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Abstract

We show that the identification results of finite mixture and misclassification

models are equivalent in a widely used scenario except for an extra ordering as-

sumption. In the misclassification model, an ordering condition is imposed to pin

down the precise values of the latent variable, which are also of interest to researchers

and need to be identified. In contrast, finite mixture models are usually identified

up to permutations of a latent index, which results in local identification. This local

identification is satisfactory because the latent index does not convey any economic

meaning. However, reaching global identification is important for estimation, espe-

cially when researchers use bootstrap to estimate standard errors. This is because

standard errors approximated by bootstrap may be incorrect without a global es-

timator. We demonstrate that games with multiple equilibria fit in our framework

and the global estimator with ordering conditions provides more reliable estimates.
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1 Introduction

Mixture structures arise with the presence of a latent variable, which could be a

variable measured with error or unobserved heterogeneity of different sources such as het-

erogeneous preferences, unobserved heterogeneity within/across markets, different types

of beliefs, and multiple equilibria in games. Both finite mixture and misclassification

models can be reformulated into similar mixture structures and are widely used in eco-

nomic applications such as labor economics, industrial organization, and so forth. For

example, (Keane and Wolpin, 1997) consider unobserved type-specific endowments; (Hu

et al., 2013) control for auction-level unobserved heterogeneity; and (Xiao, 2018) controls

for the presence of multiple equilibria in games. See (Hu, 2017) for a survey of applica-

tions using measurement error and (Compiani and Kitamura, 2016) for a review of finite

mixture models.

This paper shows that the identification results of the two models are equivalent in a

widely used scenario without an ordering assumption. Note that both literatures of finite

mixture and misclassification models recover the unobserved component-specific distri-

butions through joint distributions of observables, but they rely on different conditions.

We provide a unified identification result for the two literatures. Specifically, we build

a bridge connecting the conditions used in the two literatures and provide an intuitive

understanding of those conditions.

A vast literature studies identification and estimation in the two areas. The finite mix-

ture literature initially focuses on identifying the latent distribution from the observed

distribution by imposing restrictions on the component distribution. For example, the

identification is feasible when the component distribution belongs to a parametric fam-

ily (Everitt and David, 1981) or is symmetric ((Bordes et al., 2006) and (Hunter et al.,

2007)). Arguably, because these restrictions are implausible in empirical applications, the

conditional independence assumption was introduced later in the finite mixture model

with a multi-covariate observable. Such a setup is equivalent to the long-existing mis-

classification model with multiple measurements. In that sense, one may either interpret

the misclassification model as an example of a finite mixture model, or observe that the

finite mixture setup is merging into the misclassification model. More importantly, this

connection means that the existing results for misclassification models are also applicable

to finite mixture models. Therefore, in the development of this research area, it is impor-

tant to clarify the connections and to connect the dots, which is where the contributions
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of this paper lies.

Both literatures share the same prevalent label swapping issue, but they address the

issue differently in accordance with their respective interpretations of the latent variable.

In particular, since the latent variable in misclassification models usually carries economic

implications, additional conditions are imposed to pin down the precise value of the latent

variable. In contrast, the unobserved component in finite mixture models does not convey

any economic meaning, so precise location of the unobserved component is not necessarily

required. Consequently, misclassification models reach global identification while finite

mixture models reach local identification.

A problem arises with local identification when researchers attempt to use bootstrap

to estimate the standard errors of the estimators. Without an appropriate ordering condi-

tion, the estimator would be a local one in the sense that multiple estimators can generate

the same values for the chosen criteria function; thus, it is not straightforward which lo-

cal estimator should be chosen for each bootstrap resampling. The existing literature

on finite mixture models has realized the importance and necessity of pinning down the

component order when the standard error is estimated through resampling. For instance,

(Kasahara and Shimotsu, 2009) propose determining this component ordering by using

the marginal distribution of the component to uniquely pin down the order. (Hall et

al., 2003) also suggest similar treatment. (Bonhomme et al., 2016) note that the label

swapping issue presents a challenge for inference methods based on resampling algorithms

such as bootstrap. In line with this literature, we advocate imposing a condition to pin

down the order of the latent components by which a global estimator may be obtained,

as in misclassification models. To this end, finite mixture models are very similar to

misclassification models.

We apply the proposed global estimator to games with multiple equilibria. Games

generally admit multiple equilibria, which is sometimes important for explaining various

aspects of economic data. Thus, allowing multiple equilibria in game applications is

important. Since the labeling of equilibria does not convey any economic meaning, we

can label them in any order without affecting the estimation and interpretation of game

payoffs. As a result, imposing the ordering condition is harmless, nonrestrictive, and useful

in estimation. In our empirical illustration, we investigate radio stations strategically

choosing the timing of commercial breaks, wherein having multiple equilibria is important

for rationalizing the clustering patterns of commercial timing in the data. We indeed see
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that imposing the ordering condition improves standard error estimation via bootstrap.

The remainder of this paper is organized as follows. Section 2 lays out the common

framework and shows that the identification results of finite mixture and misclassification

models are equivalent in a widely used scenario except for an extra ordering assumption.

