Optimal Reserves in Financially Closed Economies*

Olivier Jeanne Damiano Sandri
Johns Hopkins University International Monetary Fund**

January 2016

Abstract

Financially closed economies insure themselves against current-account shocks with international reserves. We characterize the optimal level of reserves in a simple dynamic welfare-based model that captures this motive. We compare the welfare-based opportunity cost of reserves with the measures that have been used by practitioners. The model is calibrated to a sample of countries with a low level of international financial integration. Under plausible calibrations the model is consistent with the rule of thumb that the average level of reserves should be close to three months of imports. We discuss robust linear rules and show that they capture most of the welfare gains from optimal reserves management.

*The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management. This paper was written while Olivier Jeanne was visiting the Research Department of the IMF, whose hospitality is gratefully acknowledged. The paper was presented at the 2016 AEA annual conference (San Francisco) and we thank Chris Otrok, our discussant, for his comments.

**Olivier Jeanne: Department of Economics, Johns Hopkins University, 3400 N.Charles Street, Baltimore MD 21218; email: ojeanne@jhu.edu. Damiano Sandri: International Monetary Fund, 700 19th street NW, Washington DC; email: dsandri@imf.org
1 Introduction

One question of considerable practical relevance for international economists is the appropriate level of international reserves for a small open economy (IMF, 2011, 2013, 2015). In this paper we study this question in the context of a model where reserves play a very simple and basic role of precautionary savings against current account shocks. We study the pure case of an economy that insures against current account shocks with international reserves only. This case is applicable, at least as an approximation, to countries in which the private sector cannot insure itself directly because it has little access to foreign assets or external borrowing. This situation was more prevalent under the Bretton Woods system than today, but it remains relevant for developing countries with the lowest levels of international financial integration, which are often low-income countries.

We study the question of the optimal level of reserves using an intertemporal optimizing model of an open economy populated by an infinitely-lived representative consumer. The consumer consumes nontradable goods as well as imported goods. The economy is hit by shocks to the value of exports in terms of imports (which might come from shocks to the quantity of exports or to the terms of trade). The consumer does not have access to international financial markets and holds claims against the domestic government. The government holds bonds denominated in foreign currency (reserves). reserves are foreign assets that are held by the government on behalf of the domestic consumer.

We assume that the government is benevolent and manages the reserves so as to maximize domestic welfare. Reserves allow the country to smooth imports in response to shocks to the value of its exports in terms of imports (for example shocks to the terms of trade). The optimal level of reserves is the optimal level of precautionary savings in response of shocks to export income. This is the type of thinking that underpinned old rules of thumb such as “reserves should cover three months of imports”.

We show that in the model the level of reserves tends to converge toward a target and characterize how this target depends on the parameter values. The influence of several parameters is summarized in a key variable, which we call the “carry cost” of reserves. The carry cost is the difference between the hypothetical real interest rate that would prevail under financial autarky in the deterministic steady-growth path and the actual real return on reserves in terms of imports. Measuring the carry cost as a spread between two interest
rates is reminiscent of the way that the cost of holding reserves is measured in the existing literature on international reserves but there are important differences. In particular, the carry cost is not the same as two measures that are often used by practitioners, the quasi-fiscal cost of holding reserves for the central bank, and the spread between the cost of external borrowing and the return on reserves. The carry cost is a theoretical construct that can be calibrated based on the model and involves a counterfactual interest rate that is not observed in the data.

We then calibrate our model using data on a sample of 21 developing countries from 1960 to 2014. We select countries that were not very internationally financially integrated and so for which the current account was arguably the main source of shocks. For these countries the average level of reserves was close to 4.5 months of imports. Under our benchmark calibration this average level of reserves is the optimal one if the carry cost is equal to 6.7 percent, which is well in the range of plausible values for this parameter. The model predictions are however sensitive to the carry cost. In particular, the optimal level of reserves goes to infinity as the carry cost goes to zero. This result is not surprising from the point of view of the literature on precautionary savings, but it implies that it may be difficult in general to determine that an observed level of reserves is “excessive” based on a precautionary savings model. If one assumes that the consumer’s discount factor is lower than 1 it is however difficult to rationalize a carry cost under 5 percent for the countries in our sample.

We also investigate the extent to which the gains from optimal reserves management can be reaped using simple linear rules. We show that in our model the optimal policy is well approximated by a linear rule that makes reserves respond to export income shocks in the short run and converge towards a target in the long run. Under the best linear rule reserves respond significantly less to export income shocks that under certainty equivalence. The optimal weight put on convergence is not negligible since it implies that a deviation from the target has a half-life of about three years. The best linear rules are relatively robust to errors in the reserves target and yield more than 90 percent of the welfare gains from optimal reserves management.

Literature. The paper is related to the literature on the optimal level of reserves for an open economy. The idea of a cost-benefit approach to the optimal level of reserves has inspired a long line of literature that goes back at least to Heller (1966). In Heller’s analysis the optimal level of reserves was
determined in the context of a trade-off between their opportunity cost and the risk of an external disequilibrium leading to a costly adjustment—a contraction in domestic absorption.¹ More recently calibrated models include Jeanne (2007) or Jeanne and Rancière (2011). These contributions are not based however on precautionary savings models. Here we compare the implications of a precautionary savings model to the heuristic measures of the benefits and costs of reserves that have been used in the empirical or policy literature (IMF, 2011, 2013).

