2) = 0).23 With this in mind we make

the following definition:

Definition 2: A reservation-utility search strategy  :  → Σ1 ×Σ2 consists of

two mappings 
()

1 : Ω×£0 ̄¤→ {0 1} and ()2 : Ω2× → {0 1} and a function

()

 : Ω× £0 ̄¤→ [0 1] such that:

(a) 
()

1 () = 1 if  () ≥ 
()

 () and 
()

1 () = 0 otherwise.

(b) 
()

2 (2 1 2 1) = 1 if 
()

1 (1 1) = 0 and 
 (2 2)   (1 1) and


()

2 (2 1 2 1) = 0 otherwise.

We summarize the above discussion in the following:

Proposition 2. A reservation-utility strategy is the customers’ unique best re-

sponse to the suppliers’ strategy profile ( (
 −))∈{}  for all (

 −) ∈
Ω× .

The customer’s expected payoff under the reservation-utility strategy is continu-

ous in the suppliers strategies. Formally,

Lemma 1: For each type ( ) ∈  and all (1 1) ∈ Ω× £0 ̄¤ the customer’s
expected payoff, ̄ ( ( )  ), of the reservation-utility strategy is continuous.

The continuity of ̄ is an immediate implication of its linearity in the strategies

23If the full recall formulation is replaced by search with uncertian recall, the waiting time becomes

a random variable, e1 taking values in
£
1 ̄−2

¤
 whose distribution is determined by the

arrival rates. Because in her second visit the customer is going to accept or reject the second offer ac-

cording to whether  (22) is greater or smaller than ̄
 (1 1 2) := 

h

³
1 e1´ | 1 2i,

given 1 and 1 the reservation utility of a customer of type ( ) is still determined by (3) with

̄ (1 1 2) replacing 
 (11).
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and the fact that  (
 −) ()  0  ∈ {} for all  ∈ Ω.

3.1.2 The suppliers

Because the customers types are private information, the suppliers choose their

strategies as best responses against the acceptance probabilities induced by the dis-

tribution of customers’ types. We examine next the acceptance probabilities induced

by the customers’ reservation utility strategies Supplier 0s prescrition is accepted

in the following cases: (1)  is the customer’s first call and the customer accepts the

prescription  immediately, (2)  is the customer’s first call, the customer chooses to

seek a second prescription and returns to  for the service, (3)  is the customer’s

second call and she accepts his prescription. We calculate the probabilities of these

events.

The first-call suppliers face a distribution of acceptance rules induced by the dis-

tribution,  on the set of types. Thus, for all (1 1) ∈ Ω × £0 ̄¤  the subset of
the first callers who do not seek a second prescription when faced with the prescrip-

tion 1 and queue 1 is given by the subset of types 1 (1 1) := {( ) ∈  |
 (1 1) ≥ 

()

 (1 1)} ∈ B ( )  Consequently, the average acceptance rate of
first callers who, given the queue length 1 accepts the prescription 1 immediately

is:

1 (1 1) =

Z



()

1 (1 1) ( ) = (1 (1 1))

This may be interpreted as the probabilistic demand function of first callers.

Given the first supplier’s prescription, 1 and the length, 1, of his queue, the

acceptance rate of a second prescription, 2 when the length of the queue of the
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second supplier is 2 is:

2 (2 2 | 1 1) =

Z



()

2 (2 2; 1 1)( )

The second-call supplier does not know that he is the second-call supplier. How-

ever, observing  and 1 the second supplier can infer that if he is the customer’s

second-call then the prescription the customer obtained in her first call is a random

variable e1 whose probability distribution is determined by the strategy of the first
supplier. Specifically, if the customer first visits supplier  ∈ {} then 1 was de-

termined by the strategy ( 
 −) Moreover, given1 and 1 only customers

whose type ( ) and having obtained the prescription  and observed the queue,  

such that 
()

1 () = 0 (that is, customers type for whom  ()  
()

 ())

seek a second prescription. Consequently, given
¡
 

 
¢
 if  is the second sup-

plier the customer calls upon, the probability that his prescribed service is accepted

is

2
¡
  

 − 
¡
 

− 
¢¢

= Σ∈Ω{( ) | 
()

1

¡
− 

−¢ = 0}()2

¡
 

 | −¢  ¡ − 
¢
()   ∈ {}

Hence, the probability that a newly arrived customer accepts the prescription of

supplier  is:




¡
 |  

¡
 

− 
¢¢
:= (5)
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1

2
[1

¡
 


¢
+(1−1

¡
 


¢ ¡
1−Σ∈Ω2

¡
− |  

¢

¡
 

− 
¢
()
¢
+

Σ∈Ω
¡
1− 1

¡
−

¢¢
2

¡
 

 | −¢  ¡ − 
¢
()]

Given players strategies () and current state ( −), if a customer ac-

cepts a prescription  in a stage game, it must be either with supplier  or supplier

−. Moreover, before the start of a stage game, the probability that supplier ’s
prescription  will be accepted against supplier −’s strategy  ( 

− ) is

given by 
 ( |   ( 

− )) in (5). Hence, after supplier ’s prescription ,

 ∈ {} is accepted, the conditional probability of (̂ ̂−) is:

(̂
 ̂−| −) =

1

2



¡
 |  

¡
 

− 
¢¢


¡
 

 −
¢
()

if  = ̂ −  ∈ Ω and ̂− = − and  (̂
 ̂−| −) = 0 otherwise.

Therefore, for any arbitrary state of the queues (̂ ̂) to occur after a stage game

to occur is accepted is:

(̂
 ̂| ) = (̂

 ̂| ) + (̂
 ̂| )

if ̂− ∈ Ω or ̂
− ∈ Ωwhere ̂

+̂ ≤ ̄ and ((̂ ̂)| ) = 0 ,

otherwise.

Lemma 2: For all   ∈ Ω× the expression (1) is a continuous function
on the strategy profiles set Σ×∆ (Ω)

2

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3.1.3 The evolution of the queues

We show next that there is a stationary distribution of  on  perceived by custom-

ers. To do that, we start with an original distribution ∗ hypothesized by customers

and trace its evolution in the wake of the end of a stage game. Suppose that ∗

satisfies the following properties (we will show why to specify these requirements

soon)

1. ∗ is absolutely continuous (with respect to the Labesgue measure) except at¡
 0

¢
and

¡
0 

¢


2. ∗ has full-support.