Section 3 proposes a global estimator for the model. Section 4 provides an empirical

illustration using games with multiple equilibria. Section 5 concludes.

2 A Common Framework

Both finite mixture and misclassification models can be represented through an equa-

tion associating observables with unknowns, as follows:

fX =
∑
T

fX|TfT , (1)

where f is a probability density or mass function, X represents the observables in the

data, and T ∈ {t1, t2, . . . , tK} can represent either the unobserved component of the

finite mixture model or the latent true variable of the misclassification model. Several

studies (see (Hu, 2008) and (Allman et al., 2009)) focus on the case where there are

multiple measurements, i.e., X = {X1, X2, X3}, which satisfy the following conditional

independence condition:

X1 ⊥ X2 ⊥ X3 |T. (2)

This conditional independence assumption leads to the following representation:

fX1X2X3|T = fX1|TfX2|TfX3|T . (3)

For simplicity, we assume that the cardinality of the unobserved component, K, is known

and is the same as the cardinality of Xi, i = 1, 2. We allow the cardinality of X3, denoted

as Q, to differ from that of T ; that is, Q is allowed to be different from K. The following

identification argument applies as long as X3 provides some variation, i.e., Q ≥ 2.

Identification of Finite Mixture models In the finite mixture model, the unobserved

component is finite, while the observables in the data can be discrete or continuous.

Identification is similar for both continuous and finite observable scenarios by using a

three-way array and relying on a rank condition. For example, (Allman et al., 2009) follow

the fundamental algebraic result in (Kruskal, 1977) to provide conditions for identifying
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the mixture structures. In particular, in the scenario where Xi has finite state space,1

they first define a three-dimensional array (tensor) [M̃1,M2,M3] whose (u, v, w) element

is

[M̃1,M2,M3]u,v,w ≡
∑
j

πjp
1
j(u)p2j(v)p3j(w)

= Pr(X1 = u,X2 = v,X3 = w),

where Mi, for i = 1, 2, is of size K×K with the jth row defined as pij = Pr(Xi = ·|T = tj).

That is,

Mi ≡


pi1

pi2

...

piK

 ≡


fXi|T (t1|t1) fXi|T (t2|t1) ... fXi|T (tK |t1)
fXi|T (t1|t2) fXi|T (t2|t2) ... fXi|T (tK |t2)

... ... ... ...

fXi|T (t1|tK) fXi|T (t2|tK) ... fXi|T (tK |tK)

 .

M3, defined analogously, is of size K × Q. π is the marginal probability distribution of

T such that π ≡ (πj) ∈ (0, 1)K with
∑

j πj = 1, and M̃1 ≡ diag(π)M1. Therefore the

identification boils down to whether we can recover Mis and π using information on tensor

[M̃1,M2,M3]. Note that [M̃1,M2,M3] is invariant to simultaneously permuting the rows

of all Mis and π. Thus, the identification is subject to the label swapping problem.

The identification relies on a rank condition associated with the matrix’s Kruskal rank,

defined as the largest number I such that every set of I rows of the matrix are linearly

independent (Kruskal, 1977). Naturally, the Kruskal rank of matrix M is never larger

than the regular rank, i.e., rankK(M) ≤ rank(M). Moreover, if matrix M is full row

rank, its Kruskal rank is the same as its regular rank, i.e., rankK(M) = rank(M). We

summarize the identification result in (Allman et al., 2009) (Corollary 2) in the following

theorem.

Theorem 1 (Allman et al., 2009) Consider the model described above. Suppose all en-

tries of π are positive. For each i = 1, 2, 3, let Ii = rankK(Mi). If

I1 + I2 + I3 ≥ 2K + 2, (4)

the tensor [M̃1,M2,M3] uniquely determines M1, M2, M3, and π, up to label swapping.

1Note that (Allman et al., 2009) do not assume that the Xis are identically distributed conditional

on the true T or have the same state space. For illustration purpose, we assume that X1 and X2 have

the same state space but are not necessary identically distributed, conditional on the true T .
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That is, the Mis and π are identified up to a permutation of its support {t1, t2, . . . , tK}.
Since these unobserved components do not convey any economics meaning, the finite

mixture literature does not impose additional assumptions for pinning down their orders.

Note that the Kruskal rank condition required for the identification in Theorem 1 is

less restrictive than a full row rank condition. It does not require the Mis to be full rank.

However, it does not provide a closed-form expression for the identified components. Con-

sequently, we cannot follow the identification procedure to recover the identified mixture

components. As a matter of fact, the identification using the Kruskal rank condition is

comparable to a traditional identification argument that a local identification is feasible

if the number of restrictions is larger than or equal to that of unknowns. (Allman et

al., 2009) further apply this identification result to the scenario of continuous measure-

ment Xi, where the mixture structure of Equation (1) also applies to the corresponding

cumulative density function.

Identification of Misclassification Models In the misclassification or the measure-

ment error literature, T represents the latent true variable so it conveys economic meaning

itself. For example, in the literature on the returns to education, self-reported education

levels may contain measurement error such as those who have not gone to college may

report that they have college degrees. In this case, T represents different levels of educa-

tion. Consequently, pinning down the precise value of T is very important as to evaluate

the returns to education.

