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Abstract
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1 Introduction

This paper provides a concise introduction of recent developments in nonparametric identifi-

cation of measurement error models and intends to invite empirical researchers to use these

new results for measurement error models in the identification and estimation of microeco-

nomic models with latent variables.

Measurement error models describe the relationship between latent variables, which are

not observed in the data, and their measurements. Researchers only observe the measure-

ments instead of the latent variables in the data. The goal is to identify the distribution of

the latent variables and also the distribution of the measurement errors, which are defined as

the difference between the latent variables and their measurements. In general, the parame-

ter of interest is the joint distribution of the latent variables and their measurements, which

can be used to describe the relationship between observables and unobservables in economic

models.

This paper starts with a general framework, where “a measurement” can be simply an

observed variable with an informative support. The measurement error distribution contains

the information on a mapping from the distribution of the latent variables to the observed

measurements. I organize the technical results by the number of measurements needed

for identification. In the first example, there are two measurements, which are mutually

independent conditioning on the latent variable. With such limited information, strong

restrictions on measurement errors are needed to achieve identification in this 2-measurement

model. Nevertheless, there are still well known useful results in this framework, such as

Kotlarski’s identity.

However, when a 0-1 dichotomous indicator of the latent variable is available together

with two measurements, nonparametric identification is feasible under a very flexible speci-

fication of the model. I call this a 2.1-measurement model, where I use 0.1 measurement to

refer to a 0-1 binary variable. A major breakthrough in the measurement error literature is

that the 2.1-measurement model can be non-parametrically identified under mild restrictions.

(see Hu (2008) and Hu and Schennach (2008) ) Since it allows very flexible specifications, the

2.1-measurement model is widely applicable to microeconomic models with latent variables

even beyond many existing applications.

Given that any observed random variable can be manually transformed to a 0-1 binary

variable, the results for a 2.1-measurement model can be easily extended to a 3-measurement

model. A 3-measurement model is useful because many dynamic models involve multiple

measurements of a latent variable. A typical example is the hidden Markov model. Results

for the 3-measurement model show the exchangeable roles which each measurement may

play. In particular, in many cases, it does not matter which one of the three measurements

is called a dependent variable, a proxy, or an instrument.

One may also interpret the identification strategy of the 2.1-measurement model as a non-
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parametric instrumental approach. In that sense, a nonparametric difference-in-differences

version of this strategy may help identify more general dynamic processes with more mea-

surements. As shown in Hu and Shum (2012) , four measurements or four periods of data

are enough to identify a rather general partially observed first-order Markov process. Such

an identification result is directly applicable to the nonparametric identification of dynamic

models with unobserved state variables.

This paper also provides a brief introduction of empirical applications using these mea-

surement error models. These studies cover auction models with unobserved heterogeneity,

multiple equilibria in games, dynamic learning models with latent beliefs, misreporting errors

in estimation of unemployment rates, dynamic models with unobserved state variables, fixed

effects in panel data models, cognitive and non-cognitive skill formation, two-sided matching

models, and income dynamics. This paper intends to be concise, informative, and heuristic.

I refer to Wansbeek and Meijer (2000), Bound, Brown and Mathiowetz (2001) , Chen, Hong

and Nekipelov (2011) , Carroll, Ruppert, Stefanski and Crainiceanu (2012) , and Schennach

(2016) for more complete reviews.

This paper is organized as follows. Section 2 introduces the nonparametric identifica-

tion results for measurement error models. Section 3 describes a few applications of the

nonparametric identification results. Section 4 summarizes the paper.

2 Nonparametric identification of measurement error

models.

We start our discussion with a general definition of measurement. Let X denote an observed

random variable and X∗ be a latent random variable of interest. We define a measurement

of X∗ as follows:

Definition 1 A random variable X with support X is called a measurement of a latent

random variable X∗ with support X ∗ if the number of possible values in X is larger than or

equal to that in X ∗, i.e.,

card (X ) ≥ card (X ∗) ,

where card (X ) stands for the cardinality of set X .

When X is continuous, the support condition in Definition 1 is not restrictive whether X∗ is

discrete or continuous. When X is discrete, the support condition implies that X can only

be a measurement of a discrete random variable with a smaller or equal number of possible

values. In particular, we do not consider a discrete variable as a measurement of a continuous

variable. In addition, the possible values in X ∗ are unknown and usually normalized to be

the same as those of one measurement.
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2.1 A general framework

In a random sample, we observe measurement X, while the variable of interest X∗ is unob-

served. The measurement error is defined as the difference X − X∗. We can identify the

distribution function fX of measurement X directly from the sample, but our main interest

is to identify the distribution of the latent variable fX∗ , together with the measurement

error distribution described by fX|X∗ . The observed measurement and the latent variable

are associated as follows: for all x ∈ X

fX(x) =

∫
X ∗
fX|X∗(x|x∗)fX∗(x∗)dx∗, (1)

when X∗ is continuous and fX∗ is the probability density function of X∗, and for all x ∈
X = {x1, x2, . . . , xL}

fX(x) =
∑
x∗∈X ∗

fX|X∗(x|x∗)fX∗(x∗), (2)

when X∗ is discrete with support X ∗ = {x∗1, x∗2, . . . , x∗K} and fX∗(x
∗) = Pr(X∗ = x∗) is the

probability mass function of X∗ and fX|X∗(x|x∗) = Pr(X = x|X∗ = x∗). Definition 1 of

measurement requires L ≥ K. We omit arguments of the functions when it does not cause

any confusion. This general framework can be used to describe a wide range of economic

relationships between observables and unobservables in the sense that the latent variable X∗

can be interpreted as unobserved heterogeneity, fixed effects, random coefficients, or latent

types in mixture models, etc.

For simplicity, we start with the discrete case and define

−→p X = [fX(x1), fX(x2), . . . , fX(xL)]T (3)
−→p X∗ = [fX∗(x

∗
1), fX∗(x

∗
2), . . . , fX∗(x

∗
K)]T

MX|X∗ =
[
fX|X∗(xl|x∗k)

]
l=1,2,...,L;k=1,2,...,K

.

The notation MT stands for the transpose of M . Note that −→p X , −→p X∗ , and MX|X∗ contain

the same information as distributions fX , fX∗ , and fX|X∗ , respectively. Equation (2) is then

equivalent to
−→p X = MX|X∗

−→p X∗ . (4)

The matrix MX|X∗ describes the linear transformation from RK , a vector space containing
−→p X∗ , to RL, a vector space containing −→p X . Suppose that the measurement error distribu-

tion, i.e., MX|X∗ , is known. The identification of the latent distribution fX∗ means that if

two possible marginal distributions −→p a
X∗ and −→p b

X∗ are observationally equivalent, i.e.,

−→p X = MX|X∗
−→p a

X∗ = MX|X∗
−→p b

X∗ , (5)
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then the two distributions are the same, i.e., −→p a
X∗ = −→p b

X∗ . Let h = −→p a
X∗−
−→p b

X∗ . Equation (5)

implies that MX|X∗h = 0. The identification of fX∗ then requires that MX|X∗h = 0 implies

h = 0 for any h ∈ RK , or that matrix MX|X∗ has rank K, i.e., Rank
(
MX|X∗

)
= K. This

is a necessary rank condition for the nonparametric identification of the latent distribution

fX∗ .

In the continuous case, we need to define the linear operator corresponding to fX|X∗ ,

which maps fX∗ to fX . Suppose that we know both fX∗ and fX are bounded and integrable.

We define L1
bnd (X ∗) as the set of bounded and integrable functions defined on X ∗, i.e.,1

L1
bnd (X ∗) =

{
h :

∫
X ∗
|h(x∗)| dx∗ <∞ and sup

x∗∈X ∗
|h(x∗)| <∞

}
. (6)

The linear operator can be defined as

LX|X∗ : L1
bnd (X ∗)→ L1

bnd (X ) (7)(
LX|X∗h

)
(x) =

∫
X ∗
fX|X∗(x|x∗)h(x∗)dx∗.

Equation (1) is then equivalent to

fX = LX|X∗fX∗ . (8)

Following a similar argument, we can show that a necessary condition for the identification

of fX∗ in the functional space L1
bnd (X ∗) is that the linear operator LX|X∗ is injective, i.e.,

LX|X∗h = 0 implies h = 0 for any h ∈ L1
bnd (X ∗). This condition can also be interpreted

as completeness of conditional density fX|X∗ in L1
bnd (X ∗). We refer to Hu and Schennach

(2008) for detailed discussion on this injectivity condition.

Since both the measurement error distribution fX|X∗ and the marginal distribution fX∗

are unknown, we have to rely on additional restrictions or additional data information to

achieve identification. On the one hand, parametric identification may be feasible if fX|X∗

and fX∗ belong to parametric families (see Fuller (2009) ). On the other hand, we can

use additional data information to achieve nonparametric identification. For example, if

we observe the joint distribution of X and X∗ in a validation sample, we can identify fX|X∗

from the validation sample and then identify fX∗ in the primary sample (see Chen, Hong and

Tamer (2005) ). In this paper, we focus on methodologies using additional measurements in

a single sample.

1We may also define the operator on other functional spaces containing fX∗ .
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2.2 A 2-measurement model

Given very limited identification results which one may obtain from equations (1)-(2), a

direct extension is to use more data information, i.e., an additional measurement. Define a

2-measurement model as follows:

Definition 2 A 2-measurement model contains two measurements, as in Definition 1,

X ∈ X and Z ∈ Z of the latent variable X∗ ∈ X ∗ satisfying

X ⊥ Z | X∗, (9)

i.e., X and Z are independent conditional on X∗.

The 2-measurement model implies that two measurements X and Z not only have distinctive

information on the latent variable X∗, but also are mutually independent conditional on the

latent variable.