3. ∗ has marginal probability ∗( ) for ( ) ≥ 0 and ( ) 6=
(0 0) 

4. ∗ has probability mass ∗( ) for ( ) = (0 0)

The information that the suppliers have and the customer does not have is: (a)

How long it has been since the preceding stage game ended (i.e. the waiting time

), and (b) The state ( ) of the previous stage game. Thus, the customer’s

perceived queue distribution is the unconditional expectation of (̂
 ̂| )

For (̂ ̂)  0, the only possibility that (̂ ̂) obtains is that the preced-

ing game ended with the state of the queues (̂ +  ̂ + )  ∈ (0∞]. Hence,
conditional on preceding stage game starting with the state ( ), the probab-

ility of this event is: Σ∈Ω(̂ +  ̂ + | ) () ∗( ) Therefore,

(̂
 ̂) is the unconditional expectation
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(̂
 ̂) =

Z ∞

0

Z


h
Σ∈Ω(̂

 +  ̂ + | ) ()
i
∗( )(×) ()

For (̂ ̂) ≥ (0 0) such that  = 0  ∈ {} and (̂ ̂) 6= (0 0), it can
occur is if previous game ends with (̂ +  ̂ + ), or if, for example,  = , the

previous game ends with
³
̂ +  ̂

´
and some ̂ ≤ . Therefore, it is the sum

of the two unconditional probabilities

(̂
 ̂) =

R∞
0

R


h
Σ∈Ω(̂ +  ̂ + | ) ()

i
∗( )( ×) ()

+
R∞
0

R
≤

h
Σ∈Ω(̂ +  ̂| ) ()

i
∗( )( ×) ()

For (̂ ̂) = (0 0), it can be reached by points from the 45 degree line and

also points from both axes of the triangle . So it is the sum of the three probabilities

(̂
 ̂) =

R∞
0

R


h
Σ∈Ω(̂ +  ̂ + | ) ()

i
∗(


 )(

×) ()

+
R∞
0
[
R
≤

h
Σ∈Ω(̂ ̂ + | ) ()

i
∗(


 )(

×)] ()

+
R∞
0
[
R
≤

h
Σ∈Ω(̂ +  ̂| ) ()

i
∗(


 )(

×)] ()

+
R∞
0
[
R
≤≤

h
Σ∈Ω(̂ +  ̂ + | ) ()

i
∗(

×)(
×)] ()
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If the perceived distribution  after a stage game coincides with the hypothesized

∗ then,

∗(̂ ̂) =

Z ∞

0

[

Z


h
Σ∈Ω(̂

 +  ̂| ) ()
i
∗( )(×)] ()

Note that for (̂ ̂) with ̂ = 0  ∈ {}, (̂ ̂) is either a marginal

probability over one axis, if only one ̂ = 0 or a probability mass if ̂ = ̂ = 0.

Proposition 3: The perceived measure  on  is absolutely continuous with

respect to the Lebesgue measure and has full support.

Since the lengths of the queues are finite, starting from the event that both

suppliers are idle (i.e.,  =  = 0) the probability,  of returning to the

same position under the equilibrium strategies is positive. Since the equilibrium

is Markovian, this event is encountered infinitely often. Thus, the probability of the

event “ =  = 0 infinitely often” is: lim→∞   0 Hence,  = 1 In other

words, starting from any state of the queues,
¡
 

¢ ∈  with probability one

the queues will attain the point  =  = 0 infinitely often. From this position,

the two suppliers are equally likely to become the long-queue supplier. Hence, no

supplier enjoys the short-queue advantage persistently. Therefore, the evolution of

the queues under the equilibrium strategies requires that the anticipated lengths of

the queues be stochastically equal, in the sense that the identity of the short-queue

supplier is expected to change over time in such a way that the joint distribution

of the queues is symmetric around its mean. We summarize this in the following:

In symmetric stationary equilibrium, successive stage games induce a joint distribu-

tion of the lengths of the queues that is stationary, symmetric and the two suppliers
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commit the same amount of fraud on average.

3.2 Equilibrium: Definition and existence

A customer’s system of beliefs  := (  (2 | 1 1)) consists of the prior

belief about the stage game being played, which is determined by the prior beliefs

 ∈ ∆ (Ω),  ∈ V and the updated beliefs  (2 | 1 1) on Ω × £0 ̄−1

¤
.

A strategy profile ( ( −))   ∈ {}, is sequentially rational if, for all¡
 

¢ ∈ Ω×  given the suppliers objective functions,  ( −) is best

response against ( (− ))   ∈ {}  and, given the customer objective
function,  is best response against

¡

¡
 

¢
 
¡
 

¢¢


Definition 1: The strategy profile
³
̂ ̂ ( −)

´
  ∈ {} and a sys-

tem of beliefs ∗ = ( ∗∗ (2 | 1 1)) constitute a symmetric Markovian

sequential equilibrium of the stochastic game induced by the credence good market if:

() The strategy profile
³
̂ ̂ ( −)

´
  ∈ {} is sequentially rational

given the belief system ∗ = ( ∗∗), where, for  ∈ {}  ̂( −) is in

the argmax∈G of

Z ∞

0

Z


[

Z min(̂ 0)

0

−+−Σ0∈Ω (
0 ̂−0 ̂−−0) (0)]∗(̂ ̂| )

³
̂ ̂

´
 (0) 

and, for every ( ) ∈  and (1 1) ∈ Ω× £0 ̄¤ 
̂
()
1 (1 1) = arg max

1∈{ :()→[01]}
[1

()(1 1) + (1− 1)
()
 (1 1)]

and ̂
()
2 (1 1 2 2) = 1 if 

()(1 1) ≤ ()(2 2) and ̂
()
2 (1 1 2 2) =
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0, otherwise.

() There exists a sequence of completely mixed  strategies with modulus 

and strategies profiles ( ) that is sequentially rational given a belief system

 := (  (2 | 1 1)) with
³
̂ ̂

´
= lim→∞( ), 

∗ = lim→∞ ,

∗ = lim→∞ ∗  and  (2 2 | 1 1) are derived from the  and ∗ and strategy

profile (  ) using Bayes’ rule.

Theorem 1: There exists a symmetric Markovian sequential equilibrium of the

stochastic game induced by the credence good market.

In equilibrium, the payoff function ̂ coincides with the anticipated value function

 when every player is adopting its optimal strategy with the transition probability

∗(· ·| ) = (· ·|  ∗ ∗) based on equilibrium strategies∗( −)

 ∈ {} and ∗. Thus, the value function of supplier  ∈ {} is:

 ( −) =

max
∈G

Z ∞

0

Z


[

Z min(̂ 0)

0

−+

−
0
Σ0∈Ω (

0 ̂ − 0 ̂− − 0) (0)]∗(̂ ̂| )
³
̂ ̂

´
 (0) 
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4 The Short-Queue Advantage and Examples

4.1 The short-queue advantage and fraudulent behavior

If  6=  the supplier with the shorter queue enjoys a strategic advantage in the

sense that, if the two suppliers prescribe the same service, the short-queue supplier is

more likely to retain a new customer. However, because of the generality the primit-

ives of the model and the fact that higher prescription entail a trade-off between the

benefit of selling extra services and cost represented by lower probability of making

the sale, there is not guarantee that the suppliers value functions are necessarily

monotonic increasing in the suppliers’ own queues. Consequently, it is not necessary

that the short-queue supplier exploits his advantage by prescribing more service than

the long-queue supplier. More precisely, suppose that    and the long-queue

supplier prescribes  If accepted, the marginal value to  of prescribing +1 instead

of  is:

mv := −


Z +1



−+Σ∈Ω
£
 ( + +1 

)−  ( +  
)
¤
 () 

If the supplier is interested in selling extra services which, presumably, is the case

then this expression must be positive.

