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Abstract

We provide some additional material pertaining to our paper Hu and Shum (2008).

In section 1, we verify our assumptions for a dynamic discrete-choice model inspired

by Rust�s (1987) bus engine replacement model. Section 2 contains a comparison of

our framework with that in Kasahara and Shimotsu (2009). Section 3 contains supple-

mental discussion related to Example 2 in the main paper and additional discussion of

Assumption 2.

1 Additional example: dynamic discrete-choice model based
on Rust (1987)

In addition to the two examples presented in the main paper, we present here a discussion

of our assumptions in the context of a third example: Rust�s (1987) bus-engine replacement

model, augmented to allow for time-varying serially-correlated unobserved state variables.

In this model, Wt = (Yt;Mt), where Yt is the indicator that the bus engine was replaced in

week t, and Mt is the mileage since the last engine replacement.

Let St � (Mt; X
�
t ) denote the state variables in this model. The period utility from each

choice is additive in a function of the state variables St, and a choice-speci�c non-persistent

preference shock:

ut =

(
u0(St) + �0t if Yt = 0

u1(St) + �1t if Yt = 1

where �0t and �1t are i.i.d. Type I Extreme Value shocks, which are independent over time,
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and also independent of the state variables St.

The choice-speci�c utility functions are:

u0(St) = �c(Mt); u1(St) = �RC: (1)

In the above, c(Mt) denotes the maintenance cost function, which is increasing in mileage

Mt, and 0 < RC < +1 denotes the cost of replacing the engine. We also assume that the

maintenance cost function c(�) is bounded below and above: c(0) = 0; limM!+1 c(M) =

�c < +1: Mileage evolves as:

Mt+1 =

(
Mt[1 + exp(�t+1 +X

�
t+1)] if Yt = 0

exp(�t+1 +X
�
t+1) if Yt = 1

: (2)

where �t+1 2 R follows an extreme value distribution with density f�t+1 (�) = exp(� � e�).
This law of motion implies fMt+1jYt;Mt;X�

t ;X
�
t+1

= fMt+1jYt;Mt;X�
t+1
. Hence, X�

t a¤ects the

evolution of mileage, but not the agent�s utilities. Furthermore, following Rust�s assump-

tions, previous mileage Mt�1 has no direct e¤ect on current mileage Mt when the engine

was replaced in the previous period (Yt�1 = 1).

X�
t , the time-varying unobserved state variable, denotes the general physical condition

(wear and tear) of the bus, which is unobserved by the econometrician but observed by the

bus mechanics, and a¤ects their decisions about replacing the bus engine. It evolves as an

AR(1) process:

X�
t = 0:8X

�
t�1 + 0:2�t: (3)

�t 2 R is a standard normal shock, distributed independently over t. This law of motion
implies fX�

t jYt�1;Mt�1;X�
t�1

= fX�
t jX�

t�1
. We also assume that X�

1 2 R. Hence, X�
t jX�

t�1 is

distributed with density determined by f�t (�).
In this stationary dynamic optimization model, the conditional choice probabilities take

the multinomial logit form (for Yt = 0; 1): P (YtjSt) = exp (VYt(St)) =
hP1

y=0 exp (Vy(St))
i

where Vy(St) is the choice-speci�c value function in period t, de�ned recursively by Vy(St) =

uy(St) + �E
h
log
nP1

y0=0 exp
�
Vy0(St+1

�o
jYt = y; St

i
:

The arguments we use here are very similar to those we used to verify the assumptions

in Example 2 of the main paper. To avoid confusion, we repeat most of the details here.

We verify the assumptions out of order, leaving Assumption 2 to the end. Since we focus

here on the stationary case, without loss of generality we label the four observed periods of

data Wt as t = 1; 2; 3; 4.

Assumption 1 is satis�ed for this model. Assumption 3 contains two restrictions on
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the density fW3jW2;X�
3
, which factors as

fW3jW2;X�
3
= fY3jM3;X�

3
� fM3jY2;M2;X�

3
: (4)

Assumption 3(i) requires that, for any w3, there exists (w2;w3; w2) such that the eigenvalues

k (w3; w3; w2; w2; x
�
3) are bounded between 0 and a constant C. The �rst term is the CCP

fY3jM3;X�
3
, which is a logit probability. Because the per-period utilities, net of the ��s, are

bounded away from �1 and +1, the logit choice probabilities are also bounded from zero.
Moreover, the CCP�s are not a function ofW2, so that Eq. (12) in the main text implies that

the eigenvalues k (w3; w3; w2; w2; x�3) in the spectral decomposition will not be a function of

the CCP�s.