In the case where all the variables X, Z, and X∗ are discrete with Z = {z1, z2, . . . , zJ},
we define

MX,Z = [fX,Z(xl, zj)]l=1,2,...,L;j=1,2,...,J (10)

MZ|X∗ =
[
fZ|X∗(zj|x∗k)

]
j=1,2,...,J ;k=1,2,...,K

and a diagonal matrix

DX∗ = diag {fX∗(x∗1), fX∗(x∗2), . . . , fX∗(x∗K)} , (11)

where fX∗(x
∗
i ) > 0 for i = 1, 2, ..., K by the definition of the discrete support X ∗. Definition

1 implies that K ≤ L and K ≤ J . Equation (9) means

fX,Z (x, z) =
∑
x∗∈X ∗

fX|X∗(x|x∗)fZ|X∗(z|x∗)fX∗(x∗), (12)

which is equivalent to

MX,Z = MX|X∗DX∗M
T
Z|X∗ . (13)

Without further restrictions to reduce the number of unknowns on the right hand side, point

identification of fX|X∗ , fZ|X∗ , and fX∗ may not be feasible.2 But one element that can be

identified from observed MX,Z is the dimension K of the latent variable X∗, as elucidated

in the following Lemma:

2If MX|X∗ and MT
Z|X∗ are lower and upper triangular matrices, respectively, point identification is feasible

through the so-called LU decomposition (See Hu and Sasaki (forthcomingb) for a generalization of such a
result). In general, this is also related to the literature on non-negative matrix factorization, which focuses
more on existence and approximation, instead of uniqueness.
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Lemma 1 In the 2-measurement model in Definition 2 with support X ∗ = {x∗1, x∗2, . . . , x∗K},
suppose that matrices MX|X∗ and MZ|X∗ both have rank K. Then K = rank (MX,Z).

Proof. In the 2-measurement model, Definition 1 requires that K ≤ L and K ≤ J . The

definition of the discrete support X ∗ implies that fX∗(x
∗
i ) > 0 for i = 1, 2, ..., K and DX∗

has rank K. Using the rank inequality: for any p-by-m matrix A and m-by-q matrix B,

rank(A) + rank(B)−m ≤ rank(AB) ≤ min{rank(A), rank(B)}

we may first show MX|X∗DX∗has rank K, then use the inequality again to show the right

hand side of Equation (13) has rank K. Thus, we have rank (MX,Z) = K.

Although point identification may not be feasible without further assumptions, we can

still have some partial identification results. Consider a linear regression model with a

discrete regressor X∗ as follows:

Y = X∗β + η (14)

Y ⊥ X | X∗

where X∗ ∈ {0, 1} and E [η|X∗] = 0. Here the dependent variable Y takes the place of Z as

a measurement of X∗.3 We observe (Y,X) with X ∈ {0, 1} in the data as two measurements

of the latent X∗. Since Y and X are independent conditional on X∗, we have

|E [Y |X∗ = 1]− E [Y |X∗ = 0]| (15)

≥ |E [Y |X = 1]− E [Y |X = 0]| .

That means the observed difference provides a lower bound on the parameter of interest |β|.
More partial identification results can be found in Bollinger (1996) and Molinari (2008) .

Furthermore, the model can be point identified under the assumption that the regression

error η is independent of the regressor X∗. (See Chen, Hu and Lewbel (2009) for details.)

In the case where all the variables X, Z, and X∗ are continuous, a widely-used setup is

X = X∗ + ε (16)

Z = X∗ + ε′

where X∗, ε, and ε′ are mutually independent with Eε = 0. When the error ε := X −X∗ is

independent of the latent variable X∗, it is called a classical measurement error. This setup

is well known because the density of the latent variable X∗ can be written as a closed-form

function of the observed distribution fX,Z . Define φX∗(t) = E
[
eitX

∗]
with i =

√
−1 as the

characteristic function of X∗. Under the assumption that φZ(t) is absolutely integrable and

3We follow the routine to use Y to denote a dependent variable instead of Z.
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does not vanish on the real line, we have

fX∗ (x∗) =
1

2π

∫ ∞
−∞

e−ix
∗tφX∗ (t) dt (17)

φX∗ (t) = exp

[∫ t

0

iE
[
XeisZ

]
E [eisZ ]

ds

]
.

This is the so-called Kotlarski’s identity (See Kotlarski (1965) and Rao (1992) ). Note that

the independence between ε and (X∗, ε′) can be relaxed to a mean independence condition

E [ε|X∗, ε′] = Eε. This result has been used in many empirical and theoretical studies, such

as Li and Vuong (1998) , Li, Perrigne and Vuong (2000) , Krasnokutskaya (2011) , Schennach

(2004a) , and Evdokimov (2010) .

The intuition of Kotlarski’s identity is that the variance of X∗ is revealed by the covari-

ance of X and Z, i.e., var(X∗) = cov(X,Z). Therefore, the higher order moments between

X and Z can reveal more moments of X∗. If one can pin down all the moments of X∗

from the observed moments, the distribution of X∗ is then identified under some regularity

assumptions. A similar argument also applies to an extended model as follows:

X = X∗β + ε (18)

Z = X∗ + ε′.

Suppose β > 0. A naive OLS estimator obtained by regressing X on Z converges in proba-

bility to cov(X,Z)
var(Z)

, which provides a lower bound on the regression coefficient β. In fact, we

have explicit bounds as follows:

cov(X,Z)

var(Z)
≤ β ≤ var(X)

cov(X,Z)
. (19)

Furthermore, additional assumptions, such as the joint independence of X∗, ε, and ε′,

can lead to point identification of β. Reiersøl (1950) shows that such point identification is

feasible when X∗ is not normally distributed. A more general extension is to consider

X = g (X∗) + ε (20)

Z = X∗ + ε′,

where function g is nonparametric and unknown. Schennach and Hu (2013) generalize

Reiersøl’s result and show that function g and distribution of X∗ are nonparametrically

identified except for a particular functional form of g or fX∗ . The only difference between

the model in equation (20) and a nonparametric regression model with a classical measure-

ment error is that the regression error ε needs to be independent of the regressor X∗.
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2.3 A 2.1-measurement model

An arguably surprising result is that we can achieve quite general nonparametric identifi-

cation of a measurement error model if we observe a little more data information, i.e., an

extra binary indicator, than in the 2-measurement model. Define a 2.1-measurement model

as follows:4

Definition 3 A 2.1-measurement model contains two measurements, as in Definition

1, X ∈ X and Z ∈ Z and a 0-1 dichotomous indicator Y ∈ Y = {0, 1} of the latent variable

X∗ ∈ X ∗ satisfying

X ⊥ Y ⊥ Z | X∗, (21)

i.e., (X, Y, Z) are jointly independent conditional on X∗.

2.3.1 The discrete case

In the case where X, Z, and X∗ are discrete, Definition 1 implies that the supports of

observed X and Z are larger than or equal to that of the latent X∗. We start our discussion

with the case where the three variables share the same support. We assume

Assumption 1 The two measurements X and Z and the latent variable X∗ share the same

support X ∗ = {x∗1, x∗2, . . . , x∗K}.

This condition is not restrictive because the number of possible values in X ∗ can be identified,

as shown in Lemma 1, and one can always transform a discrete variable into one with less

possible values. We will later discuss that case where supports of measurements X and Z

are larger than that of X∗.

The conditional independence in equation (21) implies5

fX,Y,Z (x, y, z) =
∑
x∗∈X ∗

fX|X∗(x|x∗)fY |X∗(y|x∗)fZ|X∗(z|x∗)fX∗(x∗). (22)

For each value of Y = y, we define

MX,y,Z = [fX,Y,Z (xi, y, zj)]i=1,2,...,K;j=1,2,...,K (23)

Dy|X∗ = diag
{
fY |X∗(y|x∗1), fY |X∗(y|x∗2), . . . , fY |X∗(y|x∗K)

}
.

4I use “0.1 measurement” to refer to a 0-1 dichotomous indicator of the latent variable. I name it the
2.1-measurement model instead of 3-measurement one in order to emphasize the fact that we only need
slightly more data information than the 2-measurement model, given that a binary variable is arguably the
least informative measurement, except a constant measurement, of a latent random variable.

5Hui and Walter (1980) first consider the case where the latent variable X∗ is binary and show that this
identification problem can be reduced to solving a quadratic equation. Mahajan (2006) and Lewbel (2007)
also consider this binary case in regression models and treatment effect models.
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Equation (22) is then equivalent to

MX,y,Z = MX|X∗Dy|X∗DX∗M
T
Z|X∗ . (24)

Next, we assume

Assumption 2 Matrix MX,Z has rank K.

This assumption is imposed on observed probabilities, and therefore, is directly testable.

Equation (13) then implies MX|X∗ and MZ|X∗ both have rank K. We then eliminate

DX∗M
T
Z|X∗ to obtain

MX,y,ZM
−1
X,Z = MX|X∗Dy|X∗M

−1
X|X∗ . (25)

This equation implies that the observed matrix on the left hand side has an inherent

eigenvalue-eigenvector decomposition, where each column inMX|X∗ corresponding to fX|X∗(·|x∗k)
is an eigenvector and the corresponding eigenvalue is fY |X∗(y|x∗k). In order to achieve a unique

decomposition, we require that the eigenvalues are distinctive, and that certain location of

distribution fX|X∗(·|x∗k) reveals the value of x∗k. We assume

Assumption 3 There exists a function ω(·) such that E [ω (Y ) |X∗ = x∗] 6= E [ω (Y ) |X∗ = x̃∗]

for any x∗ 6= x̃∗ in X ∗.

Assumption 4 One of the following conditions holds:

1) fX|X∗
(
x1|x∗j

)
> fX|X∗

(
x1|x∗j+1

)
for j = 1, 2, . . . , K − 1;

2) fX|X∗ (x∗|x∗) > fX|X∗ (x̃∗|x∗) for any x̃∗ 6= x∗ ∈ X ∗;
3) There exists a function ω(·) such that E

[
ω (Y ) |X∗ = x∗j

]
> E

[
ω (Y ) |X∗ = x∗j+1

]
.

The function ω(·) may be user-specified, such as ω (y) = y, ω (y) = 1(y > y0), or ω (y) =

δ(y − y0) for some given y0.
6 When estimating the model using the eigenvalue-eigenvector

decomposition, especially with a continuous Y as later in the paper, it is more convenient to

average over Y and use the equation below than directly using Equation (22) with a fixed y

E [ω (Y ) |X = x, Z = z] fX,Z (x, z) =
∑
x∗∈X ∗

fX|X∗(x|x∗)E [ω (Y ) |x∗] fZ|X∗(z|x∗)fX∗(x∗).

