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Abstract

This paper proposes closed-form estimators for nonparametric regressions using two

measurements with non-classical errors. One (administrative) measurement has location-

/scale-normalized errors, but the other (survey) measurement has endogenous errors with

arbitrary location and scale. For this setting of data combination, we derive closed-

form identification of nonparametric regressions, and practical closed-form estimators that

perform well with small samples. Applying this method to NHANES III, we study how

obesity explains health care usage. Clinical measurements and self reports of BMI are

used as two measurements with normalized errors and endogenous errors, respectively.

We robustly find that health care usage increases with obesity.
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1 Introduction

For the increasing availability of combined administrative and survey data (Ridder and Moffitt,

2007), econometric methods that can properly handle matched data with measurement errors

have become of great practical importance. For econometric methods to be truly useful no

matter how complicated a model is, estimators should ideally be given in a closed form explicitly

written in terms of observed data, like the OLS. Unfortunately, such convenient characteristics

are rarely shared by nonparametric estimators for non-classical measurement errors.

Identification and estimation of regression models with two measurements of explanatory

variables are proposed by Li (2002) and Schennach (2004a,b) among others. A limitation with

the existing methods is that they require two measurements with classical errors. In practice,

empirical data with two measurements often come from matched administrative, imputed,

and/or survey data, where particularly survey data are often subject to non-classical errors

(e.g., Bound, Brown, and Mathiowetz, 2001; Koijen, Van Nieuwerburgh, and Vestman, 2013).

Ignoring the non-classical nature of errors in measurements may lead to inconsistent estimation,

as we demonstrate in our simulations. In this paper, we propose closed-form estimators for

nonparametric regression models using two measurements with non-classical errors.

Specifically, we explicitly estimate the nonparametric regression function g for the model

Y = g(X∗) + U E [U |X∗] = 0,

where Y is an observed dependent variable, X∗ is an unobserved explanatory variable, and

U is the regression residual. While the true explanatory variable X∗ is not observed, two

measurements, X1 and X2, are available from matched data. For simplicity, X∗ is assumed to

be a scalar and continuously distributed. The relationship between the two measurements and

the true explanatory variable X∗ is modeled as follows.

X1 =
P∑

p=0

γpX
∗p + E1

X2 = X∗ + E2
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Unless γ1 = 1 and γ2 = · · · = γP = 0 are true, the first measurement X1 entails non-classical

errors with nonlinearity. Allowing for such non-classical errors is crucial particularly for survey

data that are often contaminated by endogenous self-reporting biases. Since the truth X∗

is unobserved, the second measurement X2 is location-/scale-normalized with respect to the

unobserved truth X∗. We use alternative independence assumptions on the measurement error

E2 depending on which order P we assume about X1, but these assumptions are more innocuous

than assuming classical errors in any case.

Under assumptions that will be introduced below, we show that the regression function g

can be explicitly expressed as a functional of the joint CDF FY X1X2 in the sense that g(x∗) =

λ(x∗|FY X1X2). We provide the concrete expression for this functional λ(x∗ | · ). In order to

construct a sample-counterpart estimator of g(x∗) given this closed-form identifying solution,

it suffices to substitute the empirical distribution F̂Y X1X2 in this known transformation so we

get the closed-form estimator ĝ(x∗) = λ(x∗ | F̂Y X1X2). We present its theoretical large sample

properties as well as its small sample performance. Monte Carlo simulations show that the

estimator works quite well with N = 500, a very small sample size for nonparametrics.

Measurement error models have been extensively studied in both statistics and economet-

rics. The statistical literature focuses on cases of classical errors, where measurement errors

are independent of the true values – see Fuller (1987) and Carroll, Ruppert, Stefanski and

Crainiceanu (2006) for reviews. The econometric literature investigates nonlinear models and

nonclassical measurement errors – see Chen, Hong and Nekipelov (2011), Bound, Brown and

Mathiowetz (2001) and Schennach (2013) for reviews. However, closed-form estimation, nonlin-

ear/nonparametric models, and non-classical measurement errors still remain unsolved, despite

their joint practical relevance. Two measurements are known to be useful to correct measure-

ment errors even for external samples if the matched administrative data is known to be true

(e.g., Chen, Hong, and Tamer, 2005). The baseline model of our framework was introduced

by Li (2002) and Schennach (2004a), where they consider parametric regression models under
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two measurements with classical errors. Hu and Schennach (2008) provide general identifica-

tion results for nonseparable and non-classical measurement errors,1 but their estimator relies

on semi-/non-parametric extremal estimator where nuisance functions are approximated by

truncated series. 2 Unlike these existing approaches, we develop a closed-form estimator for

nonparametric models involving non-classical measurement errors.

Our results share much in common with Schennach (2004b) where she develops a closed-form

estimator under the restriction, γ1 = 1 and γ2 = · · · = γP = 0, of a classical-error structure.

There are notable differences and thus values added by this paper as well. Our method paves

the way for non-classical error structures with high degrees of nonlinearity whereas the existing

closed-form estimator can handle only classical errors. To this end, we propose a new method to

recover and use the characteristic function of the generated latent variable
∑P

p=1 γpX
∗p, instead

of just X∗, in the framework of deconvolution approaches. Not surprisingly, as we show through

simulations, the classical error assumption γ1 = 1 and γ2 = · · · = γP = 0 can severely bias

estimates if the true DGP does not conform with this assumption. In our empirical application,

we find that γ1 ̸= 1 is indeed true when people report their physical characteristics, and hence

the existing closed-form estimator that assumes classical errors would likely suffer from biased

estimates. The contribution of our method is to overcome these practical limitations of the

existing closed-form estimators.

For an empirical illustration, we investigate how obesity measured by the Body Mass Index

(BMI) explains the health care usage by using a sample of about 1900 observations extracted

from the National Health and Nutrition Examination Survey (NHANES III). This data set

1Also see Mahajan (2006), Lewbel (2007), and Hu (2008) for non-/semi-parametric identification and esti-

mation under non-classical measurement errors with discrete variables.
2Our model is also closely related to nonparametric regression models with classical measurement errors,

which are extensively studied in the rich literature in statistics. When the error distribution is known, the

regression function may be estimated by deconvolution – see Fan and Truong (1993) and Carroll, Ruppert,

Stefanski and Crainiceanu (2006) for reviews. When the error distribution is unknown, Schennach (2004b) uses

Kotlarski’s identify (see Rao, 1992) to provide a Nadaraya-Watson-type estimator for the regression function.
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uniquely matches self-reports and clinical measurements of the BMI. We allow the former

measurement to suffer from endogenous biases with arbitrary location and scale, while the

latter measurement is location-/scale-normalized with respect to the true BMI. Our results

show a robust upward-sloping tendency of the mean health care usage as a function of the true

BMI, controlling for the most important health factors, namely gender and age. This tendency

is particularly stronger for females.

2 Closed-Form Identification: A Baseline Model

Our objective is to derive closed-form identifying formulas for the nonparametric regression

function g. For the purpose of intuitive exposition, we first focus on the following simple

model:

Y = g(X∗) + U, E[U | X∗] = 0

X1 = γ1X
∗ + E1 E[E1] = γ0 (2.1)

X2 = X∗ + E2, E[E2] = 0

where we observe the joint distribution of (Y,X1, X2). The restriction E[U | X∗] = 0 means that

g(X∗) is the nonparametric regression of Y on X∗. We do not assume E[E1] to be zero in order

to accommodate arbitrary intercept γ0 for the first measurement X1. As such, we suppress γ0

from the equation for X1, i.e., it is embedded in γ0 = E[E1]. On the other hand, the locational

normalization E[E2] = 0 is imposed on the second measurement X2. A leading example of (2.1)

is the case with γ1 = 1 often assumed in related papers in the literature. We do not make such an

assumption, and thus our model (2.1) accommodates the possibility that the first measurement

X1 is endogenously biased even if X∗ ⊥⊥ E1 is assumed, as E[X1 −X∗ | X∗] = γ0 + (γ1 − 1)X∗.

We can easily show that γ1 is identified from the observed data by the closed-form formula

γ1 =
Cov(Y,X1)

Cov(Y,X2)
(2.2)
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under the following assumption.

Assumption 1 (Identification of γ1). Cov(E1, Y ) = Cov(E2, Y ) = 0 and Cov(Y,X2) ̸= 0.

The first part of this assumption requires that E1 and E2 are uncorrelated with the dependent

variable. These zero covariance restrictions can be implied by a lower-level assumption, such

as E[U | X∗, E1, E2] = 0, E1 ⊥⊥ X∗, and E[E2 | X∗] = 0, which also imply the additional

identifying restrictions presented later (Assumption 3). The second part of Assumption 1 is

empirically testable with observed data, and implies a non-zero denominator in the identifying

equation (2.2). We state this auxiliary result below for ease of reference.

Lemma 1 (Identification of γ1). If Assumption 1 holds, then γ1 is identified with (2.2).

In some applications, we may simply assume γ1 = 1 from the outset, and Assumption 1

need not be invoked. In any case, we hereafter assume that γ1 is known either by assumption

or by the identifying formula (2.2), and that γ1 is different from zero.

Assumption 2 (Nonzero γ1). γ1 ̸= 0.

If this assumption fails, then the observed variable X1 fails to be an informative signal of X∗.

Assumption 2 therefore plays the role of letting X1 be an effective proxy for the latent variable

X∗. To complete our definition of the model (2.1), we impose the following independence

restrictions.

Assumption 3 (Restrictions). (i) E [U |X1] = 0. (ii) E1 ⊥⊥ X∗. (iii) E [E2 |X1] = 0.

Part (i) states that the residual of the outcome equation is conditional mean independent of

the first measurement. A stronger version of part (i) is the mean independence E [U |X∗, E1] = 0.