The second term is the mileage law of motion fM3jY2;M2;X�
3
which, by assumption, is

fM3jY2;M2;X�
3
(m3jy2;m2; x

�
3) (5)

=
1

m3 � (1� y2)m2
f�3 (ln(m3 � (1� y2)m2)� (1� y2) lnm2 � x�3)

and f�3 denotes the density of the extreme value distribution. For any w3 = (y3;m3), we

consider

w2 = (y2;m2) = (0;m2) ;

w2 = (y2;m2) = (0;m2 +�) ;

w3 = (y3;m3) = (y3;m3 ��) ;

which implies that the bus engine was not replaced in period 2. We may show that

k (w3; w3; w2; w2; x
�
3) = exp

�
�e�x�3

�
�2

m2m2

��
;

which is bounded between zero and one. Therefore, Assumption 3(i) holds. Furthermore,

the equation above implies that the eigenvalue k (w3; w3; w2; w2; x�3) is monotonic in x
�
3,

which implies Assumption 3(ii).

Assumption 4 presumes a known functional G such that G
h
fM4jY3;M3;X�

3
(�jy3;m3; x

�
3)
i

is monotonic in x�3, where we use Vt =Mt, for all periods t. Eqs. (3) and (2) imply that

M4 = (1� Y3)M3 + (M3)
1�Y3 exp(�4 + 0:2�4) � exp(0:8X�

3 ): (6)
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Let Cmed denote the median of the random variable exp(�4 + 0:2�4). Then

med
h
fM4jY3;M3;X�

3
(�jy3;m3; x

�
3)
i
= (1� y3)m3 + (m3)

1�y3 Cmed � exp(0:8x�3)

which is monotonic in x�3. Hence, we can pin down x
�
3 = med

h
fM4jY3;M3;X�

3
(�jy3;m3; x

�
3)
i
.

Assumption 2 contains three injectivity assumptions. For the Vt variables in Assump-
tion 2, we use Vt =Mt, for all periods t.

For Assumption 2, it is su¢ cient to establish the injectivity of the operators LM1;w2;w3;M4 ,

LM4jw3;X�
3
, and LM1;w2;M3 for any (w2; w3) in the support. Applying Claim 2 from Exam-

ple 2 of the main paper, it su¢ ces to show the injectivity of LM4;w3;w2;M1 , LM4jw3;X�
3
, and

LM3;w2;M1 . Assumption 1, along with the assumptions on the laws of motion, implies that

LM4;w3;w2;M1 = LM4jw3;X�
3
Dw3jw2;X�

3
LX�

3 ;w2;M1

= LM4jw3;X�
3
Dw3jw2;X�

3
LX�

3 jX�
2
LX�

2 ;w2;M1 (7)

LM3;w2;M1 = LM3jw2;X�
2
LX�

2 ;w2;M1 : (8)

Furthermore, we have LM4jw3;X�
3
= LM4jw3;X�

4
LX�

4 jX�
3
:

Hence, the injectivity of LM4;w3;w2;M1 , LM4jw3;X�
3
, and LM3;w2;M1 is implied by the in-

jectivity of LM4jw3;X�
4
, Dw3jw2;X�

3
, LX�

3 jX�
2
and LX�

2 ;w2;M1 .

(i) The diagonal operator Dw3jw2;X�
3
has corresponding density function fw3jw2;X�

3
=

fy3jm3;X�
3
fm3jm2;X�

3
. In the discussion on Assumption 3(i) above, we have shown that both

fy3jm3;X�
3
and fm3jm2;X�

3
are nonzero, for all values of (y3;m3;m2; x

�
3) in the support. There-

fore, the operator Dw3jw2;X�
3
is injective.

(ii) For LM4jw3;X�
4
, we use Eq. (2) whereby, for every (y3;m3), M4 is a convolution of

X�
4 , ie. log [M4 � (1� y3)m3]� (1� y3) logm3 = X

�
4 + �4: As is well-known, as long as the

characteristic function of �4 has no real zeros, which is satis�ed by the assumed extreme

value distribution, the corresponding operator is injective.

(iii) Similarly, X�
3 is a convolution of X

�
2 , ie. X

�
3 = 0:8X

�
2 + 0:2�3 (cf. Eq. (3)). Hence,

LX�
3 jw2;X�

2
is injective if the characteristic function of �3 has no real zeros, which is satis�ed

by the assumed normal distribution.

(iv) For the operator LX�
2 ;w2;M1 , corresponding to the density fX�

2 ;w2;M1 , the model

assumptions do not allow us to establish injectivity directly. This is because this joint

density confounds both the structural components (laws of motion) in the model and the

initial condition fX�
1 ;M1 . However, as in Example 2 of the main paper, it turns out that some

stochastic assumptions on the initial conditions (Y1;M1; X
�
1 ) ensure injectivity of LX�

2 ;w2;M1 .
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Claim 3: If (i) fX�
1 ;M1 = fX�

1
fM1 ; and (ii) Y1 = 0 with probability one, and is exogenous,

then LX�
2 ;w2;M1 is injective.

