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Abstract

This paper provides a test for completeness in a class of nonparametric speci-

fication with an additive and independent error term. It is known that such a

nonparametric location family of functions is complete if and only if the char-

acteristic function of the error term has no zeros on the real line. Because a

zero of the error characteristic function implies that of an observed marginal

distribution, we propose a simple test for zeros of characteristic function of

the observed distribution, in which rejection of the null hypothesis implies

the completeness. This test is applicable to many popular setting, such as

nonparametric regression models with instrumental variables, and nonclas-

sical measurement error models. We describe the asymptotic behavior of the

tests under the null and alternative hypotheses and investigate the finite

sample properties of the proposed test through a Monte Carlo study. We il-

lustrate our method empirically by estimating a measurement error model

using the CPS/SSR 1978 exact match file.
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1. Introduction

In this paper,we consider testability of completeness in a nonparametric class. The completeness

conditions have been employed in the nonparametric identifications of many econometric models

including nonparametric IV regression models, nonclassical measurement error models, and

panel data models, etc. The completeness condition can be expressed in terms of a family of

functions as follows: For all measurable real functions m such that E[|m(X )|]<∞, and

(1)
∫

m(x) f (x, z)dx = 0 a.e. in Z ,

then m(·)= 0 a.e.. Bounded completeness is similarly defined by stating that the only solution to

Eq. (1) among all bounded functions is m(·) = 0 a.e.. In this paper, we focus on testing issues on

bounded completeness and refer the family { f (x, z) : z ∈ Z } satisfying the above restriction as a

complete family. Define the set of all absolutely integrable and bounded functions with domain

A as L1
bnd(A ) = {h(·) :

∫
X |h(x)|1dx <∞ and supa∈A h(a) <∞}, where A is a closed interval in

R. We can rewrite Eq. (1) as an integral operator with the kernel function f (x, z) through the

following:

(2) (L f h)(z)=
∫
Xz

h (x) f (x, z)dx,

where L f is an integral operator from L1
bnd(X ) to L1

bnd(Z ). The completeness of the family

{ f (x, z) : z ∈ Z } over L1
bnd(X ) is equivalent to the injective property of the integral operator L f

using f (x, z) as a kernel function.

The injectivity of the conditional expectation operator using the conditional distribution

f (X |Z) as a kernel function is used to obtain the nonparametric identification of nonparamet-

ric IV regression models (see Newey and Powell (2003); Ai and Chen (2003); Chernozhukov

and Hansen (2005); Blundell, Chen, and Kristensen (2007); Chernozhukov, Imbens, and Newey

(2007); Horowitz and Lee (2007); Darolles, Fan, Florens, and Renault (2011); Horowitz (2011)).

Hu, Schennach, and Shiu (2017) use the result of the Volterra equation to provide sufficient con-

ditions for nonparametric identification of IV regression models in compact supports. Further,

as discussed in Horowitz (2012) an identification condition may not exist when an instrument

is not valid. This raises the question whether it is possible to test for the completeness. Canay,

Santos, and Shaikh (2013) consider the hypothesis testing problems for testing completeness in

the nonparametric IV regression model and show the completeness condition is, without further
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restrictions, untestable against very general alternatives. Any test that controls asymptotic size

will have trivial asymptotic power against any alternative because distributions for which com-

pleteness fails are arbitrarily close to distributions for which completeness holds. Freyberger

(2017) provides a test for a restricted completeness by linking the outcome of the test to consis-

tency of an estimator.

The method developed in this paper builds on Theorem 2.1 in Mattner (1993), the nonpara-

metric location family of functions { fV (x− z) : z ∈ R} is complete if and only if the characteristic

function of V is everywhere nonvanishing. Under nonparametric specifications for an additive

functional form and an independent error term, the everywhere nonvanishing property of the

characteristic function of observables is a sufficient condition for the completeness condition.

This enables us to construct test statistics for the completeness using the squared modulus of

empirical characteristic functions. Compared with the other tests for completeness, the test s-

tatistics are relatively simple because they are based on marginal distributions of observables

instead of joint distributions.1 One of the advantage of the property is that the test statistics

can be used to test completeness conditions related to unobservables. Under the nonparametric

specifications, rejection of the null hypothesis implies the nonparametric family of conditional

density functions
{

fV (x− z) : z ∈ R
}

is complete in L1
bnd(X ). Our nonparametric restrictions on

the class of functions are strong enough to allow testability for completeness. We illustrate the

propose simple test statistics for the completeness conditions in nonparametric IV regression

models, and nonclassical measurement error models with instrumental variables.

The completeness condition has been used to obtain global or local identification in a variety

of nonparametric econometric models other than nonparametric IV models such as measurement

error models (see Hu and Schennach (2008); Carroll, Chen, and Hu (2010); Chen and Hu (2006)),

and panel data models (see Shiu and Hu (2013)), etc.. Several papers including Newey and

Powell (2003), Andrews (2017), D’Haultfoeuille (2011), and Hu and Shiu (2018) have provided

sufficient conditions for different versions of completeness.

There are three major implications of the results in our paper:

1. Uniform or point-wise tests

This paper provides a useful result for the test of completeness condition in a class of models

based on convolution. This result is complementary to the non-testability result of the com-

pleteness condition in Canay, Santos, and Shaikh (2013). They consider a very general class of

1Other tests for completeness such as a full rank test for completeness of discrete cases in Robin and Smith (2000),
and a test for a restricted version of completeness in Freyberger (2017) are derived in terms of joint distributions.
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models and show that any test that controls asymptotic size uniformly over a large class of non-

complete distributions has trivial asymptotic power against any alternative. Denote P0 as some

class of distributions where the completeness fails and P1 is the class of distributions where

the completeness holds. A uniform result on size control is to control size uniformly over P0.

Canay, Santos, and Shaikh (2013) show any distribution in P1 can be arbitrarily approximated

by a sequence of distributions in P0. This means the impossibility of having a nontrivial test

that controls size over a large set of possible DGP’s. Within the class of models considered in

our paper, P0 corresponds to the set of vanishing ch.f., i.e., characteristic functions with zeros

on the real line, and P1 corresponds to the set of non-vanishing ch.f.. It can be shown that none

of non-vanishing ch.f. can be arbitrarily approximated by a sequence of vanishing ch.f.. That is

where the testability of completeness comes from in our paper.

On one hand, a general result on testability is of interest in econometric theory; On the other

hand, practitioners usually work on a specific model in empirical applications and want to know

what can be tested for such a specific model instead of an extremely general model. Since our

test only forcuses on a class of models, it would control size point-wisely for any distribution

satisfying the null hypothesis but would not control size uniformly. If an empirical model falls

into our class of specifications, this paper shows that testing the completeness condition is fea-

sible and actually simple. In that sense, our results are complementary to the result in Canay,

Santos, and Shaikh (2013). Therefore, we believe the point-wise results in our paper are very

useful for empirical research using this class of models, especially given the existing uniform

non-testibility result.

2. Non-testability of continuity

The same uniformity argument can be applied to tests of the continuity assumption. Suppose

we consider a general nonparametric regression model Y = m(X )+η with X ∈R and want to test

the continuity assumption imposed on the regression function m(·) over the real line using a ran-

dom sample of {Y , X }. Without imposing enough restrictions, one can establish a non-testability

result of the continuity assumption simply because we only observe a countable number of pos-

sible values in the support of regressor X as the sample size goes to infinity. One can always

find a discontinuous function which is observationally equivalent to the true continuous regres-

sion function m(·). In other words, a continuous function over the real line only exists at the

population level. Such a non-testability result is empirically vacuous.

Furthermore, the results in Canay, Santos, and Shaikh (2013) actually rely on such a con-

tinuity restriction. In their paper, the completeness of f (X |Z) is defined on the whole support
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of two continuous variables X and Z with X ∈ R and Z ∈ R. They show that one can always

use a sequence of discontinuous step functions to approximate the continuous distribution func-

tion f (X |Z) defined on the support. The completeness, which is defined in a functional space

of continuous functions over R , doesn’t hold with these discontinuous step functions. 2 Given

a random sample, the limit of that sequence of discontinuous step functions is observationally

equivalent to the true continuous distribution function f (X |Z). That is why the completeness

condition is not testable in this general setting. In other words, their proof of the non-testability

of completeness is in fact based on the non-testability of the continuity restriction. That is also

why they directly rule out cases with a discrete X . The full support of a discrete X can be identi-

fied in a large sample. It is well known that completeness is the same as the full rank condition

of a matrix, which is testable, in the discrete case.

The key of the testability of the completeness condition actually lies in the case where X

has a support with infinitely countable points. Because one can only observe or identify such a

support with a random sample as the sample size goes to infinity, restrictions imposed beyond

such a support will have to be put into non-testable assumptions. Whether completeness is

testable in this countable discrete case is an open question for future research.