The cost to  of prescribing +1 instead of  is due to the reduction in the

probability that the prescription be accepted. Formally, denote by 

¡
 |  

¢
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the probability of supplier ’s prescription  is accepted, then the marginal cost is:

mc =
¡


¡
+1 |  

¢− 

¡
 |  

¢¢ ∙
−



Z 

0

− + Σ∈Ω̄ (
 ) ()

¸


where

̄ (
  

) = 

¡
 |  

¢
 (+ 

)+
¡
1− 

¡
 |  

¢¢
 ( +)

Consider next the difference 

¡
+1 |  

¢ − 

¡
 |  

¢
 The only

customers that supplier  loses by prescribing +1 instead of  are the customers

that tried both suppliers and decided to accepts supplier ’s prescription. These are

the customers whose type is in the set

T:={ ( ) ∈  | ( )∈  | (1− +1) 
−

 (1− ) 
−



(1− ) 
−− () ( )  (1− ) 

−−  () ( ) }

Then ¡


¡
+1 |  

¢− 

¡
 |  

¢¢
= −{T}

Clearly, this expression decreases monotonically with  and decreases monoton-

ically with  Hence, if the spread  −  increase −{T} decreases. But, if

 ( +  
) −  (  + )  0 then ̄ (

  
) increases with

 −  Hence, the total effect on mc is ambiguous. However, since  ( +

 
)−  (  + ) is bounded, if 

 − is sufficient large then the mc

tends to zero and the marginal value outweighs the marginal cost. At that point,
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the short-queue supplier exploits his advantage be prescribing higher level of service

then the short-queue supplier.

An equilibrium is said to be fraud-free if the equilibrium strategies are ̂ ( 
 −) =

  ∈ {} for all (  −) ∈ Ω× In view os the preceding discussion, the

next theorem asserts that fraudulent prescriptions of service is a persistent feature

of competitive equilibrium in the credence good market under consideration

Theorem 2: If ̄ is sufficiently large, then there exists no fraud-free equilibrium

in the market for credence quality services.

One measure of the short-queue advantage is the difference in the expected change

of the lengths of the queues induced by equilibrium strategies. Formally, given a stage

game Γ
¡
 

 
¢
 if    then the measure of the short-queue advantage is:

Ψ
³
 

  | ̂ ̂ ¡  
¢
 ̂
¡
 

 
¢´
:=

Σ∈Ω

h

³
 | ̂ ̂ ¡  

¢´
̂
¡
 

 
¢
()− 

³
 | ̂ ̂ ¡  

¢´
̂
¡
 

 
¢
()
i

The discussion above implies that an increase in the length of the queue of the

short-queue supplier reduces its short-queue advantage. Formally, if  is the short-

queue supplier then Ψ
³
 

  | ̂ ̂ ¡  
¢
 ̂
¡
 

 
¢´

  0

However, because ’s objective function is not necessarily monotonic increasing in

 the short-queue advantage does not yield clear cut conclusions concerning its

effect on the suppliers’ equilibrium strategies. It is useful, therefore, to consider some

simple situations whose analysis would allow us to develop further insights as to the

possible nature of fraudulent behavior.
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4.2 Simple examples

Suppose that Ω = { } where    Clearly, if the true state is  then

the only equilibrium is for both suppliers to prescribe the true state. The interesting

situation arises when the true state is  We consider this case below.

The payoff matrix corresponding to the stage game Γ
¡
 

¢
in which  is

the columns player and  is the rows player as follows:

↓  \ →  :  (1− ) : 

 :  
  


 

 



(1− ) :  
  


 

 



(6)

where

 
 =  ( )Σ∈Ω

¡
 +  

−¢ ()+(1−  ( ))Σ∈Ω
¡
 − + 

¢
 () 

for  ∈ {},  ∈ {} and



 =  (  )Σ∈Ω

¡
 +   


¢
 ()+(1−  (  ))Σ∈Ω

¡
  + 

¢
 () 



 =  ( )Σ∈Ω

¡
 +  


¢
 ()+(1−  ( ))Σ∈Ω

¡
  + 

¢
 () 

for  ∈ {} Allowing for mixed strategies,  and  denote the probabilities that
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players  and  prescribe   respectively. Then



1− 
=


 − 




 − 



and


1− 
=


 − 




 − 



 (7)

The primitives of the model, namely, the prior distribution on the customers’ type

space,  , the distribution on the possible states of disrepair, Ω the stochastic process

depicting the arrival of new customers, are quite general. This allows for wide range

of values of the suppliers payoffs of the stage games which depend on the states of

the queues. Consequently, the model admits a variety of equilibria, including pure

strategy and mixed strategy equilibria. In the Appendix we analyze the two stage

games Γ
¡
 

 
¢
 The first deals with the symmetric case in which the suppliers

queues are of equal lengths and the second with the asymmetric case in which the

suppliers’ queues are of different lengths. The general conclusions that emerge are

as follows:

If the suppliers queues are equal then, depending on the configurations of the

signs of these expressions we may have (a) pure strategy equilibria in which either

both suppliers prescribe truthfully or both commit fraud; (b) Two pure strategy

equilibria in which one supplier prescribe truthfully and the other overprescribes;

(c) A symmetric mixed strategy equilibrium in which each supplier overprescribes

service with probability 05.

If the suppliers queues are of different lengths then, in mixed strategy equilibrium

the short-queue supplier is more likely to commit fraud than the long-queue supplier.

In other words, if the true state is  and    then the equilibrium mixed

strategy of supplier  first-order stochastically dominates that of supplier  in the
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sense that Pr{} =    = Pr{} Moreover, Pr{}  05  Pr{}

5 Related Literature and Concluding Remarks

5.1 Related literature

Shapley’s (1953) was the first to formulate and prove the existence of equilibrium in

two-player, zero-sum, stochastic games. Extensions and review of stochastic games

in more general setting are provided in Duggan (2012) and Jaskiewicz and Nowak

(2018). While sharing many features of equilibrium analysis that appear in the

literature on stochastic games, our model presents an important variation — no player

in our model possesses perfect information. In particular, the customer in the model

has only partial information about the state that parametrizes the stage game and

the suppliers are ignorant of the customer’s type. This variation is a contribution to

the literature on stochastic games with incomplete information.

Despite evidence regarding the prevalence of fraud in the market for credence

goods and the distinguishing features of these markets, the literature dealing with the

modeling and analysis of these markets is rather scant. The works that are closest to

ours in terms of the questions asked, are Wolinsky (1995), Emons (1997) and Dulleck

and Kerschbamer (2006). Despite the shared interest in studying the prevalence

of fraud in equilibrium, these works model markets that have distinct structures.

Focusing on markets’ exhibiting features that are different from those of this paper,

they the reach different conclusions regarding the equilibrium characteristics.