For identification, we first introduce the following matrix representation.

Mi =
[

Pr(Xi = tk|T = tj)
]
j,k
, i = 1, 2

A(x3) ≡
[

Pr(X1 = tj, X2 = tk, X3 = x3)
]
j,k
,

A ≡
[

Pr(X1 = tj, X2 = tk)
]
j,k
,

Ω ≡ diag
(
π1, ..., πK

)
,

D(x3) ≡ diag
(
Pr(X3 = x3|T = t1), ....,Pr(X3 = x3|T = tK)

)
.

We have the following two matrix representations:

A = MT
1 ΩM2,

A(x3) = MT
1 D(x3)ΩM2.
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With the full rank condition, i.e., M1 and M2 are invertible, we have the following key

equation summarizing the connection between observables and unknowns.

A(x3)A
−1 = MT

1 D(x3)(M
T
1 )−1. (5)

The eigenvalue-eigenvector representation in Equation (5) holds for any value of x3, and

the eigenvector matrix does not change with x3. Consequently, we can construct a similar

eigenvalue-eigenvector expression through aggregating the information of Equation (5)

associated with different values of x3 using some function ω(·). Specifically, the eigenvalue-

eigenvector decomposition still holds with eigenvalue matrix D(x3) being replaced with

the following eigenvalue matrix:

D(ω) = diag
(
E[ω(X3)|T = t1], ...., E[ω(X3)|T = tK ]

)
,

leading to the following eigenvalue-eigenvector expression

A(ω)A−1 = MT
1 D(ω)(MT

1 )−1, (6)

where A(ω) ≡
[
E[ω(X3)|X1 = tj, X2 = tk] Pr(X1 = tj, X2 = tk)

]
j,k
.

We impose the following condition for the decomposition to be unique.

Assumption 1 (Distinct eigenvalues) there exist a function ω(.) such that,

E[ω(X3)|T = tj] 6= E[ω(X3)|T = tk],

for any tj 6= tk.

Intuitively, the conditional distribution of X3 needs to vary across different values of the

latent variable in order to distinguish among them. The introduction of this function is

to capture these differences. The function ω(·) maybe be context-specific, and we impose

no functional restrictions on it. Possible examples of this function are: ω(X3) = X3;

ω(X3) = a(X3 − b), where a and b are some constants; and ω(X3) = I(X3 = x3), where

I(.) is the indicator function. When X3 is binary, we can further represent the eigenvalue

as E[ω(X3)|T = tj] = ω(0) + (ω(1)− ω(0)) Pr(X3 = 1|T = tj), so any function satisfying

ω(0) 6= ω(1) works. Assumption 1 guarantees that the eigenvalues E[ω(X3)|T = tj]

in D(ω) are distinct. Therefore, the eigenvector matrix M1 corresponding to each tj is

uniquely identified up to the label tj.
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To address the issue of identification up to relabeling, we provide a set of flexible

ordering conditions to pin down the value of the latent true variable. Note that the order-

ing for eigenvalues and eigenvectors are always consistent, indicating that we can either

impose conditions to pin down the ordering of the eigenvalues or that of the eigenvectors.

Assumption 2 (Ordering) one of the following conditions holds:

1) there exists ti such that fX3|T (ti|t) is increasing or decreasing in t;

2) there exists a function ω(·) such that E[ω(X3)|T = t] is increasing in t;

3) there exists ti such that fX1|T (ti|t) is decreasing in t;

4) fX1|T (·|t) has a unique mode at t;

5) fX1|T (·|t) has a median (min, max, or a known quantile) at t.

Condition 2.1-2.2 are imposed to pin down the order of the eigenvalues while condition

2.3 - 2.5 are imposed to pin down the order of the eigenvectors. Conditions 2.1-2.4 are

consistent with Assumptions 2.4-2.7 in (Hu, 2008). Condition 2.5 is a general version

of condition 2.4. Understanding the empirical contexts and the economic theory behind

the study is very important as to adopt the appropriate ordering condition to pin down

the order. We use a few specific empirical examples below to explain these ordering

conditions.

1. For studying the impact of education on labor supply, where X3 is an indicator for

whether or not the individual has a job, and X1 and X2 are two measurements of

the true latent education T , which can come from different waves of the survey,

respectively. Economic theory tends to predict that the proportion of people with

higher education are more likely to be working than lower educated people. That

is, fX3|T (1|t) is increasing in t (condition 1).

2. For studying returns to education, one intuitive condition we can use to pin down the

order of the latent education level is that mean income increases with true education,

i.e., E(X3|T = t) is increasing in t. Condition 2 is satisfied with ω(X3) = X3.

3. In the context of latent education with self-reported information, existing validation

studies find evidence that the probability of reporting the true education is higher

than that of reporting any other values (condition 4). For instance, (Kane et al.,

1999) report the proportion of differential educational attainment by self-reported

and transcript-reported sources (Table 1). The probability of “correct” self-reported
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education attainment is higher than that of the mis-reported one, if we assume that

transcripts provide the “true” education attainment.