Part (ii) states that the random error E1 in X1 is independent of the true explanatory variable

X∗. Notice that the coefficient γ1 may not equal to one, and therefore the first measurement

error defined as X1 −X∗ = (γ1 − 1)X∗ + E1 need not be classical, i.e., the measurement error

is not independent of the true value X∗, even under part (ii) of the above assumption. This
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observation highlights one of the major advantages of our model compared to the existing mod-

els which impose γ1 = 1. Part (iii) states that the second measurement error E2 is conditional

mean independent of the first measurement X1. This assumption is different from the classical

measurement error assumption that E2 is independent of X∗ and U . The last two parts, (ii)

and (iii), can be succinctly implied by the frequently used assumption in the literature that X∗,

E1, and E2 are mutually independent, but we state the above weaker assumptions for the sake

of generality. Plausibility of these independence assumptions will be discussed in the context

of a specific empirical application in Section 6.

Let i =
√
−1 denote the unit imaginary number. Define the marginal characteristic func-

tions ϕX1 , ϕX∗ and ϕE1 by ϕX1(t) = E eitX1 , ϕX∗(t) = E eitX
∗
and ϕE1(t) = E eit E1 , respectively.

Also define the joint characteristic functions ϕX1X2 and ϕX1Y by ϕX1X2(t1, t2) = E eit1X1+it2X2

and ϕX1Y (t1, s) = E eit1X1+isY , respectively. We let F denote the transformation defined by

Ff(t) =
∫
eitxf(x)dx. With this notation, we state the following assumption for identification

of g.

Assumption 4 (Regularity). (i) ϕX1 does not vanish on the real line. (ii) fX∗ and FfX∗ are

continuous and absolutely integrable. (iii) fX∗ · g and F(fX∗ · g) are continuous and absolutely

integrable.

Under Assumptions 3 (ii) and 4 (i), the characteristic functions ϕX∗ and ϕE1 do not vanish

on the real line either. This property of non-vanishing characteristic functions is shared by

many of the common distribution families, e.g., the normal, chi-squared, Cauchy, gamma,

and exponential distributions. In parts of our identifying formula, the characteristic functions

appear as denominators, and hence this assumption to rule out zero denominator is crucial.

Parts (ii) and (iii) ensure that we can apply the Fourier transform and inversion to those

functions. Under this commonly invoked regularity condition together with the independence

restrictions in Assumption 3, we can solve relevant integral equations explicitly to obtain the

following closed-form identification result.
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Theorem 1 (Closed-Form Identification for Affine Models of Endogenous Measurement). Sup-

pose that Assumptions 1, 2, 3 and 4 hold for the model (2.1). The nonparametric function g

evaluated at x∗ in the interior of the support of X∗ is identified with the closed-form solution:

g(x∗) =

∫ +∞
−∞ e−itx∗

exp

(∫ t

0

[
∂

∂t2
ϕX1X2

(t1/γ1,t2)
]
t2=0

ϕX1
(t1/γ1)

dt1

)
[ ∂
∂s

ϕX1Y
(t/γ1,s)]

s=0

i ϕX1
(t/γ1)

dt

∫ +∞
−∞ e−itx∗ exp

(∫ t

0

[
∂

∂t2
ϕX1X2

(t1/γ1,t2)
]
t2=0

ϕX1
(t1/γ1)

dt1

)
dt

, (2.3)

where the parameter γ1 is identified with the closed-form solution (2.2).

A proof is given in Section A.1 in the appendix. Note that every component on the right-

hand side of the identifying formula (2.3) is computable directly as a moment of observed data.

Replacing the population moments by the corresponding sample moments therefore yields a

closed-form estimator of g(x∗).

3 Closed-Form Identification: General Models

In this section, we consider the following generalized extension to the baseline model (2.1):

Y = g(X∗) + U, E[U | X∗] = 0

X1 =
P∑

p=1

γpX
∗p + E1 E[E1] = γ0 (3.1)

X2 = X∗ + E2, E[E2] = 0

where we observe the joint distribution of (Y,X1, X2). The first measurement X1 is system-

atically biased with an arbitrarily high order of nonlinearity. We demonstrate that a similar

closed-form identification result can be obtained for this extended model. To this goal, we

impose the following independence restrictions on (3.1).

Assumption 5 (Restrictions for the General Polynomial Model). (i) E[U | X∗, E1, E2] = 0.

(ii) X∗ ⊥⊥ E1. (iii) (X∗, E1) ⊥⊥ E2.
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Parts (i)–(iii) of this assumption are analogous to the corresponding parts in Assumption 3.

We remark that parts (i) and (iii) are stronger than those corresponding parts in Assumption

3, and that we can deal with the higher-order measurement model (3.1) at the cost of this

strengthening of the independence assumption. A preliminary step before the closed-form

identification of g(X∗) involves identification of the polynomial coefficients γ0, · · · , γP and the

moments of E2 up to the P -th order. This preliminary step is presented in Section 3.1. After

the preliminary step, we then proceed with closed-form identification of the nonparametric

regression function g in Section 3.2.

3.1 A Preliminary Step: Identification of γp and E[Ep
2]

As is the case for the simple affine model of endogenous measurement presented in Section 2

(see (2.2) and Lemma 1), identification of the parameters γp and σp
2 := E[Ep

2] for the model

(3.1) also follows from an appropriate set of moment restrictions. To form such restrictions,

one can propose several alternative statistical and mean independence assumptions, and there

is not the unique set of identifying restrictions to this goal. One might therefore want to come

up with the most convenient set of restriction tailored to specific empirical applications. As a

general prescription, we can form restrictions of the form

Cov(Y Xq
2 , X1) = E

[
Y (X∗ + E2)

q

(
P∑

p=1

γpX
∗p + E1

)]
− E [Y (X∗ + E2)

q] E

[
P∑

p=1

γpX
∗p + E1

]

=
P∑

p=0

q∑
q′=0

γpσ
q−q′

2

(
q

q′

)(
E[Y X∗(p+q′)]− E[Y X∗q′ ] E[X∗p]

)

Cov(Y Xr
2 , X

s
2) = E[Y (X∗ + E2)

r+s] − E[Y (X∗ + E2)
r] E[(X∗ + E2)

s]

=
r+s∑
r′=0

σr+s−r′

2

(
r + s

r′

)
E[Y X∗r′ ]−

r∑
r′=0

s∑
s′=0

σr+s−r′−s′

2

(
r

r′

)(
s

s′

)
E[Y X∗r′ ] E[X∗s′ ]

for various q = 0, 1, · · · , Q − P , r = 0, 1, · · · and s = 1, · · · such that r + s 6 Q for some

Q ∈ N. The right-hand sides of the above two equations involve the unknowns, (γ0, · · · , γP ),

(σ2
2, · · · , σ

Q
2 ), (E[X

∗], · · · ,E[X∗Q]), and (E[Y X∗], · · · ,E[Y X∗Q]), under Assumption 5. As such,
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we obtain (Q − P + 1) + Q(Q+1)
2

restrictions for 3Q + P unknown parameters, (γ0, · · · , γP ),

(σ2
2, · · · , σ

Q
2 ), (E[X

∗], · · · ,E[X∗Q]), and (E[Y X∗], · · · ,E[Y X∗Q]). Clearly for any given order

P of polynomial, as we increase the number Q, we have sufficiently more number of restric-

tions than the unknowns to recover the polynomial coefficients γ0, · · · , γP and the moments

σ2
2, · · · , σP

2 which we need.

A drawback to the above general prescription is that these moment restrictions may not

necessarily lead to a closed-form solution to these parameters. One can make alternative sta-

tistical and mean independence assumptions for the goal of obtaining closed-form identification

of the polynomial coefficients γ0, · · · , γP and the moments σ2
2, · · · , σP

2 . For example, we may

show a closed-from solution in the quadratic case, where the endogenous measurement X1 is

modeled with P = 2 by

X1 = γ1X
∗ + γ2X

∗2 + E1 : E[E1] = γ0 (3.2)

If we assume the homoscedasticity E[U2 | X∗, E1, E2] = E[U2] and the empirically testable rank

condition Cov(Y,X2) · Cov(Y 2, X2
2 ) ̸= Cov(Y,X2

2 ) · Cov(Y 2, X2), then we can show that the

coefficients γ1 and γ2 of the model (3.2) are identified with the closed-form solutions

γ1 =
Cov(Y,X1) · Cov(Y 2, X2

2 )− Cov(Y,X2
2 ) · Cov(Y 2, X1)

Cov(Y,X2) · Cov(Y 2, X2
2 )− Cov(Y,X2

2 ) · Cov(Y 2, X2)
and

γ2 =
Cov(Y,X2) · Cov(Y 2, X1)− Cov(Y,X1) · Cov(Y 2, X2)

Cov(Y,X2) · Cov(Y 2, X2
2 )− Cov(Y,X2

2 ) · Cov(Y 2, X2)
.

Furthermore, Assumption 5 also allows us to identify γ0 and σ2
2 with the closed-form solution

γ0

σ2
2

σ3
2

 =


E[Y ] −γ2 E[Y ] 0

E[X2] −γ1 − 3γ2 E[X2] −γ2

E[Y X2] −γ1 E[Y ]− 3γ2 E[Y X2] −γ2 E[Y ]


−1 

E[Y X1]

E[X1X2]

E[Y X1X2]

 ,

provided the nonsingularity of the inverted matrix. Detailed derivations of these closed-form

identifying formulas can be found in Section A.2 in the appendix.
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3.2 Identification of Nonparametric Regression g

With the polynomial coefficients (γ1, · · · , γP ) and the moments (σ2
2, · · · , σP

2 ) for the model (3.1)

identified with the methods outlined in Section 3.1, we proceed with closed-form identification

of the nonparametric regression function g evaluated at various points x∗ in the interior of the

support of X∗. To this end, we assume the following rank condition, which is effectively an

empirically testable assumption as (σ2
2, · · · , σP

2 ) are identified from observed data FY X1X2 .

Assumption 6 (Empirically Testable Rank Condition). The following matrix is nonsingular.

1
(

P
P−1

)
σ1
2 · · ·

(
P
2

)
σP−2
2

(
P
1

)
σP−1
2

1 · · ·
(
P−1
2

)
σP−3
2

(
P−1
1

)
σP−2
2

. . .
...

...