Wolinsky (1995) modeled a market in which the customers bargain with suppliers
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by offering a price for the repair, and showed that, in interior equilibrium, suppliers

commit fraud by employing a strategy that assigns positive probability of rejecting

price offers when the state diagnosed requires low service. This strategy reflects

the suppliers’ belief that, to avoid the search cost, the customer may offer a higher

price rather than seek a second opinion. Wolinsky’s model is different from ours

in several important respects. In addition to assuming that the price of service is

fixed (no bargaining), a central feature of our model is the lengths of the suppliers’

queues and the characterization of customers by their idiosyncratic search costs and

discount rates. These aspects of our work are absent from Wolinsky’s model. These

differences in modeling mandate different equilibrium notions and analysis.

Emons (1997) depicts a credence good market with identical customers and in

which the suppliers must decide whether to enter the market. If a supplier enters the

market he is endowed with a fixed capacity that can be allocated between diagnosis

and repair services. These two functions are priced differently. Suppliers who lack

of sufficient capacity, can announce a wrong diagnosis to avoid providing the needed

repair. Emons studies conditions under which fraud free equilibrium exists. In

addition to its focus on the entry decision, Emons model is different from ours in the

specification of the information structure, the characterization of the customers and

their behavior, the pricing mechanism, and the suppliers strategies.

Dulleck and Kerschbamer (2006) model a market for credence services in which

the customers may experience a need for a high or low levels of service. Invoking a

game theoretic approach to study conditions under which competition will eliminate

fraud.
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Hu and Lin (2018), Fong and Liu (2016) and Fong et. al (2017) study the

efficiency loss due to the asymmetric information in credence good monopolistic

suppliers facing uniformed customers. More specifically, Hu and Lin (2018) modeled

repeated interaction between a customer in occasional need of maintenance service of

a durable good and a monopoly supplier. They show that there exist no equilibrium

that supports truthful diagnosis. Fong and Liu (2016) investigated the effect of

liability on the seller’s incentive to maintain good reputation and its impact on

market efficiency. Fong et. al (2017) focus on the use of customer service to build

trust between the monopoly supplier its customers so as to mitigate the efficiency

loss.

Heinzel (2019) studied the equilibrium of a price-regulated market in which phys-

icians characterized by heterogeneous cost compete for servicing uniformed patients.

Heinzel models the interaction among physicians and patients as a game in which

patients may employ mixed strategies in seeking “second opinion” when diagnosed as

having a serious problem and physicians may defraud their patients by overtreating

them for minor problems. Unlike in the model we present here, the distinct phys-

icians’ types is exogenous and the customer behavior is not derived from optimal

search strategy.

5.2 Concluding remarks

We model a credence service market featuring two identical suppliers engaged in Ber-

trand competition. The customers care about the prescribed services and the waiting

time. Our analysis shows that competition cannot be relayed upon to sustain fraud-

34



free equilibrium in these kind of markets and that fraud is a persistent and prevalent

phenomenon. The analysis highlights the role of the evolution of the customer’s be-

liefs in the wake of her visit to the first supplier and the optimal stopping rule that

characterizes her best response strategy, and the suppliers prescription strategies.

These aspects of our model and analysis are not specific to the two suppliers case

and would show up, in a more complex form, if the number of the suppliers is larger.

The analysis underscores the short-queue supplier’s advantage, its implications

for the overprescription of service and the consequent evolution of the queues. It

is worth noting that if the waiting time is not an issue (that is, the suppliers have

no capacity constraints) so that each customer can be served immediately, then the

analysis would change considerably. In this instance, the customers’ utilities depend

only on the prescribed service, and their discount rates is no longer a factor Suppose

that  ∈ (0 1] then it is easy to verify that the suppliers strategies () =  for

all  ∈ Ω and  ∈ {} is an equilibrium. In other words, knowing that the
equilibrium prescriptions of the two suppliers are the same, no customer is inclined

to search and, consequently, the suppliers have no incentive to try and undercut

each other’s prescription. Maximal fraud also characterizes the cab service provided

to tourists in an unfamiliar city since the prescription (that is, the route taken)

coincides with the service provided, leaving the customer no opportunity for seeking

a second prescription. The route taken is only restricted by a tourist’s conception of

the reasonable length of the ride.24

One may think of variations on the model presented here. For instance, there are

24See also, Stahl (1996) for a discussion of a related issue.
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situations in which to obtain a diagnosis one has to schedule an appointment (e.g.,

a plumber service or medical examination). In these instances, the waiting time is

ahead of obtaining the diagnosis and the customer may obtain information about

the waiting time at different suppliers prior to deciding which supplier to visit first.

This would change the information structure and, consequently, the strategies and

equilibrium of the model. The analysis of such variations is left for future research.

An important aspect of the credence good market, discussed in Darby and Karni

(1973) but not touched upon in this work, is the possibility of developing a reputation

for honest diagnosis and its effect on the commission of fraud. Including reputation

in our model would require admitting repeated interactions in which the customers

display loyalty (e.g.„ they visit “their” supplier first) and the suppliers recognize

their loyal clients. Under these conditions, the suppliers may establish what Darby

and Karni dubbed client relationship. The loss of future business of, and being

bad-mouthed by, a dissatisfied customer would increase the cost to the suppliers of

“losing” customers, which should serve as a deterrence and, consequently, mitigate

the problem of fraud.

6 Proofs

6.1 Proof of Proposition 1

To begin with, we verifying that the Blackwell sufficient conditions for contraction

mapping are satisfied.25

25See Stokey and Lucas (1989).
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Define a mapping  by:26

 ( ) =

max
∈G

Z ∞

0

Z


[

Z min(̂ 0)

0

−+−
0
 (

0 ̂−0 ̂−−0)]∗(̂ ̂| )
³
̂ ̂

´
 (0) 

(Monotonicity) Suppose that there are two value functions,  ∗∗ and  ∗ such that

 ∗∗( )   ∗( )  pointwise. Because the maximizer can always

attain a higher value for  ∗∗ then for  ∗ , we have,  ( ∗∗) ≥  ( ∗) 

(Discounting) Given a value function  adding a constant  and inputting the

mapping  with  +  we get:

 ( + ) =  ( )+max
∈G

Z ∞

0

Z


[−
0
Σ∈Ω ()]

∗(̂ ̂| )
³
̂ ̂

´
 (0)

=  ( ) + 

Z ∞

0

−
0
 (0) 

and
R∞
0

−
0
 (0) is a constant strictly lower than 1 for all   0

By the Blackwell sufficient conditions for contraction mapping  is a contraction

mapping. By the Contraction Mapping Theorem,  exists and is unique ¥
26Implicit in  is a fixed strategy profile

³

³
· ̂−  ̂

´
 
´

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6.2 Proof of Proposition 3

To start with observe that (a) Since  ∈ [0 1]  there is a set of positive measure
of customer types who accept the prescription  =  Thus, every prescription,

 ∈ Ω has positive probability of being accepted in a stage game of modulus  given

any queue distribution  and (b) Because  ()  0 for all   0 the probability

of the event ( ) = (0 0) is at least 
¡
̄
¢
 0 Hence, the state of queues

( ) = (0 0) occurs with positive probability after any stage game.