(26)

If the conditional mean E [Y |X∗] is an object of interest instead of fY |X∗ as in a regression

model, we can consider the equation above with ω (y) = y and relax the conditional indepen-

dence assumption fY |X∗,X,Z = fY |X∗ implied in the 2.1-measurement model to a conditional

mean independence assumption E [Y |X∗, X, Z] = E [Y |X∗].
We summarize the identification result as follows:

6When Y is binary, the choice of function ω(·) does not matter. I state the assumptions in this way so
that there is no need to rephrase them later with a general Y .
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Theorem 1 ( Hu (2008) ) Under assumptions 1, 2, 3, and 4, the 2.1-measurement model

in Definition 3 is non-parametrically identified in the sense that the joint distribution of the

three variables (X, Y, Z), i.e., fX,Y,Z, uniquely determines the joint distribution of the four

variables (X, Y, Z,X∗), i.e., fX,Y,Z,X∗, which satisfies

fX,Y,Z,X∗ = fX|X∗fY |X∗fZ|X∗fX∗ . (27)

A brief proof: The conditional independence in Definition 3 of the 2.1-measurement

model implies that Equation (24) holds. Assumption 2 leads to an inherent eigenvalue-

eigenvector decomposition in Equation (25). Assumption 3 guarantees that there are K

linearly independent eigenvectors. These eigenvectors are conditional distributions, and

therefore, are normalized automatically because the column sum of each eigenvector is equal

to one. Assumption 4 pins down the ordering of the eigenvectors or the eigenvalues, i.e.,

the value of the latent variable corresponding to each eigenvector. Assumption 4(i) implies

that the first row of matrix MX|X∗ is decreasing in x∗j and Assumption 4(ii) implies that

x∗ is the mode of distribution fX|X∗ (·|x∗). Assumption 4(i) directly implies an ordering

of the eigenvalues. Therefore, each element on the right hand side of Equation (25) is

uniquely determined by the observed matrix on the left hand side. The eigenvectors reveal

the conditional distribution fX|X∗ and the identification of other distributions then follows.

�

Theorem 1, particularly under Assumption 1, provides an exact identification result in

the sense that the number of unknown probabilities is equal to the number of observed

probabilities in equation (22).7 Assumption 1 implies that there are 2K2 − 1 observed

probabilities in fX,Y,Z (x, y, z) on the left hand side of equation (22). On the right hand side,

there are K2 − K unknown probabilities in each of fX|X∗(x|x∗) and fZ|X∗(z|x∗), K − 1 in

fX∗(x
∗), and K in fY |X∗(y|x∗) when Y is binary, which sum up to 2K2−1. More importantly,

this point identification result is nonparametric, global, and constructive. It is constructive

in the sense that an estimator can directly mimic the identification procedure.

When supports of measurements X and Z are larger than that of X∗, we can still achieve

the identification with minor modification of the conditions. Suppose supports X and Z are

larger than X ∗, i.e., X = {x1, x2, . . . , xL}, Z = {z1, z2, . . . , zJ}, and X ∗ = {x∗1, x∗2, . . . , x∗K}
with L > K and J > K. By combining some values in the supports of X and Z, we first

transform X and Z to X̃ and Z̃ so that they share the same support X ∗ as X∗. We then

7A general local identification result without Assumption 4 of the ordering and Definition 1 of a mea-
surement may be found in Allman, Matias and Rhodes (2009). In our 2.1-measurement model, the equality
in the rank condition in their Theorem 1 holds. To be specific, Assumption 3, which guarantees distinctive
eigenvalues, holds if and only if the so-called Kruskal rank of their matrix corresponding to the binary Y
is equal to 2. The Kruskal ranks of their other two matrices are equal to the regular matrix rank K, and
therefore, the total Kruskal rank equals 2K + 2. In addition, for a general discrete Y , Assumption 3 implies
that the Kruskal rank of their matrix corresponding to Y is at least 2.
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identify fX̃|X∗ and fZ̃|X∗ by Theorem 1 with those assumptions imposed on
(
X̃, Y, Z̃,X∗

)
.

However, the joint distribution fX,Y,Z,X∗ may still be of interest. In order to identify fZ|X∗

or MZ|X∗ , we consider the joint distribution

fX̃,Z =
∑
x∗∈X ∗

fX̃|X∗fZ|X∗fX∗ , (28)

which is equivalent to

MX̃,Z = MX̃|X∗DX∗M
T
Z|X∗ . (29)

Since we have identified MX̃|X∗ and DX∗ , we can identify MZ|X∗ , i.e., fZ|X∗ , by inverting

MX̃|X∗ . Similar argument holds for identification of fX|X∗ . This discussion implies that

Assumptions 1 is not necessary. We keep it in Theorem 1 in order to show minimum data

information needed for nonparametric identification of the 2.1-measurement model.

2.3.2 A geometric illustration

Given that a matrix is a linear transformation from one vector space to another, we provide

a geometric interpretation of the identification strategy. Consider K = 3 and define

−→p X|x∗i =
[
fX|X∗(x1|x∗i ), fX|X∗(x2|x∗i ), fX|X∗(x3|x∗i )

]T
(30)

−→p X|z =
[
fX|Z(x1|z), fX|Z(x2|z), fX|Z(x3|z)

]T
.

We have for each z

−→p X|z =
3∑
i=1

wzi
(−→p X|x∗i

)
(31)

with wzi = fX∗|Z(x∗i |z) and wz1 + wz2 + wz3 = 1. That means each observed distribution of X

conditional on Z = z is a weighted average of −→p X|x∗1 , −→p X|x∗2 , and −→p X|x∗3 . Similarly, if we

consider the subsample with Y = 1, we have

−→p y1,X|z =
3∑
i=1

wzi
(
λi
−→p X|x∗i

)
(32)

where λi = fY |X∗(1|x∗i ) and

−→p y1,X|z =
[
fY,X|Z(1, x1|z), fY,X|Z(1, x2|z), fY,X|Z(1, x3|z)

]T
. (33)

That means vector −→p y1,X|z is a weighted average of
(
λi
−→p X|x∗i

)
for i = 1, 2, 3, where weights

wzi are the same as in equation (31) from the whole sample. Notice that the direction of basis

vectors
(
λi
−→p X|x∗i

)
corresponding to the subsample with Y = 1 is the same as the direction

of basis vectors −→p X|x∗i corresponding to the whole sample. The only difference is the length
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of the basis vectors. Therefore, if we consider a mapping from the vector space spanned

by −→p X|z to one spanned by −→p y1,X|z, the basis vectors do not vary in direction so that they

are called eigenvectors, and the variation in the length of these basis vectors is given by the

corresponding eigenvalues, i.e., λi. This mapping is in fact MX,y,ZM
−1
X,Z on the left hand side

of equation (25). The variation in variable Z guarantees that such a mapping exists. Figure

1 illustrates this framework.

Figure 1: Eigenvalue-eigenvector decomposition in the 2.1-measurement model.

Eigenvalue: λi = fY |X∗(1|x∗i ).
Eigenvector: −→pi = −→p X|x∗i =

[
fX|X∗(x1|x∗i ), fX|X∗(x2|x∗i ), fX|X∗(x3|x∗i )

]T
.

Observed distribution in the whole sample:
−→q 1 = −→p X|z1 =

[
fX|Z(x1|z1), fX|Z(x2|z1), fX|Z(x3|z1)

]T
.

Observed distribution in the subsample with Y = 1 :
−→q y1 = −→p y1,X|z1 =

[
fY,X|Z(1, x1|z1), fY,X|Z(1, x2|z1), fY,X|Z(1, x3|z1)

]T
.

2.3.3 The continuous case

In the case where X, Z, and X∗ are continuous, the identification strategy still work by

replacing matrices with integral operators. We state assumptions as follows:

Assumption 5 The joint distribution of (X, Y, Z,X∗) admits a bounded density with respect

to the product measure of some dominating measure defined on Y and the Lebesgue measure

on X × X ∗ ×Z. All marginal and conditional densities are also bounded.

Assumption 6 The operators LX|X∗ and LZ|X are injective.8

8LZ|X is defined in the same way as LX|X∗ in equation (7).
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Assumption 7 For all x∗ 6= x̃∗ in X ∗, the set
{
y : fY |X∗ (y|x∗) 6= fY |X∗ (y|x̃∗)

}
has positive

probability.

Assumption 8 There exists a known functional M such that M
[
fX|X∗ (·|x∗)

]
= x∗ for all

x∗ ∈ X ∗.

Assumption 6 is a high-level technical condition. A sufficient condition for the injectivity of

LZ|X is that the only function h(·) satisfying E [h(X)|Z = z] = 0 for any z ∈ Z is h(·) = 0

over X . This condition is also equivalent to the completeness of the density fX|Z over certain

functional space. Assumption 7 requires that each possible value of the latent variable X∗

has an impact on the distribution of Y . The functional M [·] in Assumption 8 may be mean,

mode, median, or another quantile, which maps a probability distribution to a point on the

real line. We summarize the results as follows:

Theorem 2 ( Hu and Schennach (2008) ) Under assumptions 5, 6, 7, and 8, the 2.1-

measurement model in Definition 3 with a continuous X∗ is non-parametrically identified

in the sense that the joint distribution of the three variables (X, Y, Z), fX,Y,Z, uniquely de-

termines the joint distribution of the four variables (X, Y, Z,X∗), fX,Y,Z,X∗, which satisfies

equation (27).

This result implies that if we observe an additional binary indicator of the latent variable

together with two measurements, we can relax the additivity and the independence as-

sumptions in equation (16) and achieve nonparametric identification of very general models.

Comparing the model in equation (16) and the 2.1-measurement model, which are both point

identified, the latter is much more flexible to accommodate various economic models with

latent variables. For example, Theorem 2 identifies the joint distribution of X∗ and Z, and

therefore, applies to both the case where Z = X∗ + ε′ and the case where the relationship

between Z and X∗ is specified as X∗ = Z + ε′. The latter case is related to the so-called

Berkson-type measurement error models (Schennach (2013)).