1
(
2
1

)
σ1
2

1


P×P

Besides its empirical testability, this rank condition is automatically satisfied for the linear

case (P = 1) and the quadratic case (P = 2) due to the normalization E[E2] = 0 in (3.1).3

For convenience of writing, we let Z∗ denote the random variable
∑P

p=1 γpX
∗p. The role of

Assumption 6 is to identify the distribution of this generated latent variable Z∗ in the following

manner. Under Assumption 6, we can write the following vector on the left-hand side in terms

of the expression on the right-hand side that consists of observed data.[
µ(t, P ;σ1

2, · · · , σP
2 ;FX1X2) · · · µ(t, 1;σ1

2, · · · , σP
2 ;FX1X2)

]′
:=

1
(

P
P−1

)
σ1
2 · · ·

(
P
2

)
σP−2
2

(
P
1

)
σP−1
2

1 · · ·
(
P−1
2

)
σP−3
2

(
P−1
1

)
σP−2
2

. . .
...

...

1
(
2
1

)
σ1
2

1



−1 

E[(XP
2 − σP

2 )e
itX1 ]

E[(XP−1
2 − σP−1

2 )eitX1 ]

...

E[(X2
2 − σ2

2)e
itX1 ]

E[(X2 − σ1
2)e

itX1 ]


(3.3)

3However, when the order of polynomial is P = 3 or above, this rank condition can be shown to be unsatisfied,

e.g., one can check that σ2
2 = 1

3 when P = 3 fails the assumption.
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It is shown in the theorem below that this vector is sufficient to pin down the distribution of

the generated latent variable Z∗ =
∑P

p=1 γpX
∗p, and hence its distribution (equivalently, its

characteristic function) can be identified from observed data.

To make use of this auxiliary result to identify the nonparametric regression function g of

interest, we next propose the following regularity conditions.

Assumption 7 (Regularity). (i) ϕX1 and ϕX2 do not vanish on the real line. (ii) fX∗ and FfX∗

are continuous and absolutely integrable. (iii) fZ∗ and FfZ∗ are continuous and absolutely

integrable. (iv) fX∗ · g and F(fX∗ · g) are continuous and absolutely integrable.

This assumption plays a similar role to Assumption 4. In parts of our identifying formula,

the characteristic functions appear as denominators, and hence part (i) of this assumption

rules out zero denominator. This property of non-vanishing characteristic functions is shared

by many of the common distribution families, e.g., the normal, chi-squared, Cauchy, gamma,

and exponential distributions. Parts (ii) and (iii) ensure that we can apply the Fourier transform

and inversion to those functions. The model allows for nonlinear and endogenous errors in the

sense of E[X1 | X∗] =
∑P

p=0 γpX
∗p. However, we rule out the case where the report X1 is

decreasing while the truth X∗ is increasing. Specifically, we assume the following monotonicity

restriction.

Assumption 8 (Monotonicity).
∑P

p=0 γpx
p is non-decreasing in x on the support of X∗.

This monotonicity assumption is used for the purpose of applying the density transforma-

tion formula to derive the density function for the transformed random variable. Polynomial

functions do not generally exhibit monotonicity on the entire real line. Note that Assumption

8 only requires the monotonicity to hold on the support of X∗, and hence is not restrictive

when the support of X∗ is a proper subset of R. For example, many economic variables X∗

are innately positive, i.e., supp(X∗) ⊆ R+, and the quadratic function E[X1 | X∗] = γ2X
∗2, for

example, necessarily satisfies Assumption 8 for such variables.
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With this set of assumptions, we can still identify the nonparametric function g with a

closed-form formula, even if the measurement X1 is systematically biased with endogeneity and

such a high order of nonlinearity. The following theorem states the exact result.

Theorem 2 (Closed-Form Identification for High Order Models of Endogenous Measurement).

Suppose that Assumptions 5, 6, 7 and 8 hold for the model (3.1). The nonparametric function

g evaluated at x∗ in the interior of the support of X∗ is identified with the closed-form solution:

g(x∗) =

∫ ∫ ∫
e−itx∗+itx−it′(

∑P
p=1 γpx

p)
∣∣∣∑P

p=1 pγpx
p−1
∣∣∣ E[Y eitX2 ]

E[eitX2 ]
ϕZ∗(t′)dt′dxdt

2π
∫
e−ith(

∑P
p=1 γpx

∗p)
∣∣∣∑P

p=1 pγpx
∗(p−1)

∣∣∣ϕZ∗(t)dt
,

where ϕZ∗ is identified with the closed-form solution

ϕZ∗(t) = exp

{∫ t

0

∑P
p=1 γpµ(t1, p ; σ1

2, · · · , σP
2 ;FX1X2)

E[eit1X1 ]
dt1

}
and µ(t, p ;σ1

2, · · · , σP
2 ;FX1X2) for all p = 1, · · · , P are given by the closed-form solution (3.3).

A proof is given in Section A.3 in the appendix. Note that this general version of the

closed-form identifying formula, involving the triple integral instead of a single integral due

to the nonlinear transformation, is qualitatively quite different from the traditional formulas

including the one in Theorem 1 as well as that of Schennach (2004b). Theorem 1 may appear to

be a special case of this theorem, as the former focuses on affine models and the latter extends to

higher order polynomials. Strictly speaking, it is not a special case, because Theorem 1 requires

slightly weaker independence assumptions than Theorem 2. As such, we stated Theorem 1

separately in the previous section for the practical importance of parsimonious affine models.

Section A.2 in the appendix illustrates how the closed-form identifying formula looks like in

the case of quadratic model of measurement, P = 2, as an example.

4 Closed-Form Estimator

Given the closed-form identifying formulas of Theorems 1 and 2, one can easily construct a direct

sample-counterpart estimator by replacing the population moments by the sample moments for
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the characteristic functions. As this basic idea is the same across all the cases, we focus on the

simplest model (2.1) for simplicity in this section. If γ1 is known, then the sample-counterpart

estimator ĝ(x∗) of the closed-form identifying formula (2.3) is given by

ĝ(x∗) =

∫ +∞
−∞ e−itx∗

exp

(
i
∫ t

0

∑n
j=1 X2,je

it1X1,j/γ1∑n
j=1 e

it1X1,j/γ1
dt1

) ∑n
j=1 Yje

itX1,j/γ1∑n
j=1 e

itX1,j/γ1
ϕK(th)dt∫ +∞

−∞ e−itx∗ exp

(
i
∫ t

0

∑n
j=1 X2,je

it1X1,j/γ1∑n
j=1 e

it1X1,j/γ1
dt1

)
ϕK(th)dt

(4.1)

where ϕK denotes the Fourier transform of a kernel function K which we use together with the

tuning parameter h for the purpose of regularization.

On the other hand, if γ1 is not known, we replace γ1 by its estimate and the estimator thus

takes the form

ĝ(x∗) =

∫ +∞
−∞ e−itx∗

exp

(
i
∫ t

0

∑n
j=1 X2,je

it1X1,j/γ̂1∑n
j=1 e

it1X1,j/γ̂1
dt1

) ∑n
j=1 Yje

itX1,j/γ̂1∑n
j=1 e

itX1,j/γ̂1
ϕK(th)dt∫ +∞

−∞ e−itx∗ exp

(
i
∫ t

0

∑n
j=1 X2,je

it1X1,j/γ̂1∑n
j=1 e

it1X1,j/γ̂1
dt1

)
ϕK(th)dt

(4.2)

where γ̂1 is computed by the following sample-counterpart of (2.2).

γ̂1 =

1
n

∑n
j=1 YjX1,j −

(
1
n

∑n
j=1 Yj

)(
1
n

∑n
j=1X1,j

)
1
n

∑n
j=1 YjX2,j −

(
1
n

∑n
j=1 Yj

)(
1
n

∑n
j=1X2,j

) .
It turns out that the substitution of the estimate γ̂1 for the true value of γ1 does not affect the

asymptotic property of ĝ(x∗). We assume the following basic regularity conditions to derive

the consistency of ĝ(x∗) in both (4.1) and (4.2).

Assumption 9 (Basic Assumptions for Consistency). (i) {X∗, E1, E2, U} is independently

and identically distributed. (ii) ϕK is symmetric, satisfies ϕK(0) = 1, and has integrable second

derivatives. (iii) E |X1|2+δ < ∞, E |X2|2+δ < ∞, and E |Y |2+δ < ∞ for some δ > 0.

In case of using the version (4.2) of the closed-form estimator instead of (4.1), we assume

the following bounded fourth moment restriction in addition to part (iii) of Assumption 9.

Assumption 9. (iii)′ E |X1|4 < ∞, E |X2|4 < ∞, and E |Y |4 < ∞.

The asymptotic rate of convergence of the closed-form estimators (4.1) and (4.2) depend on the
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Hölder exponents of the nonparametric density fX∗ and the nonparametric regression g. We

therefore introduce the following assumption with index numbers that determine the asymptotic

orders.

Assumption 10 (Determinants of the Asymptotic Orders of Biases). (i) fX∗ is twice contin-

uously differentiable at x∗, and the k1-th derivative of fX∗ is k2-Hölder continuous with Hölder

constant bounded by k0, i.e.,
∣∣∣f (k1)

X∗ (x)− f
(k1)
X∗ (x+ δ)

∣∣∣ 6 k0 |δ|k2 for all x, δ. (ii) g is twice con-

tinuously differentiable at x∗, and the l1-th derivative of g is l2-Hölder continuous with Hölder

constant bounded by l0, i.e.,
∣∣g(l1)(x)− g(l1)(x+ δ)

∣∣ 6 l0 |δ|l2 for all x, δ. Let k = k1 + k2 and

l = l1 + l2 be the largest numbers satisfying the above properties.

Since optimal choices of the bandwidth parameter h depend on the shape of the underlying

characteristic function, we first state the following auxiliary result of convergence rate under

free choice of h.