3. Bounded completeness – identification of density functions

Our paper tests bounded completeness, i.e., completeness over a space of bounded functions.

One argument against considering the set of bounded function is that it rules out polynomials,

in particular, linear functions over the real line. In a standard nonparametric IV model, we need

the completeness of f (X |Z) to identify regression function m(·) from E[Y |Z]= ∫
m(X ) f (X |Z)dX .

Therefore, bounded completeness is not enough to nonparametrically identify m(·) in the case

where the support of X is the whole real line and m(·) is linear. However, the bounded com-

pleteness is very useful in measurement error models, where the goal is to identify the density

function of a latent variable X∗ from f (X ) = ∫
f (X |X∗) f (X∗)dX∗. The key identification as-

sumption is the completeness of f (X |X∗). In this case, bounded completeness is useful enough

even if the support of X∗ is the whole real line because it is a quite mild restriction to assume

f (X∗) is bounded. Our tests are based on a convolution setting, where f (X |X∗) = fε(X − X∗)

with a classical measurement error ε. In such a convolution setting, completeness has a simple

implication, i.e., a non-vanishing ch.f. of ε. Under the so-called non-differential measuremen-

2It is possible that a sequence of step functions is complete in the functional space of continuous functions over a
compact set. For example, a sequence of the so-called Haar wavelet functions, which are discontinuous step functions,
can uniformly approximates any continuous real function with compact support.
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t error assumption, we may consider the relationship between dependent variable Y and X∗

though f (X ,Y ) = ∫
f (X |X∗) f (X∗,Y )dX∗. Notice that bounded completeness is enough to iden-

tify the joint density f (X∗,Y ). That means we can also identify the conditional mean function

E[Y |X∗] = ∫
Y f (Y |X∗)dY , which doesn’t need to be bounded even if the support of Y is the

whole real line. In that sense, the possible unboundedness of the mean function is due to the un-

boundedness of the function, i.e., g(Y)=Y, of which we are taking expectation E[g(Y )|X∗], while

the density function f (Y |X∗) is usually bounded. In other words, bounded completeness is still

useful for models with an unbounded conditional mean function through the identification of the

corresponding density function.

The rest of this paper is organized as follows. Section 2 gives sufficient conditions for ex-

istence of a complete nonparametric family { f (x, z) : z ∈ Z } in L1
bnd(X ). Section 3 describes

the several asymptotic properties related to the squared modulus of the empirical characteris-

tic functions. Section 4 applies the asymptotic results in Section 3 to construct test statistics

for nonparametric IV regression models, and nonclassical measurement error models with in-

strumental variables. Then, we show the asymptotic behavior of the test under the null and

alternative hypotheses. Section 5 provides the Monte Carlo study. In Section 6, we apply our

test statistic in an empirical study using the CPS/SSR 1978 exact match file. Section 7 concludes.

All technical proofs are in the Appendix.

2. Sufficient Conditions for Completeness

Although the non-testable result in Canay, Santos, and Shaikh (2013) has been established in

a very general settings, we can provide a test for the completeness for a subclass of conditional

density functions. The next lemma is a directly from Theorem 2.1 in Mattner (1993).

Lemma 2.1. The nonparametric family { fV (x− z) : z ∈ R} is complete in L1
bnd(X ) if and only if

the characteristic function of V is everywhere nonvanishing.

A range of a function m is denoted by Range(m) = {m1 : m1 = m (z1) for some z1 ∈ Z }, where

Z is the support of z. We can write the result as follows.

Lemma 2.2. Suppose Range(m)=R and V is independent of Z. Consider

X = m(Z)+V .(3)
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Then, the nonparametric family of conditional density functions
{

f (x|z)= fV (x−m (z)) : z ∈Z
}

is

complete in L1
bnd(X ) if and only if the characteristic function of V is everywhere nonvanishing.

Let i =p−1 be the unit imaginary number. Define the marginal characteristic functions φX ,

φm and φV by φX (t) = E
[
eitX

]
, φm(t) = E

[
eitm(Z)

]
and φV (t) = E

[
eitV

]
, respectively. Given V is

independent of Z and X = m(Z)+V , we have

φX (t)=E
[
eitX

]
=E

[
eitm(Z)

]
·E

[
eitV

]
=φm(t) ·φV (t).(4)

This implies that nonzero points of the characteristic function of X are also nonzero points of

the characteristic function of V . If the characteristic function of X is everywhere nonvanishing,

then the characteristic function of V is also everywhere nonvanishing.

Proposition 2.1. Consider X = m(Z)+V, where Range(m) = R and V is independent of Z. If

the characteristic function of X is everywhere nonvanishing, then the nonparametric family of

conditional density functions
{

f (x|z)= fV (x−m (z)) : z ∈Z
}

is complete in L1
bnd(X ).

Under the range restriction and the independent condition, the characteristic functions φX (t)

do not vanish on the real line is a sufficient condition for the completeness which is testable.

The common distribution families such as the normal, chi-squared, Cauchy, gamma, Student,

Laplace, and α-stable and exponential distributions have this non-vanishing property for their

characteristic functions.

D’Haultfoeuille (2011) extends the nonparametric additive models with independent errors

in Eq. (3) to the following nonparametric models with an additive separability:

X =Λ(m(Z)+V ).(5)

We summarize part (i) of Theorem 2.1 in D’Haultfoeuille (2011) in the following lemma.

Lemma 2.3. Suppose Eq. (5) hold. Assume Range(m) = R and V is independent of Z. If the

characteristic function of V is smooth or equivalently, of class C∞ and everywhere nonvanishing,

then the nonparametric family { f (x|z) : z ∈R} is complete in L1
bnd(X ).

Thus, under the nonparametric specifications in Eqs. (3) and (5), the completeness condi-

tion is more accessible and the high level completeness conditions required for identifications in

many econometric models can be verify in practice by examining the nonvanishing property of

characteristic functions.
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3. Asymptotic Properties of the Squared Modulus of Empirical

Characteristic Functions

In this section, we will provide large sample results of the squared modulus of empirical char-

acteristic functions and then use the result to construct test statistics in the next section. The

empirical characteristic function is defined as

φX ,n(t)= 1
n

n∑
j=1

eitX j(6)

where X i, i = 1, ...,n is an i.i.d. sequence of random variables. The empirical characteristic

function is directly calculated from the empirical distribution and all the calculation is done

in the complex domain. Because the characteristic function has a one-to-one correspondence

with the distribution function, the empirical characteristic function retains all the information

present in the sample. The asymptotic theory for the empirical characteristic function in the i.i.d.

case is well understood in Feuerverger and Mureika (1977). Because the sufficient conditions for

completeness is related to the nonvanishing property of characteristic function, we consider the

squared modulus of the characteristic function and the empirical characteristic function and

denote them as

aX (t)= |φX (t)|2, and aX ,n(t)= |φX ,n(t)|2.(7)

The squared modulus of the empirical characteristic function can be reduced to the following

expression

aX ,n(t)= 1
n
+ 2

n2

∑
1≤ j<k≤n

cos(t(X j − Xk)).(8)

The following two results are straightforward consequence by Feuerverger and Mureika

(1977) and Murota and Takeuchi (1981) and they are adopted to show the asymptotic proper-

ties of convergence of the squared modulus of the empirical characteristic function to squared

modulus of the true characteristic function.3

3Related results can be found as Theorem 2.1 in Feuerverger and Mureika (1977) and Theorem 1 in Murota and
Takeuchi (1981).
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Proposition 3.1. (Strong Law of Large Numbers) For fixed T <∞,

P

(
lim

n→∞ sup
|t|<T

|aX ,n(t)−aX (t)| = 0

)
= 1.(9)

Proposition 3.2. (Asymptotic Normality) For fixed T <∞. Let Rn(t) be a stochastic process that

is a residual of the squared modulus of the empirical characteristic function and the squared

modulus of the population characteristic function:

Rn(t)=p
n

(
aX ,n(t)−aX (t)

)
, for t ∈ [−T,T] .(10)

As n →∞, the random process Rn(t) converges to a zero mean Gaussian process R(t) satisfying

R(t)= R(−t) and

E
[
R(t)R(s)

]
= 2Re{φX (−t)φX (−s)φX (t+ s)+φX (−t)φX (s)φX (t− s)}−4aX (t)aX (s).(11)

Since Proposition 3.2 provides the asymptotic behavior of the squared modulus of the empir-

ical characteristic function for a fixed single point t, any statistical procedure developed based

on the behaviour may depend on the choice of the value of t. If a characteristic function fails

the nonvanishing property, then there exists at least one zero point of the characteristic func-

tion. Information of the location of this zero point is essential for the inferential procedures

based the asymptotic behavior of the squared modulus of the empirical characteristic function.