2.3.4 An illustrative example

Here we use a simple example to illustrate the intuition of the identification results. Consider

a labor supply model for college graduates, where Y is the 0-1 dichotomous employment

status, X is the college GPA, Z is the SAT scores, and X∗ is the latent ability type. We are

interested in the probability of being employed given different ability, i.e., Pr (Y = 1|X∗) ,

and the marginal probability of the latent ability fX∗ .

We consider a simplified version of the 2.1-measurement model with

Pr (Y = 1|X∗) 6= Pr (Y = 1) (34)

X = X∗γ + ε

Z = X∗γ′ + ε′
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where (X∗, ε, ε′) are mutually independent. We may interpret the error term ε′ as a perfor-

mance shock in the SAT test. If coefficients γ and γ′ are known, we can use X/γ and Z/γ′

as the two measurements in equation (16) to identify the marginal distribution of ability

without using the binary measurement Y . As shown in Hu and Sasaki (2015) , we can

identify all the elements of interest in this model. Here we focus on the identification of the

coefficients γ and γ′ to illustrate the intuition of the identification results.

Since X∗ is unobserved, we normalize γ′ = 1 without loss of generality. A naive estimator

for γ may be from the following regression equation

X = Zγ + (ε− ε′γ) . (35)

The OLS estimator corresponds to cov(X,Z)
var(Z)

= γ var(X∗)
var(X∗)+var(ε′)

, which is the well-known atten-

uation result with
∣∣cov(X,Z)
var(Z)

∣∣ < |γ|. This regression equation suffers an endogeneity problem

because the regressor, the SAT scores Z, does not perfectly reflect the ability X∗ and is neg-

atively correlated with the performance shock ε′ in the regression error (ε− ε′γ). When an

additional variable Y is available even if it is binary, however, we can use Y as an instrument

to solve the endogeneity problem and identify γ as

γ =
E [X|Y = 1]− E [X|Y = 0]

E [Z|Y = 1]− E [Z|Y = 0]
. (36)

This is literally the two-stage least square estimator. The regressor, SAT scores Z, is endoge-

nous in both the employed subsample and the unemployed subsample. But the difference

between the two subsamples may reveal how the observed GPA X is associated with ability

X∗ through γ.

The intuition of this identification strategy is that when we compare the employed (Y =

1) subsample with the unemployed (Y = 0) subsample, the only different element on the

right hand side of the equation below is the marginal distribution of ability, i.e., fX∗|Y=1 and

fX∗|Y=0 in

fX,Z|Y=y =

∫
X ∗
fX|X∗fZ|X∗fX∗|Y=ydx

∗. (37)

If we naively treat SAT scores Z as latent ability X∗ to study the relationship between

college GPA X and latent ability X∗, we may end up with a model with an endogeneity

problem as in equation (35). However, the conditional independence assumption guarantees

that the change in the employment status Y ”exogenously” varies with latent ability X∗, and

therefore, with the observed SAT scores Z, but does not vary with the performance shock

ε′, which is the cause of the endogeneity problem. Therefore, the employment status Y may

serve as an instrument to achieve identification. Notice that this argument still holds if we

compare the employed subsample with the whole sample, which is what we use in equations
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(31) and (32) in Section 2.3.2.9

Furthermore, an arguably surprising result is that such identification of the 2.1 mea-

surement model is still nonparametric and global even if the instrument Y is binary. This

is because the conditional independence assumption reduces the joint distribution fX,Y,Z,X∗

to distributions of each measurement conditional the latent variable
(
fX|X∗ , fY |X∗ , fZ|X∗

)
,

and the marginal distribution fX∗ as in equation (27). The joint distribution fX,Y,Z,X∗ is a

four-dimensional function, while
(
fX|X∗ , fY |X∗ , fZ|X∗

)
are three two-dimensional functions.

Therefore, the number of unknowns are greatly reduced under the conditional independence

assumption.

2.4 A 3-measurement model

We introduce the 2.1-measurement model to show the least data information needed for

nonparametric identification of a measurement error model. Given that a random variable

can always be transformed to a 0-1 dichotomous variable, the identification result can still

hold when there are three measurements of the latent variable. In this section, we introduce

the 3-measurement model to emphasize that three observables may play exchangeable roles

so that it does not matter which measurement is called a dependent variable, a measurement,

or an instrument variable. We define this case as follows:

Definition 4 A 3-measurement model contains three measurements, as in Definition 1,

X ∈ X , Y ∈ Y, and Z ∈ Z of the latent variable X∗ ∈ X ∗ satisfying

X ⊥ Y ⊥ Z | X∗, (38)

i.e., (X, Y, Z) are jointly independent conditional on X∗.

Based on the results for the 2.1-measurement model, nonparametric identification of the

joint distribution fX,Y,Z,X∗ in the 3-measurement model is feasible because one can always

replace Y with a 0-1 binary indicator, e.g., I (Y > EY ). In fact, we intentionally write

the results in section 2.3 in such a way that the assumptions and the theorems remain the

same after replacing the binary support {0, 1} with a general support Y for variable Y . An

important observation here is that the three measurements (X, Y, Z) play exchangeable roles

in the 3-measurement model. We can impose different restrictions on different measurements,

which makes one look like a dependent variable, one like a measurement, and another like

an instrument. But these “assignments” are arbitrary. On the one hand, the researcher

9Another way to look at this is that γ can also be expressed as

γ =
E [X|Y = 1]− E [X]

E [Z|Y = 1]− E [Z]
.
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may decide which “assignments” are reasonable based on the economic model. On the other

hand, it does not matter which variable is called a dependent variable, a measurement, or

an instrument variable in terms of identification. We summarize the results as follows:

Corollary 1 Theorems 1 and 2 both hold for the 3-measurement model in Definition 4.

For example, we consider a hidden Markov model containing {Xt, X
∗
t }, where {X∗t } is a

latent first-order Markov process, i.e.,

X∗t+1 ⊥ {X∗s}s≤t−1 | X∗t . (39)

In each period, we observe a measurement Xt of the latent X∗t satisfying

Xt ⊥ {Xs, X
∗
s}s 6=t | X∗t . (40)

This is the so-called local independence assumption, where a measurement Xt is independent

of everything else conditional the latent variable X∗t in the sample period. The relationship

among the variables can be shown in the flow chart as follows.

Xt−1 Xt Xt+1

↑ ↑ ↑
−→ X∗t−1 −→ X∗t −→ X∗t+1 −→

Consider a panel data set, where we observed three periods of data {Xt−1, Xt, Xt+1}. The

conditions in equations (39) and (40) imply

Xt−1 ⊥ Xt ⊥ Xt+1 | X∗t , (41)

i.e., (Xt−1, Xt, Xt+1) are jointly independent conditional on X∗t . Although the original model

is dynamic, it can be reduced to a 3-measurement model as in equation (41). Corollary 1

then non-parametrically identifies fXt+1|X∗t , fXt|X∗t , fXt−1|X∗t , and fX∗t . Under a stationarity

assumption that fXt+1|X∗t+1
= fXt|X∗t , we can then identify the Markov kernel fX∗t+1|X∗t from

fXt+1|X∗t =

∫
X ∗
fXt+1|X∗t+1

fX∗t+1|X∗t dx
∗
t+1, (42)

by inverting the integral operator corresponding to fXt+1|X∗t+1
.10 Therefore, it does not really

matter which one of {Xt−1, Xt, Xt+1} is treated as measurement or instrument for X∗t . Ap-

plications of nonparametric identification of such a hidden Markov model or, in general, the

10Without stationarity, one can use one more period of data, i.e., Xt+2, to identify fXt+1|X∗
t+1

from the

joint distribution of (Xt, Xt+1, Xt+2) .
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3-measurement model can be found in Hu, Kayaba and Shum (2013b) , Feng and Hu (2013)

, Wilhelm (2013) , and Hu and Sasaki (forthcominga) , etc.

2.5 A dynamic measurement model

A natural extension to the hidden Markov model in equations (39)-(40) is to relax the

local independence assumption in equation (40) when more periods of data are available.

For example, we may allow direct serial correlation among observed measurements {Xt} of

latent variables {X∗t }. To this end, we assume the following:

Assumption 9 The joint process {Xt, X
∗
t } is a first-order Markov process. Furthermore,

the Markov kernel satisfies

fXt,X∗t |Xt−1,X∗t−1
= fXt|X∗t ,Xt−1fX∗t |Xt−1,X∗t−1

. (43)

Equation (43) is the so-called limited feedback assumption in Hu and Shum (2012) . It

implies that the latent variable in current period has summarized all the information on the

latent part of the process. The relationship among the variables may be described as follows:

−→ Xt−2 −→ Xt−1 −→ Xt −→ Xt+1 −→
↘ l ↘ l ↘ l ↘ l ↘
−→ X∗t−2 −→ X∗t−1 −→ X∗t −→ X∗t+1 −→

For simplicity, we focus on the discrete case and assume

Assumption 10 Xt and X∗t share the same support X ∗ = {x∗1, x∗2, . . . , x∗K}.

The observed distribution is associated with unobserved ones as follows:

fXt+1,Xt,Xt−1,Xt−2 =
∑
x∗

fXt+1|Xt,X∗t
fXt|X∗t ,Xt−1fX∗t ,Xt−1,Xt−2 . (44)

We define for any fixed (xt, xt−1)

MXt+1,xt|xt−1,Xt−2 =
[
fXt+1,Xt|Xt−1,Xt−2(xi, xt|xt−1, xj)

]
i=1,2,...,K;j=1,2,...,K

(45)

MXt|xt−1,Xt−2 =
[
fXt|Xt−1,Xt−2(xi|xt−1, xj)

]
i=1,2,...,K;j=1,2,...,K

.

Assumption 11 (i) for any xt−1 ∈ X , MXt|xt−1,Xt−2 is invertible.