Proof: The kernel of the operator LX�
2 ;w2;M1 is

fX�
2 ;w2;M1 =

Z Z
fX�

2 ;y2;m2;X�
1 ;Y1;M1dy1dx

�
1

= fy2jm2;X�
2

Z Z
fm2jX�

2 ;M1;Y1fX�
2 jX�

1
fY1jM1;X�

1
fX�

1 ;M1dy1dx
�
1

= fy2jm2;X�
2
fm2jX�

2 ;M1;Y1=0

Z
fX�

2 jX�
1
fX�

1 ;M1dx
�
1

= fy2jm2;X�
2
fm2jX�

2 ;M1;Y1=0

�Z
fX�

2 jX�
1
fX�

1
dx�1

�
fM1

= fy2jm2;X�
2
fX�

2
fm2jX�

2 ;M1;Y1=0fM1

In the third line, we have utilized condition (ii), which implies fY1jM1;X�
1
(0jm1; x

�
1) = 1, i.e.,

no engine is changed in the initial period of data. The fourth line applies the independence

condition (i). The equivalent operator equation is

LX�
2 ;w2;M1 = Dy2jm2;X�

2
DX�

2
Lm2jX�

2 ;M1;Y1=0DM1 :

The injectivity of LX�
2 ;w2;M1 then relies on that of the operator Lm2jX�

2 ;M1;Y1=0 which, as

Eq. (2) shows, is based on a convolution form. Using an argument identical to that used in

the proof of Claim 1 in Appendix B of the main paper, we can show that Lm2jX�
2 ;M1;Y1=0 is

injective, which implies that LX�
2 ;w2;M1 is also injective. �

Therefore, for this example, we have shown the injectivity of LM4;w3;w2;M1 , LM4jw3;X�
3
,

and LM3;w2;M1 . By applying Claim 2 in Example 2 of the main paper, we also obtain the

injectivity of LM1;w2;w3;M4 and LM1;w2;M3 , as required by Assumption 2(i) and 2(iii).

Without the assumption that the initial value Y1 is exogenous, and that Y1 = 0 with

probability one (so that the engine is changed with zero probability in the initial period

of data), the choice probability fY1jM1;X�
1
would also appear on the RHS of the preceding

equations, and additional assumptions regarding this probability would be required to en-

sure injectivity. However, because these choice probabilities are endogenously determined,

it is awkward to impose assumptions directly on it.
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2 Additional comparison with Kasahara-Shimotsu (2009)

Here, we provide some additional details on the results in Kasahara and Shimotsu (2009)

(KS), and show that KS�s identi�cation results are not applicable to the dynamic models

with time-varying unobservables considered in our paper.

We start by summarizing KS�s main results. Throughout, we state KS�s results using

our notation in this paper. Since KS assume that the unobserved heterogeneity X� is time-

invariant, we attach no t subscript to it.1 Using the notation in our paper, the second

equality of KS�s Eq. (3) is:

fY1;M1;:::;YT ;MT

=
X
X�

fX�fM1;Y1jX�

TY
t�2
fMtjMt�1;Yt�1;:::;M1;Y1;X�fYtjMt;Mt�1;Yt�1;X� :

In their baseline model (ie. their Assumption 1), they assume that the unobserved hetero-

geneity X� does not a¤ect the law of motion for the observed state variable Mt, and that

Yt is independent of (Mt�1; Yt�1) conditional on Mt and X�. This leads to

fY1;M1;:::;YT ;MT

TY
t�2
fMtjMt�1;Yt�1

=
X
X�

fX�fM1;Y1jX�

TY
t�2
fYtjMt;X� ; [Eq. (9) in KS (2009)]

which is Eq. (9) in KS. Notice that the LHS of the above is observed, and they demonstrate

(in their Proposition 1) that the unknown densities on the RHS are identi�ed from the

observed quantity on the LHS for T � 3.
In section 3.2 of their paper, they consider a �rst-order Markovian model where the

observed variables Wt can depend on Wt�1 and X�. They show that, by using T � 6

periods of data W1: : : : ;WT , and �xing the values in the odd periods w1; w3; w5; :::; wT�1,

1The correspondence between KS�s notation and ours is as follows:

KS (2009)z }| {�
at; xt; st;m; �

m; Qm(stjst�1)
Pmt (atjxt; xt�1; at�1)