Claim 1: Given any initial probability distribution, 0 on  for every state of

the queues, ( ) there is a finite  ∈ N such that the customer’s perceived queue
distribution  in the -th stage game has positive probability density on ( ).

Proof: Since every point ( ) can always be reached by waiting time  from

a stage game ends with (+ + ) such that + ++  ≤ ̄, our question

is reduced to whether every point in the set {( ) |  + ) ≤ ̄} can be
reached from a finite sequence of stage games. Because (0 0) has positive probability

in the queue distribution after any stage game, the question is further reduced to

whether ( ) can be reached from origin point (0 0) with positive probability

density. If the answer is yes, then we are done.

To begin with, note first that in a stage game of modulus , the probability

that both suppliers prescribe  ∈ Ω is at least −2 and it is necessary that both

suppliers have positive probability to be accepted regardless whose queue is longer or

shorter. Because the customer waiting time distribution  () is absolutely continuous

(with respect to the Lebesgue measure) with full support,  ∈ (0∞], the points
( 0) or (0 ) can be reached with positive marginal probability. For points
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in {( ) |  + ) ≤ ̄} we can make use the full-support of  () to first
choose a proper point ( + ∆ 0) and follow the sequence of  stage games, in

which supplier ’s prescriptions gets accepted consecutively to reach the desired

. Let each consecutive stage game starts after a short time interval, , so that the

total time during which the  stage games are played is ∆ =  so that not only

 is reached as desired, but also  +∆ will decrease gradually to  along the

sequence of events. That such ∆ and such a sequence of events can be constructed

is implied by the fact that, for any , there is a finite set Ω∗ = {| ∈ Ω} such that
 + 1  Σ∈Ω∗  . Define ∆ = Σ∈Ω∗ − and  = ∆|Ω∗| . This completes
the proof of the claim.

Claim 2: If the distribution  is absolutely continuous with respect to the

Lebesgue measure on R then the equilibrium queue distribution, ∗ on  is absolutely

continuous with respect to the Lebesgue measure except in
¡
 0

¢ ∪ ¡0 
¢
.

Proof. Given
¡
 

¢ ∈  that is the realization of a random variable whose

distribution,  is arbitrary, the queue at the start of the next stage game is³³
̂ − 

´

³
̂ − 

´´
∈ The transition probability from

¡
 

¢
to
³³

̂ − 
´

³
̂ − 

´´
is determined by:

(a) The customer’s acceptance decision that takes
¡
 

¢
to
³
̂ ̂

´


(b) The waiting time for the arrival of the next customer at time   0 that takes³
̂ ̂

´
to
³³

̂ − 
´

³
̂ − 

´´
Step (a) is fully determined by the initial distribution,  on , the distribution 

on Ω and the suppliers and customers strategies,  and Thus, without further re-

strictions on the distributions, because  is arbitrary, the resulting random variable
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³
̂ ̂

´
is arbitrarily distributed according to a probability measure 0

Define  () = (−−)    0 and observe that the sum of the random variablese := ³̂ ̂
´
and (−−) is distributed according to 00 which is the convolution

of 0, the measure of
³
̂ ̂

´
and  (−1 (−−)). Thus, by the Fubini-Toneli

theorem, 00 can be written as:

00 (B) = 0∗
¡
1− 

¡
−1 (−−)¢¢ (B) = Z ∞

0

∙Z


1B

³ e+  ()
´
0
³ e´  e¸  () 

(8)

for all B ∈B () 
Since  is absolutely continuous with respect to the Lebesgue measure on R,

the measure of
³³

̂ − 
´

³
̂ − 

´´
is at the points where

³
̂ − 

´
= 0 or³

̂ − 
´
= 0 must be absolutely continuous with respect to the Lebesgue measure

on R. By the same argument, the measure 00 is non-atomic, except at (0 0) 

Suppose that  (B) = 0 and 00 (B)  0 Let

B0 = {¡ 
¢ ∈  | ¬ ¡¡ 

¢
=
¡

 −  

 − 
¢¢


¡


  



¢ ∈ B}̇
Then, 00 (B

0)  0 Define B0
 = { +   +  ∈  | ¡ 

¢ ∈ B0},  ∈
[0∞) Let P = {}∈N be a partition of B0 such that  = {B0

 | 0 (B0
 ) ∈

[( + 1)
−1

 −1} Then, at least one cell of the partition is uncountable. Let this cell
be 0  then 0 (B

0
 )  −10  0 Pick a countable number of elements of 0 {B0


|

 ∈ N} Then,
0
¡∪∈NB0



¢
= Σ∈N

0


¡
B0



¢ ≥ Σ∈N
−1
0 =∞
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But 0 is bounded. A contradiction. Hence, 
00
 is absolutely continuous with respect

to the Lebesgue measure on  ¥

6.3 Proof of Lemma 2

The customer’s strategy affects  through the probability 
 in (5) Since  is

continuous in 
 which is continuous in ,  is continuous in  To show that 

is continuous in  (
− )  it suffices to show that

Z min(̂ 0)

0

− + −
0
Σ∈Ω

¡
(0) − (0)

¢
 ()] (0) (9)

is continuous in  (
− )  By equation (1), the expression in (9) depends on

 (
− ) through Σ∈Ω ( 

 − + )  (
− ) (). Since the last

expression is linear in the probabilities ( (
− ) ())∈Ω  it is continuous in

 (
− ). That  is continuous in  (

 −) follows from its linearity in

the probabilities ( (
 −) ())∈Ω  ¥

6.4 Proof of Theorem 1

To prove the existence of a symmetric Markovian equilibrium for the subgame

Γ( ) in strategies that are totally mixed with modulus  we invoke Kakutani-

Fan-Glicksberg fixed point theorem.27 Next, invoking sequential compactness and

letting  →∞ we establish the existence of a convergent subsequence of fixed points

whose limit is our symmetric Markovian equilibrium.

27See Aliprantice and Border (2006) Theorem 17.55.
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To start with, we construct a correspondence that maps the sets of suppliers’ value

functions, players’ strategies and the distributions on the queues into themselves.

Let  ⊂ RΩ×
+ whose elements are bounded B (Ω× )−measurable functions and

suppose that the suppliers’ continuation functions  belong to . Assume that the

supplier’s strategies will be in:

G := { : Ω×  → G|( )() ≥ 1

∀ ≥ }

is the set totally mixed, B (Ω× )−measurable, CDF with supports Ω  ∈ Ω.

Trivially, G is non-empty, closed and convex set. The set of customers strategies is:
Σ := (Σ1 ×Σ2)


.