Therefore, a potential test for the completeness is the problem of estimating the first zero point

of the squared modulus of a characteristic function as well as an application of the inferential

procedures to the estimated zero point.

If aX (t0)= 0 for some t0, then aX (−t0)= 0. Thus, by the symmetry, we only consider aX (t) on

the positive half line. Set

A0 = inf{t > 0 : aX (t)= 0},(12)

and if A0 does not exist, we denote A0 =∞, and define the random variable

An = inf{t > 0 : aX ,n(t)= 0}.(13)

We first show the convergence result of An to A0 and then present some results concerning the
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estimation of An.

Theorem 3.1. Suppose A0 <∞ is an isolated zero of aX (t), and aX (t) is smooth in some neigh-

borhood of A0. Then,

An
a.s.−−→ A0 as n →∞.(14)

From Eqs. (52) and (53), the locations of minimums are determined by the derivatives ∂aX (t)
∂t

and ∂aX ,n(t)
∂t . Using Eq. (8), we have the following U statistic expression for ∂aX ,n(t)

∂t

∂aX ,n(t)
∂t

=− 2
n2

∑
1≤ j<k≤n

sin(t(X j − Xk))(X j − Xk).(15)

Applying asymptotic normality result of U statistics4, we obtain

Proposition 3.3. For a fixed T <∞, if E(|X |)<∞, for t ∈ [−T,T], we have

p
n

(
∂aX ,n(t)

∂t
− ∂aX (t)

∂t

)
d−→ N(0,σ2(t)),(16)

where σ2(t)<∞.

Following the approach in Heathcote and Hüsler (1990), we can prove the limiting behavior

of
p

n (An − A0).

Theorem 3.2. Suppose E(|X |) < ∞, A0 < ∞ is an isolated zero of aX (t), and aX (t) is smooth

in some neighborhood of A0. Set a
′′
X (A0) = ∂2aX (t)

∂2 t |t=A0 and σ(t) is the asymptotic variance in

Proposition 3.3. For rn = A0 + zσ(A0)p
na′′

X (A0)
with z ∈R, as n →∞, we have

P{An ≤ rn}→Φ(z) for every z ∈R,(17)

where Φ is the CDF of the standard normal distribution. In other words,

p
n (An − A0) d−→ N(0,

σ(A0)2

a′′
X (A0)2

)(18)

For n > 1, it is infeasible to calculate An explicitly, because the equation aX ,n(t)= 0 often does

not have a unique root and standard approximation methods may fail. Welsh (1986) presents a

simple explicit method of calculation of the first positive zero of the real part of a characteristic
4See Chapter 5 of Serfling (2009) for detailed results.
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function which requires only a fractional moment condition on the distribution of X . We will

follow the approach in Welsh (1986) to develop an iterative procedure for calculating a realisation

of An, and establish almost sure convergence to A0.

Let s ∈ [0, An). Then, for any t ∈ (s, An), using the expression in Eq. (8), we have

|aX ,n(t)−aX ,n(s)| < = 2
n2

∑
1≤ j<k≤n

∣∣∣cos(t(X j − Xk))−cos(s(X j − Xk))
∣∣∣

= 2
n2

∑
1≤ j<k≤n

∣∣∣sin
( (t− s)(X j − Xk)

2

)∣∣∣
≤ 21−α|t− s|αmα, 0<α≤ 1,(19)

where

mα = 1
n2

∑
1≤ j<k≤n

∣∣∣X j − Xk

∣∣∣α, 0<α≤ 1.(20)

This implies that for t ∈ (s, An),

aX ,n(s)−21−α|t− s|αmα ≤ aX ,n(t).(21)

The left hand side of the above inequality is an approximation of aX ,n(t) on (s, An) and its zero

is an approximation of An. Set TX ,n,0 = 0 and

TX ,n,k+1 = TX ,n,k +
(aX ,n(TX ,n,k)

21−αmα

) 1
α

, k = 0,1,2, ...(22)

The notation Fx refers to the CDF of X . The asymptotic properties of TX ,n,k are summarized in

the following theorem.

Theorem 3.3. (i) For each fixed n <∞, TX ,n,k is a monotone increasing sequence which converges

to An, almost surely as k →∞; (ii) If A0 <∞ is an isolated zero of aX (t), aX (t) is smooth in some

neighborhood of A0, and

∫ ∫
|x1 − x2|αdFx1 dFx2 <∞(23)

for some 0<α≤ 1, then for N large enough

sup
n≥N

|TX ,n,k − An| a.s.−−→ 0 as k →∞.(24)
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(iii)Suppose the assumptions in (ii) hold. Then, for a sufficiently large n, there exists k depending

on n such that

|TX ,n,k − An| ≤ 1p
n

a.s. .(25)

4. Testing Completeness in Nonparametric Specifications

In this section, we will apply the asymptotic results of the squared modulus of the empirical

characteristic functions in Section 3 to provide simple tests for the completeness that is used

for identifying several econometric models. We will construct test statistics for nonparametric

IV regression models with or without a convolution structure between x and z, and nonclassi-

cal measurement error models with instrumental variables. Because the structures of the two

models are different, we discuss the testing issues in the context of these models.

4.1. Nonparametric IV Regression Models

Consider a nonparametric IV regression model as follows:

(26) y=µ(x)+ν, with E[ν|z]= 0.

We observe a random sample of {Y , X , Z}, and denote the supports of these random variables as

Y , X and Z , respectively. The conditional expectation of Eq. (26) has the following integral

equation

(27) E[y|z]=
∫
µ(x) f (x|z)dx a.e. in Z .

The object of interest is the unknown function µ(·) which is not observable from the distribution

of {Y , X , Z}. For the identification of the function µ(·), Newey and Powell (2003) and Darolles,

Florens, and Renault (2006) imposed the completeness condition for the conditional distribution

f (X |Z). Suppose there exists µ1 and µ2 satisfy

E[y|z]=
∫
µ1(x) f (x|z)dx =

∫
µ2(x) f (x|z)dx.(28)
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This implies that

0=
∫

(µ1(x)−µ2(x)) f (x|z)dx a.e. in Z .(29)

The completeness of the nonparametric family of conditional density functions
{

f (x|z) : z ∈ Z
}

ensures that there is a unique solution µ=µ1 =µ2 in L1
bnd(X ).

Assumption 4.1. (i) the range of the conditional mean function E [X |Z = z] is the whole real

line;(ii) write X =E [X |Z = z]+V, and assume V is independent of Z.

Proposition 2.1 implies that under Assumption 4.1, if the characteristic function of X is ev-

erywhere nonvanishing, then the nonparametric family of conditional density functions
{

f (x|z)=
fV (x−E[X |Z = z]) : z ∈Z

}
is complete in L1

bnd(X ). Therefore, a test for an everywhere nonvan-

ishing characteristic function of X under Assumption 4.1 can be regarded as a test for complete-

ness.

The null hypothesis of the test is

(30) H0 :φX (t)= 0 for some t.

The alternative hypothesis is

(31) H1 :φX (t) 6= 0 for all t.

As explained in Proposition 2.1, under Assumption 4.1, H1 is true implies the completeness of{
f (x|z)= fV (x−E[X |Z = z]) : z ∈Z

}
in L1

bnd(X ). Under H0, we have the A0 in Eq. (12) exists and

finite and aX (A0)= 0. We may want to apply the asymptotic result of Proposition 3.2 at the point

A0 to construct a test statistic. Theorem 3.3 ensures the iterative estimator TX ,n,k in Eq. (22)

satisfying TX ,n,k
a.s.−−→ A0 as n,k →∞. Given the estimator TX ,n,k for A0, we apply Proposition

3.2 at the estimator TX ,n,k to obtain

Rn(TX ,n,k)=p
n

(
aX ,n(TX ,n,k)−aX (TX ,n,k)

)
(32)

converges to a zero mean Gaussian process with the variance E
[
R(TX ,n,k)2

]
as n →∞. Under

H0, the term aX (TX ,n,k) in Eq. (32) is close to zero as aX (TX ,n,k) a.s.−−→ aX (A0)= 0 as n,k →∞. On

the other hand, under H1, the term aX (TX ,n,k) is nonzero. According to the results, we construct

13



a test statistic with

τX n =p
naX ,n(TX ,n,k).(33)

The assumptions in Theorem 3.2 and Theorem 3.3 are needed to derive the asymptotic properties

of τX n and we collect them in the next assumption.