Lemma 2 (Mean Square Error of the Closed-Form Estimator). Suppose that Assumptions 2,

3 and 4 hold for the model (2.1). If Assumptions 9 and 10 are satisfied and x∗ is in the interior

of the support of X∗, then, with any choice of h such that h → 0 and nh4 |ϕX1(1/h)|
4 → ∞

as n → ∞, the mean square error of the closed-form estimator ĝ(x∗) given in (4.1) has the

asymptotic order:

O(h2min{k,l}) +O
(

1

nh4 |ϕX1(1/h)|
4

)
, (4.3)

where the first and second terms correspond to the asymptotic orders of the squared bias and

the variance, respectively. The same conclusion holds for the closed-form estimator ĝ(x∗) given

in (4.2), provided that Assumptions 1, and 9 (iii)′ additionally hold.

This lemma implies that the MSE-optimizing choice of h obviously depends on the tail

behavior of the characteristic function ϕX1 , which in turn depends on the characteristic functions

ϕX∗ and ϕE1 . Therefore, we branch into the following two cases: (a) at least one of X∗ and E1
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has a super-smooth distribution; and (b) both X∗ and E1 have ordinary-smooth distributions.

These two cases are precisely stated in the following two separate assumptions.

Assumption 11 (Super-Smooth Distributions). Assume that (i) the distribution of X∗ is

super-smooth of order β1 > 0, i.e., there exist κ1 > 0 such that |ϕX∗(t)| = O
(
e−|t|β1/κ1

)
as t →

±∞, or (ii) the distribution of E1 is super-smooth of order β2 > 0, i.e., there exist κ2 > 0 such

that |ϕE1(t)| = O
(
e−|t|β2/κ2

)
as t → ±∞, OR both (i) and (ii) hold. For convenience of

notation, we let β1 = 0 (respectively, β2 = 0) if the distribution of X∗ (respectively, E1) is not

super-smooth.

Assumption 12 (Ordinary-Smooth Distributions). Assume that (i) the distribution of X∗ is

ordinary-smooth of order β1, i.e., |ϕX∗(t)| = O
(
|t|−β1

)
as t → ±∞, and (ii) the distribution

of E1 is ordinary-smooth of order β2, i.e., |ϕE1(t)| = O
(
|t|−β2

)
as t → ±∞.

These two smoothness definitions characterized by the tail behavior of the characteristic

functions measure the smoothness of the density function. Examples of super-smooth distri-

butions include the normal, Cauchy, and mixed normal distributions. Examples of ordinary-

smooth distributions include the gamma, exponential, and uniform distributions. If at least

one of X∗ and E1 has a super-smooth distribution in the sense of Assumption 11, then the

closed-form estimators follow log n rates of convergence as follows.

Theorem 3 (Consistency of the Closed-Form Estimator under Super-Smooth Distribution(s)).

Suppose that Assumptions 2, 3 and 4 hold for the model (2.1). If Assumptions 9, 10, and

11 are satisfied and x∗ is in the interior of the support of X∗, then the closed-form estima-

tor ĝ(x∗) given in (4.1) is consistent with the convergence rate

(
E
[
ĝ(x∗)− g(x∗)

]2)1/2

=

O
(
(log n)

−min{k,l}
max{β1,β2}

)
under the choice of the tuning parameter h ∝ (log n)−1/max{β1,β2}. The

same conclusion holds for the closed-form estimator ĝ(x∗) given in (4.2), provided that As-

sumptions 1, and 9 (iii)′ additionally hold.

On the other hand, if both X∗ and E1 have ordinary-smooth distributions in the sense

16



of Assumption 12, then the closed-form estimator follow polynomial rates of convergence as

follows.

Theorem 4 (Consistency of the Closed-Form Estimator under Ordinary-Smooth Distribu-

tions). Suppose that Assumptions 2, 3 and 4 hold for the model (2.1). If Assumptions 9, 10,

and 12 are satisfied and x∗ is in the interior of the support of X∗, then the closed-form esti-

mator ĝ(x∗) given in (4.1) is consistent with the convergence rate

(
E
[
ĝ(x∗)− g(x∗)

]2)1/2

=

O
(
n

−min{k,l}
2(min{k,l}+2(β1+β2+1))

)
under the choice of the tuning parameter h ∝ n−1/2(min{k,l}+2(β1+β2+1)).

The same conclusion holds for the closed-form estimator ĝ(x∗) given in (4.2), provided that

Assumptions 1, and 9 (iii)′ additionally hold.

While the contexts and the setups are different and a direct comparison cannot be made,

the two cases covered in our Theorems 3 and 4 can be connected to Cases 2 and 4 of Theorem

2 in Schennach (2004b), respectively.4 The slow convergence rates in the case of the super-

smooth distributions could be improved in theory provided that the mean regression g(X∗) is

also super-smooth. However, this improvement requires an infinite order kernel that vanishes

the bias faster than any power of the bandwidth parameter, and it may suffer from problems

of near zero denominators in practical implementation in finite sample. See Schennach (2004b)

for discussions.

5 Monte Carlo Simulations

In this section, we use Monte Carlo simulations to assess the small sample performance of the

estimator (4.2) proposed in the previous section.

Each set of simulations constructs data of size N = 500 by the following distributional

4Specifically, the auxiliary parameters βv, γb and γv used in Schennach (2004b) can be reconciled with our

regularity parameters through the relations βv = max{β1, β2}, γb = −min{k, l} and γv = 2(β1 + β2 + 1).
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model for the primitives.

X∗ ∼ N(0, 22),


E1 ∼ N(0, 12)

E2 ∼ N(0, 12)

, U ∼ N(0, 12).

These four random variables are generated mutually independently. The true X∗ has a twice

as large variation (σ = 2) as the noises E1 and E2 (σ = 1). These four latent variables in

turn generate the observed random variables, X1, X2, and Y through the model (2.1), given a

definition of the nonparametric regression function g as well as the coefficients γp. We set γ0 = 0

and γ1 = 2 for the model of endogenous measurement X1, but the choice of these coefficients

does not alter simulation results much unless γ1 is set arbitrarily close to zero. Notice that this

data generating process, with the super-smooth Gaussian distributions, is a worse case scenario

in terms of the asymptotic convergence rate (cf. Theorems 3 and 4). In other words, we are

not cherry-picking convenient Monte Carlo settings.

Consider the following four function specifications. (i) g(x∗) = x∗; (ii) g(x∗) = (x∗ + 1)2;

(iii) g(x∗) = Φ(x∗) where Φ is the standard normal cdf; and (iv) g(x∗) = sin(x∗). For the

purpose of checking robustness of the nonparametric closed-form estimator, this list contains

two broad classes of functions. The first two functions are polynomial functions, and the

latter two functions are transcendental functions. We emphasize that truncated polynomial

approximations would not work precisely for the latter class.

We ran 1,000 Monte Carlo iterations for each of the above four function specifications.

Figure 1 shows simulation results for the closed-form estimator (4.2), which uses estimates γ̂1

for the unknown parameter γ1. The solid curves represent the true function g. The dashed

curves are the 10th, 30th, 50th, 70th, and 90th percentiles of the Monte Carlo distributions.

The Monte Carlo quantiles capture the true function in each of the four cases displayed in

the figure. Recall that we use only N = 500 observations in the simulations. With this very

small sample size for nonparametrics, the Monte Carlo distributions are fairly tight with our
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closed-form estimator (4.2).5

For the purpose of comparison, we also ran Monte Carlo iterations with the same setup, but

by using the naive version of the closed-form estimator (4.1), where we wrongly set γ1 = 1 as is

the case for the existing methods in the literature that assume classical errors. Figure 2 shows

simulation results with this classical error assumption. Unlike the previous results in Figure 1,

the Monte Carlo quantiles in Figure 2 fail to capture the true functions well. This failure is

particularly the case for the (ii) quadratic and (iv) sine functions, for which the MC quantiles

tend to be biased outward from the swinging curves. Even in the absence of curves, the widely

spread MC quantiles evidence that this estimator wrongly assuming classical errors suffer from

greater variances. Therefore, the estimator assuming classical errors performs poorly both in

terms of bias and variance, compared to our estimator (4.2) which allows for non-classical

measurement errors.

6 Empirical Illustration: BMI and Health Care Usage

A recently growing body of the health economic literature contains extensive studies of economic

causes and economic implications of obesity, including but not limited to the following list of

papers. Cohen-Cole and Flecther (2008) and Trogdon et al (2008) study causal and propagation

mechanisms of obesity. Cawley, Frisvold, and Meyerthoefer (2013) evaluate preventive programs

for obesity. Cawley (2004), Bhattacharya and Bundorf (2009), and Cawley and Maclean (2012)

analyze labor and health market implications of obesity. The social cost structure of obesity

and its policy implications are discussed by Bhattacharya and Sood (2011) and Cawley and

Meyerhoefer (2012). While it should not be regarded as a medical diagnosis, the Body Mass

5The results are reasonably robust across alternative values of bandwidth parameters. We refer the readers

to Diggle and Hall (1993) for discussions about the choice of tuning parameters for deconvolution estimators

based on Fourier transformation.
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Index (BMI) is widely used as a measure of obesity. It is defined by the following formula.

BMI (kg/m2) = Mass (kg)/ (Height (m))2

This index, or indicators of obesity generated by this index, is used in each of the above list of

empirical research papers as well as many others.

Survey data often contain necessary variables to compute the BMI, namely weight and

height, but they are usually based on self reports. How accurate are the BMIs constructed

by the self-reported body measures? To answer this question, we use National Health and

Nutrition Examination Survey (NHANES III) of Center for Disease Control and Prevention,

which uniquely combines survey responses and various results of medical examination and

laboratory tests. Table 1 shows a summary of variables that we extracted from this source.

Using this data set, we can match self-reported body measures and clinically measured body

measures. Figure 3 shows a scatter plot of clinically measured BMI on the horizontal axis

against self-reported BMI on the vertical axis. It evidences a nontrivial discrepancy between

the two measures, showing that self-reports, clinical measures, or both of them have errors.

In this paper, we have shown that the mean regression g(X∗) of an outcome variable Y on the

true BMI X∗ can be explicitly identified and explicitly estimated using two observed measures

of the unobserved truth X∗, where one measurement can be endogenously biased. Applying

this econometric method, we analyze how obesity measured by the BMI explains health care

usage, taking into account the likely possibility that self reports may be endogenously biased.