(ii) for any xt ∈ X , there exists a (xt−1, xt−1, xt) such that MXt+1,xt|xt−1,Xt−2, MXt+1,xt|xt−1,Xt−2,

MXt+1,xt|xt−1,Xt−2, and MXt+1,xt|xt−1,Xt−2 are invertible and that for all x∗t 6= x̃∗t in X ∗

∆xt∆xt−1 ln fXt|X∗t ,Xt−1 (x∗t ) 6= ∆xt∆xt−1 ln fXt|X∗t ,Xt−1 (x̃∗t )
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where ∆xt∆xt−1 ln fXt|X∗t ,Xt−1 (x∗t ) is defined as

∆xt∆xt−1 ln fXt|X∗t ,Xt−1 (x∗t ) : =
[
ln fXt|X∗t ,Xt−1 (xt|x∗t , xt−1)− ln fXt|X∗t ,Xt−1 (xt|x∗t , xt−1)

]
−
[
ln fXt|X∗t ,Xt−1 (xt|x∗t , xt−1)− ln fXt|X∗t ,Xt−1 (xt|x∗t , xt−1)

]
.

Assumption 12 For any xt ∈ X , there exists a known functional M such that M
[
fXt+1|Xt,X∗t

(·|xt, x∗t )
]

is strictly increasing in x∗t .

Assumption 13 The Markov kernel is stationary, i.e.,

fXt,X∗t |Xt−1,X∗t−1
= fX2,X∗2 |X1,X∗1

. (46)

The invertibility in Assumption 11 is testable because it imposes a rank condition on

observed matrices. The invertibility guarantees that a directly estimable matrix has an

eigenvalue-eigenvector decomposition, where the eigenvalues are associated with ∆xt∆xt−1 ln fXt|X∗t ,Xt−1

and the eigenvectors are related to fXt+1|Xt,X∗t
(·|xt, x∗t ) for a fixed xt. Assumption 11(ii) is

needed for the distinctiveness of the eigenvalues. And Assumption 12 reveals the ordering

of the eigenvectors as Assumption 8. Assumption 13 is a stationarity assumption, which is

not needed with one more periods of data. We summarize the results as follows:

Theorem 3 ( Hu and Shum (2012) ) Under assumptions 9, 10, 11, 12, and 13, the joint dis-

tribution of four periods of data fXt+1,Xt,Xt−1,Xt−2 uniquely determines the Markov transition

kernel fXt,X∗t |Xt−1,X∗t−1
and the initial condition fXt−2,X∗t−2

.

For the continuous case and other variations of the assumptions, such as non-stationarity,

I refer to Hu and Shum (2012) for details. A simple extension of this result is the case

where X∗t is discrete and Xt is continuous. As in the discussion following Theorem 1, the

identification results still apply with minor modification of the assumptions.

In the case where X∗t = X∗ is time-invariant, the condition in equation (43) is not re-

strictive and the Markov kernel becomes fXt|Xt−1,X∗ . For such a first-order Markov model,

Kasahara and Shimotsu (2009) suggest to use two periods of data to break the interde-

pendence and use six periods of data to identify the transition kernel. For fixed Xt = xt,

Xt+2 = xt+2, Xt+4 = xt+4, it can be shown that Xt+1, Xt+3, Xt+5 are independent conditional

on X∗ as follows:

fXt+5,xt+4,Xt+3,xt+2,Xt+1,xt =
∑
x∗∈X ∗

fXt+5|xt+4,X∗fxt+4,Xt+3|xt+2,X∗fxt+2.Xt+1,xt,X∗ .

The model then falls into the framework of the 3-measurement model, where (Xt+1, Xt+3, Xt+5)

may serve as three measurements for each fixed (xt, xt+2, xt+4) to achieve identification. This

similarity to the 3-measurement model can also be seen in Bonhomme, Jochmans and Robin
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(2015) and Bonhomme, Jochmans and Robin (2016) . However, the 2.1-measurement model

implies that minimum data information for nonparametric identification can be “2.1 mea-

surements” instead of “3 measurements”. Hu and Shum (2012) shows that the interaction

between observables in the middle two periods may play the role of the binary measurement

in the 2.1-measurement model so that such a model, even with a time-varying unobserved

state variable, can be identified using only four periods of data.

2.5.1 Illustrative Examples

In this section, we use a simple example to illustrate the identification strategy in Theorem

3, which is based on Carroll, Chen and Hu (2010) . Consider estimation of a consumption

equation using two samples. Let Y be the consumption, X∗ be the latent true income, Z be

the family size, and S ∈ {s1, s2} be a sample indicator. The data structure can be described

as follows:

fY,X|Z,S =

∫
fY |X∗,ZfX|X∗,SfX∗|Z,Sdx

∗. (47)

The consumption model is described by fY |X∗,Z , where consumption depends on income and

family size. The self-reported income X may have different distributions in the two samples.

The income X∗ may be correlated with the family size Z and the income distribution may

also be different in the two samples. Carroll et al. (2010) provide sufficient conditions for

nonparametric identification of all the densities on the right hand side of equation (47). To

illustrate the identification strategy, we consider the following parametric specification

Y = βX∗ + γZ + η (48)

X = X∗ + γ′S + ε

X∗ = δ1S + δ2Z + δ3 (S × Z) + u,

where (β, γ, γ′, δ1, δ2, δ3) are unknown constants with δ3 6= 0.

We focus on the identification of β. If we naively treat X as the latent true income X∗,

we have a model with endogeneity as follows:

Y = β (X − γ′S − ε) + γZ + η (49)

= βX + γZ − βγ′S + (η − βε) .

The regressor X is endogenous because it is correlated with the measurement error ε. Note

that the income X∗ may vary with the family size Z and the sample indicator S, which

are independent of ε, the source of the endogeneity. The fact that there is no interaction

term of Z and S on the right hand side of equation (49) is consistent with the conditional

independence implied in equation (47). Let (z0, z1) and (s0, s1) be possible values of Z and

S, respectively. Assuming E[η|Z, S,X∗] = E [ε|Z, S] = E [u|Z, S] = 0, we estimate β as
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follows

β =
[E(Y |z1, s1)− E(Y |z0, s1)]− [E(Y |z1, s0)− E(Y |z0, s0)]
[E(X|z1, s1)− E(X|z0, s1)]− [E(X|z1, s0)− E(X|z0, s0)]

. (50)

This is a 2SLS estimator using (S × Z) as an IV in the first stage, in which the numerator

is a difference-in-differences estimator for βδ3 (z1 − z0) (s1 − s0) and the denominator is a

difference-in-differences estimator for δ3 (z1 − z0) (s1 − s0).
In the dynamic model in Theorem 3, we can re-write equation (44) as

fXt+1,Xt−2|Xt,Xt−1 =
∑
x∗

fXt+1|X∗t ,XtfXt−2|X∗t ,Xt−1fX∗t |Xt,Xt−1 , (51)

which is analogical to equation (47). Similar to the previous example on consumption,

suppose we naively treat Xt−2 as X∗t to study the relationship between Xt+1 and (Xt, X
∗
t ),

say Xt+1 = H (X∗t , Xt, η), where η is an independent error term. And suppose the conditional

density fXt−2|X∗t ,Xt−1 implies Xt−2 = G (X∗t , Xt−1, ε), where ε represents an independent error

term. Suppose we can replace X∗t by G−1 (Xt−2, Xt−1, ε) to obtain

Xt+1 = H
(
G−1 (Xt−2, Xt−1, ε) , Xt, η

)
, (52)

where Xt−2 is endogenous and correlated with ε. The conditional independence in equation

(51) implies that the variation in Xt and Xt−1 may vary with X∗t , but not with the error

ε. However, the variation in Xt may change the relationship between the future Xt+1 and

the latent variable X∗t , while the variation in Xt−1 may change the relationship between the

early Xt−2 and the latent X∗t . Therefore, a ”joint” second-order variation in (Xt, Xt−1) may

lead to an ”exogenous” variation in X∗, which may solve the endogeneity problem. Thus,

our identification strategy may be considered as a nonparametric version of a difference-in-

differences argument.

For example, let Xt stand for the choice of health insurance between a high coverage plan

and a low coverage plan. And X∗t stands for the good or bad health status. The Markov

process {Xt, X
∗
t } describes the interaction between insurance choices and health status. We

consider the joint distribution of four periods of insurance choices fXt+1,Xt,Xt−1,Xt−2 . If we

compare a subsample with (Xt, Xt−1) = (high, high) and a subsample with and (Xt, Xt−1) =

(high, low), we should be able to ”difference out” the direct impact of health insurance choice

Xt on the choice Xt+1 in next period in fXt+1|X∗t ,Xt . Then, we may repeat such a comparison

again with (Xt, Xt−1) = (low, high) and (Xt, Xt−1) = (low, low). In both comparisons, the

impact of changes in insurance choice Xt−1 described in fXt−2|X∗t ,Xt−1 is independent of the

choice Xt. Therefore, the difference in the differences from those two comparisons above

may lead to exogenous variation in X∗t as described in fX∗t |Xt,Xt−1 , which is independent of

the endogenous error due to naively using Xt−2 as X∗t . Therefore, the second-order joint

variation in observed insurance choices (Xt, Xt−1) may serve as an instrument to solve the
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endogeneity problem caused by using the observed insurance choice Xt−2 as a proxy for the

unobserved health condition X∗t .

2.6 Estimation

This paper focuses on nonparametric identification of models with latent variables and its

applications in applied microeconomic models. Given the length limit of the paper, I only

provide a brief description of estimators proposed for the models above. All the identification

results above are at the distribution level in the sense that probability distribution functions

involving latent variables are uniquely determined by probability distribution functions of

observables, which are directly estimable from a random sample of observables. Therefore,

a maximum likelihood estimator is a straightforward choice for these models.