Assumption 4.2. Denote AX0 = inf{t > 0 : aX (t) = 0}. (i) Suppose E(|X |) <∞, AX0 is an isolated

zero of aX (t), and aX (t) is smooth in some neighborhood of AX0;(ii)

∫ ∫
|x1 − x2|αdFx1 dFx2 <∞.(34)

Since we have known the sampling distribution of τX n asymptotically converges to a zero

mean Gaussian process with the variance E
[
R(TX ,n,k)2

]
when H0 is true, we can determine a

precise rejection rule for rejecting H0 at a chosen significance level. Thus, a consistent estimator

of the approximate critical value of τX n for a given significance level α can be obtained by the

1−α/2 quantile of the distribution of N(0,E
[
R(TX ,n,k)2

]
). Let c∗ be the 1−α/2 quantile of the

sample distribution. One rejects H0 if:

|τX n| ≥ c∗.

We use τX n as the test statistic for testing H0 and the asymptotic properties of τX n are summa-

rized in the following theorem.

Theorem 4.1. If Assumptions 4.1 and 4.2 hold. Then,

(i) under H0,

P
(|τX n| ≥ c∗

)→ 0 as n →∞.

(ii) under a fixed alternative H1,

P
(|τX n| ≥ c∗

)→ 1 as n →∞.

The critical value c∗ for the τX n is consistent against a fixed alternative. Therefore, under

Assumptions 4.1 and 4.2, rejection of the null H0 implies the nonparametric family of conditional

density functions
{

f (x|z)= fV (x−E[X |Z = z]) : z ∈Z
}

is complete in L1
bnd(X ).
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Remark 4.1. The nonparametric specifications in Assumption 4.1(ii) are related to observable

variables X , Z. A formal statistical test of the validity of the full independence between V and Z

is possible because we can replace V by the residual of an estimator of E [X |Z = z] and X. Thus,

we can use an observable data to justify the maintained assumption.

Remark 4.2. In order to fulfill the requirement of an independent error term in the regression for-

m of X, we may add more exogenous variables. For example, consider a nonparametric regression

model as follows:

(35) y= m(x, z1)+ν, with E(ν|z)= 0, z = (z1, z2)

where x is an endogenous regressor and may be correlated with ν, and z1, z2 are exogenous vari-

ables. In this case, the relation X = E [X |Z = z]+V, with V is independent of Z is more likely to

hold than without adding the exogenous variable z1. The completeness in this model is referred

to that the nonparametric family of conditional density functions
{

f (x|z) = fV (x−E [X |Z = z]) :

z2 ∈Z2

}
is complete in L1

bnd(X ) for each z1 ∈Z1, where Z =Z1 ×Z2 is the support of z.

Remark 4.3. It is tempting to estimate the conditional mean of X given Z and verify whether

its range fits the whole line for a given dataset. However, one should always be wary of using

the sample observations to make a judgement about the support condition could be misleading.

For example, the realization of one sample from unbounded normal distributions may appear to

indicate that the unbounded support conditions fail.

Remark 4.4. Theorem 4.1 shows that for a fixed distribution, the proposed test is o(1) under the

null and consistent against a fixed alternative and this only establishes pointwise asymptotic size

control. This pointwise result does not contradict to the uniform result in Canay, Santos, and

Shaikh (2013).

Remark 4.5. We have interpreted a rejection of null hypothesis using the proposed tests as evi-

dence of completeness. This is appropriate provided we maintain Assumptions 4.1 and 4.2. How-

ever, if Assumption 4.1 is violated then a test for completeness can reject H0, even if the family

is not complete. Therefore, it would be better to test for the convolution structure in Assumption

4.1(ii) first, since the specification is important to our result. Then, once we are satisfied with the

test for the convolution structure, we can test for completeness.5

5We thank the editor Esfandiar Maasoumi to point this out.
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4.1.1. Transformation Models

Lemma 2.3 describes the conditions in which the completeness holds under the nonparametric

additive models with independent errors in Eq. (5). In this completeness result, one of condition

is related to the nonvanishing property of the characteristic function of the independent error V

which is unobservable from data. In order to get an estimate of V and apply the proposed test

to detect zeros of the characteristic function of V , we consider a transformation model which is

encompassed in Eq. (5):

X =Λ(βZ+V ),(36)

where Λ(·) is strictly increasing function. Han (1987) proposes a maximum rank correlation

estimator to estimate β consistently. Sherman (1993) establishes the asymptotic normality of the

maximum rank correlation estimator. Given a
p

n-consistent estimator for β, Horowitz (1996)

and Chen (2002) propose a rank-based estimator for Λ. Because β and Λ are estimable, we also

obtain an estimate of V . Denote an estimate of V as V̂ .

Assumption 4.3. (i) suppose Eq. (5) holds; (ii) Range(m) = R; (iii) assume V is independent of

Z.

Under Assumption 4.3, we consider the following hypothesis testing:

H0 :φV (t)= 0 for some t.(37)

H1 :φV (t) 6= 0 for all t.(38)

A proposed test statistic is

τV̂ n =p
naV̂ ,n(TV̂ ,n,k),(39)

where the notations aV̂ ,n and TV̂ ,n,k are the squared modulus of the empirical characteristic

function of V̂ and TV̂ ,n,k is an iterative estimator similar to TX ,n,k. The rest testing procedure is

similar to the procedure for τX n. A rejection of the null H0 implies the nonparametric family of

conditional density functions
{

f (x|z) : z ∈Z
}

is complete in L1
bnd(X ).
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4.2. Nonclassical Measurement Error Models with Instrumental Variable

Consider nonclassical measurement error models with the following joint density:

fY X∗(y, x∗)

where y is the dependent variables, and x∗ is the true explanatory variable. However, x∗ is not

observed, and we observe a measure of x∗ by x. Hu and Schennach (2008) rely on the availability

of an instrument z to show that the joint distribution fY X∗ is identified from knowledge of the

distribution of all observed variables Y , X , Z. Hu and Schennach (2008) show the equation

fY X Z(y, x, z)=
∫

fY X∗(y, x∗) fX |X∗(x|x∗) fZ|X∗(z|x∗)dx∗

admits a unique solution ( fY X∗ , fX |X∗ , fZ|X∗) for a given observable joint distribution fY X Z . De-

fine the following integral operators:

LX |X∗ : L1
bnd(X ∗)→ L1

bnd(X )

(LX |X∗h)(x)=
∫

h(x∗) fX |X∗(x|x∗)dx∗,

LZ|X∗ : L1
bnd(X ∗)→ L1

bnd(Z )

(LZ|X∗h)(z)=
∫

h(x∗) fZ|X∗(z|x∗)dx∗.

Hu and Schennach (2008) utilize injectivity of these two integral operators, LX |X∗ and LZ|X∗

along with other location and normalization conditions to obtain uniqueness of spectral decom-

position of an integral operator and provide the identification result. The injectivity of the

integral operators, LX |X∗ and LZ|X∗ implies that the families of conditional density function-

s
{

fX |X∗(x|x∗) : x ∈ X
}

and
{

fZ|X∗(z|x∗) : z ∈ Z
}

are complete in L1
bnd(X ∗) respectively. The

identification result in Hu and Schennach (2008) requires two completeness conditions, the com-

pleteness of fX |X∗ and the completeness of fZ|X∗ .

Follow the discussion in Section 2, we have

Proposition 4.1. Consider X = m1(X∗)+E1, where m1 is monotonic and E1 is independent of

X∗. If the characteristic function of X is everywhere nonvanishing, then the nonparametric family

of conditional density functions
{

fX |X∗(x|x∗)= fE1(x−m1 (x∗)) : x ∈X
}

is complete in L1
bnd(X ∗).

Assumption 4.4. Assume X = m1(X∗)+E1 with m1 is monotonic and E1 is independent of X∗.
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Assumption 4.5. Denote AX0 = inf{t > 0 : aX (t) = 0}. (i) Suppose E(|X |) <∞, AX0 is an isolated

zero of aX (t), and aX (t) is smooth in some neighborhood of AX0;(ii)

∫ ∫
|x1 − x2|αdFx1 dFx2 <∞.(40)

Proposition 4.1 implies a test for an everywhere nonvanishing characteristic function of X

under Assumption 4.4 can be regarded as a test for completeness of fX |X∗ . We propose a test

similar to the test in the subsection 4.1. The null hypothesis of the test is

(41) HX0 :φX (t)= 0 for some t.

The alternative hypothesis is

(42) HX1 :φX (t) 6= 0 for all t.

Proposition 4.1 implies under Assumption 4.4, a rejection of HX0 implies
{

fX |X∗(x|x∗) = fE1(x−
m1 (x∗)) : x ∈ X

}
is complete in L1

bnd(X ∗). In a similar manner as the subsection 4.1, the test

statistic is given by:

τX n =p
naX ,n(TX ,n,k),(43)

where aX ,n is the squared modulus of the empirical characteristic function and TX ,n,k is an iter-

ative estimator for finding AX0 = inf{t > 0 : aX (t) = 0} and its definition is in Eq. (22). However,

the test statistic only works for an inference for the completeness of fX |X∗ . To provide an infer-

ence for the completeness condition in Hu and Schennach (2008), we also need to incorporate an

inference for the completeness of fZ|X∗ . Thus, our testing strategy consists of a two-step proce-

dure: the first test is an test for the completeness of fX |X∗ while the second test is an test for the

completeness of fZ|X∗ .