The paper is also related to the question of how to make foreign assets stationary in stochastic models of the current account. Linearizing a stochastic model of an open economy leads to nonstationarity of foreign assets, in contradiction with the maintained assumption that the economy should stay close to a steady state. Many authors solve this problem by using the assumptions proposed by Schmitt-Grohé and Uribe (2003) to make foreign assets stationary. As noted by Coeurdacier, Rey and Winant (2011) another way of making foreign assets stationary is to solve for the equilibrium with precautionary savings, as we do here. We show that the best linear rules are rather different from the equilibrium policies derived from linearizing models a la Schmitt-Grohé and Uribe (2003): significantly more weight is put on convergence towards the target and significantly less weight is put on smoothing.

This paper contributes to the literature on precautionary saving in the open economy.² This literature was developed in the recent period to address the challenge of explaining global imbalances and upstream capital flows from developing to advanced economies. Most of this new literature looks at precautionary savings in response to idiosyncratic shocks (Sandri, 2014; Carroll and Jeanne, 2009; Angeletos and Panousi, 2011). Some papers, like this one, look at aggregate shocks (Fogli and Perri, 2015; Kent, 2015; Durdu, Mendoza and Terrones, 2009). In an early contribution Ghosh and Ostry (1997) studied the relationship between the uncertainty in national cash flow and the current account surplus in a CARA-Gauss model of a small open economy.

¹The dynamic aspect of the authorities’ optimization problem was treated more rigorously in the buffer stock models of international reserves of Hamada and Ueda (1977) and Frenkel and Jovanovic (1981).

²There is a long line of literature on precautionary savings against income shocks that we draw on (this literature is too vast to be reviewed here, see Heathcote, Storesletten and Violante, 2009 for a review).
2 Model

We present the assumptions of the model (section 2.1) and then derive analytical results about the optimal level of reserves (section 2.2).

2.1 Assumptions

The economy is populated by a unitary mass of identical atomistic consumers and a government. The representative consumer maximizes,

\[U_t = E_t \left[\sum \beta^t u(C_t) \right], \]

with

\[u(C_t) = \frac{C_t^{1-\gamma} - 1}{1 - \gamma}, \]

\[C_t = \left[\alpha^{1/\eta} M_t^{(\eta-1)/\eta} + (1 - \alpha)^{1/\eta} N_t^{(\eta-1)/\eta} \right]^{\eta/(\eta-1)}, \]

where \(M_t \) is the consumption of imported good and \(N_t \) is the consumption of nontraded good.

We write the budget constraints in terms of a foreign currency, which for the sake of concreteness we call the dollar. The representative consumer’s budget constraint is,

\[B^g_t + \frac{B^g_{M_t} M_t}{E_t} = P_{X_t} X_t + \frac{(1 + i^g_{t-1}) B^g_{t-1}}{E_t} + T_t, \]

where \(X_t \) and \(M_t \) are respectively the quantities of exports and imports, and \(P_{X_t} \) and \(P_{M_t} \) are dollar prices, \(B^g_t \) is government debt expressed in terms of domestic currency and \(E_t \) is the domestic currency per dollar exchange rate, \(i^g_{t-1} \) is the domestic currency interest rate and \(T_t \) is a transfer from the government. The representative consumer does not have access to foreign assets and can invest only in the liabilities of the domestic government.

The government budget constraint is,

\[\frac{(1 + i^g_{t-1}) B^g_{t-1}}{E_t} + B_t + T_t = \frac{B^g_t}{E_t} + (1 + i_{t-1}) B_{t-1}, \]

where \(B_t \) is the amount of dollar reserves, and \(i_{t-1} \) is the dollar nominal interest rate.
One should think of the government as including the central bank. The government can engage in “open market” operations in which for example it increases its holdings of reserves and sells domestic bonds to the private sector. The words “open market” are in quotes because the market is not really open: the domestic bonds must be purchased by residents who do not have access to foreign assets. A sterilized foreign exchange intervention in which the central bank sells government debt (or sterilization bonds) to buy reserves corresponds, in our model, to a simultaneous increase in B_t and B_t^g.

The two budget constraint can be consolidated into the current account balance identity,

$$B_t - B_{t-1} = P_{Xt}X_t - P_{Mt}M_t + i_{t-1}B_{t-1}. \quad (2)$$

There are exogenous processes for the value of exports $P_{Xt}X_t$, the price of imports P_{Mt}, the output of nontradable good N_t, and the dollar nominal interest rate i_{t-1}. The imports M_t and reserves B_t are endogenous.