We summarize the global identification result of misclassification models as follows:

Theorem 2 (Hu, 2008) Consider a structure described as Equation (1). Suppose that

matrix M1 and M2 have full rank, and that Assumptions 1 and 2 are satisfied. Then, M1,

M2, M3, and π are uniquely identified.

We next prove the equivalence of the identification condition from the two strands

of literature for a general discrete X3. We first present a set of sufficient and necessary

conditions for identification of the two models. We then provide detailed discussions. Note

that we focus on the case where M1 and M2 have full rank. This important assumption

enables us to compare the identification conditions from the two literature. Our main

results are summarized as follows:

Theorem 3 Consider a structure described as Equation (1). Suppose that M1 and M2

have full rank, i.e., I1 = I2 = K. The following four statements are equivalent:

1. (Nontrivial Kruskal rank) The Kruskal rank of M3 is at least 2, i.e., I3 ≥ 2;

2. (Distinct eigenvalues) Assumption 1 holds. That is, there exists a function ω(.) such

that, for any tj 6= tk,

E[ω(X3)|T = tj] 6= E[ω(X3)|T = tk].

3. (Non-redundant) For any tj 6= tk, there exist an x3 such that

Pr(X3 = x3|T = tj) 6= Pr(X3 = x3|T = tk).

Note that x3 is chosen separately for each pair (tj, tk).

4. (Unique) M1, M2, M3, and π are uniquely identified, up to label swapping.

Theorem 4 states that the Kruskal rank condition is not only the sufficient condition

for identification (Allman et al., 2009), but also the necessary condition; the distinct eigen-

value condition is not only the sufficient condition for identification (Hu, 2008), but also

the necessary condition. It is intuitively hard to understand the identification condition in
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both literatures. It is also difficult to prove the necessity of these identification conditions

directly. Thus, we introduce the non-redundant condition, which provides a transparent

explanation for the nontrivial Kruskal rank condition and the distinct eigenvalues condi-

tion. This non-redundant condition is empirically testable as these components can be

estimated directly from the eigen-decomposition in Equation 5. We prove Theorem 3 in

the following procedures: the equivalence between the Kruskal rank condition and the

non-redundant condition, the equivalence between the distinct eigenvalue condition and

the non-redundant condition, and the equivalence between the non-redundant condition

and identification.

Note that the non-redundant condition is important as it builds a bridge between the

two sets of identification results. This condition indicates that, for any two rows of the

M3 matrix, there exists at least one column, i.e., a value x3, wherein the probabilities in

the two rows differ from each other. It rules out the scenario where two rows of matrix

M3 are the same, which means that the information associated with the two levels of the

latent variable is redundant. However, it does not require that there exists an x3 such

that all elements in this column differ from each other; that is, there exists an x3 such

that, for any tj 6= tk, Pr(X3 = x3|T = tj) 6= Pr(X3 = x3|T = tk).

We illustrate the non-redundant condition with two examples. For illustration pur-

poses, assume that Q = K = 3 and the matrix M3 is specified as follows.

M1
3 =


0.1 0.4 0.5

0.2 0.3 0.5

0.1 0.3 0.6

 ; M2
3 =


0.2 0.3 0.5

0.2 0.3 0.5

0.1 0.3 0.6

 .

Matrix M1
3 satisfies the non-redundant condition because, for pair T = t1 and T = t2,

there exits X3 = t1 such that fX3|T (t1|t1) = 0.1 6= 0.2 = fX3|T (t1|t2); for pair T = t1 and

T = t3, there exits X3 = t2 such that fX3|T (t2|t1) = 0.4 6= 0.3 = fX3|T (t2|t3); for pair

T = t2 and T = t3, there exits X3 = t1 such that fX3|T (t1|t2) = 0.2 6= 0.1 = fX3|T (t1|t3).
Matrix M2

3 does not satisfy the non-redundant condition because, for pair T = t1 and

T = t2, and for any value x3, fX3|T (t1|t1) = fX3|T (t1|t2). The information provided by

T = t1 and T = t2 is redundant so that it is impossible to disentangle t1 and t2.

It is important to compare the identification results for the two models. First, we

focus on the case where M1 and M2 are full rank, while (Allman et al., 2009) provide

identification results for a more general setting, which includes the case where each mea-

surement has support smaller than that of the latent variable. For example, when the
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latent true variable has five possible values, identification is still feasible even if each of

the three measurements can only take four possible values. This scenario, however, is

not considered in (Hu, 2008) or the current paper. Second, conditions in (Allman et al.,

2009) are based on the abstract Kruskal rank, which may be difficult to test. In contrast,

the regular rank condition in the current paper is directly testable from the data. Last,

it is not clear how to extend the Kruskal rank condition to the case of continuous latent

variables while the regular rank condition in (Hu, 2008) can be intuitively extended to

the injectivity condition of the continuous case as in (Hu and Schennach, 2008).