Specifically, the following list of variables are used for the baseline model (2.1).

Y = Health Care Received (Observed Explained Variable)

X∗ = True BMI (Unobserved Explanatory Variable)

X1 = Self-Reported BMI E1 = Reporting Error

X2 = Clinically Measured BMI E2 = Clinical Measurement Error

Our model setup requires that the clinical measurement X2 is location-/scale-normalized with
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respect to the truth, which is plausible if clinical measurements have only random additive

noises with mean zero. On the other hand, the self-reporting can be endogenously biased with

arbitrary location and scale, because neither γ1 = 1 nor γ0 = E[E1] = 0 is assumed. If γ1 < 1,

for example, then we can accommodate the likely case in which individuals under-report their

BMI by 100 × (1 − γ1) percent on average even if γ0 = E[E1] = 0 is the case. Similarly, if

γ0 = E[E1] < 0, for example, then we can accommodate the likely case in which individuals

under-report their BMI by |γ0| = |E[E1]| on average even if γ1 = 1 is the case.

We have shown that these parameters γ0 and γ1 for the self-reporting model are also iden-

tified as a byproduct of our main identification result. Using the estimates, γ̂0 and γ̂1, we

graphically illustrate the mean self-reporting behaviors E[X1 | X∗] across various gender and

age groups. Figure A.6 shows the results, where the dashed lines indicate the 45◦ line, and the

solid lines indicate the estimated regression Ê[X1 | X∗] = γ̂0 + γ̂1X
∗ of self-reporting patterns.

Not surprisingly, these results imply the tendency that actual overweight is associated with

under-reporting for all the groups. Formally, we reject the null hypothesis that γ1 = 1 for male

50s (at the 10% level) and female 70 or above (at the 5% level). For the entire sample, it is

rejected at the 1% level. These results imply that the traditional classical error assumption

γ1 = 1 is not necessarily innocuous in practice, and hence our estimator proves more relevant

to the current empirical problem than the existing closed-form estimators based on classical

errors.

Nonparametric estimates of the mean regressions of the health care usage Y with respect to

the true BMI X∗ are computed. To get a sense of the effects of random sampling, we ran 1,000

bootstrap iterations for each age group for each gender. Figure 5 (respectively, 6) shows 10,

30, 50, 70, and 90-th percentiles of the bootstrap distributions of the estimates based on (4.2)

using estimates γ̂1 of the unknown parameter γ1 for male (respectively, female) individuals.

The four graphs in each figure illustate results for four age groups. All the curves, except

the one for male individuals aged 70 or above, show robust upward-sloping tendency of the
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mean health care usage with respect to the true BMI. These slopes are steeper particularly for

females. Overall, obesity measured by the BMI is a positive explanatory factor for the health

care usage, controlling for gender and age groups.

7 Conclusions

This paper provides a closed-form estimator of nonparametric regression models using two

measurements with non-classical errors. We allow endogenous biases with arbitrary location

and scale for one of two measurements, while the other is location-/scale-normalized with

respect to the truth. Two distinct specifications for the models of the two measurements,

X1 and X2, may be suitable for the common practical setting where two measurements are

combined together from different data sources. Because of its closed form like the OLS, our

estimator is easily implementable by practitioners. Monte Carlo simulations suggest that the

estimator performs well even with a small sample size like N = 500. For an illustration, we

investigate how obesity explains health care usage by using NHANES III that uniquely match

clinical measurement and self-reports of the BMI. While the former measurement is assumed

to be location-/scale-normalized with respect to the true BMI, the self-reports are allowed to

be endogenously biased. We find robust upward sloping patterns for the health care usage with

respect to obesity controlling for gender and age groups. These slopes are steeper especially for

females.
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A Mathematical Appendix

A.1 Proof of Theorem 1

First, note that the coefficient γ1 is uniquely determined by γ1 = Cov(Y,X1)/Cov(Y,X2)

under Assumption 1 – see Lemma 1. We identify fX∗ using Kotlarski’s identity (see Rao,

1992) as a preliminary step. Note that the last two equations of the model (2.1) yields

ϕX1X2(t1, t2) = E
[
ei(γ1t1+t2)X∗+it1 E1 +it2 E2

]
. Differentiate this characteristic function with re-

spect to t2 and evaluate it at t2 = 0 to obtain

∂

∂t2
ϕX1X2(t1, t2)

∣∣∣∣
t2=0

= E
[
iX∗eiγ1t1X

∗+it1 E1
]
+ E

[
i E2 e

iX1t1
]

= E
[
iX∗eiγ1t1X

∗] · E [eit1 E1
]
. (A.1)

where the last equality follows from Assumption 3 (ii) and (iii). Given Assumption 3 (ii), we

similarly have

ϕX1(t1) = E
[
eit1X1

]
= E

[
eiγ1t1X

∗] · E [eit1 E1
]
. (A.2)

Assumption 4 (i) allows us to take the ratio of (A.1) to (A.2) to obtain
∂

∂t2
ϕX1X2

(t1,t2)
∣∣∣
t2=0

ϕX1
(t1)

=

E[iX∗eiγ1t1X
∗
]

E[eiγ1t1X∗ ]
= ∂

∂τ
ln E

[
eiτX

∗]∣∣
τ=γ1t1

. Therefore, it follows that the characteristic function of

X∗ is given by

ϕX∗(t) = exp

∫ t

0

∂
∂t2

ϕX1X2(t1/γ1, t2)
∣∣∣
t2=0

ϕX1(t1/γ1)
dt1

 . (A.3)

To solve the model explicitly for g(x∗), we make a similar calculation. For ϕX1Y defined

by ϕX1Y (t1, s) = E
[
eit1X1+isY

]
, we have ∂

∂s
ϕX1Y (t1, s)

∣∣
s=0

= iE
[
(g(X∗) + U) eit1(γ1X

∗+E1)
]

=

iE
[
g(X∗) eit1(γ1X

∗+E1)
]
+iE

[
Ueit1X1

]
= iE

[
g(X∗) eit1γ1X

∗] ϕX1
(t1)

ϕX∗ (t1γ1)
, where the last equality is

due to 3 (i) and (ii). The last expression makes sense because Assumption 4 (i) implies that the

characteristic function ϕX∗ does not vanish on the real line. Rearranging this equality yields

ϕX∗(t1)
∂
∂s

ϕX1Y
(t1/γ1,s)|

s=0

i ϕX1
(t1/γ1)

=
∫
eit1x

∗
g(x∗) fX∗(x∗)dx∗. This is the Fourier inverse of g · fX∗ , and

applying the Fourier transform yields g(x∗) fX∗(x∗) = 1
2π

∫ +∞
−∞ e−it1x∗

ϕX∗(t1)
∂
∂s

ϕX1Y
(t1/γ1,s)|

s=0

i ϕX1
(t1/γ1)

dt1
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for each point x∗ by the Fourier transformation. Therefore, we derive the following closed-form

solution to g(x∗).

g(x∗) =

∫ +∞
−∞ e−itx∗

exp

(∫ t

0

∂
∂t2

ϕX1X2
(t1/γ1,t2)

∣∣∣
t2=0

ϕX1
(t1/γ1)

dt1

)
∂
∂s

ϕX1Y
(t/γ1,s)|

s=0

i ϕX1
(t/γ1)

dt

∫ +∞
−∞ e−itx∗ exp

(∫ t

0

∂
∂t2

ϕX1X2
(t1/γ1,t2)

∣∣∣
t2=0

ϕX1
(t1/γ1)

dt1

)
dt

where the first equality uses the Fourier inversion of ϕX∗(t) for fX∗ in the denominator and the

second equality uses the expression of ϕX∗(t) in equation (A.3).

A.2 Quadratic Model of Measurement

Suppose that the endogenous measurement X1 is modeled with P = 2 by

X1 = γ1X
∗ + γ2X

∗2 + E1 E[E1] = γ0. (A.4)

Consider the following homoscedasticity assumption:

E[U2 | X∗, E1, E2] = E[U2]. (A.5)

With Assumption 5 and (A.5), if the empirically testable rank condition

Cov(Y,X2) · Cov(Y 2, X2
2 ) ̸= Cov(Y,X2

2 ) · Cov(Y 2, X2) (A.6)

holds, then we can show that the coefficients γ1 and γ2 of the model (A.4) are identified with

closed-form solutions as follows.

By Assumption 5, we get Cov(Y,X1) = γ1 Cov(g(X
∗), X∗)+γ2Cov(g(X

∗), X∗2), Cov(Y,X2) =

Cov(g(X∗), X∗) and Cov(Y,X2
2 ) = Cov(g(X∗), X∗2). Furthermore, by Assumptions 5 and (A.5),

we get we obtain Cov(Y 2, X1) = γ1Cov(g(X
∗)2, X∗) + γ2 Cov(g(X

∗)2, X∗2), Cov(Y 2, X2) =

Cov(g(X∗)2, X∗) and Cov(Y 2, X2
2 ) = Cov(g(X∗)2, X∗2). Combining these six equations yields Cov(Y,X1)

Cov(Y 2, X1)

 =

 Cov(Y,X2) Cov(Y,X2
2 )

Cov(Y 2, X2) Cov(Y 2, X2
2 )


 γ1

γ2

 .
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Therefore, we identify γ1 and γ2 under the rank condition (A.6) with the closed-form formula:

γ1 =
Cov(Y,X1) · Cov(Y 2, X2

2 )− Cov(Y,X2
2 ) · Cov(Y 2, X1)

Cov(Y,X2) · Cov(Y 2, X2
2 )− Cov(Y,X2

2 ) · Cov(Y 2, X2)
(A.7)

γ2 =
Cov(Y,X2) · Cov(Y 2, X1)− Cov(Y,X1) · Cov(Y 2, X2)

Cov(Y,X2) · Cov(Y 2, X2
2 )− Cov(Y,X2

2 ) · Cov(Y 2, X2)
, (A.8)