�
,

our notationz }| {�
Yt;Mt;Wt; X

�,fX� ; fWtjWt�1;X�

fYtjMt;Mt�1;Yt�1;X�

�
:
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one obtains

fw1;W2;w3;W4;:::;wT�1;WT
=
X
X�

fw1;X�

0@ T�2Y
t=2;4;:::

fwt+1;Wtjwt�1;X�

1A fWT jwT�1;X� ; [Eq. (27) in KS (2009)]

which is Eq. (27) in KS. As they note, Eq. (27) has the same �independent marginals�form

as Eq. (9), so that their identi�cation scheme also applies to �rst-order Markov process with

time-invariant X� for T � 6. This is their Proposition 6.
However, this scheme no longer works in the case where the latent variable X�

t varies

over time, even if X�
t is discrete. To see this, we consider a joint �rst-order Markov process

fWt; X
�
t g where both Wt and X�

t vary over time, as in Example 1 in the main text of our

paper. Analogously to Eq. (27) in KS, we may have

fw1;W2;w3;W4;:::;wT�1;WT
=
X
X�
T�1

:::
X
X�
5

X
X�
3

X
X�
1

fw1;X�
1

0@ T�2Y
t=2;4;:::

fwt+1;X�
t+1;Wtjwt�1;X�

t�1

1A fWT jwT�1;X�
T�1
:

Obviously, this takes a very di¤erent form than Eq. (27) above, because the components

on the RHS involve values of the latent variable X�
t in di¤erent periods. Hence, KS�s

identi�cation scheme does not apply here. Notice that using more periods of data only

exacerbates the problem; the more periods of data one uses, the more latent variables X�
t

appear when X�
t is time-varying.

In conclusion, the identi�cation strategy in KS does not apply to models where X�
t is

time-varying, even if X�
t is discrete. An important innovation of the present paper is that

we provide nonparametric identi�cation for dynamic models with time-varying unobserved

variables.

3 Miscellaneous remarks

3.1 Remarks on dynamic investment models

For Example 2 in the main paper, we considered a general investment model in the frame-

work of Doraszelski and Pakes (2007). There is a recent and growing empirical literature

based on these types of dynamic models, including Collard-Wexler (2006), Ryan (2006), and

Dunne, Klimer, Roberts, and Xu (2006). Pakes (2008, section 3) and Ackerberg, Benkard,

Berry, and Pakes (2007) discuss additional examples.

On the other hand, the productivity literature has by and large been based on the
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�pure� investment model, typi�ed by Olley and Pakes (1996) (OP). This model di¤ers in

an important way from the types of models considered in our paper. Namely, in OP, capital

stock (corresponding to the M variable in Example 2) evolves deterministically, conditional

on the previous period�s capital (Mt�1) and investment (Yt�1). This feature violates two of

our maintained assumptions (# 2,3), which require thatMt depend on X�
t even conditional

on (Yt�1;Mt�1). For this reason, in Example 2 in the main paper, we do not consider the

�pure�investment model as in OP, but rather a generalized investment model in which Mt

does not evolve deterministically.

3.2 Further discussion on Assumption 2

In this section we discuss how Assumption 2 is used to ensure the validity of two di¤erent

ways for taking operator inverses. Consider two scenarios involving an operator equation

LR1;r2;R4 = LR1jr2;R3Lr2;R3;R4 : (9)

In the �rst scenario, suppose we want to solve for Lr2;R3;R4 given LR1;r2;R4 and LR1jr2;R3 .

The assumption that LR1jr2;R3 is one-to-one guarantees that we may have

L�1R1jr2;R3LR1;r2;R4 = Lr2;R3;R4 : (10)

As an example, Assumption 2(ii) guarantees that pre-multiplication by the inverse operator

LVt+1jwt;X�
t
is valid, which is used in the equation following Eq. (9).

In the second scenario, suppose we need to solve for LR1jr2;R3 given LR1;r2;R4 and

Lr2;R3;R4 in equation (9). We would need the operator Lr2;R3;R4 to be invertible as fol-

lows:

LR1;r2;R4L
�1
r2;R3;R4

= LR1jr2;R3 : (11)

As proved in Lemma 1 in Hu and Schennach (2008), the su¢ cient condition for obtaining

Eq. (11) from Eq. (9) is that the operator LR4;R3;r2 is one-to-one.
2 (Notice that the

operator LR4;R3;r2 is from Lp (R3) to Lp (R4).)
Assumption 2(i) is an example of this. It is used to justify the post-multiplication

by L�1Vt+1; �wt;wt�1;Vt�2 and L
�1
Vt+1;wt; �wt�1;Vt�2

in, respectively, Eqs. (9) and (10). Similarly,

Assumption 2(iii) guarantees the validity of post-multiplication by L�1Vt;wt�1;Vt�2 , which is

done in the second line in Eq. (29). Throughout this paper, we only post-multiply by

2A similar assumption is also used in Carroll, Chen, and Hu (2009).
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the inverses of LVt+1;wt;wt�1;Vt�2 and LVt;wt�1;Vt�2 ; all other cases of inverses involve pre-

multiplication. For a more technical discussion, see Aubin (2000, sections 4.5-4.6).
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