Define a correspondence Υ form  × G ×Σ × V to itself as follows:

Υ (   )⇒
¡
̄ ̄ ̄ ̄

¢


such that ̄ is the suppliers maximized value function given (̄ ̄ ̄) and ̄

is the maximizer and measurable selection (with respect to ( )), ̄ is the

customer’s best response function, and ̄ is the next stage distribution on .

Claim 1: The sets , GΣ and V in the domain of Υ are all compact subsets

of locally convex Hausdorff spaces.

Proof of Claim 1: Consider the set  Since the point-wise limit of measurable

functions is measurable, we have that  is bounded and closed in RΩ×
+ . Hence 

is a compact in the product topology and is a subset of RΩ×
+ , which is locally convex

Hausdorff space.
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To show that G are compact subsets of locally convex Hausdorff space suffices
it to observe that G is compact subset of R×Ω×

+ and G= GΩ× . Hence, G is a
compact subset of R×Ω×

+  which is locally convex Hausdorff space.

Consider next the set Σ Since Σ,  = 1 2 are compact sets, so is the product,

Σ1 × Σ2 Hence, by Tychonoff Theorem, Σ is compact subset of R×Ω2× . Also,

by Prokhorov’s theorem, V ⊂R2 is compact (in the topology of weak convergence).
Hence, both Σ and V are compact subsets of locally convex Hausdorff space. ♦

We establish next that the set 
 of the customers’ strategies has the required

measurability properties.

Claim 2: Given  ∈ G and  ∈ V , ()1 () is measurable with respect to

B ( )×B ¡Ω× £0 ̄¤¢, and ()2 (1 1) : Ω×
£
̄−1

¤→ {0 1} is measurable with
respect to B ( )×B ¡Ω× £0 ̄¤¢.28 Moreover, the mapping 1 : Ω×

£
0 ̄

¤→ [0 1]

given by

1() =

Z



()

1 () ( )

and 2 (1 1) : Ω×
£
̄−1

¤→ [0 1]

2 (1 1) (· ·) =
Z



()

2 () ( )

are well-defined B ¡Ω× £0 ̄¤¢−measurable functions.
Proof of Claim 2: Given that  is a B (Ω× )−measurable correspondences and

the customers’ utility functions are continuous on  , the best responses to (1 1)

in the first visit and to (1 1 2 2) in the second visit are single valued func-

28B ¡Ω× £0 ̄¤¢ the restriction of B (Ω× ) to Ω× £0 ̄¤ 
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tions. By Berge Maximum Theorem29 the best response functions 
()

1 (· ·) and

()

2 (1 1) (· ·) are continuous on  . Hence, they are B ( )−measurable Thus,
 is well-defined B (Ω× )−measurable vector-valued function.
Next we show that  is B

¡
Ω× £0 ̄¤¢−measurable function. Since () ()

is defined over the product space  ×Ω× £0 ̄¤  for every given () ∈ Ω× £0 ̄¤
there exists a sequence of simple functions


()

 () := Σ
=1 ()1

( ) 

where ()


=1 is a partition of the customers’ type space  , 1
are the indicator

functions, and  () are the coefficients of the simple functions that, by the Fubini-

Tonelli theorem can be chosen to be B ¡Ω× £0 ̄¤¢−measurable, such that
lim
→∞


()

 () = 
()

 ()

Since  is a finite measure space and, for each () ∈ Ω× £0 ̄¤  () () is

B ( )−measurable function, we have a well-defined function

1 () =

Z



()

 () ( ) = lim
→∞

Σ
=1 ()  () 

But the simple functions were chosen to beΣ
=1 ()  () are B

¡
Ω× £0 ̄¤¢−measurable.

Since the sum and pointwise limit of measurable functions are measurable, we get

that  being the pointwise limit of sums of B
¡
Ω× £0 ̄¤¢−measurable functions is

29See Aliprantice and Border (2006) Theorem 17.31.

44



B ¡Ω× £0 ̄¤¢−measurableBy the same argument 2 () is B ¡Ω× £0 ̄¤¢−measurable
for all () ∈ Ω× £0 ̄¤  ♦

Claim 3: Given any B ¡Ω× £0 ̄¤¢−measurable , the rival supplier B (Ω× )−measurable
strategy 0

, a probability space (B (Ω× )  ), and B (Ω× )−measurable con-
tinuation value functions  , a supplier best response correspondence  : Ω×  ⇒ G
is B (Ω× )−measurable that admits a measurable selector.
Proof of Claim 3: Without loss of generality, consider supplier ’s optimization

problem. Since supplier ’s objective function (1) is linear (hence continuous) in

his own mixed strategy  the rival’s strategy 
0
 the customer’s  and  and is

B (Ω× )−measurable, it is a Carathéodory function.
Note that G is a separable metrizable space. Define the constant correspondence

 : Ω×  ⇒ G by  ¡ 
¢
= G for all

¡
 

¢ ∈ Ω×  Then  is weakly

measurable correspondence with non-empty compact and convex value. Denote by

 ∗ (
 −) the solution to (1) for supplier  ∈ {}. Then, by the Measurable

Maximum Theorem30 the argmax correspondence  : Ω×  ⇒ G defined by


¡
 

¢
= { ∈ G | 

¡
 −

¢
=  ∗

¡
 −

¢}
is weakly measurable correspondence with non-empty compact values. Hence, sup-

plier ’s point-wise maximization problem has a solution and the maximized value

function  is B (Ω× )−measurable, and the correspondence  maximizer admits
a measurable selector. ♦

Claim 4: The correspondence Υ is non-empty, compact and convex valued.

30See Aliprantis and Border (2006) Theorem 18.19.
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Proof of Claim 4: Because ∆ (Ω) and [0 1] are both compact sets (in the R

topology) the spaces ∆ (Ω)
Ω×

and [0 1]
Ω×[0̄] are compact in the product topology.

Moreover, because G is closed subset of ∆ (Ω)Ω× it is compact in product topology.
The suppliers objective function,   is linear and, hence, continuous, in 

 and   and  is linear and, hence, continuous, in  and  Moreover, be-

cause the domain of Υ is a product of measurable spaces, the objective function is

B (Ω× )−measurable, and  is B ()−measurable they are Carathéodory func-
tions. Hence, by the Measurable Maximum Theorem, for every given ( ) ∈
Ω ×  the suppliers’ maximization problems (1) has a solution in G and the cor-
respondence  : G × G × ⇒  × ∆ (2) has non-empty single values. Given

() ∈ Ω×£0 ̄¤  the customers’ optimization problem has a solution in () ∈
[0 1] and, since the suppliers strategies are in G there is no prescription with prob-
ability zero. Thus, the existence of ̄ ̄ and ̄ is implied by the Measurable

Maximum Theorem. Moreover, by the same theorem, ̄, is B (Ω× )−measurable,
̄ is B

¡
Ω× £0 ̄¤¢−measurable, and we can always select measurable maximizers

̄

Since ̄ ̄ and ̄ are single-valued, they are trivially convex and compact.