Assumption 4.6. Assume Z = m2(X∗)+E2 with m2 is monotonic and E2 is independent of X∗.

Assumption 4.7. Denote AZ0 = inf{t > 0 : aZ(t) = 0}. (i) Suppose E(|Z|) <∞, AZ0 is an isolated

zero of aZ(t), and aZ(t) is smooth in some neighborhood of AZ0;(ii)

∫ ∫
|z1 − z2|αdFz1 dFz2 <∞(44)
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The null hypothesis of the second test is

(45) HZ0 :φZ(t)= 0 for some t.

The alternative hypothesis is

(46) HZ1 :φZ(t) 6= 0 for all t.

The second test statistic is given by:

τZn =p
naZ,n(TZ,n,k),(47)

where aZ,n is the squared modulus of the empirical characteristic function for Z and TZ,n,k is an

iterative estimator for finding AZ0 = inf{t > 0 : aZ(t) = 0}, where aZ(t) is the squared modulus of

the characteristic function for Z. The definition of TZ,n,k is similar to TX ,n,k in Eq. (22).

Under Assumptions 4.4, and 4.5, failure to reject HX0 rules out the completeness of fX |X∗

asymptotically. Therefore, if we fail to reject the null hypothesis HX0, we stop the testing proce-

dure and decide against the two completeness conditions. On the other hand, if we reject the first

null HX0, but fail to reject the second one HZ0, one may still decide against the two completeness

conditions. Finally, if the null hypotheses of both tests are rejected, there is evidence for that

the two completeness conditions hold. That means that if we reject both HX0 and HZ0, under

Assumptions 4.4, 4.5, 4.6, and 4.7, both families
{

fX |X∗(x|x∗) : x ∈ X
}

and
{

fZ|X∗(z|x∗) : z ∈ Z
}

are complete in L1
bnd(X ∗).

Let c∗1 and c∗2 be the 1−α/2 quantile of the sample distributions N(0,E
[
R(TX ,n,k)2

]
) and

N(0,E
[
R(TZ,n,k)2

]
), respectively. Based on the limiting distributions of τX n and τZn, we device

the following two-step decision rule.

Decision Rule:

1. If |τX n| ≤ c∗1 , we fail to reject HX0 and stop the testing procedure. We decide against the

two completeness conditions.

2. If |τX n| ≥ c∗1 and |τZn| ≤ c∗2 , we decide against the two completeness conditions.

3. If |τX n| ≥ c∗1 and |τZn| ≥ c∗2 , we decide in favor of the two completeness conditions.

We establish the validity of our testing procedure by the following theorem.

19



Theorem 4.2. Suppose Assumptions 4.4, 4.5, 4.6, and 4.7 hold. Then,

(i) under HX0,

P
(|τX n| ≥ c∗1

)→ 0 as n →∞.

(ii) under HX1 ∩HZ0 for a fixed alternative HX1,

P
(|τX n| ≥ c∗1 , |τZn| ≥ c∗2

)→ 0 as n →∞.

(iii) under HX1 ∩HZ1 for fixed alternatives HX1 and HZ1,

P
(|τX n| ≥ c∗1 , |τZn| ≥ c∗2

)→ 1 as n →∞.

Remark 4.6. The nonparametric specifications in Assumptions 4.4 and 4.6 are related to unob-

served variables X∗. In this case, the two assumptions can not be verified empirically as Assump-

tion 4.1 in the nonparametric IV regression model in Section 4.1. To justify the nonparametric

specifications, we can present discussions of these two assumptions for a particular empirical

application.

4.3. Nonparametric IV Regression Models Revisited

We reconsider the nonparametric IV regression model from Section 4.1, showing how we can

apply the results from previous sections to provide a test on the completeness of the family of

conditional density functions
{

f (x|z) : z ∈ Z
}

without a direct convolution structure between x

and z.

Assumption 4.8. Suppose there exist an exogenous latent variable W∗ satisfying (i) X = m1(W∗)+
V1 with Range(m1) = R and V1 is independent of W∗, (ii) Z = m2(W∗)+V2 with m2 is monoton-

ic and V2 is independent of W∗, and (iii) V1 and V2 are conditional independent given W∗, i.e.,

V1 ⊥⊥V2|W∗.

Assumption 4.8 is compatible with the validity of the chosen instrumental variable Z. This

setup attempts to control the endogeneity by exploiting the common exogenous latent variable

W∗ in X and Z, and the instrumental variable Z is not be related to the unobserved error U . It

follows that fX |Z,W∗ = fX |W∗ .
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Assumption 4.9. (Restrictions on densities) The joint density of x, z, and w∗ admits a bounded

density and all related marginal and conditional densities are also bounded.

Proposition 4.2. Suppose Assumptions 4.8 and 4.9 hold. If the characteristic functions of X

and Z are both everywhere nonvanishing, then the nonparametric family of conditional density

functions
{

f (x|z) : z ∈Z
}

is complete in L1
bnd(X ).

Therefore, we can apply the two-step test procedure in subsection 4.2 using τX n in Eq. (43)

and τZn in Eq. (47) to test the completeness of
{

f (x|z) : z ∈ Z
}

under Assumptions 4.8 and

4.9. Let c∗1 and c∗2 be the 1−α/2 quantile of the sample distributions N(0,E
[
R(TX ,n,k)2

]
) and

N(0,E
[
R(TZ,n,k)2

]
), respectively. Similarly to the two-step test procedure in subsection 4.2, we

have the following decision rule.

Decision Rule:

1. If |τX n| ≤ c∗1 , we stop the testing procedure and decide against the completeness condition.

2. If |τX n| ≥ c∗1 and |τZn| ≤ c∗2 , we decide against the completeness condition.

3. If |τX n| ≥ c∗1 and |τZn| ≥ c∗2 , we decide in favor of the completeness condition.

Theorem 4.3. Suppose Assumptions 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 hold. Then,

(i) under HX0,

P
(|τX n| ≥ c∗1

)→ 0 as n →∞.

(ii) under HX1 ∩HZ0 for a fixed alternative HX1,

P
(|τX n| ≥ c∗1 , |τZn| ≥ c∗2

)→ 0 as n →∞.

(iii) under HX1 ∩HZ1 for fixed alternatives HX1 and HZ1,

P
(|τX n| ≥ c∗1 , |τZn| ≥ c∗2

)→ 1 as n →∞.

4.4. Implementation of the Test Statistic

In this subsection, we provide a detailed description of an algorithm that summarizes the steps

in the computation of the proposed test estimator τX n in Eq. (39). The algorithm can also be

used to compute τZn in Eq. (47).
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Testing Algorithm for τX n

1. Given data {xi : i = 1, ...,n} of sample size n, choose α from (0,1] and then compute mα in

Eq. (20).

2. Set TX ,n,0 = 0 and construct the squared modulus of the empirical characteristic function

aX ,n(t)= |φX ,n(t)|2. Apply aX ,n(t) and mα in Step 1 to the iterative formula in Eq. (22),

TX ,n,k+1 = TX ,n,k +
(aX ,n(TX ,n,k)

21−αmα

) 1
α

.

3. Calculate the test statistic estimator

τX n =p
naX ,n(TX ,n,k),

and its variance estimator

V 2
X n = 2Re{φX ,n(−TX ,n,k)2φX ,n(2TX ,n,k)+φX ,n(−TX ,n,k)φX ,n(TX ,n,k)}−4aX ,n(TX ,n,k)2.

(48)

4. Given a significance level α, use cα =Φ−1(1− α
2 ) to construct the critical value c∗ = cαVX n.

5. Compare the test statistic τX n to the critical value c∗. If |τX n| ≥ c∗, reject the null hypoth-

esis H0 : φX (t) = 0 for some t in favor of the alternative hypothesis H1 : φX (t) 6= 0 for all t.

Under Assumptions 4.1 and 4.2, rejecting H0 implies the completeness of
{

f (x|z) = fV (x−
E[X |Z = z]) : z ∈ Z

}
in L1

bnd(X ). If the test statistic is less than the critical value, do not

reject the null hypothesis. Thus, no conclusion has been reached.

