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Abstract

We consider the identification of a Markov process {Wt, X
∗
t } when only {Wt} is

observed. In structural dynamic models, Wt includes the choice variables and ob-
served state variables of an optimizing agent, while X∗t denotes the serially correlated
unobserved state variables (or agent-specific unobserved heterogeneity). In the non-
stationary case, we show that the Markov law of motion fWt,X∗

t |Wt−1,X∗
t−1

is identified
from five periods of data Wt+1,Wt,Wt−1,Wt−2,Wt−3. In the stationary case, only four
observations Wt+1,Wt,Wt−1,Wt−2 are required. Identification of fWt,X∗

t |Wt−1,X∗
t−1

is a
crucial input in methodologies for estimating Markovian dynamic models based on the
“conditional-choice-probability (CCP)” approach pioneered by Hotz and Miller.

1 Introduction

In this paper, we consider the identification of a Markov process {Wt, X
∗
t } when only {Wt},

a subset of the variables, is observed. In structural dynamic models, Wt typically consists
of the choice variables and observed state variables of an optimizing agent. X∗t denotes the
serially correlated unobserved state variables (or agent-specific unobserved heterogeneity),
which are observed by the agent, but not by the econometrician.

We demonstrate two main results. First, in the non-stationary case, where the Markov
law of motion fWt,X∗t |Wt−1,X∗t−1

, can vary across periods t, we show that, for any period
t, fWt,X∗t |Wt−1,X∗t−1

is identified from five periods of data Wt+1, . . . ,Wt−3. Second, in the

∗The authors can be reached at yhu@jhu.edu and mshum@caltech.edu. We thank Xiaohong Chen, Jeremy
Fox, Han Hong, Ariel Pakes, and Susanne Schennach for their suggestions. Seminar participants at BU,
Clark, Harvard, LSE, MIT, NYU, Penn, Penn State, Toulouse, UCL, UCLA, USC, the Cowles 2008 Sum-
mer Conference at Yale, the 2008 ERID Conference at Duke, the 2008 Greater New York Econometrics
Colloquium at Princeton, and the “Econometrics of Industrial Organization” workshop at Toulouse pro-
vided useful comments.
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stationary case, where fWt,X∗t |Wt−1,X∗t−1
is the same across all t, only four observations

Wt+1, . . . ,Wt−2, for some t, are required for identification.
In most applications, Wt consists of two components Wt = (Yt,Mt), where Yt denotes

the agent’s action in period t, and Mt denotes the period-t observed state variable(s). X∗t
are persistent unobserved state variables (USV for short), which are observed by agents and
affect their choice of Yt, but unobserved by the econometrician. The economic importance
of models with unobserved state variables has been recognized since the earliest papers on
the structural estimation of dynamic optimization models. Two examples are:

[1] Miller’s (1984) job matching model was one of the first empirical dynamic discrete
choice models with unobserved state variables. Yt is an indicator for the occupation chosen
by a worker in period t, and the unobserved state variables X∗t are the posterior means
of workers’ beliefs regarding their occupation-specific match values. The observed state
variables Mt include job tenure and education level. �

[2] Pakes (1986) estimates an optimal stopping model of the year-by-year renewal deci-
sion on European patents. In his model, the decision variable Yt is an indicator for whether
a patent is renewed in year t, and the unobserved state variable X∗t is the profitability
from the patent in year t, which is not observed by the econometrician. The observed state
variable Mt could be other time-varying factors, such as the stock price or total sales of the
patent-holding firm, which affect the renewal decision. �

These two early papers demonstrated that dynamic optimization problems with an un-
observed process partly determining the state variables are indeed empirically tractable.
Their authors (cf. Miller (1984, section V); Pakes and Simpson (1989)) also provided
some discussion of the restrictions implied on the data by their models, thus highlighting
how identification has been a concern since the earliest structural empirical applications
of dynamic models with unobserved state variables. Obviously, the nonparametric identi-
fication of these complex nonlinear models has important practical relevance for empirical
researchers, and our goal here is to provide identification results which apply to a broad
class of Markovian dynamic models with unobserved state variables.

Our main result concerns the identification of the Markov law of motion fWt,X∗t |Wt−1,X∗t−1
.