Consider the 2.1-measurement model in Theorem 2, where the observed density is asso-

ciated with the unobserved ones as follows:

fX,Y,Z (x, y, z) =

∫
X ∗
fX|X∗(x|x∗)fY |X∗(y|x∗)fZ|X∗(z|x∗)fX∗(x∗)dx∗. (53)

Our identification results provide conditions under which this equation has a unique solution(
fX|X∗ , fY |X∗ , fZ|X∗ , fX∗

)
. Suppose that Y is the dependent variable and the model of interest

is described by a parametric conditional density function as

fY |X∗(y|x∗) = fY |X∗(y|x∗; θ). (54)

With an i.i.d. sample {Xi, Yi, Zi}i=1,2,...,N , we can use a sieve maximum likelihood estimator

( Shen (1997) and Chen and Shen (1998) ) based on

(
θ̂, f̂X|X∗ , f̂Z|X∗ , f̂X∗

)
= arg max

(θ,f1,f2,f3)∈AN

1

N

N∑
i=1

ln

∫
X ∗
f1(Xi|x∗)fY |X∗(Yi|x∗; θ)f2(Zi|x∗)f3(x∗)dx∗,

(55)

where AN is approximating sieve spaces which contain truncated series as parametric ap-

proximations to densities
(
fX|X∗ , fZ|X∗ , fX∗

)
. For example, function f1(x|x∗) in the sieve

space AN can be as follows:

f1(x|x∗) =

JN∑
j=1

KN∑
k=1

βjkpj (x− x∗) pk (x∗) ,

where pj(·) is a known basis function, such as power series, splines, Fourier series, etc. and

JN and KN are smoothing parameters. The choice of a sieve space depends on how well it

can approximate the original functional space and how much computation burden it may

lead to. (See section 2.3.6 of Chen (2007) for details). One advantage of a sieve estimator is
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that it is relatively convenient to impose restrictions on the sieve space AN . To be specific,

Assumption 8 can be imposed on the sieve coefficients βjk (See section S4 of supplementary

materials of Hu and Schennach (2008) for details). Since the coefficients are treated as

unknown parameters in the likelihood function, the parameters of interest in Equation (55)

can be estimated just as a parametric MLE. The number of coefficients JN ×KN diverges

at a given speed with the sample size N , which makes the approximation more flexible with

a larger sample size. A useful result worth mentioning is that the parametric part of the

model can converge at a fast rate, i.e., θ̂ can be
√
n consistent and asymptotically normally

distributed under suitable assumptions ( Shen (1997) ). We refer to Hu and Schennach

(2008) , Carroll et al. (2010) and supplementary materials for more discussion on this semi-

nonparametric extremum estimator. Given the page limit, this paper can not cover many

useful estimators. For example, Bonhomme et al. (2015) and Bonhomme et al. (2016) also

suggest extremum estimators and provide their asymptotic properties.

Although the sieve MLE in (55) is quite general and flexible, a few identification results

in this section provide closed-form expressions for the unobserved components as functions

of observed distribution functions, which can lead to straightforward closed-form estimators.

In the case where X∗ is continuous, for example, Li and Vuong (1998) suggest that the distri-

bution of the latent variable fX∗ in equation (17) can be estimated using Kotlarski’s identity

with characteristic functions replaced by corresponding empirical characteristic functions. In

general, one can consider a nonlinear regression model in the framework of the 3-measurement

model as

Y = g1(X
∗) + η (56)

X = g2 (X∗) + ε

Z = g3 (X∗) + ε′

where ε and ε′ are independent of X∗ and η with E [η|X∗] = 0. Since X∗ is unobserved, we

may normalize g3 (X∗) = X∗. Schennach (2004b) provides a closed-form estimator of g1(·)
in the case where g2 (X∗) = X∗ using Kotlarski’s identity.11 Hu and Sasaki (2015) generalize

that estimator to the case where g2(·) is a polynomial. Whether a closed-form estimator of

g1(·) exists or not with a general g2(·) is a challenging and open question for future research.

In the case where X∗ is discrete as in Theorem 1 and Corollary 1, the sieve MLE is

still applicable. Nevertheless, the identification strategy in the discrete case also leads to

a closed-form estimator for the unknown probabilities in the sense that one can mimic the

identification procedure to solve for the unknowns. In estimation, it is more convenient to

11Schennach (2007) also provides a closed-form estimator for a similar nonparametric regression model
using a generalized function approach.
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use the equation below than directly using Equation (22)

E [ω (Y ) |X = x, Z = z] fX,Z (x, z) =
∑
x∗∈X ∗

fX|X∗(x|x∗)E [ω (Y ) |x∗] fZ|X∗(z|x∗)fX∗(x∗),

(57)

which leads to an eigenvalue-eigenvector decomposition

MX,ω,ZM
−1
X,Z = MX|X∗Dω|X∗M

−1
X|X∗ (58)

with

MX,ω,Z = [E [ω (Y ) |X = xk, Z = zl] fX,Z (xk, zl)]k=1,2,...,K;l=1,2,...,K (59)

Dω|X∗ = diag {E [ω (Y ) |x∗1] , E [ω (Y ) |x∗2] , . . . , E [ω (Y ) |x∗K ]} .

The matrix MX,ω,Z can be directly estimated as

M̂X,ω,Z =

[
1

N

N∑
i=1

ω (Yi) 1 (Xi = xk, Zi = zl)

]
k=1,2,...,K;l=1,2,...,K

where 1(·) is the indicator function. Similarly, matrix MX,Z can be estimated as M̂X,Z =

M̂X,ω,Z

∣∣∣
ω(·)=1

. Solving for eigenvectors and eigenvalues in Equation (58) can be considered as

a procedure to minimize the Euclidean distance ‖ ·‖ between the left hand side and the right

hand side of that equation, in fact, to zero. Moreover, Assumption 4 can be directly used

to order the eigenvectors or the eigenvalues. With a finite sample, estimated probabilities

might be outside [0, 1] or even a complex number. One remedy is to use Equation (58) as a

moment condition to estimate the unknown probabilities under suitable restrictions. To be

specific, matrices MX|X∗ and Dω|X∗ can be estimated as follows:

(
M̂X|X∗ , D̂ω|X∗

)
= arg min

M,D

∥∥∥∥M̂X,ω,Z

(
M̂X,Z

)−1
M −M ×D

∥∥∥∥
such that

1) each entry in M is in [0, 1] ;

2) each column sum of M equals 1 and D is diagonal;

3) entries in M and D satisfy Assumptions 3 and 4.

When the sample size becomes larger, the probability of using this remedy should be smaller

when all the assumptions hold. This closed-form estimator performs well in empirical studies,

such as An, Baye, Hu, Morgan and Shum (2015) , An, Hu and Shum (2010) , Feng and Hu

(2013) , and Hu et al. (2013b) .

Such closed-form estimators may not be as efficient as the sieve MLE, but they have their
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advantages that there are much fewer nuisance parameters involved than indirect estimators

and that the computation of closed-form estimators may not rely on optimization algorithms,

which usually involve many iterations and are time-consuming. An optimization algorithm

can only guarantee a local maximum or minimum, while a closed-form estimator is a global

one by construction. Although a closed-form estimator may not always exist, it is much more

straightforward and transparent, if available, than an indirect estimator. Such closed-form

estimation may be a challenging but useful approach for future research.

3 Applications in microeconomic models with latent

variables

A major breakthrough in the measurement error literature is the nonparametric identification

of the 2.1-measurement model in section 2.3, which allows a very flexible relationship between

observables and unobservables. The generality of these results enables researchers to tackle

many important problems involving latent variables, such as belief, productivity, unobserved

heterogeneity, and fixed effects, in the field of empirical industrial organization and labor

economics.

3.1 Auctions with unobserved heterogeneity

Unobserved heterogeneity has been a concern in the estimation of auction models for a

long time. Li et al. (2000) and Krasnokutskaya (2011) use the identification result of 2-

measurement model in equation (16) to estimate auction models with separable unobserved

heterogeneity. In a first-price auction indexed by t for t = 1, 2, . . . , T with zero reserve

price, there are N symmetric risk-neutral bidders. For i = 1, 2, . . . , N , each bidder i’s

cost is assumed to be decomposed into two independent factors as s∗t × xi, where xi is her

private value and s∗t is an auction-specific state or unobserved heterogeneity. With this

decomposition of the cost, it can be shown that equilibrium bidding strategies bit can also

be decomposed as follows

bit = s∗tai, (60)

where ai = ai (xi) represents equilibrium bidding strategies in the auction with s∗t = 1. This

falls into the 2-measurement model given that

b1t ⊥ b2t | s∗t . (61)
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With such separable unobserved heterogeneity, one can consider the joint distribution of two

bids as follows:

ln b1t = ln s∗t + ln a1 (62)

ln b2t = ln s∗t + ln a2,

where Kotlarski’s identity is applicable for nonparametric identification of the distributions

of ln s∗t and ln ai. Further estimation of the value distribution from the distribution of ai (xi)

can be found in Guerre, Perrigne and Vuong (2000) .

Hu, McAdams and Shum (2013a) consider auction models with non-separable unobserved

heterogeneity. They assume the private values xi are independent conditional on an auction-

specific state or unobserved heterogeneity s∗t . Based on the conditional independence of the

values, the conditional independence of the bids holds, i.e.,

b1t ⊥ b2t ⊥ b3t | s∗t . (63)

This falls into a 3-measurement model, where the three measurements, i.e., bids, are inde-

pendent conditional on the unobserved heterogeneity. Nonparametric identification of the

model then follows.

3.2 Auctions with unknown number of bidders

Since the earliest papers in the structural empirical auction literature, researchers have had

to grapple with a lack of information on N∗, the number of potential bidders in the auction,

which is an indicator of market competitiveness. The number of potential bidders may be

different from the observed number of bidders A due to binding reserve prices, participation

costs, or misreporting errors. When reserve prices are binding, those potential bidders whose

values are less than the reserve price would not participate so that the observed number of

bidders A is smaller than that of potential bidders N∗.

In first-price sealed-bid auctions under the symmetric independent private values (IPV)

paradigm, each of N∗ potential bidders draws a private valuation from the distribution

FN∗(x) with support [x, x]. The bidders observe N∗, which is latent to researchers. The

reserve price r is assumed to be known and fixed across all auctions with r > x. For

each bidder i with valuation xi, the equilibrium bidding function b (xi, N
∗) can be shown as

follows:

b(xi;N
∗) =

{
xi −

∫ xi
r FN∗ (s)

N∗−1ds

FN∗ (xi)N
∗−1 for xi ≥ r

0 for xi < r.
(64)

The observed number of bidders is A =
∑N∗

i=1 1 (xi > r). In a random sample, we observe
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{At, b1t, b2t, . . . , bAtt} for each auction t = 1, 2, . . . , T . One can show that

f (At, b1t, b2t|b1t > r, b2t > r) (65)

=
∑
N∗

f (At|At ≥ 2, N∗) f (b1t|b1t > r,N∗) f (b2t|b2t > r,N∗) f (N∗|b1t > r, b2t > r) .