We assume that there is a trend growth factor G in income. We denote in lower case the detrended variables expressed in terms of imports (except for the consumption of nontradable good and total consumption, which are simply detrended):

$$m_t = G^{-t}M_t,$$
$$x_t = G^{-t}P_{Xt}X_t/P_{Mt},$$
$$n_t = G^{-t}N_t,$$
$$b_t = G^{-t}B_t/P_{Mt},$$
$$c_t = G^{-t}C_t.$$

The country’s aggregate budget constraint can then be written in normalized form,

$$b_t + m_t = w_t + x_t, \quad (2)$$

where

$$w_t = (1 + r_t) \frac{b_{t-1}}{G},$$

is the beginning-of-period stock of reserves, and r_t denotes the imported goods own real rate of interest between period $t - 1$ and period t,

$$1 + r_t = (1 + i_{t-1}) \frac{P_{Mt-1}}{P_{Mt}}.$$
We assume that the level of reserves must be positive,

\[b_t \geq 0. \]

If the constraint \(b_t \geq 0 \) is not binding the first-order condition for consumption is,

\[
u'(C_t) \frac{\partial C_t}{\partial M_t} = \beta E_t \left[(1 + r_{t+1}) u'(C_{t+1}) \frac{\partial C_{t+1}}{\partial M_{t+1}} \right],
\]
or, after detrending,

\[
c_t^{1/\eta - \gamma} m_t^{-1/\eta} = \beta G^{-\gamma} E_t \left[(1 + r_{t+1}) c_{t+1}^{1/\eta - \gamma} m_{t+1}^{-1/\eta} \right]. \quad (3)
\]

The equilibrium is driven by exogenous stochastic processes for \(x_t, n_t, \) and \(r_t \), which are assumed to be stationary and Markov. The state at time \(t \), thus, is summarized by the current values of these variables plus current tradable wealth, \(s_t = (x_t, n_t, r_t, w_t) \). The equilibrium is characterized by endogenous policy functions for total consumption, imports and reserves, \(c(s_t), m(s_t) \) and \(b(s_t) \). The policy functions satisfy (3) and

\[
c(s_t) = \left[\alpha^{1/\eta} m(s_t)^{(\eta-1)/\eta} + (1 - \alpha)^{1/\eta} n_t^{(\eta-1)/\eta} \right]^{\eta/(\eta-1)}.
\]

2.2 Target level of reserves

In the long run \(b_t \) might tend to fluctuate around a level that could be defined as a “target” for the level of reserves. One way of defining the target level of reserves more formally is to look at the deterministic dynamics of the system that is not perturbed by shocks, i.e., assuming that \(x_t, n_t, \) and \(r_t \) remain equal to their average levels \(\overline{x}, \overline{n}, \) and \(\overline{r} \) in the stochastic model. Then one could define the target level of reserves as the level \(b^* \) towards which \(b_t \) converges.

As shown by Carroll (2009) in the context of a similar model, there is a well-defined target level for reserves if the following condition is satisfied,

\[
1 + \overline{r} < \frac{G^\gamma}{\beta}. \quad (4)
\]

If this condition is not satisfied the level of reserves grows without bound. Condition (4) is the “impatience condition” in Carroll (2009). To understand this condition it is useful to define the “carry cost” of reserves as,

\[
\delta = \frac{G^\gamma}{\beta (1 + \overline{r})} - 1. \quad (5)
\]
G^γ/β is the real gross interest rate at which the domestic consumer would be willing to borrow abroad at the margin in the steady growth path with no shock. The carry cost of reserves reflects the amount by which this interest rate exceeds the average real return on reserves in terms of imports. The proposition says that for the country to accumulate a bounded level of reserves the carry cost must be positive.

The carry cost is a key variable that summarizes the combined effects of the discount factor, the growth rate and the elasticity of intertemporal substitution of consumption on the consumer’s willingness to borrow against future income. The first-order condition (3) can be rewritten,

$$c_t^{1/\eta - \gamma} m_t^{-1/\eta} = \frac{1}{1 + \delta} E_t \left[\frac{1 + r_{t+1}^{1/\eta - \gamma} m_{t+1}^{-1/\eta}}{1 + \tau} \right].$$

Thus δ summarizes all we need to know about β and G in the Euler equation. Because G appears in the budget constraint we keep it as a separate parameter but we can treat the carry cost δ instead of the discount factor β as the exogenous parameter.

Our definition of the carry cost is reminiscent of how the opportunity cost of reserves is defined and measured in the literature, but there are interesting differences. First, the opportunity cost of reserves is often measured as the quasi-fiscal cost of accumulating reserves for the central bank, measured as the spread between the cost of issuing sterilization bonds—generally denominated in domestic currency—and the return on reserves (Frenkel and Jovanovic, 1981; Flood and Marion, 2001). In the model this quasi-fiscal cost can be written as the difference between the interest rate paid on the domestic debt securities and the return on the reserves,

$$(1 + i_g^t) \frac{\delta_t}{\delta_{t+1}} - (1 + i_t). \tag{6}$$

Note that for consistency the two interest rates must be expressed in the same currency. In (6) this currency is the dollar, which implies that the local currency interest rate must be adjusted for depreciation. To put it differently the valuation gains or losses on the reserves must be taken into account in the quasi-fiscal cost of reserves.

The first-order condition for the consumer’s holding of government debt is,

$$c_t^{1/\eta - \gamma} m_t^{-1/\eta} = \beta G^{-\gamma} (1 + i_g^t) E_t \left[c_{t+1}^{1/\eta - \gamma} m_{t+1}^{-1/\eta} \frac{\delta_t}{\delta_{t+1}} \right]. \tag{7}$$
Assume for a moment that there is no exchange rate uncertainty one period ahead, i.e., E_{t+1} is known in period t. Then comparing (3) and (7) shows that uncovered interest parity applies,

$$1 + i_t = (1 + i^g_t) \frac{E_t}{E_{t+1}}. \tag{8}$$

This implies that the quasi-fiscal cost given by (6) is equal to zero. Importantly, the reason that uncovered interest parity applies is not arbitrage by private agents (since the market for domestic bonds is completely insulated from the market for foreign bonds) but the optimizing behavior of the government. The government invests the reserves on behalf of the consumers and should reproduce the same intertemporal allocation of consumption as in the equilibrium with perfect financial integration. Hence the government must manage reserves in such a way that the private sector faces the same interest rate on domestic securities as it would on foreign securities, which implies that there is no quasi-fiscal cost of holding reserves. A positive quasi-fiscal cost arises only if the government accumulates more reserves than the private sector would under perfect financial integration.