5. Monte Carlo Simulation

In this section, we carry out simulation experiments to study the finite sample performance of

the proposed test statistic using the Testing Algorithm in subsection 4.4. First, we consider the

generation processes for the variable X . Ten specifications of X are considered:

DGP I: X ∼U(0,1),

DGP II: X ∼U(−1,1),
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DGP III: X ∼ N(0,1),

DGP IV: X ∼ N(1,1),

DGP V: X ∼Gamma(2,2),

DGP VI: X ∼ Tri(0,1,0)

DGP VII: X ∼ Tri(0,1,0.25),

DGP VIII: X ∼ Tri(0,1,0.5),

DGP IX: X ∼ Trun(N(0,1), [−1,1]),

DGP X: X ∼ Trun(N(1,1), [−1,1]),

where the shorthand Tri(a,b, c) is used to indicate that the random variable X has the triangu-

lar distribution with the lower limit a, the upper limit b and the mode c and Trun(N(a,b), [−1,1])

represents a truncated normal distribution over interval [−1,1] generated by F−1
Q (u · (FQ(b)−

FQ(a))+FQ(a)), where FQ is the CDF of the normal distribution N(a,b), F−1
Q is the inverse of

FQ , and u is a uniform random variable on [0,1]. We consider sample sizes 500, and 1,000

and for each case, we consider 1000 simulation replications. The estimation results for the pro-

posed test statistics are summarized in Table 1. For DGPs I and II, the rejection rates are

very small, which are close to zero. This implies that there is strong evidence that the nul-

l hypothesis is likely to hold. That is the characteristic function of X is likely to vanish at

some point. This implies that under our nonparametric specifications in Section 4, the families{
f (x|z) = fV (x−E[X |Z = z]) : z ∈ Z

}
and

{
fX |X∗(x|x∗) = fE1(x−m1 (x∗)) : x ∈ X

}
are not likely to

be complete. The characteristic functions of the population distributions in DGPs I and II have

infinitely many zeros so the proposed test performs well in the DGPs to detect their zeros. For

DGPs III, IV and V, the rejection rates are much higher than the nominal size 5% and increase

with sample size, indicating that our test are consistent when the null hypothesis is violated.

The estimation results are also consistent with the population distributions in DGPs III, IV and

V. DGPs VI, VII, VIII, IX, and X are drawn form triangular distributions. While DGP VIII is

bounded and symmetric, DGPs VI, VII, IX, and X are bounded and asymmetric. For DGP VIII,

the rejection rates are 0.008 and 0.072, which are close to the nominal size 5% given that there

exists zeros for its population distribution. For DGPs VI, VII, IX, and X, the rejection rates are

much higher than the nominal size 5% indicating a strong evidence against the null hypothesis.

DGPs XI, and XII are drawn form truncated normal distributions over interval [−1,1]. While

DGP XI is symmetric, DGP XII is asymmetric. The rejection rates of the estimation results in-

23



dicate that the characteristic function of X in DGP XI is likely to vanish at some point and the

characteristic function of X in DGP XII does not have any zero.

At a neighborhood of A0, the squared modulus of the empirical characteristic function aX ,n

has an associated confidence interval that the true parameter is in the proposed range with

some assigned confidence level. Follow the Testing Algorithm in subsection 4.4, the 100(1−α)%

confidence interval with α= 5% at TX ,n,k is given by

(
aX ,n(TX ,n,k)− cαVX np

n
,aX ,n(TX ,n,k)+ cαVX np

n

)
,(49)

The estimation results for the associated confidence intervals in DGPs I, III, VIII, and X are

plotted in Figures 1 and 2 for N = 1000. These plots show the shapes of the estimates aX ,n

(blue lines), the location of the first zero estimator TX ,n,k (red hexagram), the 2.5th and 97.5th

percentile confidence interval at TX ,n,k (cyan solid line), the points of zeros (red solid line), and

the 2.5th and 97.5th percentile confidence bands of aX ,n are in black dashed lines.

In the upper panel of Figures 1 and 2, the confidence interval at TX ,n,k contain the zero.

This indicates that the possible values of the squared modulus of the empirical characteristic

function at 95% significant level contain zero and the proposed test statistics does not reject the

null hypothesis, i.e., the characteristic function vanishes at some point. In the bottom panel of

Figures 1 and 2, the confidence interval at TX ,n,k does not contain the zero. This indicates that

it is highly likely that aX ,n is bigger than zero and the proposed test statistics rejects the null

hypothesis, i.e., the characteristic function does not vanish.

6. Empirical Illustration

This section applies the developed test statistics to a measurement model to illustrate our

method empirically. We use a data set that matches self-reported earnings from the Current

Population Survey (CPS) to employer-reported social security records (SSR) earnings from 1978

(the CPS/SSR Exact Match File). This data-set has been used by Bound and Krueger (1991),

Bollinger (1998), and Chen, Hong, and Tamer (2005). While Bound and Krueger (1991) and

Bollinger (1998) use this dataset to argue that the classical measurement error model is not ap-

propriate for reporting errors in male earnings, Chen, Hong, and Tamer (2005) study the problem

of parameter inference in econometric models allowing the data are measured with non-classical

measurement error. As in Chen, Hong, and Tamer (2005) which assume that the SSR earnings
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are more accurate, we treat the SSR reporting earnings as the correct earnings data. We will

show how one can use the proposed test statistics to make inference on the completeness of the

family of conditional density functions
{

fX |X∗(x|x∗) : x ∈ X
}
, where we model the CPS earnings

and the SSR earnings as X and X∗ respectively.

The population considered here is composed of both men and women, regardless of their age.

Following the selection criteria in Chen, Hong, and Tarozzi (2005), we obtain an exact match

sample of 38,759 observations. We further divide the data into three education categories: High

School or Lower, Some College, and College or Higher. Years of education assigned to each

category are 0-12, 13-15, and 16-19, respectively. Table 2 reports summary statistics for the

three subsamples. Individuals in High School or Lower are more likely to be older, and not

white. They also have smaller CPS and SSR earnings. Individuals in all three groups appear to

report higher earnings, i.e., the mean of the CPS earnings are higher than the mean of the SSR

earnings. The gap of the means in the CPS and SSR earnings increases with years of education.

Our approach to analyzing the relationship between the CPS earnings and the SSR earnings

is to consider the conditional mean function of the CPS earnings on the SSR earnings and the

three education categories:

E
[
X |X∗, Education

]
.(50)

Denote the residual from this nonparametric regression form as E. Write

X =E
[
X |X∗, Education

]+E.(51)

The conditional mean function represents individual reporting behavior while the residual is

a random error. This implies that fX |X∗(x|x∗, Education) = fE (x−E[X |X∗ = x∗, Education]).

Bollinger (1998) utilizes Nayadara-Watson kernel-regression estimators to estimate the condi-

tional mean function. We adopt a series method to estimate the conditional mean function using

cubic splines with knots at E[X∗]−Std[X∗], E[X∗], and E[X∗]+Std[X∗].

Figure 3 presents the estimation results of E[X |X∗ = x∗, Education] at various education

categories. In each plot, the blue hexagram line represents the series estimation of the condi-

tional mean function and the red solid line represents the 45o line. If the measurement error

were not related to earnings, the blue hexagram line would coincide with the 45o line and the

measurement error is classical. In the first plot for the education group, High School or Lower,
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individuals with more than $8000 SSR earnings are more likely to underreporting their earn-

ings. However, individuals with less than $2000 SSR earnings are in average overreporting

their earnings. The overreporting pattern at low SSR earnings also appears in the second plot

for the education group, Some College. As for the third plot, all individuals with at least college

education are more likely to overreporting their earnings except for individuals with more than

$15,000 SSR earnings. In this education category, the overreporting is much severe at low SSR

earnings.

Finally, we investigate the zeros of the characteristic functions of the CPS earnings and

the residual by applying the proposed test statistic. Table 3 reports the results of the tests on

the three education categories. At each education category, the test statistics τX n and τEn are

bigger than their corresponding critical values with a 5% significant level. This provides strong

evidence to reject the null hypothesis that there exists a zero for the characteristic functions of

X and E at each education category. If we maintain that E[X |X∗ = x∗, Education] is monotonic

at x∗ and the residual E is independent of X∗ then the rejection results imply that the family

of conditional density functions
{

fX |X∗(x|x∗, Education) = fE (x−E[X |X∗ = x∗, Education]) : x ∈
X

}
is more likely to be complete in L1

bnd(X ∗) at each education category.