That means two bids and the observed number of bidders are independent conditional on

the number of potential bidders, which forms a 3-measurement model. In addition, the fact

that At ≤ N∗ provides an ordering of the eigenvectors corresponding to fAt|N∗t . As shown

in An et al. (2010) , the bid distribution, and therefore, the value distribution, can be non-

parametrically identified. Furthermore, such identification is constructive and directly leads

to an estimator.

3.3 Multiple equilibria in incomplete information games

Xiao (2013) considers a static simultaneous move game, in which player i for i = 1, 2, . . . , N

chooses an action ai from a choice set {0, 1, . . . , K}. Let a−i denote actions of the other

players, i.e., a−i = {a1, a2, . . . , ai−1, ai+1, . . . , aN}. The player i’s payoff is specified as

ui (ai, a−i, εi) = πi (ai, a−i) + εi (ai) , (66)

where εi (k) for k ∈ {0, 1, . . . , K} is a choice-specific payoff shock for player i. The object of

interest contains the payoff primitives and the equilibrium selection probability. Here we omit

other observed state variables. These shocks εi (k) are assumed to be private information to

player i, while the distribution of εi (k) is common knowledge to all the players. A widely

used assumption is that the payoff shocks εi (k) are independent across all the actions k and

all the players i. Let Pr (a−i) be player i’s belief of other player’s actions. The expected

payoff of player i from choosing action ai is then∑
a−i

πi (ai, a−i) Pr (a−i) + εi (ai) ≡ Πi (ai) + εi (ai) (67)

The Bayesian Nash Equilibrium is defined as a set of choice probabilities Pr (ai) such that

Pr (ai = k) = Pr

({
Πi (k) + εi (k) > max

j 6=k
Πi (j) + εi (j)

})
. (68)

The existence of such an equilibrium is guaranteed by a Brouwer’s fixed point theorem.

Given an equilibrium, the mapping between the choice probabilities and the expected payoff

function has also be established by Hotz and Miller (1993) .

However, multiple equilibria may exist for this problem, which means the observed choice

probabilities are a mixture from different equilibria. Let e∗ denote the index of equilibria.

26



Under each equilibrium e∗, the players’ actions ai are independent because of the indepen-

dence assumption of private information, i.e.,

a1 ⊥ a2 ⊥ . . . ⊥ aN |e∗. (69)

Therefore, the observed correlation among the actions contains information on multiple

equilibria. If the support of actions is larger than that of e∗, one can use three players’ actions

as three measurements for e∗. Otherwise, if there are enough players, one can partition the

players into three groups and use the group actions as the three measurements. Comparing

with many existing studies on multiple equilibria, using the results for measurement error

models makes the nonparametric identification in Xiao (2013) more transparent on why and

where the assumptions are imposed and what can and can not be identified.

3.4 Dynamic learning models

How economic agents learn from past experience has been an important issue in both em-

pirical industrial organization and labor economics. The key difficulty in the estimation

of learning models is that beliefs are time-varying and unobserved in the data. Hu et al.

(2013b) use bandit experiments to non-parametrically estimate the learning rule using aux-

iliary measurements of beliefs. In each period, an economic agent is asked to choose between

two slot machines, which have different winning probabilities. Based on her own belief on

which slot machine has a higher winning probability, the agent makes her choice of slot

machine and receives rewards according to its winning probability. Although she does not

know which slot machine has a higher winning probability, the agent is informed that the

winning probabilities may switch between the two slot machines.

In additional to choices Yt and rewards Rt, researchers also observe a proxy Zt for the

agent’s belief X∗t . Recorded by a eye-tracker machine, the proxy is how much more time the

agent looks at one slot machine than at the other. Under a first-order Markovian assumption,

the learning rule is described by the distribution of the next period’s belief conditional

on previous belief, choice, and reward, i.e., Pr
(
X∗t+1|X∗t , Yt, Rt

)
. They assume that the

choice only depends the belief and that the proxy Zt is also independent of other variables

conditional on the current belief X∗t . The former assumption is motivated by a fully-rational

Bayesian belief-updating rule, while the latter is a local independence assumption widely-

used in the measurement error literature. These assumptions imply a 2.1-measurement model

with

Zt ⊥ Yt ⊥ Zt−1|X∗t . (70)

Therefore, the proxy rule Pr (Zt|X∗t ) is non-parametrically identified. Under the local in-

dependence assumption, one can identify distribution functions containing the latent belief

X∗t from the corresponding distribution functions containing the observed proxy Zt. That
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means the learning rule Pr
(
X∗t+1|X∗t , Yt, Rt

)
can be identified from the observed distribution

Pr (Zt+1, Yt, Rt, Zt) through

Pr (Zt+1, Yt, Rt, Zt) (71)

=
∑
X∗t+1

∑
X∗t

Pr
(
Zt+1|X∗t+1

)
Pr (Zt|X∗t ) Pr

(
X∗t+1, X

∗
t , Yt, Rt

)
.

The nonparametric learning rule they found implies that agents are more reluctant to “up-

date down” following unsuccessful choices, than “update up” following successful choices.

That leads to the sub-optimality of this learning rule in terms of profits.

3.5 Unemployment and labor market participation

Unemployment rates may be one of the most important economic indicators. The official

US unemployment rates are estimated using self-reported labor force statuses in the Current

Population Survey (CPS). It is known that ignoring misreporting errors in the CPS may

lead to biased estimates. Feng and Hu (2013) use a hidden Markov approach to identify

and estimate the distribution of the true labor force status. Let X∗t and Xt denote the true

and self-reported labor force status in period t. They merge monthly CPS surveys and are

able to obtain a random sample {Xt+1, Xt, Xt−9}i for i = 1, 2, . . . , N . Using Xt−9 instead of

Xt−1 may provide more variation in the observed labor force status. They assume that the

misreporting error only depends on the true labor force status in the current period, and

therefore,

Pr (Xt+1, Xt, Xt−9) (72)

=
∑
X∗t+1

∑
X∗t

∑
X∗t−9

Pr
(
Xt+1|X∗t+1

)
Pr (Xt|X∗t ) Pr

(
Xt−9|X∗t−9

)
Pr
(
X∗t+1, X

∗
t , X

∗
t−9
)
.

With three unobservables and three observables, nonparametric identification is not feasible

without further restrictions. They then assume that Pr
(
X∗t+1|X∗t , X∗t−9

)
= Pr

(
X∗t+1|X∗t

)
,

which is similar to a first-order Markov condition. Under these assumptions, they obtain

Pr (Xt+1, Xt, Xt−9) (73)

=
∑
X∗t

Pr (Xt+1|X∗t ) Pr (Xt|X∗t ) Pr (X∗t , Xt−9) ,

which implies a 3-measurement model. This model can be considered as an application of

Theorem 1 to a hidden Markov model.

Feng and Hu (2013) found that the official U.S. unemployment rates substantially un-

derestimate the true level of unemployment, due to misreporting errors in the labor force

status in the Current Population Survey. From January 1996 to August 2011, the corrected
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monthly unemployment rates are 2.1 percentage points higher than the official rates on av-

erage, and are more sensitive to changes in business cycles. The labor force participation

rates, however, are not affected by this correction.

3.6 Dynamic discrete choice with unobserved state variables

Hu and Shum (2012) show that the transition kernel of a Markov process {Wt, X
∗
t } can be

uniquely determined by the joint distribution of four periods of data {Wt+1,Wt,Wt−1,Wt−2}.
This result can be directly applied to identification of dynamic discrete choice model with

unobserved state variables. Such a Markov process may characterize the optimal path of

the decision and the state variables in Markov dynamic optimization problems. Let Wt =

(Yt,Mt), where Yt is the agent’s choice in period t, and Mt denotes the period-t observed state

variable, while X∗t is the unobserved state variable. For Markovian dynamic optimization

models, the transition kernel can be decomposed as follows:

fWt,X∗t |Wt−1,X∗t−1
= fYt|Mt,X∗t

fMt,X∗t |Yt−1,Mt−1,X∗t−1
. (74)

The first term on the right hand side is the conditional choice probability for the agent’s

optimal choice in period t. The second term is the joint law of motion of the observed and

unobserved state variables. As shown in Hotz and Miller (1993) , the identified Markov law

of motion may be a crucial input in the estimation of Markovian dynamic models. One

advantage of this conditional choice probability approach is that a parametric specification

of the model leads to a parametric GMM estimator. That implies an estimator for a dynamic

discrete choice model with unobserved state variables, where one can identify the Markov

transition kernel containing unobserved state variables, and then apply the conditional choice

probability estimator to estimate the model primitives. Hu and Shum (2013) extend this

result to dynamic games with unobserved state variables.

Although the nonparametric identification is quite general, it is still useful for empirical

research to provide a relatively simple estimator for a particular specification of the model as

long as such a specification can capture the key economic causality in the model. Given the

difficulty in the estimation of dynamic discrete choice models with unobserved state variables,

Hu and Sasaki (forthcominga) consider a popular parametric specification of the model and

provide a closed-form estimator for the inputs of the conditional choice probability estimator.

Let Yt denote firms’ exit decisions based on their productivity X∗t and other covariates Mt.

The law of motion of the productivity is

X∗t = αd + βdX∗t−1 + ηdt if Yt−1 = d ∈ {0, 1} . (75)

In addition, they use residuals from the production function as a proxy Xt for latent X∗t
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satisfying

Xt = X∗t + εt. (76)

Therefore, they obtain

Xt+1 = αd + βdX∗t + ηdt+1 + εt+1 (77)

Under the assumption that the error terms ηdt and εt are random shocks, they first estimate

the coefficients
(
αd, βd

)
using other covariates Mt as instruments. The distribution of the

error term εt can then be estimated using Kotlarski’s identity. Furthermore, they are able

to provide a closed-form expression for the conditional choice probability Pr (Yt|X∗t ,Mt) as

a function of observed distribution functions.