This argument does not apply however if there is exchange rate risk. In this case there will in general be a wedge in condition (6) that comes from the exchange rate risk premium. In general the domestic interest rate could be higher or lower than the level implied by uncovered interest parity, and if it is higher there is a quasi-fiscal cost of holding the reserves.\(^3\)

Irrespective of whether or not the government incurs a quasi-fiscal cost for holding the reserves, this cost is not an appropriate measure of the welfare cost of reserves for the country as a whole. In general the quasi-fiscal cost given by (6) has no reason to be equal to the carry cost δ. The main reason is that the quasi-fiscal cost is a cost for the government but a gain for the private sector. The logical counterpart of the fact that the government receives a lower return on the reserves than the interest rate it pays on its debt is that the private sector receives a higher return on its assets than if it directly held the reserves. The quasi-fiscal cost, thus, can be viewed as a transfer to the private sector that the government would not have to pay if it mandated the

\(^3\)There might also be other reasons outside of the model for which the government might be willing to incur a quasi-fiscal cost for holding reserves, for example if depreciating the domestic currency has welfare benefits. See Korinek and Serven (2010), Rabe (2013), Michaud and Rothert (2014).
private sector to hold the reserves, for example through liquidity regulation. It is not a welfare cost for the country as a whole.

Another measure of the cost of reserves that is often used in the literature is the difference between the interest rate on external debt and the return on reserves.\footnote{See for example Edwards (1985), Rodrik (2006), Hauner (2006).} This does not in general coincide with the carry cost as defined in equation (5) because there is no presumption in general that a credit-constrained borrower pays the interest rate that makes him willing to borrow the constrained amount. For example in many open-economy models a credit-constrained open economy pays the riskless interest rate on its external borrowing because of perfect competition between lenders and the absence of default risk. In this case the difference between the external cost of borrowing and the return on reserves underestimates the true cost of holding reserves. The external cost of borrowing may include a default risk premium but it is not true in general that it should be included in the carry cost of reserves (Jeanne, 2007).

To summarize, the carry cost given by (5) is a theoretical construct that is not directly observable using market data because it involves a counterfactual interest rate, the interest rate that would be observed in the autarkic steady-growth path. In our calibration the carry cost will result from the values assigned to fundamental preference parameters such as the discount factor and risk aversion.

A final note of caution is that one should not confuse the target level of reserves with the average level of reserves. The unconditional average level of reserves based on stochastic simulations, $E(b)$, is in general higher than the target b^*. First, the concavity in the policy function implies that reserves converge towards the target at a faster pace when they are below target than when they are above target. The zero-bound on reserves is another reason for this result. For example, if the target level of reserves is equal to zero the average level will be strictly higher than zero simply because reserves are always at or above target, and never below.

\section{3 Calibration}

The model is calibrated to a group of developing countries that are affected primarily by current account shocks on the external side because they receive relatively little private capital flows. Our country sample has all the countries
in the World Bank’s World Development Indicators (WDI) database such that (i) long-term Public or Publicly-Guaranteed (PPG) debt represents at least 75 percent of their total external debt; (ii) they are not classified as fragile states in IMF (2014); and (iii) they have at least 15 consecutive years of data. The first condition ensures that the countries in our sample have a relatively low exposure to financial account shocks. The second condition was imposed because we found the quality of the data to be suspicious in fragile states, and the last condition ensures that we have enough data to estimate the exogenous stochastic processes. The resulting sample includes 21 countries: Bangladesh, Benin, Botswana, Burkina Faso, Egypt, Ethiopia, Gabon, The Gambia, Kenya, Lesotho, Mauritania, Morocco, Mozambique, Namibia, Nigeria, Pakistan, Panama, Rwanda, Senegal, Sri Lanka, Uganda. The data are annual from 1960 to 2014.

The WDI database provides volume and value indexes for both exports and imports. These indexes give us respectively \(\{X_t, M_t\} \) and \(\{P_{Xt}X_t, P_{Mt}M_t\} \), conditional on initial values. By dividing import values by import volumes we can infer a price index \(P_{Mt} \) that we use to express export values in units of imports, \(P_{Xt}X_t/P_{Mt} \). The WDI also provides series for exports and GDP in constant local currency units. Using the identity \(GDP_t = P_{Xt}X_t + P_{Nt}N_t \), where \(GDP_t \) is real GDP in year \(t \) and the prices \(P_X \) and \(P_N \) are constant since real GDP is expressed in constant local currency, we construct an index for nontradable output \(N_t \) by subtracting gross real exports from real GDP. We then detrend exports (expressed in units of imports) and nontradable output to obtain indexes that measure the time variations in \(x_t \) and \(n_t \).