With the equivalence of the two identification conditions, the only difference between

the two literatures lies in the ordering condition. It seems that the identification condi-

tion in the misclassification literature is more restrictive than that of the finite mixture

models. However, the additional condition (Assumption 2) is innocuous and very intu-

itive. It transforms a local identification into a global identification, which is very helpful

in estimation. Thus, to address the problem caused by local identification in estimation

of finite mixture models, one should impose some version of the ordering condition as

Assumption 2 in the estimation.

If the latent true variable contains economic meaning, we need to be careful when

introducing the ordering conditions, as those conditions may impose restrictions to the

economic models. However, if the latent true variable contains no economic meaning,

which is the case in finite mixture models, it is very flexible to introducing ordering

conditions. In an example of an entry game with two equilibria, the indexing of equilibria

has no economic meaning. One natural ordering condition is that the probability of

entry associated with equilibrium 1 is higher than that of equilibrium 2. This would

not impose any extra restrictions to the payoff because the equilibrium labels have no

economic meaning.

3 Global Estimation

With the model identified, one can use a minimum Hellinger distance estimator (MHD),

defined by minimizing the distance of the joint distribution directly from the data f̂ and

predicted by the models f , respectively. The MHD estimator for finite mixture models
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can be represented as:(
fM1|T , fM2|T , fM3|T , fT

)
= arg min

fM1|T ,fM2|T ,fM3|T ,fT
‖f̂ 1/2

M1M2M3
− (ΣfM1|TfM2|TfM3|TfT )1/2‖,

(7)

and the MHD estimator for misclassification models can be represented as:(
fM1|T , fM2|T , fM3|T , fT

)
= arg min

fM1|T ,fM2|T ,fM3|T ,fT
‖f̂ 1/2

M1M2M3
− (ΣfM1|TfM2|TfM3|TfT )1/2‖,

s.t. Assumption 2 holds, (8)

where ‖ · ‖ represents the L2 norm. Since the finite mixture model is identified up to a

permutation of T the estimator is a local estimation in the sense that there are K! minima

of the criterion function and these minima all lead to the same value for the chosen criteria

function. The estimator for the misclassification model is a global one because it directly

pins down which minima is the correct one. This may not seem to be a problem because

the permutations of the T types do not matter economically. However, such identification

up to a permutation makes the bootstrap method invalid because it is unclear which local

minimum the estimator reaches in each bootstrap draw. Therefore, we argue that it is

still better off to impose Assumption 2 in the estimation of the finite mixture model, i.e.,

treating it as a misclassification model.

This label swapping issue is a problem for more than just the minimum distance

estimation. It is a prevalent problem due to the identification strategy, and thereby affects

every estimator. Some may argue that we do not need to worry about this problem if one

can derive the variance-covariance matrix for the estimator theoretically. However, some

applications, especially applications such as dynamic discrete choice models or dynamic

games, rely heavily on a sequential estimation approach to estimate structural parameters

while also requiring controls for unobserved heterogeneity. In those applications, deriving

the variance matrix is very challenging and may be infeasible. Thus, bootstrap is a popular

alternative for standard deviation approximation. The label swapping issue again causes

similar problems in these scenarios.

4 Empirical Illustration

This section illustrates the importance of the ordering condition in the estimation of

games with multiple equilibria and/or unobserved market-level factors. The application
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uses a simultaneous move game to characterize the timing decisions for broadcasting

commercials by radio stations with contemporary music formats (Contemporary Hit Radio

(CHR)/Top 40, Country, Rock, etc.).

4.1 Data and Model

Radio listeners seek to avoid commercials by switching to other stations or opting

out with alternatives, such as tapes or CDs. If stations air commercials at the same

time, listeners would not be able to skip them, which would be beneficial for advertisers.

However, hosting commercial breaks at the same time may not be optimal for radio

stations because it may push some listeners to opt out, which might harm the station’s

overall popularity, measured by averaging audience tune-ins over both commercial and

noncommercial programming.

In reality, stations indeed tend to cluster commercials timings (figure 1). There are

three peaks in the distributions of commercial timing, which are measured by the average

proportion of stations playing commercials in each minute during two different hours

of the day. Moreover, the peak pattern varies across markets (Figure 2) even though

Arbitron uses the same methodology to compute listenership. One explanation is that

some time slots in each hour are particularly desirable for commercials but these desirable

time slots differ in different markets. That is, some market-level factors are driving the

observation that different markets display different peaks. Another possible explanation is

the presence of multiple equilibria. Stations coordinate to take commercial breaks at the

same time to avoid listener switching, and different markets coordinate at different times,

indicating that they employ different equilibria. Both unobserved market-level factors and

multiple equilibria rationalize the clustering pattern in general and the different clustering

patterns across markets. In this empirical illustration, we assume away market-level

unobserved factors and assume that the presence of multiple equilibria is the only rationale

for the data pattern.

To study radio station decisions regarding the timing of commercials, we model the

decision process in every hour as choosing from two time blocks to air their commercials

simultaneously, as in (Sweeting, 2009) and (Xiao, 2018). Specifically, we construct two

exclusive time intervals in every hour using the clustering time peaks and refer to them

as option 0 (:48-:52) and option 1 (:53-:57), respectively. The data used in this paper

are constructed using hourly airplay logs collected by Medabase 24/7 and extracted from
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airplay logs that stations play on a minute-by-minute basis2. In summary, there are 144

markets in total; the number of stations in each market varies from 3 to 15 with a mean

of 5.7; each station has 236 observations over the course of 59 days (Table 1).