3.7 Fixed effects in panel data models

Evdokimov (2010) considers a panel data model as follows: for individual i in period t

Yit = g (Xit, αi) + ξit, (78)

where Xit is a explanatory variable, Yit is the dependent variable, ξit is an independent error

term, and αi represents fixed effects. In order to use Kotlarski’s identity, he considers the

event where {Xi1 = Xi2 = x} for two periods of data to obtain

Yi1 = g (x, αi) + ξi1, (79)

Yi2 = g (x, αi) + ξi2.

Under the assumption that ξit and αi are independent conditional on Xit, the paper is

able to identify the distributions of g (x, αi) , ξi1 and ξi2 conditional on {Xi1 = Xi2 = x}.
That means this identification strategy relies on the static aspect of the panel data model.

Assuming that ξi1 is independent of Xi2 conditional Xi1, he then identifies f (ξi1|Xi1 = x) ,

and similarly f (ξi2|Xi2 = x), which leads to identification of the regression function g (x, αi)

under a normalization assumption.

Shiu and Hu (2013) consider a dynamic panel data model

Yit = g (Xit, Yi,t−1, Uit, ξit) , (80)

where Uit is a time-varying unobserved heterogeneity or an unobserved covariate, and ξit
is a random shock independent of (Xit, Yi,t−1, Uit). They impose the following Markov-type

assumption

Xi,t+1 ⊥ (Yit, Yi,t−1, Xi,t−1) | (Xit, Uit) (81)
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to obtain

fXi,t+1,Yit,Xit,Yi,t−1,Xi,t−1
=

∫
fXi,t+1|Xit,Uit

fYit|Xit,Yi,t−1,Uit
fXit,Yi,t−1,Xi,t−1,Uit

dUit. (82)

Notice that the dependent variable Yit may represent a discrete choice. With a binary Yit
and fixed (Xit, Yi,t−1), equation (82) implies a 2.1-measurement model. Their identification

results require users to carefully check conditional independence assumptions in their model

because the conditional independence assumption in equation (81) is not directly motivated

by economic structure.

Freyberger (2012) embeds a factor structure into a panel data model as follows:

Yit = g (Xit, α
′
iFt + ξit) , (83)

where αi ∈ Rm stands for a vector of unobserved individual effects and Ft is a vector

of constants. Under the assumption that ξit for t = 1, 2, . . . , T are jointly independent

conditional on αi and Xi = (Xi1, Xi2, . . . , XiT ), he obtains

Yi1 ⊥ Yi2 ⊥ . . . ⊥ YiT | (αi, Xi) , (84)

which forms a 3-measurement model. A useful feature of this model is that the factor

structure α′iFt provides a more specific identification of the model with a multi-dimensional

individual effects αi than a general argument as in Theorem 2.

Sasaki (2015) considers a dynamic panel with unobserved heterogeneity αi and sample

attrition as follows:

Yit = g (Yi,t−1, αi, ξit) (85)

Dit = h (Yit, αi, ηit)

Zi = ς (αi, εi)

where Zi is a noisy signal of αi and Dit ∈ {0, 1} is a binary indicator for attrition, i.e., Yit is

observed if Dit = 1. Under suitable restrictions on the error terms, the following conditional

independence holds

Yi3 ⊥ Zi ⊥ Yi1 | (αi, Y2 = y2, D2 = D1 = 1) . (86)

In the case where αi is discrete, the model is identified using the results in Theorem 1. Sasaki

(2015) also extends this identification result to more general settings.
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3.8 Cognitive and noncognitive skill formation

Cunha, Heckman and Schennach (2010) consider a model of cognitive and non-cognitive

skill formation, where for multiple periods of childhood t ∈ {1, 2, . . . , T}, X∗t =
(
X∗C,t, X

∗
N,t

)
stands for cognitive and non-cognitive skill stocks in period t, respectively. The T childhood

periods are divided into s ∈ {1, 2, . . . , S} stages of childhood development with S ≤ T .

Let It = (IC,t, IN,t) be parental investments at age t in cognitive and non-cognitive skills,

respectively. For k ∈ {C,N} , they assume that skills evolve as follows:

X∗k,t+1 = fk,s
(
X∗t , It, X

∗
P , ηk,t

)
, (87)

where X∗P =
(
X∗C,P , X

∗
N,P

)
are parental cognitive and non-cognitive skills and ηt =

(
ηC,t, ηN,t

)
is random shocks. If one observes the joint distribution of X∗ defined as

X∗ =
({
X∗C,t

}T
t=1

,
{
X∗N,t

}T
t=1

, {IC,t}Tt=1 , {IN,t}
T
t=1 , X

∗
C,P , X

∗
N,P

)
, (88)

one can estimate the skill production function fk,s.

However, the vector of latent factors X∗ is not directly observed in the sample. Instead,

they use measurements of these factors satisfying

Xj = gj (X∗, εj) (89)

for j = 1, 2, . . . ,M with M ≥ 3. The variables Xj and εj are assumed to have the same

dimension as X∗. Under the assumption that

X1 ⊥ X2 ⊥ X3 | X∗, (90)

this leads to a 3-measurement model and the distribution of X∗ can then be identified from

the joint distribution of the three observed measurements. The measurements Xj in their

application include test scores, parental and teacher assessments of skills, and measurements

on investment and parental endowments. While estimating the empirical model, they assume

a linear function gj and use Kotlarski’s identity to directly estimate the latent distribution.

3.9 Two-sided matching models

Agarwal and Diamond (2013) consider an economy containing n workers with characteristics

(Xi, εi) and n firms described by
(
Zj, ηj

)
for i, j = 1, 2, . . . , n. For example, wages offered

by a firm is public information in Zj or ηj. They assume that the observed characteristics

Xi and Zi are independent of other characteristics εi and ηj unobserved to researchers. A
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firm ranks workers by a human capital index as

v (Xi, εi) = h (Xi) + εi. (91)

The workers’ preference for firm j is described by

u
(
Zj, ηj

)
= g (Zj) + ηj. (92)

The preferences on both sides are public information in the market. Researchers are inter-

ested in the preferences, including functions h, g, and distributions of εi and ηj.

A match is a set of pairs that show which firm hires which worker. The observed matches

are assumed as outcomes of a pairwise stable equilibrium, where no two agents on opposite

sides of the market prefer each other over their matched partners. When the numbers of firms

and workers are both large, it can be shown that in the unique pairwise stable equilibrium

the firm with the q-th quantile position of preference value, i.e., FU
(
u
(
Zj, ηj

))
= q is

matched with the worker with the q-th quantile position of the human capital index, i.e.,

FV (v (Xi, εi)) = q, where FU and FV are cumulative distribution functions of u and v.

The joint distribution of (X,Z) from observed pairs then satisfies

f (X,Z) =

∫ 1

0

f (X|q) f (Z|q) dq, (93)

This forms a 2-measurement model. Under the specification of the preferences above, i.e.,

f (X|q) = fε
(
F−1V (q)− h(X)

)
(94)

f (Z|q) = fη
(
F−1U (q)− g(Z)

)
,

the functions h and g can be identified up to a monotone transformation. The intuition

is that under suitable conditions if two workers with different characteristics x1 and x2
are hired by firms with the same characteristics, i.e., fZ|X (z|x1) = fZ|X (z|x2) for all z,

then the two workers must have the same observed part of the human capital index, i.e.,

h (x1) = h (x2). A similar argument also holds for function g. In order to further identify the

model, Agarwal and Diamond (2013) considers many-to-one matching where one firm may

have two or more identical slots for workers. In such a sample, they can observe the joint

distribution of (X1, X2, Z), where (X1, X2) are observed characteristics of the two matched

workers. Therefore, they obtain

f (X1, X2, Z) =

∫ 1

0

f (X1|q) f (X2|q) f (Z|q) dq. (95)

This is a 3-measurement model, for which nonparametric identification is feasible under

33



suitable conditions.

3.10 Income dynamics

The literature on income dynamics has been focusing mostly on linear models, where identifi-

cation is usually not a major concern. When income dynamics have a nonlinear transmission

of shocks, however, it is not clear how much of the model can be identified. Arellano, Blun-

dell and Bonhomme (2014) investigate the nonlinear aspect of income dynamics and also

assess the impact of nonlinear income shocks on household consumption.

They assume that the pre-tax labor income yit of household i at age t satisfies

yit = ηit + εit (96)

where ηit is the persistent component of income and εit is the transitory one. Furthermore,

they assume that εit has a zero mean and is independent over time, and that the persistent

component ηit follows a first-order Markov process satisfying

ηit = Qt

(
ηi,t−1, uit

)
(97)

whereQt is the conditional quantile function and uit is uniformly distributed and independent

of
(
ηi,t−1, ηi,t−2, . . .

)
. Such a specification is without loss of generality under the assumption

that the conditional CDF F
(
ηit|ηi,t−1

)
is invertible with respect to ηit.

The dynamic process {yit, ηit} can be considered as a hidden Markov process as {Xt, X
∗
t }

in equations (39) and (40). As we discussed before, the nonparametric identification is

feasible with three periods of observed income (yi,t−1, yit, yi,t+1) satisfying

yi,t−1 ⊥ yit ⊥ yi,t+1 | ηit (98)

which forms a 3-measurement model. Under the assumptions in Theorem 2, the distribution

of εit is identified from f (yit|ηit) for t = 2, . . . , T − 1. The joint distribution of ηit for all

t = 2, . . . , T−1 can then be identified from the joint distribution of yit for all t = 2, . . . , T−1.

This leads to the identification of the conditional quantile function Qt.

4 Summary

This paper reviews recent developments in nonparametric identification of measurement error

models and their applications in microeconomic models with latent variables. The powerful

identification results promote a close integration of microeconomic theory and econometric

methodology, especially when latent variables are involved. With econometricians developing

more application-oriented methodologies, we expect such an integration to deepen in the
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future research.
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