In order to calibrate the model we need levels (and not only first-differences) for the series \(x_t \) and \(n_t \). The model being homogeneous of degree 1 in \(x_t \) and \(n_t \) we can normalize \(n_t \) so that its average value is equal to 1 for each country. The only piece of information that we then need to derive the whole path \(x_t \) is the ratio \(n/x \) in a given year. For this we divide the identity for nominal GDP, \(GDP_t = P_{Xt}X_t + P_{Nt}N_t \) by the nominal value of exports \(P_{Xt}X_t \) to obtain,

\[
\frac{GDP_t}{P_{Xt}X_t} = 1 + \frac{n_t P_{Nt}}{x_t P_{Mt}}.
\]

We assume that the quantity of imported goods is expressed in a unit such that, in a given base year \(t^* \), the prices of the nontradable good and the imported good are equal to each other, \(P_{Nt^*} = P_{Mt^*} \). This is without loss of generality since the unit of nontradable good being given, it is always possible to define the unit for the imported good so that this condition is satisfied.
We thus obtain the ratio \(n_t^*/x_t^* \) from
\[
\frac{n_t^*}{x_t^*} = \frac{GDP_t^*}{P_{Xt^*}X_t^*} - 1.
\]

Note also that the restriction \(P_{Nt^*} = P_{Mt^*} \) can be used to determine the value of \(\alpha \). Since the CES index (1) implies
\[
\frac{N_t}{M_t} = \frac{1 - \alpha}{\alpha} \left(\frac{P_{Nt}}{P_{Mt}} \right)^{-\eta},
\]
we can express \(\alpha \) as a function of the ratio of nominal expenditures on non-tradable good to nominal expenditures on imports in the base year,
\[
\frac{1 - \alpha}{\alpha} = \frac{N_t^*}{M_t^*} = \frac{P_{Nt^*}N_t^*}{P_{Mt^*}M_t^*}.
\]

We use the year \(t^* = 2005 \) for the normalization.

We then estimate AR(1) processes for the series \(\{x_t, n_t\} \) for each country in our sample. The table below reports the average autocorrelation coefficient and standard deviation in our country sample. More precisely, the table reports the values of \(\rho \) and \(\sigma \) of the AR(1) regression \(y_t - \bar{y} = \rho (y_{t-1} - \bar{y}) + \varepsilon_t \) where \(\sigma^2 \) is the variance of \(\varepsilon \) and \(y \) is the column variable. We find that the value of exports in terms of imports is significantly more volatile but slightly less persistent than nontradable output. We also estimate an AR(1) process for the imports real rate of interest, \(1 + r_t = (1 + i_t)P_{Mt}/P_{Mt+1} \) where \(i_t \) is the one-year eurobond interest rate in U.S. dollars. The imports own rate of interest is equal to 3.6% on average. This interest rate exhibits little persistence and significant volatility because the price of imports is volatile.

The estimated autoregressive processes reported in Table 1 are used to calibrate the model. We approximate each process using the method of Tauchen and Hussey (1991) with five gridpoints for export income and three
gridpoints for non-traded income and the real interest rate. The other parameters in our benchmark calibration are reported in Table 2. The value for risk aversion \(\gamma = 2 \) is standard in the literature. The value of \(\alpha \) is the cross-country average of the ratio of nominal expenditures on nontradable goods to nominal expenditures on imports in 2005, as explained above. The elasticity of substitution between tradable goods and nontradable goods is set to 1, a value that is standard in the literature. The growth factor is calibrated to the average growth in nontradable output and in the value of exports in terms of imports that we found in the data for our country sample. The average growth rates in \(n \) and \(x \) are respectively 4.3% and 4.9% in our sample. In the model these growth rates are assumed to be the same and we set its value to 4.6%. The value for the discount factor is within the range considered in the literature for models with growth. If the global interest rate were determined by the steady-growth path of advanced economies growing at 2% per year, it would be equal to \(1.02^2/\beta - 1 = 5.1\% \). The sensitivity of the results to these parameter values will be discussed in the next section. The benchmark calibration implies that the carry cost of reserves is equal to \(\delta = 6.72\% \).

The number of gridpoints is not indifferent because the model predictions depend on the lowest value for \(x \) in the grid. The Tauchen-Hussey method implies that the lowest point in the grid decreases with the number of gridpoints, and even becomes negative if the number of gridpoints is too large. With five gridpoints the lowest value of \(x \) is 70% below the average level of \(x \) under our benchmark calibration. In the data the lowest value of \(x \) is 48% below the average level of \(x \) on average in our country sample.

One issue is that the growth rate is higher than the interest rate. This cannot be true forever otherwise the country would not have a well-defined intertemporal budget constraint. The implicit assumption, in the rest of the paper, is that the growth rate will fall at a distant point in the future. We also experimented with a model where trend growth falls to a lower level with a small probability in every period. Although this introduces an additional source of risk which could in principle affect the level of precautionary savings, we found this effect to be quantitatively small.

\[\begin{array}{cccc}
\gamma & \alpha & \eta & G \\
2 & 0.36 & 1 & 1.046 \\
\beta & 0.99 \\
\end{array}\]
4 Quantitative Results

We focus first on the target level of reserves and then on the impulse response functions of reserves to shocks in the exogenous variables. We report our results using the reserves-to-imports ratio in months, \(\rho_t = 12 \times \frac{b_t}{m_t} \), as this is a standard way of measuring reserves. The average reserves-to-imports ratio, \(E(\rho) \), is the average value of \(\rho \) taken over five thousand 200-period simulations of the model. The target reserves-to-imports ratio, \(\rho^* \), is the ratio \(\frac{b^*}{m^*} \) where \(b^* \) and \(m^* \) are the long-run levels of reserves and imports respectively in the model without shocks.