In every hour, each station’s decision is to choose between the two options to air their

commercials. We rule out the possibility of airing commercials in both intervals. For

illustrative purposes, we assume that markets differ only in the number of radio stations

and that stations are homogeneous so there is not need to keep track of radio station

identity. An individual station i’s payoff for placing a commercial in time block t ∈ {0, 1}
is defined as follows:

π(ai = 1, a−i) = α + δ

∑
j 6=i I(aj = 1)

n− 1
+ εi1,

π(ai = 0, a−i) = δ

∑
j 6=i I(aj = 0)

n− 1
+ εi0,

where α captures the gap of the average profit of airing commercials between timing 0 and

1, δ captures the coordination incentives, and εs represent station i’s idiosyncratic private

profit shocks. The εs captures the potential that a station may air commercials at different

times every day. This introduces variation due to the length of other programming, such

as songs or travel news, and can be unpredictable. We assume εit to be independent

across actions, players, and markets. Furthermore, εit follows a type-I extreme value

distribution.

Following the existing literature, we use the probability that firms choose time slot 0

and 1, denoted as p0 and p1, respectively, to characterize the equilibrium. We focus on

symmetric equilibria. The equilibrium condition then can be characterized as:

p1 =

∫
I(α + δp1 + εi1 > δp0 + εi0)dF (εi)

=
exp(α + δp1)

exp(δp0) + exp(α + δp1)
. (9)

The first equality holds because, radio stations are homogeneous and they have correct

beliefs regarding rivals’ behaviors in equilibrium. Specifically, the fraction of rivals airing

commercials in time slot 1 is consistent with the probability of each radio station airing

commercials in time slot 1, i.e.,
∑

j 6=i I(aj=1)

n−1 = p1. This feature indicates that each station’s

strategic decision regarding commercial timing is not affected by the number of rivals in

2We thank Andew Sweeting for sharing the data. Please refer to (Sweeting, 2009) for a detailed

description of the data.
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the market. As a result, we can pool data from markets with different numbers of radio

stations for estimation. The second equality holds due to the assumption that εi follows

a type-I extreme value distribution. We further rewrite the equilibrium condition as

log p1 − log p0 = α + δ(p1 − p0). (10)

If the data are generated by a single equilibrium, despite the potential existence of multiple

equilibria in theory, we can consistently estimate the equilibrium p1 and p0 using the

fraction of radio stations airing commercials in the two time slots in the data. We then can

estimate an individual radio station’s payoff using the equilibrium condition characterized

above. However, when the data are generated by multiple equilibria, the fraction of radio

stations airing commercials in the two time slots in the data are a finite mixture of the

equilibrium counterparts. That is,

Pr(a1, a2, .., an) =
∑
k

λ(k) Pr(a1, a2, .., an|k), (11)

where k indexes the equilibrium, λ(k) is the proportion of markets adopting equilibrium

k, i.e., the equilibrium selection probability, and Pr(a1, a2, .., an|k) denotes the joint prob-

ability of airing commercials, {a1, a2, .., an}, associated with equilibrium k. This finite

mixture structure fits our identification framework exactly, so it serves well as an illus-

tration. Thus, we use the identification result described above to identify the probability

of airing commercials in time slots 0 and 1 associated with different equilibria. With the

equilibrium probability being identified, the payoff parameters can be identified using the

equilibrium condition (Xiao, 2018).

4.2 Estimation and Results

Note that the number of equilibria is unknown and needs to be identified and esti-

mated.3 In this empirical illustration, we use the result from (Xiao, 2018) that the number

of equilibria is estimated to be two. We then estimate the equilibrium probabilities using

the proposed minimum distance estimation. To illustrate the problem of local estimators,

we estimate the probability of airing commercials in time slot 1 associated with the two

equilibria with and without imposing an ordering condition. We pool markets with dif-

ferent numbers of radio stations for estimation and use markets with at least three radio

stations for estimation.
3Please refer to (Xiao, 2018) for identifying and estimating the number of equilibria.
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Since the labeling of equilibria does not convey any economic meaning, we can arbitrar-

ily label one equilibrium as equilibrium 1, denoted as eqm1, and the other as equilibrium

2, denoted as eqm2. One natural ordering we can impose in this context can be that the

probability of airing commercial in time slot 1 is greater in equilibrium 1 than in equilib-

rium 2; that is, p1(eqm1) > p1(eqm2). As long as the probability of airing commercials

in time slot 1 differs for both equilibria, we can label the one with a higher probability as

eqm1 and the one with a lower probability as eqm2. We should emphasize that this order-

ing condition imposes no additional restrictions on payoff primitives as both equilibrium

probabilities satisfy the same equilibrium condition. That is,

log p1(eqm1)− log p0(eqm1) = α + δ [p1(eqm1)− p0(eqm1)]

log p1(eqm2)− log p0(eqm2) = α + δ [p1(eqm2)− p0(eqm2)] .