Once this is known, it factors into conditional and marginal distributions of economic in-
terest. For Markovian dynamic optimization models (such as the examples given above),
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fWt,X∗t |Wt−1,X∗t−1
factors into

fWt,X∗t |Wt−1,X∗t−1
= fYt,Mt,X∗t |Yt−1,Mt−1,X∗t−1

= fYt|Mt,X∗t︸ ︷︷ ︸
CCP

· fMt,X∗t |Yt−1,Mt−1,X∗t−1︸ ︷︷ ︸
state law of motion

. (1)

The first term denotes the conditional choice probability for the agent’s optimal choice in
period t. The second term is the Markovian law of motion for the state variables (Mt, X

∗
t ).

Once the CCP’s and the law of motion for the state variables are recovered, it is straight-
forward to use them as inputs in a CCP-based approach for estimating dynamic discrete-
choice models. This approach was pioneered in Hotz and Miller (1993) and Hotz, Miller,
Sanders, and Smith (1994).1 A general criticism of these methods is that they cannot
accommodate unobserved state variables. In response, Aguirregabiria and Mira (2007),
Buchinsky, Hahn, and Hotz (2004), and Houde and Imai (2006), among others, recently
developed CCP-based estimation methodologies allowing for agent-specific unobserved het-
erogeneity, which is the special case where the latent X∗t is time-invariant. Arcidiacono and
Miller (2006) developed a CCP-based approach to estimate dynamic discrete models where
X∗t varies over time according to an exogenous first-order Markov process.2

While these papers have focused on estimation, our focus is on identification. Our
identification approach is novel because it is based on recent econometric results in nonlinear
measurement error models.3 Specifically, we show that the identification results in Hu
and Schennach (2008) and Carroll, Chen, and Hu (2009) for nonclassical measurement
models (where the measurement error is not assumed to be independent of the latent “true”
variable) can be applied to Markovian dynamic models, and we use those results to establish
nonparametric identification.

Kasahara and Shimotsu (2009, hereafter KS) consider the identification of dynamic mod-
els with discrete unobserved heterogeneity, where the latent variable X∗t is time-invariant
and discrete. KS demonstrate that the Markov law of motion Wt+1|Wt, X

∗ is identified in
this setting, using six periods of data. Relative to this, we consider a more general setting

1Subsequent methodological developments for CCP-based estimation include Aguirregabiria and Mira
(2002), (2007), Pesendorfer and Schmidt-Dengler (2008), Bajari, Benkard, and Levin (2007), Pakes, Ostro-
vsky, and Berry (2007), and Hong and Shum (2009).At the same time, Magnac and Thesmar (2002) and
Bajari, Chernozhukov, Hong, and Nekipelov (2007) use the CCP logic to provide identification results for
dynamic discrete-choice models.

2That is, X∗t depends stochastically only on X∗t−1, and not on any other variables. We relax this consid-
erably; see the discussion following Assumption 1 below.

3See Li (2002) and Schennach (2004), (2007) for recent papers on nonlinear measurement error models,
and Chen, Hong, and Nekipelov (2007) for a detailed survey.
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where X∗t varies over periods, and is drawn from a continuous distribution.
Henry, Kitamura, and Salanie (2008, hereafter HKS) exploit exclusion restrictions to

identify Markov regime-switching models with a discrete and latent state variable. While
our identification arguments are quite distinct from those in HKS, our results share some
of HKS’s intuition, because we also exploit the feature of first-order Markovian models
that, conditional on Wt−1, Wt−2 is an “excluded variable” which affects Wt only via the
unobserved state X∗t .4

Cunha, Heckman, and Schennach (2006) apply the result of Hu and Schennach (2008) to
show nonparametric identification of a nonlinear factor model consisting of (Wt,W

′
t ,W

′′
t , X

∗
t ),

where the observed processes {Wt}Tt=1, {W ′t}
T
t=1, and {W ′′t }

T
t=1 constitute noisy measure-

ments of the latent process {X∗t }
T
t=1, contaminated with random disturbances. In con-

trast, we consider a setting where (Wt, X
∗
t ) jointly evolves as a dynamic Markov process.