4.1 Target and average levels of reserves

Under our benchmark calibration the average level of reserves \(E(\rho) \) is equal to 4.6 months of imports and the target level of reserves \(\rho^* \) is equal to 3.3 months of imports. The average amount of reserves predicted by the model is quite close to average level of reserves in the data (4.5 months of imports) and the target is close to the 3-months-of-imports rule of thumb. This coincidence is remarkable as we did not use any data about reserves to calibrate the model. Is this a fluke, or do plausible calibrations tend to deliver similar results?

Figure 1 shows how the target and average levels of reserves vary with the carry cost \(\delta \), risk aversion \(\gamma \), the elasticity of substitution \(\eta \), and the share of imports in consumption \(\alpha \). The average level of reserves is always higher than the target (for the reasons explained at the end of section 2.2).

The most important parameter is the carry cost \(\delta \). In Figure 1 we change the carry cost, given the other parameters, by adjusting the discount factor \(\beta \). The target and average levels of reserves both decreases with the carry cost. The figure shows the variation of reserves when the carry cost remains above 2 percent. The target level of reserves diverges to infinity as the carry cost goes to zero, and already exceeds 15 months of imports when the carry cost is equal to 2 percent. However under our benchmark calibration the carry cost cannot fall below 5.6 percent if the discount factor \(\beta \) stays below 1. For this level of the carry cost the average level of reserves amounts to 6.1 months of imports, and the reserves target to 4.6 months of imports.

We also consider the sensitivity of the target to the risk aversion parameter \(\gamma \) that we vary between 1 and 5, a range of values often considered in the literature. The results depend on whether we hold constant the carry cost \(\delta \) or the discount factor \(\beta \). If we keep \(\delta \) constant by adjusting \(\beta \), changes in \(\gamma \)
capture purely the effect of risk aversion. In this case, higher values of γ make the consumer more willing to smooth consumption against shocks and so increase the desired level of reserves. If instead we do not adjust β, increasing γ also makes the consumer less willing to change consumption intertemporally, which increases the carry cost of foreign assets and decreases the target. On the one hand, increasing γ above 2 does not have a significant impact on the optimal level of reserves because the impact of higher risk aversion is more or less offset by the impact of a lower elasticity of intertemporal elasticity. When γ increases the consumer is more willing to hold reserves for insurance but at the same time eager to borrow against future income and these two effects broadly cancel out. On the other hand, reducing risk aversion below 2 significantly increases the optimal level of reserves: the average level of reserves increases to almost 15 months of imports if γ is equal to 1.

The reserves target decreases with the elasticity of substitution between tradable and nontradable goods η. When the two goods are more substitutable the marginal utility of consumption is less sensitive to the consumption of imported goods, which reduces the benefits of precautionary savings. Finally, raising the share of imports in consumption increases the country’s exposure to external shocks and so the desired level of reserves.

To conclude, the results from our benchmark calibration are robust in
the sense that they are not very sensitive to increasing risk aversion above 2 or changing the consumer’s discount rate, as long as it remains positive. However, reducing risk aversion (i.e., increasing the elasticity of intertemporal substitution) significantly increases the optimal level of reserves. If β and γ are both equal to 1 (the combination of values in the plausible set that maximizes the optimal level of reserves), the optimal level of reserves amounts to about 30 months of imports on average.

4.2 Impulse response functions

Figure 2 shows the impulse response functions of imports and reserves to shocks in export income, nontradable output and the real interest rate. Imports fall by 20 percent in response to a 30 percent fall in export income because the government runs down reserves by more than one and a half months of imports. Shocks in nontraded output have a smaller impact—a 20 percent fall in nontraded output reduces reserves by about one half of a month of imports. The lowest panel shows the impulse responses to a negative shock in the ex-post imports own real rate of interest. Shocks in this variable reflect mostly unexpected changes in the dollar price of imported goods (there are also shocks in the dollar nominal interest rate, i_t, but they are much less volatile than shocks in P_{Mt}). An unexpected increase in the price of imports decreases both imports and reserves.

Overall, most of the variation in reserves is explained by shocks to export income rather than the other two variables. Table 3 shows the contribution of each shock to the variance in b. For example, the number in the column labeled x is the variance of b in simulations of the model assuming that the only shocks are in x while n and r are set to their average values. The last column reports the variance of b when all three shocks are present. It appears that most of the variance in reserves is explained by the variance in export income x.

<table>
<thead>
<tr>
<th>Shock</th>
<th>x</th>
<th>n</th>
<th>r</th>
<th>x, n, r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Var(b)$</td>
<td>6.866</td>
<td>0.287</td>
<td>0.257</td>
<td>8.660</td>
</tr>
</tbody>
</table>

Table 3: Contributions of the shocks to the variance of reserves
Figure 3 compares the unconditional distribution of reserves in the model and in the data (left-hand-side and right-hand-side panels respectively). The figure shows the distribution of the ratio of reserves to their average level. In the model reserves spend a substantial amount of time close to the zero lower bound but there is also a relatively fat tail of observations with very high levels of reserves. The figure does not give the visual impression that the government tries to keep reserves close to a target. By contrast reserves stay relatively close to their average level in the data. Governments in the real world seem to be more concerned about keeping reserves close to a target than what would seem optimal based on the model. The reluctance of emerging markets and developing countries to run down their reserves in response to bad shocks has been noted in the literature (Aizenman and Sun, 2012). A possible explanation is the fear of sending a bad public signal about the state of the economy or the confidence of investors.