7. Conclusion

This paper has been concerned with hypothesis testing of the completeness condition in a class

of nonparametric specification. This study was motivated by a condition for the completeness in

Mattner (1993): the nonparametric location family of functions { fV (x− z) : z ∈ R} is complete if

and only if the characteristic function of V is everywhere nonvanishing. Based on the condition,

we present simple test statistics for the completeness in nonparametric IV regression models

with or without a convolution structure between the endogenous variable and the instrumen-

tal variable, and nonclassical measurement error models with instrumental variables. The test

statistics are relatively simple because they are derived from marginal distributions of observ-

ables instead of joint distributions. The advantage of the property is that the test statistics can

be used to test completeness conditions related to unobservables. We describe asymptotic be-

havior of the tests under the null and alternative hypotheses and investigate the finite sample

properties of the test through a Monte Carlo study. In our empirical illustration, we test for the

completeness for a measurement error model of self-reported earnings using data from the CP-

S/SSR 1978 exact match file. We find evidence for the completeness of the family of conditional
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density functions
{

fX |X∗(x|x∗, Education) = fE (x−E[X |X∗ = x∗, Education]) : x ∈ X
}
, where X

represents the CPS self-reported earnings and X∗ denotes SSR employer-reported earnings.

Our results provide a test for a class of complete distributions other than parametric distri-

butions. On the other hand, Canay, Santos, and Shaikh (2013) consider the hypothesis testing

problems for testing completeness in the nonparametric regression model against very general

alternatives and show the null hypothesis cannot be tested. Our test establishes only point-

wise asymptotic size control, while Canay, Santos, and Shaikh (2013) shows that any test that

controls asymptotic size uniformly over a large class of non-complete distributions has trivial

asymptotic power against any alternative. Their results imply that our Theorem 4.1 can not be

extended to a uniform result, but do not rule out the possibility that a useful test is feasible for

a particular class of models. That is how our results are complementary to the results in Canay,

Santos, and Shaikh (2013).

One of potential important applications for our results is to provide tests for many nonpara-

metric models involved with deconvolution methods because zero-freeness of the characteristic

function is a usual assumption among these approaches. This provides the possibility of data-

driven evidence for deconvolution problems.

A. Proofs

Proof of Theorem 3.1: Because aX (t) ≥ 0 and aX ,n(t) ≥ 0, by the definition of A0 and An,

the squared modulus functions aX (t) and aX ,n(t) attain their minimums at points A0 and An

respectively. Since A0 <∞ is an isolated zero of aX (t), and the squared modulus functions aX (t)

and aX ,n(t) are smooth in some neighborhoods of A0 and An respectively, we can rewrite the

definitions of A0 and An as follow:

A0 = inf
{

t > 0 :
∂aX (t)
∂t

= 0,
∂2aX (t)
∂2t

> 0
}

,(52)

An = inf

{
t > 0 :

∂aX ,n(t)
∂t

= 0,
∂2aX ,n(t)

∂2t
> 0

}
.(53)

For a given δ > 0. By the uniform convergence of aX ,n(t) to aX (t) on each bounded interval in

Proposition 3.1 and locally smoothness of aX ,n(t) and aX (t), we have the uniform convergence

of ∂aX ,n(t)
∂t to ∂aX (t)

∂t on each bounded interval. This implies that ∂aX ,n(t)
∂t < 0 almost surely for all

0 < t < A0 −δ for sufficiently large n. Because ∂aX (t)
∂t takes positive values for some points of the

interval (A0, A0 +δ), for sufficiently large n, we have ∂aX ,n(t)
∂t > 0 almost surely for some point
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inside (A0, A0+δ). Therefore, for sufficiently large n, ∂aX ,n(t)
∂t = 0 for some point in (A0−δ, A0+δ)

or An ∈ (A0 −δ, A0 +δ) almost surely. Since δ is arbitrary, this means that An
a.s.−−→ A0 as n →∞.

Q.E.D.

Proof of Theorem 3.2: Using Proposition 3.2, the distribution limit of
p

n
(
∂aX ,n(t)

∂t − ∂aX (t)
∂t

)
ex-

ists and is normally distributed. Let U(t) be the distribution limit with the variance function

σ2(t). By the definition of An, we have

P{An > rn}= P
{
∂aX ,n(t)

∂t
< 0, for all t ≤ rn

}
(54)

= P
{p

n
(
∂aX ,n(t)

∂t
− ∂aX (t)

∂t

)
<−pn

∂aX (t)
∂t

, for all t ≤ rn

}
(55)

= P
{

U(t)<−pn
∂aX (t)
∂t

, for all t ≤ rn

}
.(56)

This implies

P{An > rn}≤ P
{

U(rn)<−pn
∂aX (rn)

∂t

}
=Φ

(
−pn

∂aX (rn)
∂t

σ(rn)

)
.(57)

By the choice of rn, as n →∞ we have

p
n
∂aX (rn)

∂t

σ(rn)
=p

n
∂aX (rn)

∂t − ∂aX (A0)
∂t

σ(rn)
=

p
na

′′
X (A0) (rn − A0)
σ(A0)

+ o(1)= z+ o(1).(58)

Plugging the relation back to Eq. (57) yields

P{An ≤ rn}≥Φ(z) as n →∞.(59)

On the other hand, for the reverse inequality, we consider

P{An > rn}(60)

= P
{

U(t)<−pn
∂aX (t)
∂t

,∀t ≤ rn

}
(61)

= P
{

U(t)<−pn
∂aX (t)
∂t

,∀t ≤ νn

}⋂
P

{
U(t)<−pn

∂aX (t)
∂t

,∀νn ≤ t ≤ rn

}
,(62)

where νn = A0 − εnp
n with εn → ∞ but εn = o(

p
n). For the first term in Eq. (62), consider its
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complement

P
{

U(s)≥−pn
∂aX (s)
∂t

,∃s ≤ νn

}
,(63)

Because
∂aX (t)
∂t
σ(t) is increasing in t, for sufficiently large n,

p
n

∂aX (t)
∂t
σ(t) <p

n
∂aX (νn )

∂t
σ(νn) =p

n a
′′
X (A0)(νn−A0)

σ(νn) =
− a

′′
X (A0)εn
σ(νn) and a

′′
X (A0)εn
σ(νn) approaches to ∞ as n →∞. It follows that

P

{
U(s)
σ(s)

≥−pn
∂aX (s)
∂t

σ(s)
,∃s ≤ νn

}
≤ P

{
U(s)
σ(s)

≥ a
′′
X (A0)εn

σ(νn)
,∃s ≤ νn

}
,(64)

By Fernique’s Lemma in Marcus (1970) and εn →∞, this last probability is bounded by c2 exp(−c1ε
2
n)→

0 as n →∞ with some positive constants c1, and c2. Therefore, as n →∞, we obtain

P
{

U(t)<−pn
∂aX (t)
∂t

,∀t ≤ νn

}
→ 1.(65)

As for the second term in Eq. (62), for any δ> 0, supνn≤t≤rn

∣∣∣U(t)
σ(t) − U(rn)

σ(rn)

∣∣∣≤ δ for sufficiently large

n, and then we have U(t)
σ(t) ≤ U(rn)

σ(rn) +δ for sufficiently large n. This implies

P
{

U(t)<−pn
∂aX (t)
∂t

,∀νn ≤ t ≤ rn

}
(66)

= P

{
U(t)
σ(t)

<−pn
∂aX (t)
∂t

σ(t)
,∀νn ≤ t ≤ rn

}
(67)

≥ P
{

U(rn)
σ(rn)

+δ<−z+ o(1), sup
νn≤t≤rn

∣∣∣∣U(t)
σ(t)

− U(rn)
σ(rn)

∣∣∣∣≤ δ

}
(68)

≥Φ(−z+ o(1)−δ)−P
{

sup
νn≤t≤rn

∣∣∣∣U(t)
σ(t)

− U(rn)
σ(rn)

∣∣∣∣> δ

}
.(69)

By Theorem 2.1 of Berman (1974), for 0<α′ < 1 we have

P
{

sup
νn≤t≤rn

∣∣∣∣U(t)
σ(t)

− U(rn)
σ(rn)

∣∣∣∣> δ

}
≤ const.×

(
1−Φ(const.×δ× (rn −νn)−α

′/2)
)
→ 0(70)

as n →∞. Combining the results for any δ> 0, we have proved the reverse inequality and then

the statement in Eq. (17) follows. Q.E.D.

Proof of Theorem 3.3: (i) Let bn be any number in (0, An). Because bn < An, by the definition
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of An we have aX ,n(t)> 0 for 0≤ t ≤ bn. Then set

∆n = inf

{( aX ,n(t)
21−αmα

) 1
α

: 0≤ t ≤ bn

}
.(71)

It follows that ∆n > 0 and TX ,n,k is a monotone increasing sequence which is bounded by An.

Since TX ,n,k > bn for k > [ bn
∆n

]+1, where [x] denotes the integer part of x, we obtain TX ,n,k
a.s.−−→

An as k →∞.