Furthermore, Assumption 5 also allows us to identify γ0 and σ2
2 with closed-form solutions as

follows. Again, by using Assumption 5, we obtain E[Y X1] = γ1 E[Y X∗]+γ2 E[Y X∗2]+γ0 E[Y ],

E[X1X2] = γ1 E[X
∗2]+γ2 E[X

∗3]+γ0 E[X
∗], E[Y X1X2] = γ1 E[Y X∗2]+γ2 E[Y X∗3]+γ0 E[Y X∗],

E[X2] = E[X∗], E[X2
2 ] = E[X∗2] + σ2

2, E[X
3
2 ] = E[X∗3] + 3σ2

2 E[X
∗] + σ3

2, E[X2] = E[Y X∗],

E[X2
2 ] = E[Y X∗2] + σ2

2 E[Y ], and E[X3
2 ] = E[Y X∗3] + 3σ2

2 E[Y X∗] + σ3
2 E[Y ]. Substituting the

last six equations into the first three equations above, we obtain the following system of three

equations E[Y X1] = γ1 E[Y X2] + γ2(E[Y X2
2 ]−σ2

2 E[Y ]) + γ0 E[Y ], E[X1X2] = γ1(E[X
2
2 ]−σ2

2)+

γ2(E[X
2
2 ]− 3σ2

2 E[X2]− σ3
2) + γ0 E[X2] and E[Y X1X2] = γ1(E[Y X2

2 ]− σ2
2 E[Y ]) + γ2(E[Y X3

2 ]−

3σ2
2 E[Y X2]− σ3

2 E[Y ]) + γ0 E[Y X2]. This system can be written as the linear equation:
E[Y X1]

E[X1X2]

E[Y X1X2]

 =


E[Y ] −γ2 E[Y ] 0

E[X2] −γ1 − 3γ2 E[X2] −γ2

E[Y X2] −γ1 E[Y ]− 3γ2 E[Y X2] −γ2 E[Y ]




γ0

σ2
2

σ3
2

 .

If the following empirically testable rank conditions hold, then the above three by three matrix

is nonsingular.

(i) Cov(Y,X2) · Cov(Y 2, X1) ̸= Cov(Y,X1) · Cov(Y 2, X2),

(ii) Cov(Y,X2) ̸= 0, and (A.9)

(iii) E[Y ] ̸= 0.

Therefore, the linear system yields a unique solution to (γ0, σ
2
2, σ

3
2). In particular, it yields the

following closed-form formula for σ2
2:

σ2
2 =

1

2γ2

(
Cov(Y,X1X2)

Cov(Y,X2)
− E[Y X1]

E[Y ]

)
. (A.10)
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Lastly, recall that σ1
2 := E[E1

2] = 0 by the definition of the model (3.1). In summary, we obtain

γ1, γ2, σ
1
2, and σ2

2, all as closed-form formulas written in terms of observed data.

Applying the general closed-form identification result of Theorem 2 to this context, we

obtain the following specific result. Suppose that Assumptions 5, 6, 7, and 8 hold for the model

(A.4). If in addition (A.5) and the empirically testable rank conditions, (A.6) and (A.9), are

satisfied, then the nonparametric function g evaluated at x∗ in the interior of the support of

X∗ is identified with the closed-form solution:

g(x∗) =

∫ ∫ ∫
e−itx∗+itx−it′(γ1x+γ2x2) |γ1 + 2γ2x| E[Y eitX2 ]

E[eitX2 ]
ϕZ∗(t′)dt′dxdt

2π
∫
e−it(γ1x∗+γ2x∗2) |γ1 + 2γ2x∗|ϕZ∗(t)dt

,

where ϕZ∗ is identified with the closed-form solution

ϕZ∗(t) = exp

{∫ t

0

γ1
E[X2e

it1X1 ]

E[eit1X1 ]
+ γ2

E[X2
2e

it1X1 ]− σ2
2 E[e

it1X1 ]

E[eit1X1 ]
dt1

}
,

and γ1, γ2 and σ2
2 are given by the closed-form solutions (A.7), (A.8) and (A.10), respectively.

A.3 Proof of Theorem 2

Proof. Define Z∗ :=
∑J

j=1 γjX
∗j. Using Assumption 5 (iii), we obtain the equality E[Xj

2e
itX1 ] =∑j

q=0

(
j
q

)
σj−q
2 E[X∗qeit(Z

∗+E1)] for all j = 1, · · · , J . Hence, we obtain the linear equation

1
(

J
J−1

)
σ1
2 · · ·

(
J
2

)
σJ−2
2

(
J
1

)
σJ−1
2

1 · · ·
(
J−1
2

)
σJ−3
2

(
J−1
1

)
σJ−2
2

. . .
...

...

1
(
2
1

)
σ1
2

1





E[X∗Jeit(Z
∗+E1)]

E[X∗(J−1)eit(Z
∗+E1)]

...

E[X∗2eit(Z
∗+E1)]

E[X∗eit(Z
∗+E1)]


=



E[(XJ
2 − σJ

2 )e
itX1 ]

E[(XJ−1
2 − σJ−1

2 )eitX1 ]

...

E[(X2
2 − σ2

2)e
itX1 ]

E[(X2 − σ1
2)e

itX1 ]


.

We obtain the closed-form solution E[X∗jeit(Z
∗+E1)] = µ(t, j;σ1

2, · · · , σJ
2 ;FX1X2) for j = 1, · · · , J

under Assumption 6, where [µ(t, J ; σ1
2, · · · , σJ

2 ;FX1X2), · · · , µ(t, 1;σ1
2, · · · , σJ

2 ;FX1X2)]
′ is explic-
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itly written as

1
(

J
J−1

)
σ1
2 · · ·

(
J
2

)
σJ−2
2

(
J
1

)
σJ−1
2

1 · · ·
(
J−1
2

)
σJ−3
2

(
J−1
1

)
σJ−2
2

. . .
...

...

1
(
2
1

)
σ1
2

1



−1 

E[(XJ
2 − σJ

2 )e
itX1 ]

E[(XJ−1
2 − σJ−1

2 )eitX1 ]

...

E[(X2
2 − σ2

2)e
itX1 ]

E[(X2 − σ1
2)e

itX1 ]


.

Using Assumption 5 (ii), we can write µ(t, j; σ1
2, · · · , σJ

2 ;FX1X2) = E[X∗jeitZ
∗
] E[eit E1 ] for

each j = 1, · · · , J . Division of this equality by E[eitX1 ] = E[eitZ
∗
] E[eit E1 ] that also follows by

Assumption 5 (ii) yields
µ(t,j;σ1

2 ,··· ,σJ
2 ;FX1X2

)

E[eitX1 ]
= E[X∗jeitZ

∗
]

E[eitZ∗ ]
for each j = 1, · · · , J. Taking a linear

combination of this equality gives
∑J

j=1 γjµ(t,j;σ
1
2 ,··· ,σJ

2 ;FX1X2
)

E[eitX1 ]
= E[Z∗eitZ

∗
]

E[eitZ
∗
]

= d
dt
ln E[eitZ

∗
]. Thus, the

characteristic function ϕZ∗ is given by

ϕZ∗(t) = exp

{∫ t

0

∑J
j=1 γjµ(t1, j; σ

1
2, · · · , σJ

2 ;FX1X2)

E[eit1X1 ]
dt1

}
. (A.11)

By Assumption 7 (iii), apply the Fourier transform to this characteristic function ϕZ∗ to

get fZ∗(z∗) = 1
2π

∫
e−itz∗ϕZ∗(t)dt. Define the function h by h(x) =

∑J
j=1 γjx

j. Note that

Z∗ = h(X∗) by the definition of Z∗. Then, by Assumption 8, we use the transformation

formula to obtain fX∗ :

fX∗(x∗) = fZ∗(h(x∗)) |h′(x∗)| = |h′(x∗)| 1

2π

∫
e−ith(x∗)ϕZ∗(t)dt. (A.12)

By Assumption 7 (ii), we apply the Fourier inversion to this fX∗ to get

ϕX∗(t) =

∫
eitx

∗
fX∗(x∗) =

1

2π

∫ ∫
eitx

∗
e−it′h(x∗) |h′(x∗)|ϕZ∗(t′)dt′dx∗. (A.13)

Now, under Assumption 5 (i) and (iii), we have the equalities E[Y e−itX2 ] = E[g(X∗)eitX
∗
] E[eit E2 ]

and E[e−itX2 ] = E[eitX
∗
] E[eit E2 ]. Take the ratio and rearrange the result to obtain E[g(X∗)eitX

∗
] =

E[Y eitX2 ]

E[eitX2 ]
ϕX∗(t). (A.13) yields E[g(X∗)eitX

∗
] = E[Y eitX2 ]

E[eitX2 ]
1
2π

∫ ∫
eitx

∗
e−it′h(x∗) |h′(x∗)|ϕZ∗(t′)dt′dx∗.

Applying the Fourier transform under Assumption 7 (iv), we obtain the equality g(x∗)fX∗(x∗) =
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1
4π2

∫ ∫ ∫
e−itx∗+itx−it′h(x) E[Y eitX2 ]

E[eitX2 ]
|h′(x)|ϕZ∗(t′)dt′dxdt. Finally, divide this equation by (A.12) to

identify g(x∗) with the closed-form solution.

g(x∗) =

∫ ∫ ∫
e−itx∗+itx−it′h(x) |h′(x)| E[Y eitX2 ]

E[eitX2 ]
ϕZ∗(t′)dt′dxdt

2π
∫
e−ith(x∗) |h′(x∗)|ϕZ∗(t)dt

.

Using the closed-form solution (A.11) to ϕZ∗ and the definition of the function h yields the

desired result.