4.3 Linear rules
The policy function for reserve management predicted by the model is non-linear and therefore cannot easily guide the actions of policy makers. In this section, we look for simple policy rules that can be more easily followed by practitioners and still deliver most of the welfare gains from unconstrained reserves management. As shown in the previous section, the model predicts that reserves should be mostly used in response to shocks \(x_t \). Therefore, we consider the following simple linear rule according to which reserves have to converge towards a target \(\hat{b} \) while buffering export shocks \(x_t \):

\[
b_t = \frac{1 + r_t}{1 + \pi} b_{t-1} + \lambda (x_t - \bar{x}) + \mu \left(\hat{b} - b_{t-1} \right). \tag{9}
\]

This rule encompasses certainty equivalence as a special case. Certainty equivalence corresponds to the case where there is no reserves target \((\mu = 0) \) and the value of \(\lambda \) is determined by the fact that imports follow a random walk (this value is derived in the appendix). In this case reserves \(b_t \) are nonstationary. In addition, rule (9) assumes that reserves converge to the target \(\hat{b} \), where the parameter \(\mu \) captures the speed of convergence.

We then look for the values of \(\lambda, \mu \) and \(\hat{b} \) that maximize average welfare based on a large number of simulations.\(^7\) Under our benchmark calibration we find

\[
\hat{b} = 0.22, \quad \lambda = 0.35, \quad \mu = 0.2.
\]

\(^7\)More specifically, we run Montecarlo simulations starting from the stochastic distribution of reserves under the non-linear policy functions. These simulations are conducted assuming that countries follow the linear rule (4.3) for various combinations of the parameters \(\{\lambda, \mu, \hat{b}\} \). Finally, we select the parameters that return the highest average welfare across simulations.
Figure 4 illustrates how the optimized linear rule for reserves (dashed lines) compares to the non-linear rule (continuous lines) for alternative values of export income.

The optimal target is a little larger than in the nonlinear policy (0.22 instead of 0.18). Furthermore, the value for λ implies that the country should accumulate 35 percent of its export income in excess of the average in reserves. This is significantly lower than the value implied by certainty equivalence, which as shown in the appendix is given by

$$\lambda^{CE} = \frac{(1 - \rho_x) G}{1 + \bar{r} - \rho_x G},$$

where ρ_x is the autocorrelation coefficient in export income. In this formula the growth factor G must be set to $[\beta (1 + \bar{r})]^{1/\gamma}$, the level that makes the consumer willing to let his consumption increase by the factor G in the deterministic steady-growth path. Under our benchmark calibration the implied value for the marginal propensity to save is $\lambda^{CE} = 0.907$.

Another difference with certainty equivalence is that reserves converge to the target relatively quickly: deviations from the target have a half-life of about three years. This is much quicker than the speed of convergence to the target in calibrated version of models à la Schmitt-Grohé and Uribe (2003). In these models the behavior of foreign assets is essentially the one implied by certainty equivalence except for a weak force that prevents foreign assets from being nonstationary. We find that this is not a good approximation to optimal reserves management in our model.

The reason for the difference with certainty equivalence is that in our model the representative consumer is caught between two strong opposite
forces: a strong desire to borrow (because income growth is high) and a strong desire to insure (because export income is volatile). The tension between these two forces lead the consumer to use reserves less actively than under certainty equivalence. On the one hand, the propensity to save on a positive export income shock is significantly smaller than under certainty equivalence because the consumer is impatient. On the other hand, the propensity to dissave following a negative export income shock is also smaller than under certainty equivalence because the consumer is reluctant to approach the zero bound on reserves where there no longer is insurance.

The linear rule captures most of the welfare gains from unconstrained reserves management. Let us denote by U_{max} the level of welfare when reserves are used optimally, and by U_{min} the average level of welfare when reserves are simply set to zero. Optimal reserves management (increasing welfare from U_{min} to U_{max}) has the same impact on welfare as a permanent increase in consumption by 0.57 percent. This is smaller than the welfare gain from turning off the stochastic shocks, which is close to a 5 percent permanent increase in consumption. The latter estimate is itself larger than typical estimates of the welfare cost from the business cycle because export income is volatile in our sample of developing countries.\(^8\)

Let us denote by U_{lin} the average welfare under the linear rule. We express the welfare gain from the linear rule as a share of the gain from unconstrained optimal reserves management, i.e., the ratio $(U_{\text{lin}} - U_{\text{min}})/(U_{\text{max}} - U_{\text{min}})$. Under the optimal parameter values for $\{\lambda, \mu, \hat{b}\}$, the best linear rule provides 91.3 percent of the welfare gains from the best nonlinear rule.