We present the estimation results regarding the equilibrium probability of airing com-

mercials associated with both equilibria in Table 2. The standard deviation estimated

from imposing the ordering condition is significantly smaller than that without the order-

ing condition. The estimation of payoff primitives are the same with or without imposing

the ordering condition. We skip the estimation of the payoff primitives here since it is not

the focus of this paper.

5 Conclusion

This paper connects the identification results of finite mixture models and misclassi-

fication models in a widely used scenario in empirical research. While existing studies

provide sufficient identification conditions for a more general case, we present sufficient

and necessary conditions for the identification of this widely used case. In the misclassi-

fication model, an ordering condition is usually imposed to pin down the precise value of

the latent variable, which are also of interest to researchers and need to be identified. In

contrast, the identification of finite mixture models is usually up to label swapping. We

argue that the ordering condition in misclassification models leads to global identifica-

tion and should be imposed in estimation, especially, when researchers use bootstrap to

estimate standard errors. As an empirical illustration, games with multiple equilibria fit

in our framework well, and we show that the global estimator with ordering assumptions

provides reliable estimates with real data.
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Table 1: Descriptive Statistics

Variable Obs Mean Std. Dev Min Max

No. of Players 92766 5.641 2.054 3 15

Timing 92766 .499 .489 0 1

Day 92766 31.745 17.723 1 59

Table 2: Estimation of eqm Strategy

Ordering No Ordering

estimates std (bootstrap) estimates std (bootstrap)

p1 (eqm1) 0.602 0.065 0.602 0.120

p1 (eqm2) 0.420 0.056 0.420 0.123

λ(Prob of eqm1) 0.451 0.229 0.451 0.232

Appendix

A Graphs and Tables

Figure 1: Timing Patterns for Commercials across Markets (Sweeting (2009))�������������	
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Figure 2: Timing Patterns for Commercials in Different Markets (Sweeting (2009))�������������	��
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B Proof

Proof of Theorem 3 We show that the four statements are equivalent in the following

three steps.

Step 1: We show that the Kruskal rank of M3 is at least 2 if and only if, for any

tj 6= tk, there exists an x3 ∈ {t1, t2, ..., tQ} such that fX3|T (x3|tj)− fX3|T (x3|tk) 6= 0. First,

we show that the non-redundant condition implies the Kruskal rank condition. Recall

that M3 is defined as

M3 =


fX3|T (t1|t1) fX3|T (t2|t1) ... fX3|T (tQ|t1)
fX3|T (t1|t2) fX3|T (t2|t2) ... fX3|T (tQ|t2)

... ... ... ...

fX3|T (t1|tK) fX3|T (t2|tK) ... fX3|T (tQ|tK)

 .

We consider the following reduced-size matrix of dimension 2×K constructed by any two

rows tj and tk of matrix M3, with tj 6= tk,

M3.2 ≡

(
fX3|T (t1|tj) fX3|T (t2|tj) ... fX3|T (tQ|tj)
fX3|T (t1|tk) fX3|T (t2|tk) ... fX3|T (tQ|tk)

)
.

Without loss of generality, let x3 = tm,m = 1, ..., Q, such that fX3|T (tm|tj)−fX3|T (tm|tk) 6=
0. Define 1 = (1, 1, ..., 1)T and em = (0, ..., 0, 1, 0, ..., 0)T , where 1 is at them-th coordinate.

We consider

M3.2 × (em 1) =

(
fX3|T (tm|tj) 1

fX3|T (tm|tk) 1

)
.
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Therefore, the rank of M3.2 is 2 if fX3|T (x3|tj)− fX3|T (x3|tk) 6= 0 for any two rows. That

means the Kruskal rank of M3 is greater than or equals to 2.

Second, we show that Kruskal rank condition (I3 ≥ 2) implies the non-redundant

condition. If the Kruskal rank of M3 is at least 2, the regular rank of matrix M3.2 for any

tj 6= tk is 2, meaning that any two rows of matrix M3 are not the same.

Step 2: The distinct eigenvalue condition holds if and only if the non-redundant con-

dition holds. First, we show the distinct eigenvalue condition implies the non-redundant

condition, which is demonstrated by contradiction. Suppose non-redundant condition

does not hold. That means there may exist at least one pair T ∈ {tj, tk} such that dis-

tribution fX3|T (.|tj) is the same as fX3|T (.|tk). Then E[ω(X3)|T = tj] = E[ω(X3)|T = tk]

for any function ω, which is contradictory to the distinct eigenvalue condition.

Next, we show that the non-redundant condition implies the distinct eigenvalue con-

dition. For any pair T = {tj, tk}, we define a Q× 1 column vector Dfj,k

Dfj,k ≡


fX3|T (t1|tj)− fX3|T (t1|tk)

fX3|T (t2|tj)− fX3|T (t2|tk)

...

fX3|T (tQ|tj)− fX3|T (tQ|tk)

 .