A.4 Proof of Lemma 2

Proof. For compactness of writing, we focus on the case of γ1 = 1. Similar lines of argument

show that the same conclusion holds for general γ1. In order to derive the asymptotic distribu-

tion of the closed-form estimator ĝ(x∗), we decompose it into the numerator and the denomina-

tor given by ̂g(x∗)fX∗(x∗) := 1
2π

∫ +∞
−∞ e−itx∗

exp

(
i
∫ t

0

∑n
j=1 X2,je

it1X1,j∑n
j=1 e

it1X1,j
dt1

) ∑n
j=1 Yje

itX1,j∑n
j=1 e

itX1,j
ϕK(th)dt

and ̂fX∗(x∗) := 1
2π

∫ +∞
−∞ e−itx∗

exp

(
i
∫ t

0

∑n
j=1 X2,je

it1X1,j∑n
j=1 e

it1X1,j
dt1

)
ϕK(th)dt, respectively.

The absolute bias of ̂fX∗(x∗) is bounded by the sum of two terms:∣∣∣E ̂fX∗(x∗)− fX∗(x∗)
∣∣∣ 6

∣∣∣∣E ̂fX∗(x∗)− 1

2π

∫ +∞

−∞
e−itx∗

ϕX∗(t)ϕK(th)dt

∣∣∣∣
+

∣∣∣∣ 12π
∫ +∞

−∞
e−itx∗

ϕX∗(t)ϕK(th)dt− fX∗(x∗)

∣∣∣∣ .
The first term on the right-hand side is asymptotically bounded by

∥ϕK∥∞ ∥ϕX∗∥∞
2πh

∫ 1

−1

∫ t/h

0

E
∣∣∣ 1n∑n

j=1X2,je
it1X1,j − EX2,je

it1X1,j

∣∣∣
|ϕX1(t1)|

+
∥ϕ′

X∗∥∞ E
∣∣∣ 1n∑n

j=1 e
it1X1,j − E eit1X1,j

∣∣∣
|ϕX1(t1)|

+ ξf (t1)

 dt1dt = O
(

1

n1/2h2 |ϕX1(1/h)|

)
,

where the higher-order terms ξf vanish faster than the leading term uniformly under Assump-

tions 4 (i) and 9 (iii). On the other hand, the second term is asymptotically∣∣∣∣∫ +∞

−∞
fX∗(x1)

1

h
K

(
x1 − x∗

h

)
dx1 − fX∗(x∗)

∣∣∣∣ = O(hk),

where k is the exponent provided in Assumption 10 (i). Therefore, we obtain the asymptotic

order
∣∣∣E ̂fX∗(x∗)− fX∗(x∗)

∣∣∣ = O
(

1

n1/2h2|ϕX1
(1/h)|

)
+O(hk) of the absolute bias of ̂fX∗(x∗).
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Similarly, the absolute bias of ̂g(x∗)fX∗(x∗) is bounded by the sum of two terms:∣∣∣E ̂g(x∗)fX∗(x∗)− g(x∗)fX∗(x∗)
∣∣∣ 6

∣∣∣∣E ̂g(x∗)fX∗(x∗)− 1

2π

∫ +∞

−∞
e−itx∗

ϕX∗(t)
EYje

itX1,j

E eitX1,j
ϕK(th)dt

∣∣∣∣
+

∣∣∣∣ 12π
∫ +∞

−∞
e−itx∗

ϕX∗(t)
EYje

itX1,j

E eitX1,j
ϕK(th)dt− g(x∗)fX∗(x∗)

∣∣∣∣ .
The first term on the right-hand side is asymptotically bounded by

∥ϕK∥∞ ∥ϕX∗∥∞ ∥ϕX1∥∞ E |Yj |
2πh

∫ 1

−1

∫ t/h

0

E
∣∣∣ 1n∑n

j=1X2,je
it1X1,j − EX2,je

it1X1,j

∣∣∣
|ϕX1(t1)|

+

∥ϕ′
X∗∥∞ E

∣∣∣ 1n∑n
j=1 e

it1X1,j − E eit1X1,j

∣∣∣
|ϕX1(t1)|

+ ξf (t1)

 1

|ϕX1(t/h)|
dt1dt+

∥ϕK∥∞ ∥ϕX∗∥∞
2πh

∫ 1

−1

E
∣∣∣ 1n∑n

j=1 Yje
itX1,j/h − EYje

itX1,j/h
∣∣∣

|ϕX1(t/h)|
+

E |Yj | ∥ϕX1∥∞ E
∣∣∣ 1n∑n

j=1 e
itX1,j/h − E eitX1,j/h

∣∣∣
|ϕX1(t/h)|

2 + ξg(t/h)

 dt = O
(

1

n1/2h2 |ϕX1(1/h)|
2

)
under Assumption 9 (iii), and the higher-order terms ξf and ξg vanish faster than the leading

terms uniformly. On the other hand, the second term is asymptotically∣∣∣∣∫ +∞

−∞
g(x1)fX∗(x1)

1

h
K

(
x1 − x∗

h

)
dx1 − g(x∗)fX∗(x∗)

∣∣∣∣ = O(hmin{k,l}),

where k is the exponent for fX∗ provided in Assumption 10 (i), and l is the exponent for

g provided in Assumption 10 (ii). Therefore, we have the following asymptotic order of the

absolute bias:
∣∣∣E ̂g(x∗)fX∗(x∗)− g(x∗)fX∗(x∗)

∣∣∣ = O
(

1

n1/2h2|ϕX1
(1/h)|2

)
+O(hmin{k,l}).

Next, the variance of ̂fX∗(x∗) is asymptotically bounded by

∥ϕ∗∥2∞ ∥ϕK∥2∞
4π2h2

∫ 1

−1

∫ 1

−1

∫ t/h

0

∫ τ/h

0
{(

E
[
1
n

∑n
j=1X2,je

it1X1,j − EX2,je
it1X1,j

]2) 1
2

·
(
E
[
1
n

∑n
j=1X2,je

iτ1X1,j − EX2,je
iτ1X1,j

]2) 1
2

|ϕX1(t1)| |ϕX1(τ1)|
+

2 |ϕ′
X∗(τ1)|

(
E
[
1
n

∑n
j=1X2,je

it1X1,j − EX2,je
it1X1,j

]2) 1
2

·
(
E
[
1
n

∑n
j=1 e

iτ1X1,j − E eiτ1X1,j

]2) 1
2

|ϕX1(t1)| |ϕX1(τ1)|
+

|ϕ′
X∗(τ1)| |ϕ′

X∗(t1)|
(
E
[
1
n

∑n
j=1 e

it1X1,j − E eit1X1,j

]2) 1
2

·
(
E
[
1
n

∑n
j=1 e

iτ1X1,j − E eiτ1X1,j

]2) 1
2

|ϕX1(t1)| |ϕX1(τ1)|
+

ξf (t1, τ1) } dτ1dt1dtdτ = O
(

1

nh4 |ϕX1(1/h)|
2

)
,
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where the higher-order terms ξf vanish faster than the leading terms uniformly under Assump-

tions 4 (i) and 9 (iii). Similarly, the variance of ̂g(x∗)fX∗(x∗) is asymptotically bounded by

∥ϕ∗∥2∞ ∥ϕK∥2∞
4π2h2

∫ 1

−1

∫ 1

−1

∫ t/h

0

∫ τ/h

0

I(t, τ, t1, τ1, h)dτ1dt1dtdτ = O
(

1

nh4 |ϕX1(1/h)|
4

)
,

where I(t, τ, t1, τ1, h) =

(E |Yj |)2
∥∥ϕX1

∥∥2
∞

(
E
[
1
n

∑n
j=1 X2,je

it1X1,j − EX2,je
it1X1,j

]2) 1
2

·
(
E
[
1
n

∑n
j=1 X2,je

iτ1X1,j − EX2,je
iτ1X1,j

]2) 1
2

∣∣ϕX1 (t1)
∣∣ ∣∣ϕX1 (τ1)

∣∣ ∣∣ϕX1 (t/h)
∣∣ ∣∣ϕX1 (τ/h)

∣∣ +

(E |Yj |)2
∥∥ϕX1

∥∥2
∞

∣∣ϕ′
X∗ (τ1)

∣∣ ∣∣ϕ′
X∗ (t1)

∣∣ (E
[
1
n

∑n
j=1 e

it1X1,j − E eit1X1,j

]2) 1
2

·
(
E
[
1
n

∑n
j=1 e

iτ1X1,j − E eiτ1X1,j

]2) 1
2

∣∣ϕX1 (t1)
∣∣ ∣∣ϕX1 (τ1)

∣∣ ∣∣ϕX1 (t/h)
∣∣ ∣∣ϕX1 (τ/h)

∣∣ +

(
E
[
1
n

∑n
j=1 Yje

itX1,j/h − EYje
itX1,j/h

]2) 1
2

·
(
E
[
1
n

∑n
j=1 Yje

iτX1,j/h − EYje
iτX1,j/h

]2) 1
2

∣∣ϕX1 (t/h)
∣∣ ∣∣ϕX1 (τ/h)

∣∣ +

(E |Yj |)2
(
E
[
1
n

∑n
j=1 e

itX1,j/h − E eitX1,j/h
]2) 1

2

·
(
E
[
1
n

∑n
j=1 e

iτX1,j/h − E eiτX1,j/h
]2) 1

2

∣∣ϕX1 (t/h)
∣∣2 ∣∣ϕX1 (τ/h)

∣∣2 +

2 (E |Yj |)2
∥∥ϕX1

∥∥2
∞

∣∣ϕ′
X∗ (τ1)

∣∣ (E
[
1
n

∑n
j=1 X2,je

it1X1,j − EX2,je
it1X1,j

]2) 1
2

·
(
E
[
1
n

∑n
j=1 e

iτ1X1,j − E eiτ1X1,j

]2) 1
2

∣∣ϕX1 (t1)
∣∣ ∣∣ϕX1 (τ1)

∣∣ ∣∣ϕX1 (t/h)
∣∣ ∣∣ϕX1 (τ/h)

∣∣ +

2 (E |Yj |)
∥∥ϕX1

∥∥
∞

(
E
[
1
n

∑n
j=1 X2,je

it1X1,j − EX2,je
it1X1,j

]2) 1
2

·
(
E
[
1
n

∑n
j=1 Yje

iτX1,j/h − EYje
iτX1,j/h

]2) 1
2

∣∣ϕX1 (t1)
∣∣ ∣∣ϕX1 (t/h)

∣∣ ∣∣ϕX1 (τ/h)
∣∣ +

2 (E |Yj |)2
∥∥ϕX1

∥∥2
∞

(
E
[
1
n

∑n
j=1 X2,je

it1X1,j − EX2,je
it1X1,j

]2) 1
2

·
(
E
[
1
n

∑n
j=1 e

iτX1,j/h − E eiτX1,j/h
]2) 1

2

∣∣ϕX1 (t1)
∣∣ ∣∣ϕX1 (t/h)

∣∣ ∣∣ϕX1 (τ/h)
∣∣2 +

2 (E |Yj |)
∥∥ϕX1

∥∥
∞

∣∣ϕ′
X∗ (τ1)

∣∣ (E
[
1
n

∑n
j=1 e

it1X1,j − E eit1X1,j
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2
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(
E
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itX1,j/h − EYje
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2

∣∣ϕX1 (t/h)
∣∣ ∣∣ϕX1 (τ/h)

∣∣2 +

ξf (t1, τ1) + ξg(t, τ),

where the higher-order terms ξf and ξg vanish faster than the leading terms uniformly.