Figure 5 shows how the welfare gain from the linear rule varies with the parameters. It appears that it is important to set the values of λ and μ at the appropriate levels, and especially not to set them too low. By contrast, the level of the target \hat{b} does not seem to be very important. The linear rule should become more responsive to shocks as the target increases (see Figure 6) but again, λ and μ are not very sensitive to \hat{b}. Overall, this suggests that the level of the target is much less consequential for welfare than how the government accumulates and decumulates reserves in response to shocks.

We also explored whether there are significant welfare gains from asym-
metric rules in which the government behaves differently depending on whether reserves or export income is above or below average, that is

\[b_t = \frac{1 + r_t + \lambda^t (x_t - \overline{x})^+ + \lambda^- (x_t - \overline{x})^- + \mu^t (\hat{b} - b_{t-1})^+ + \mu^- (\hat{b} - b_{t-1})^-}{1 + \overline{r}}. \]

We did not find asymmetric rules to be very beneficial for welfare. Assuming that the speed of convergence \(\mu \) depends on how reserves compare with the target raises welfare by 0.5 percent of the welfare gains from the best nonlinear rule. Similarly, assuming that the marginal propensity to save \(\lambda \) depends on how export income compares with the average raises welfare by 0.9 percent of the welfare gains from the best nonlinear rule. Overall, the welfare gains from making the linear rule asymmetric are not very large.

5 Conclusion

We presented an optimization model to study the optimal level of foreign reserves for countries that use only reserves to smooth export income shocks.
The fact that the model is micro-founded has allowed to clarify some points about the welfare cost of reserves. On the quantitative side, we find that plausible calibrations give results for the average level of reserves that are remarkably close to both the average level of reserves in the data and the 3-months-of-imports rule of thumb. However, real-world governments seem to be excessively cautious in their use of reserves. The model suggests that they should use reserves more actively in response to shocks. Furthermore the welfare gains from reserves management come from using the reserves well rather than keeping them at the appropriate level on average.

Several directions of research could be pursued in future work. First, it would be interesting to separate risk aversion from the elasticity of intertemporal substitution of consumption by using Epstein-Zin preferences. Second, one could introduce other shocks such as demand shocks in the discount factor. Finally it would be interesting to explore how the model can be applied to the optimal management of commodity funds and sovereign wealth funds.
Appendix: Certainty Equivalence

We assume that the trend growth rate is consistent with steady-growth path for consumption, i.e.,

$$G = \left[\beta (1 + \tau) \right]^{1/\gamma}.$$

We denote with a hat the deviations of the variables from steady state, e.g.,

$$b_t = \bar{b} + \hat{b}_t.$$ The linearization of the budget constraint (2) and the first-order conditions (3) gives,

$$\hat{b}_t + \hat{m}_t = \hat{x}_t + \frac{\bar{b}}{G} \hat{r}_t + \frac{1 + \tau}{G} b_{t-1},$$

$$\kappa_m \hat{m}_t + \kappa_n \hat{n}_t = E_t (\hat{r}_{t+1} + \kappa_m \hat{m}_{t+1} + \kappa_n \hat{n}_{t+1}),$$

where

$$\kappa_m = \left(\frac{1}{\eta} - \gamma \right) \left(\frac{\alpha}{\eta} \right)^{1/\eta} - 1 \left/ \left(\eta \bar{m} \right) \right.,$$

$$\kappa_n = \left(\frac{1}{\eta} - \gamma \right) \left(\frac{\alpha}{\eta} \right)^{1/\eta}.$$

Iterating forward on the budget constraint gives,

$$b_{t-1} = \frac{G}{1 + \tau} E_t \left[\sum_{s=0}^{+\infty} \left(\frac{G}{1 + \tau} \right)^s \left(\hat{m}_{t+s} - \hat{x}_{t+s} - \frac{\bar{b}}{G} \hat{r}_{t+s} \right) \right].$$

One can then substitute out the expected terms using

$$E_t \hat{x}_{t+s} = \rho_x^s \hat{x}_t, E_t \hat{r}_{t+s} = \rho_r^s \hat{r}_t$$

and

$$E_t \left(\hat{m}_{t+s} + \frac{\kappa_n}{\kappa_m} \hat{n}_{t+s} \right) = \hat{m}_t + \frac{\kappa_n}{\kappa_m} \hat{n}_t - \rho_r \frac{1 - \rho_r^s \hat{r}_t}{\kappa_m 1 - \rho_r G} \hat{r}_t,$$

which is obtained by iterating on the linearized first-order condition. This gives (after tedious manipulations) an expression for linearized imports,

$$\hat{m}_t = \frac{1 + \tau - G}{1 + \tau - \rho_x G} \hat{x}_t + \frac{1 + \tau - G}{G} \hat{b}_{t-1} - \frac{\kappa_n}{\kappa_m} \frac{1 - \rho_n}{1 + \tau - \rho_n G} G \hat{n}_t + \frac{\rho_n G}{\kappa_m 1 - \rho_r G} \hat{r}_t,$$

and using the linearized budget constraint, for reserves

$$\hat{b}_t = \hat{b}_{t-1} + \frac{(1 - \rho_y) G}{1 + \tau - \rho_x G} \hat{x}_t + \frac{\kappa_n}{\kappa_m} \frac{1 - \rho_n}{1 + \tau - \rho_n G} G \hat{n}_t + \frac{(1 - \rho_r) \bar{b} - \rho_r G / \kappa_m}{1 + \tau - \rho_r G} \hat{r}_t.$$
References