The non-redundant condition guarantees that Dfj,k 6= 0 for all combinations of row j

and k if j 6= k. Therefore, there exists a vector W = (w1, w2, ..., wQ)′ such that W is not

orthogonal to Dfj,k for any j 6= k. That is

W ′ ×Dfj,k 6= 0, j 6= k, j, k = 1, 2, ..., K.

Therefore, we can define a function of X3 as

ω(X3) =
∑

i=1,2,...,Q

wi × I(X3 = ti),

which satisfies, for any tj 6= tk,

E[ω(X3)|T = tj]− E[ω(X3)|T = tk] = W ′ ×Dfj,k 6= 0.

The existence of such a vector W can be shown by contradiction. Suppose such a

vector W does not exist. Then, for any W ∈ RQ, there exists a pair (j, k) with k 6= j such

that W ′ × Dfj,k = 0. Note that the function W ′ × Dfj,k is continuous in W . Thus, for
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this given pair of (j, k), there exist K linearly independent vectors W 1,...,WK such that

[(W 1)′, ..., (WK)′]′ ×Dfj,k = 0. As a result, we have Dfj,k = 0, a contradiction.

Step 3: The non-redundant condition holds if and only if the model is identified.

First, we show the non-redundant condition implies identification. We have shown that

the non-redundant condition implies the Kurskal rank condition, i.e., I3 ≥ 2. Since

I1 + I2 + I3 ≥ 2K + 2, Allman et al. (2009) shows the unique identification up to label

swapping.

Next, we show that if the non-redundant condition does not hold, the structure is

not identified. The failure of the non-redundant condition indicates that at least two

different rows of matrix M3 are the same. This means for any function of X3, the distinct

eigenvalue assumption fails, which means that any convex combination of the eigenvectors,

e.g., fX1|T (.|tj) and fX1|T (.|tk), corresponding to the same eigenvalue is an eigenvector (Hu,

2008). Therefore, the eigenvectors in M1 are not uniquely identified. This suggests that we

cannot use the eigenvalue-eigenvector decomposition to identify the eigenvector matrix.

To show that the model is non-identified, we construct two sets of matrices both sat-

isfying the underlying structure when the non-redundant condition fails. For illustrative

purposes, assume that X3 is a binary variable, i.e., X3 ∈ {0, 1}. Suppose the data gener-

ating process is as follows, with matrices M1,Ω,M2, and M3 being the true components,

A = MT
1 ΩM2,

A(x3) = MT
1 D(x3)ΩM2, where x3 = 0, 1

Mi =


Mi1

...

MiK

 , i = 1, 2. M3 ≡


M31

...

M3K


The failure of non-redundant condition indicates that the two rows of M3 are the same.

Without loss of generality, assumeM31 = M32, i.e., fX3|T (0|t1) = fX3|T (0|t2) and fX3|T (1|t1) =

fX3|T (1|t2). We then show that the matrices constructed below can also explain the data.

M̃1 ≡


M̃11

M̃12

...

M̃1K

 ≡


b×M11 + (1− b)×M12

M12

...

M1K

 , Ω̃M̃2 = (M̃T
1 )−1A & M̃3 = M3,

where b is within 0 and 1. The observable equivalence is equivalent to show that

• A = M̃T
1 Ω̃M̃2, which holds by construction.
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• For any x3, A(x3) = M̃T
1 D̃(x3)Ω̃M̃2, which is shown in the following. In particular,

A(x3) = M̃T
1 D(x3)Ω̃M̃2 = M̃T

1 D(x3)(M̃
T
1 )−1A

⇔ A(x3)A
−1M̃T

1 = M̃T
1 D(x3)

⇔

A(x3)A
−1(b×MT

11 + (1− b)×MT
12) = fX3|T (x3|t1)(b×MT

11 + (1− b)×MT
12) if k = 1

A(x3)A
−1MT

1k = fX3|T (x3|tk)MT
1k if k ≥ 2

Note that A(x3)A
−1MT

1k = fX3|T (x3|tk)MT
1k, for k = 1, ..., K. Consequently, to show

that A(x3) = M̃T
1 D̃(x3)Ω̃M̃2, we just need to show that A(x3)A

−1(b ×MT
11 + (1 −

b)×MT
12) = fX3|T (x3|t1)(b×MT

11 + (1− b)×MT
12). Specifically,

A(x3)A
−1(b×MT

11 + (1− b)×MT
12) = b× A(x3)A

−1MT
11 + (1− b)× A(x3)A

−1MT
12

= b× fX3|T (x3|t1)MT
11 + (1− b)× fX3|T (x3|t2)MT

12

= b× fX3|T (x3|t1)MT
11 + (1− b)× fX3|T (x3|t1)MT

12

= fX3|T (x3|t1)(b×MT
11 + (1− b)×MT

12).

The second equality holds becauseA(x3)A
−1MT

1k = fX3|T (x3|tk)MT
1k, for k = 1, ..., K.

The third equality holds because fX3|T (x3|t1) = fX3|T (x3|t2). Thus, the data can be

also explained by the matrices M̃1, Ω̃, M̃2, and M̃3, indicating that the structure is

not identified if the non-redundant condition fails.

�
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