The mean square errors (MSE) of the estimator ĝ(x∗) is asymptotically bounded by 1
fX2 (x∗)2

·

MSE
(

̂g(x∗)fX∗(x∗)
)
+ g(x∗)2

fX∗ (x∗)2
MSE

(
̂fX∗(x∗)

)
and higher-order terms that vanish faster than

these first-order terms. Thus, we have the biases of order Bias
(

̂fX∗(x∗)
)
= O

(
1

n1/2h2|ϕX1
(1/h)|

)
+
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O(hk)) and Bias
(

̂g(x∗)fX∗(x∗)
)
= O

(
1

n1/2h2|ϕX1
(1/h)|2

)
+O(hmin{k,l}), and we have the vari-

ances of order Var
(

̂fX∗(x∗)
)
= O

(
1

nh4|ϕX1
(1/h)|2

)
and Var

(
̂g(x∗)fX∗(x∗)

)
= O

(
1

nh4|ϕX1
(1/h)|4

)
.

Note that the first term in the bias when it is squared gives the same asymptotic order as that

of the variance for each of the two components of the estimator. Hence, the MSE go to zero

in the order of O(h2min{k,l}) + O
(

1

nh4|ϕX1
(1/h)|4

)
with a choice of h such that h → 0 and

nh4 |ϕX1(1/h)|
4 → ∞ as n → ∞. This completes a proof for the closed-form estimator (4.1).

Lastly, we deal with the case where the closed-form estimator (4.2) is used instead of

(4.1). To emphasize on the dependence on γ1 and γ̂1, we let ̂g(x∗, γ1) and ̂g(x∗, γ̂1) denote

the closed-form estimators (4.1) and (4.2), respectively. Since

(
E
[

̂g(x∗, γ̂1)− g(x∗)
]2)1/2

6(
E
[

̂g(x∗, γ̂1)− ̂g(x∗, γ1)
]2)1/2

+

(
E
[

̂g(x∗, γ1)− g(x∗)
]2)1/2

holds by Minkowski’s inequal-

ity, it suffices to show E
[

̂g(x∗, γ̂1)− ̂g(x∗, γ1)
]2

= O(h2min{k,l}) + O
(

1

nh4|ϕX1
(1/h)|4

)
. By

the mean value theorem and Cauchy-Schwarz inequality, we have E
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]2

=

E

[
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∣∣∣
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1

· (γ̂1 − γ1)

]2
6
(
E

[
∂
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ĝ(x∗, c)

∣∣∣
c=γ∗

1

]4)1/2

·
(
E [γ̂1 − γ1]

4)1/2 where γ∗
1 is be-

tween γ1 and γ̂1. Note that γ̂1 − γ1 = O
(
n−1/2

)
under Assumptions 1 and 9 (iii). The second

factor in the last line is O (n−1) under Assumptions 1, and 9 with (iii)′. On the other hand,

the first factor in the last line is O
(
h−4 |ϕX1(1/h)|

−2) under Assumptions 4 (i) and 9 with (iii)′

by similar lines of calculations to the ones used to derive the asymptotic order of the variances:

E

[
∂
∂c
ĝ(x∗, c)

∣∣∣
c=γ∗

1

]4
6 ∥ϕ∗∥4∞∥ϕK∥4∞

16π4h4 ×
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ t/h

0

∫ τ/h

0

∫ t̃/h

0

∫ τ̃/h

0
I(t, τ, t1, τ1, t̃, τ̃ , t̃1, τ̃1, h)

dτ̃1dt̃1dτ1dt1dtdτdt̃dτ̃ = O
(

1

h8|ϕX1
(1/h)|8

)
, where the integrand I(t, τ, t1, τ1, t̃, τ̃ , t̃1, τ̃1, h) con-

sists of first moments of quadratic interactions and higher-order terms that vanish faster

than these first-order terms. It follows that E
[

̂g(x∗, γ̂1)− ̂g(x∗, γ1)
]2

= O
(

1

nh4|ϕX1
(1/h)|4

)
.

This part converges at least as fast as the rate E
[

̂g(x∗, γ̂1)− g(x∗)
]2

= O(h2min{k,l}) +

O
(

1

nh4|ϕX1
(1/h)|4

)
. Therefore, the use of the closed-form estimator (4.2) instead of (4.1) does

not alter the asymptotic order of the MSE.
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A.5 Proof of Theorem 3

Proof. Under Assumption 11, Assumption 3 (ii) implies |ϕX1(1/h)| = O
(
e−h−max{β1,β2}/κ

)
as

h → 0 for some κ > 0. Equating the asymptotic orders of the squared bias and the variance

obtained in Lemma 2 with this smoothness condition, we obtain the asymptotic rate h ∼

(log n)−1/max{β1,β2} . Substituting this choice of h in the asymptotic order or the squared bias

or the variance obtained in Lemma 2, we obtain the asymptotic order E
(
ĝ(x∗)− g(x∗)

)2
=

O
(
(log n)

−2min{k,l}
max{β1,β2}

)
.

A.6 Proof of Theorem 4

Proof. Under Assumption 12, Assumption 3 (ii) implies |ϕX1(1/h)| = O
(
hβ1+β2

)
as h → 0.

Equating the asymptotic orders of the squared bias and the variance obtained in Lemma 2 with

this smoothness condition, we obtain the asymptotic rate h ∼ n
−1

2(min{k,l}+2(β1+β2+1)) . Substituting

this choice of h in the asymptotic order or the squared bias or the variance obtained in Lemma

2, we obtain the asymptotic order E
(
ĝ(x∗)− g(x∗)

)2
= O

(
n

−min{k,l}
min{k,l}+2(β1+β2+1)

)
.
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Data Folder Label Variable Description

Demographics RIAGENDR Gender

Demographics RIDAGEYR Age Mean (Std. Dev.)

Data Folder Label Variable Description Male Female

Examination BMXHT Clinically Measured Height (cm) 173.8 (7.9) 159.8 (7.2)

Examination BMXWT Clinically Measured Weight (kg) 88.1 (19.6) 76.1 (19.6)

Questionnaire WHD010 Self-Reported Height (inches) 69.1 (3.4) 63.5 (3.0)

Questionnaire WHD020 Self-Reported Weight (pounds) 194.3 (41.0) 165.5 (41.0)

Questionnaire HUQ050 Receive Healthcare 2.16 (1.44) 2.46 (1.33)

Sample of individuals aged 40 or older. N = 1, 905 N = 1, 936

Table 1: NHANES III 2009–2010 variable list and summary statistics.



(i) g(x∗) = x∗ (ii) g(x∗) = (x∗ + 1)2

(iii) g(x∗) = Φ(x∗) (iv) g(x∗) = sin(x∗)

Figure 1: Monte Carlo simulation results with N = 500 for the closed-form estimator (4.2) using

estimates γ̂1. The four function specifications displayed are (i) g(x∗) = x∗, (ii) g(x∗) = (x∗+1)2,

(iii) g(x∗) = Φ(x∗), and (iv) g(x∗) = sin(x∗). The solid curves represent the true function

g. The dashed curves are the 10th, 30th, 50th, 70th, and 90th percentiles of the Monte Carlo

distributions.



(i) g(x∗) = x∗ (ii) g(x∗) = (x∗ + 1)2

(iii) g(x∗) = Φ(x∗) (iv) g(x∗) = sin(x∗)

Figure 2: Monte Carlo simulation results with N = 500 for the closed-form estimator (4.1)

wrongly assuming γ1 = 1 is true. The four function specifications displayed are (i) g(x∗) = x∗,

(ii) g(x∗) = (x∗+1)2, (iii) g(x∗) = Φ(x∗), and (iv) g(x∗) = sin(x∗). The solid curves represent

the true function g. The dashed curves are the 10th, 30th, 50th, 70th, and 90th percentiles of

the Monte Carlo distributions.



Figure 3: Scatter plot of clinically measured BMI (horizontal axis) against self-reported BMI

(vertical axis). 2009–2010 sample of male and female individuals aged 40 or older.



Male: 40-49 Years Old Male: 50-59 Years Old Male: 60-69 Years Old

Female: 40-49 Years Old Female: 50-59 Years Old Female: 60-69 Years Old

Figure 4: Estimated conditional mean self-reports E[X1 | X∗] across various sex and age groups.

The dashed lines indicate the 45◦ line, and the solid lines indicate the estimated regression.



Male: 40–49 Years Old Male: 50–59 Years Old

Male: 60–69 Years Old Male: 70 Years or Older

Figure 5: Bootstrap quantiles for average number of times health care is received per year for

male individuals by age group and BMI. Estimation is based on (4.2) using γ̂1.



Female: 40–49 Years Old Female: 50–59 Years Old

Female: 60–69 Years Old Female: 70 Years or Older

Figure 6: Bootstrap quantiles for average number of times health care is received per year for

female individuals by age group and BMI. Estimation is based on (4.2) using γ̂1.