The convexity of ̄, is an immediate implication of the linearity of the suppliers’

and customers’ objective function in the maximizers distributions which implies that

any convex combination of the maximizers is a maximizer. Furthermore, since the

measurable selectors are the intersection of the set of maximizers which, by the Meas-

urable Maximum Theorem are compact valued, and the space GΩ× of measurable

functions, ̄ is measurable and compact and convex valued. ♦
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Claim 5: The mapping Υ has a closed graph.

Proof of Claim 5: Since G is a compact set, and the set ̄ = G ∩ Λ, where

Λ := arg max
{∈G|()()≥ 1


}

Z ∞

0

[
¡
   

¢
+−

0

ÃX
∈Ω


¡
(0)  (0)  

¢
 ()

!
] (0) 

is the intersection of all the suppliers maximizers. By the Measurable Maximum

Theorem Λ is compact and forms a closed graph. In addition, G also forms a closed
graph But the graph of the projection of the correspondence Υ on G constitutes
of the intersection of the closed graphs formed by Λ and G. Moreover, since the
projections of Υ on ×Σ×∆(2) are continuous functions, their graph is closed.

Thus, Υ has a closed graph. ♦

Proof of Theorem 1. By Claims 1-3 and the Kakutani-Fan-Glicksberg fixed point

theorem, the set of fixed point of Υ is non-empty and compact. Since the product

set of compact set is compact, we can construct a sequence
³
̂ ̂ ̂ ̂

´∞
=1

that

has a convergent subsequence. Denote by
³
̂  ̂ ̂ ̂

´
the sub-sequential limit point.

Since it is the limit point of measurable functions, it is measurable.

Let { |  = 1 2} be a convergent subsequence and consider supplier  Given³
̂  ̂  ̂

´
 for all  (

 −) we have

Φ


:=

Σ∈Ω

∙
̂
¡
 −  

¢
+

Z ∞

0

−
0
h
Σ∈Ω̂

¡
(0) − (0)  

¢
 ()

i
 (0)

¸
̂
¡
 −

¢
()
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Σ∈Ω

∙
̂
¡
 −  

¢
+

Z ∞

0

−
0
h
Σ∈Ω̂

¡
(0) − (0)  

¢
 ()

i
 (0)

¸

¡
 −

¢
()

:= 



for all   ∈ NHence, lim→∞Φ


≥ lim→∞ 



 Let lim→∞ ̂ = ̂ lim→∞ ̂ =

̂. Then,

lim
→∞

Φ


=

Σ∈Ω

∙
̂
¡
 −  

¢
+

Z ∞

0

−
0
h
Σ∈Ω̂

¡
(0) − (0)  

¢
 ()

i
 (0)

¸
̂
¡
 −

¢
() 

where ̂ ((0) − (0)  ) = ̂
³
̂ ( −)  ̂ (− )  ̂ |  (0)  − (0)  

´


Note also that lim→∞ 


is the value function of player  of the strategy ( −)

when player − and the customer play the limit strategies ̂ (− ) and ̂ re-

spectively, given the continuation function ̂  Thus, lim→∞Φ

≥ lim→∞ 

implies that ̂ is best response to ̂ and ̂, given the continuation function ̂ 

That ̂ is best response to ̂ ( −) and ̂ (− ) is obvious.

Finally, by definition, ̂ is the value function corresponding to the strategies³
̂ ̂

´
 ¥

6.5 Proof of Theorem 2

We need to show that, for some stage game Γ
¡
 

¢
 ̂ ( −) =  is

not a best response to ̂ (− ) =  for some  ∈ {}
Suppose that  = 0   In fraud-free equilibrium the customers believe that

both suppliers prescribe the necessary service truthfully. Hence, the only reason

to obtain a second prescription is the expectations that the second supplier has a
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sufficiently shorter queue that would justify bearing the cost of obtaining a second

prescription. Let the state be  and suppose that the long-queue supplier prescribes

truthfully, (that is,  = ) We show that if
 is sufficiently large then prescribing

 is not a best response supplier the short-queue supplier

To begin with, observe that if the customer visits the short-queue supplier first

then, because supplier ’s queue cannot possibly be shorter than  = 0 the cus-

tomer never seeks a second prescription.

The probability of a new customer accepting the prescription  of the long-queue

supplier is as follows: If the long-queue supplier (that is, supplier ) is the customer’s

first call then the probability of acceptance is:

1
¡

¢
:= {( ) ∈  | − ≥ 

£
− | 

¤− }

where 
£
− | 

¤
=
R ̄−−

0
−∗

¡
 | 

¢
 and ∗

¡
 | 

¢
is the equi-

librium distribution of supplier ’s queue conditional on  Note that 1
¡

¢
is

independent of the prescription,  of the short-queue supplier.

Suppose that the customer visits the long-queue supplier first and decides to

seek a second prescription. Suppose further that the short-queue supplier prescribes

 ∈ Ω The customer will return to the long-queue supplier if and only if

2
¡
  


¢
:= Pr{ ∈ [0 1] | 1−   (1− ) 

−}

Define 
¡
  


¢
= 1

¡

¢
+2

¡
  


¢
 Since 1−  (1− ) 

−

for all  ∈ (0 1]  =  implies that 2
¡
  


¢
= 0 Thus, 

¡
  


¢
=
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1
¡

¢
 Hence, the short-queue supplier’s payoff if he prescribes  =  is:

 () =
¡
1− 1

¡

¢¢


¡
 0 


¢
+ 1

¡

¢

¡
 0 

 + 
¢

and if he prescribes  = +1 the short-queue supplier’s payoff is:

 (+1) =
¡
1− 

¡
+1  


¢¢


¡
+1 0 


¢
+

¡
+1  


¢

¡
 0 

 + 
¢


Hence,

 (+1)− () =

¡
1− 1

¡

¢¢ ¡


¡
+1 0 


¢− 

¡
 0 


¢¢

−2
¡
+1  


¢ ¡


¡
+1 0 


¢− 

¡
0 0  + 

¢¢
=

¡
1− 1

¡

¢¢ ¡

1− 
¡
+1 | 

¢¢ Z +1



−

+

Z +1

0

−
0
Σ0∈Ω[ (

0 +1 − 0  − 0)−  (0  − 0  − 0)] (0) 
¡
0 | 

¢
− 2

¡
+1  


¢ ¡


¡
+1 0 


¢− 

¡
 0 

 + 
¢¢



For  sufficiently close to ̄, 2
¡
+1  


¢
is small and, since the number of

customers in the queue  is  ≥  is close to the total number of customers

in the market, (i.e., ̄),  (+1 | ) is close to zero. Consequently the last two
expression are small. The first expression, which is positive, implies that  (+1)−
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 ()  0 Thus, ̂
¡
 0 


¢
=  is not best response to ̂

¡
 

 0
¢
=  ¥
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APPENDIX

Let Ω = { } where   , and consider situations in which the true

state is . Let (6) depict the payoff matrix corresponding to the stage game

Γ
¡
 

¢
.