(ii) Let δ> 0 be given. By the definition of A0 in Eq. (52) and the continuity of aX (t), we can

choose ε> 0 such that

inf {t ≥ 0 : aX (t)= ε}> A0 −δ/2,(72)

inf {t ≥ A0 : aX (t)= ε}< A0 +δ/2.(73)

Let B be a compact set of the real line containing [0, A0 +δ/2]. By the uniform convergence of

aX ,n(t) to aX (t) on each bounded interval in Proposition 3.1, there exists an N1 such that for all

n > N1,

0≤ aX ,n(t)≤ aX (t)+ε(74)

uniformly in t ∈ B with probability as close to one. Therefore, with probability as close to one, for

all n > N1,

A0 −δ/2≤ An ≤ A0 +δ/2.(75)

The moment condition in Eq. (23) implies that there exists an N2 such that, with probability as

close to one, for all n > N2

mα ≤
∫ ∫

|x1 − x2|αdF1dF2 +ε≡µα+ε,(76)

by the strong law of large numbers. Combining these two results, with probability as close to

one, for n > N =max{N1, N1}, we obtain

εN = inf

{(
aX (t)−ε

21−α(µα+ε)
) 1
α

: 0≤ t ≤ A0 −δ/2

}
(77)
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≤ inf

{( aX ,n(t)
21−αmα

) 1
α

: 0≤ t ≤ An −δ
}

(78)

because {0≤ t ≤ An −δ} ⊂ {0≤ t ≤ A0 −δ/2}. By the choice of ε, we have εN > 0. This implies that

with probability as close to one, for all k > [ A0−δ/2
εN

]+1,

|TX ,n,k − An| ≤ δ.(79)

(iii) This part follows from the derivation in (ii) by choosing δ = 1p
n and k correspondingly.

Q.E.D.

Proof of Theorem 4.1: Recall that under H0 and Assumption 4.2, the results in Theorem

3.3(iii) and Theorem 3.2 hold. Consider

τX n =p
n

(
aX ,n(TX ,n,k)−aX ,n(An)

)+p
n

(
aX ,n(An)−aX ,n(A0)

)+p
n

(
aX ,n(A0)−aX (A0)

)
(80)

=
∂aX (T∗

X ,n,k)

∂t
p

n
(
TX ,n,k − An

)+ ∂aX (A∗
n)

∂t
p

n (An − A0)+p
n

(
aX ,n(A0)−aX (A0)

)
,(81)

where T∗
X ,n,k is a value between TX ,n,k and An and A∗

n is a value between An and A0. As n →∞,

we have
∂aX (T∗

X ,n,k)
∂t → ∂aX (A0)

∂t = 0 and ∂aX (A∗
n)

∂t → ∂aX (A0)
∂t = 0. Because Theorem 3.3(iii) and Theorem

3.2 imply
p

n
(
TX ,n,k − An

)
and

p
n (An − A0) are bounded in probability, as n →∞, we obtain

τX n =p
n

(
aX ,n(A0)−aX (A0)

)+ op(1).(82)

By using Proposition 3.2, we have proved τX n
d−→ N(0,E

[
R(A0)2

]
) with R(A0) = 06. This gives

the desired statement at (i). As for the statement at (ii), consider

τX n =p
n

(
aX ,n(TX ,n,k)−aX (TX ,n,k)

)+p
naX (TX ,n,k).(83)

By Proposition 3.2, the first term is d−→ N(0,E
[
R(TX ,n,k)2

]
) which is bounded in probability. But

the second term diverges to ∞ under H1. This proves the statement at (ii).

Q.E.D.

Proof of Proposition 4.2: Because the characteristic function of X is everywhere nonvan-

ishing, under Assumption 4.8(i), Propositions 2.1 implies the nonparametric family of condi-

tional density functions
{

f (x|w∗) = fV1(x−m1 (w∗)) : w∗ ∈ W ∗
}

is complete in L1
bnd(X ). On the

6Eq. 11 and the fact that φX (A0)=φX (−A0)= aX (A0) implies that R(A0)= 0.
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other hand, by Propositions 4.1 if the characteristic function of Z is everywhere nonvanish-

ing, then under Assumption 4.8(ii), the nonparametric family of conditional density functions{
f (z|w∗)= fV2(z−m2 (w∗)) : z ∈Z

}
is complete in L1

bnd(W ∗).

With the relation fX |Z,W∗ = fX |W∗ from Assumption 4.8, by the law of the total probability,

we write

fX Z(x, z)=
∫
W ∗

fX |ZW∗(x|z,w∗) fZ|W∗(z|w∗) fW∗(w∗)dw∗(84)

=
∫
W ∗

fX |W∗(x|w∗) fZ|W∗(z|w∗) fW∗(w∗)dw∗.

Suppose that there exists h ∈ L1
bnd(X ) such that

∫
X fX |Z(x|z)h(x)dx = 0 for a.e. z ∈Z . Multiply-

ing both sides of the equation by f (z) yields

∫
X

fX Z(x, z)h(x)dx = 0 for a.e. z ∈Z .(85)

Plugging the expression of fX Z in Eq. (84) into Eq. (85) yields

∫
X

(∫
W ∗

fX |W∗(x|w∗) fZ|W∗(z|w∗) fW∗(w∗)dw∗
)

h(x)dx = 0 for a.e. z ∈Z .(86)

Interchanging the integrations, we obtain

∫
W ∗

(∫
X

fX |W∗(x|w∗)h(x)dx
)

fW∗(w∗) fZ|W∗(z|w∗)dw∗ = 0 for a.e. z ∈Z .(87)

By Assumption 4.9,
(∫

X fX |W∗(x|w∗)h(x)dx
)

fW∗(w∗) is a function in L1
bnd(W ∗). Since the fami-

ly of conditional density functions
{

f (z|w∗)= fV2(z−m2 (w∗)) : z ∈Z
}

is complete in L1
bnd(W ∗), we

have
(∫

X fX |W∗(x|w∗)h(x)dx
)

fW∗(w∗)= 0 for a.e. w∗ ∈W ∗. This implies that
∫
X fX |W∗(x|w∗)h(x)dx =

0 for a.e. w∗ ∈ W ∗. Because h ∈ L1
bnd(X ) and the nonparametric family of conditional density

functions
{

f (x|w∗) = fV1(x−m1 (w∗)) : w∗ ∈ W ∗
}

is complete in L1
bnd(X ), we obtain h(x) = 0 for

a.e. x ∈ X . We have reached the desired result that the nonparametric family of conditional

density functions
{

f (x|z) : z ∈Z
}

is complete in L1
bnd(X ). Q.E.D.
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Table 1: Test for Non-vanishing C.F.: Empirical Size

N=500 N=1000 Distributions

DGP I: 0 0 U(0,1)

DGP II: 0.001 0 U(−1,1)

DGP III: 0.304 0.913 N(0,1)

DGP IV: 0.315 0.915 N(1,1)

DGP V: 1 1 Gamma(2,2)

DGP VI: 0.999 1 Tri(0,1,0)

DGP VII: 0.943 1 Tri(0,1,0.25)

DGP VIII: 0.008 0.072 Tri(0,1,0.5)

DGP IX: 0.955 1 Tri(0,1,0.75)

DGP X: 1 1 Tri(0,1,1)

DGP XI: 0 0 Trun(N(0,1), [−1,1])

DGP XII: 1 1 Trun(N(1,1), [−1,1])

Note: Empirical size refers to the fraction of rejections
when using the critical value corresponding to a 5% sig-
nificant level. Only the uniform, symmetric triangular, and
symmetric truncated normal distributions fail to satisfy the
non-vanishing property for their characteristic functions.
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Figure 1: The Illustration of the Confidence Bands of aX ,n and the Estimator of An, TX ,n,k
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Table 2: Descriptive Statistics of CPS/SSR Exact Match 1978

High School or Lower Some College College or Higher

Mean Std. Mean Std. Mean Std.

CPS Earnings (<$16.5) 7.043 6.075 8.980 7.097 13.496 10.535

SSR Earnings (<$16.5) 6.865 5.322 8.046 5.425 9.994 5.891

Years of Education 9.885 2.193 13.452 0.750 17.378 1.018

Age 41.606 16.310 35.153 13.865 35.487 12.035

Non-white 0.162 0.368 0.091 0.288 0.076 0.265

Married 0.635 0.481 0.629 0.483 0.643 0.479

Sample Size 9,045 21,931 7,783

Note: All earnings are expressed in a thousand of dollars in 1977. The earnings in the SSR data are capped
at the social security maximum of $16,500.

Table 3: Test Statistics for Zeros of Characteristic Functions

High School or Lower Some College College or Higher

τX n 2.528 1.850 0.386

c∗X 0.455 0.311 0.180

τEn 2.110 1.927 1.165

c∗E 0.421 0.320 0.320

Note: The significance level of the critical values c∗X and c∗E are 5%.
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Figure 3: The Series Estimation of the Conditional Mean E[X |X∗ = x∗, Education]
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