Example 1: Consider the symmetric stage game Γ
¡
 

 
¢
 where  =

 = 0 In this case  ( ) = 12 and 
 = 

  ∈ {},  ∈ {}
Moreover, 

 − 
 = 

 − 
 and 

 − 
 = 

 − 
 


 − 

 = ( (  )−  ( ))
¡
̄ (  0)− ̄ (0 )

¢
+ (10)

(1−  ( ))
¡
̄ (0 )− ̄ (0 )

¢


where ̄
¡
 

¢
:= Σ∈Ω

¡

¡
 

¢¢
 () 

Since Σ∈Ω ( (   0)−  ( 0 )) ()  0,  (  )− ( )  0

 andΣ∈Ω ( ( 0 )−  ( 0 )) ()  0, the sign of the first term is negative

and that of the second term is positive. Thus, in general, the sign of 
 −

 is

ambiguous. More specifically, since  (  ) = 05


 − 

 ≥ () 0⇐⇒
05−  ( )

1−  ( )
≤ () ̄ (0 )− ̄ (0 )

̄ (  0)− ̄ (0 )

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Consider next


 − 

 = ( ( )−  (  ))
¡
̄ ( 0)− ̄ (0 )

¢
+ (11)

(1−  (  ))
¡
̄ (0 )− ̄ (0 )

¢


Since Σ∈Ω ( (  0)−  ( 0 )) ()  0  ( )− (  )  0 and

Σ∈Ω ( ( 0 )−  ( 0 )) ()  0, the sign of the first term is positive and

that of the second term is negative. Thus, the sign of 
−

 is ambiguous. More

specifically,


 − 

 ≥ () 0⇐⇒
 (  )− 05
1−  (  )

≤ () ̄ (0 )− ̄ (0 )

̄ ( 0)− ̄ (0 )


Observe that if  prescribes  and  prescribes  then  will only get

the customers that visit him first and do not seek a second prescription. Thus,

 ( ) = {( ) ∈  | (1− )  
()


¡
  


¢− }. By the same logic, if

 prescribes  and  prescribes  then  will get the customers that visit him

first and all the customers that visit  first and seek a second prescription. Thus,

 (  ) = 05 + {( ) ∈  | (1− )  
()


¡
  


¢− } Since  = 

we get that 05− ( ) =  (  )−05 or  ( )+ (  ) = 1

Consequently, depending on the configurations of the signs of these expressions

we may have the following equilibria.

If 
 − 

 = 
 − 

  0 and 
 − 

 = 
 − 

  0 then

(∗ =  
∗
 = ) and (

∗
 =   

∗
 = ) are pure strategy equilibria in which
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either both suppliers prescribe truthfully or both commit fraud.

If 
 − 

 = 
 − 

  0 and 
 − 

 = 
 − 

  0 then

(∗ =   
∗
 = ) is the unique, pure strategy, equilibrium in which both suppliers

commit fraud.

If 
−

 = 
−

  0 and 
 −

 = 
 −

  0 then there is

a unique, pure strategy, equilibrium (∗ =   
∗
 = ) in which the two suppliers

prescribe truthfully.

If 
 − 

 = 
 − 

  0 and 
 − 

 = 
 − 

  0 then there

is are two pure strategy equilibria (∗ =   
∗
 = ) and (

∗
 =  

∗
 = ) in

which one supplier prescribe truthfully and the other overprescribes .

If
¡

 − 



¢

¡

 − 



¢ ∈ (0 1) then there is a symmetric mixed strategy
equilibrium in which each supplier overprescribes service with probability 05.

The same logic applies to all symmetric situations (that is, for all  = ).

Example 2: Consider the asymmetric case where the state is
¡
 

 
¢


where    By Theorem 2, in pure-strategy equilibria, ∗ ≥ ∗ Hence, in

pure-strategy equilibrium the following case may arise: both suppliers overprescribe

services, both suppliers prescribe truthfully, the long-queue supplier prescribes truth-

fully and the short queue supplier prescribes unnecessary service.

Amixed strategy equilibrium requires that
¡


 − 




¢

¡


 − 




¢ ∈ (0 1) 
 ∈ {}Thus,  

 − 

 and 


 − 


 must be of the same sign. Moreover,
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letting ∆̄ ( ) () := ̄
¡
 +   


¢− ̄

¡
 +  


¢


 − 




 − 



=

[ ( )−  ( )]
£
̄
¡
 +  


¢− ̄

¡
  + 

¢¤−  ( ))∆ ( )

[ (  )−  (  )]
£
̄ ( +   )− ̄ (  + )

¤
+  (  ))∆ ( )

and letting ∆̄  ( ) := ̄
¡
  + 

¢− ̄
¡
  + 

¢

 − 




 − 



=

[ ( )−  (  )]
£
̄
¡
  + 

¢− ̄
¡
 +  


¢¤−  (  )∆̄ ( )

[ (  )−  ( )]
£
̄ (  + )− ̄ ( +   )

¤
+  ( )∆̄ ( )

If    then, by decreasing marginal value of the queues,

̄
¡
 +   


¢− ̄

¡
  + 

¢
 ̄

¡
 +   


¢− ̄

¡
  + 

¢
̄
¡
 +  


¢− ̄

¡
  + 

¢
 ̄

¡
  + 

¢− ̄
¡
 +  


¢

̄
¡
 +   


¢− ̄

¡
  + 

¢
 ̄

¡
  + 

¢− ̄
¡
 +   


¢


Furthermore,  ( )   (  ) 

 ( )−  ( )   ( )−  (  )  0

and

 (  )−  (  )   (  )−  ( )  0
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Thus, if 

 − 


 and 


 − 


   ∈ {} are of the same sign, then


 − 




 − 





 − 




 − 





Hence,   05  . This means that the mixed strategy of the short-queue supplier

first-order stochastically dominates that of the long-queue supplier. Thus, in mixed

strategy equilibrium the short-queue supplier is more likely to commit fraud than

the long-queue supplier.
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George (eds.), Springer.

58



[17] Karni, Edi and Schwartz, Abba (1977a) “Search Theory: The Case of Search

with Uncertain Recall.”Journal of Economic Theory l6, 38—52.

[18] Mcguire, Thomas G. (2000) “Physician Agency” Handbook of Health Economics

Culyer Anthony J. and Joseph Newhouse P. (eds.) Volume 1: 461-536.

[19] Stahl, Dale O. (1996) “Oligopolistic Pricing with Heterrogeneous Consumer

Search,” International Journal of Industrial Organization, 14: 243-268.

[20] Stokey, Nancy L. and Lucas, Robert E. Jr. (1989) Recursive Methods in Eco-

nomic Dynamics. Harvard Univerity Press. Cambridge.

[21] Wolinsky, Asher (1993) “Competition in A Market for Informed Experts’ Ser-

vices,” The Rand Journal of Economics, 24: 380-398

[22] Wolinsky, Asher (1995) “Competition in Markets for Credence Goods,” Journal

of Institutional and Theoretical Economics 151: 117-131.

59