We use observations of Wt in different periods t to identify the conditional density of(
Wt, X

∗
t |Wt−1, X

∗
t−1

)
. Thus, our model and identification strategy differ from theirs.

The paper is organized as follows. In Section 2, we introduce and discuss the main
assumptions we make for identification. In Section 3, we present, in a sequence of lemmas,
the proof of our main identification result. Subsequently, we also present several useful
corollaries which follow from the main identification result. In Section 4, we discuss sev-
eral examples, including a discrete case, to make our assumptions more transparent. We
conclude in Section 5. While the proof of our main identification result is presented in the
main text, the appendix contains the proofs for several lemmas and corollaries.

2 Overview of assumptions

Consider a dynamic process {(WT , X
∗
T ) , . . . , (Wt, X

∗
t ) , ..., (W1, X

∗
1 )}i for agent i. We as-

sume that for each agent i, {(WT , X
∗
T ) , . . . , (Wt, X

∗
t ) , ..., (W1, X

∗
1 )}i is an independent ran-

dom draw from a bounded distribution f(WT ,X∗T ),...,(Wt,X∗t ),...,(W1,X∗1 ). The researcher ob-
serves a panel dataset consisting of an i.i.d. random sample of {WT ,WT−1, . . . ,W1}i, with
T ≥ 5, for many agents i. We first consider identification in the nonstationary case, where
the Markov law of motion fWt,X∗t |Wt−1,X∗t−1

varies across periods. This model subsumes the
case of unobserved heterogeneity, in which X∗t is fixed across all periods.

Next, we introduce our four assumptions. The first assumption below restricts attention
to certain classes of models, while Assumptions 2-4 establish identification for the restricted

4Similarly, Bouissou, Laffont, and Vuong (1986) exploit the Markov restrictions on a stochastic process
X to formulate tests for the noncausality of another process Y on X.
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class of models. Unless otherwise stated, all assumptions are taken to hold for all periods t.

Assumption 1. (i) First-order Markov: fWt,X∗t |Wt−1,X∗t−1,Ω<t−1
= fWt,X∗t |Wt−1,X∗t−1

,

where Ω<t−1 ≡
{
Wt−2, ...,W1, X

∗
t−2, ..., X

∗
1

}
, the history up to (but not including) t− 1.

(ii) Limited feedback: fWt|Wt−1,X∗t ,X∗t−1
= fWt|Wt−1,X∗t

.

Assumption 1(i) is just a first-order Markov assumption, which is satisfied for Markovian
dynamic decision models (cf. Rust (1994)). Assumption 1(ii) is a “limited feedback” as-
sumption, because it rules out direct feedback from the last period’s USV, X∗t−1, on the
current value of the observed Wt. When Wt = (Yt,Mt), as before, Assumption 1 implies:

fWt|Wt−1,X∗t ,X∗t−1
= fYt,Mt|Yt−1,Mt−1,X∗t ,X∗t−1

= fYt|Mt,Yt−1,Mt−1,X∗t ,X∗t−1
· fMt|Yt−1,Mt−1,X∗t ,X∗t−1

= fYt|Mt,X∗t ,Yt−1,Mt−1
· fMt|Yt−1,Mt−1,X∗t

.

In the bottom line of the above display, the limited feedback assumption eliminates
X∗t−1 as a conditioning variable in both terms. In Markovian dynamic optimization models,
the first term (the CCP) further simplifies to fYt|Mt,X∗t

, because the Markovian laws of
motion for (Mt, X

∗
t ) imply that the optimal policy function depends just on the current

state variables. Hence, Assumption 1 imposes weaker restrictions on the first term than
Markovian dynamic optimization models.5

In the second term of the above display, the limited feedback condition rules out direct
feedback from last period’s unobserved state variable X∗t−1 to the current observed state
variable Mt. However, it allows indirect effects via X∗t−1’s influence on Yt−1 or Mt−1. Implic-
itly, the limited feedback assumption 1(ii) imposes a timing restriction, that X∗t is realized
before Mt, so that Mt depends on X∗t . While this is less restrictive than the assumption
that Mt evolves independently of both X∗t−1 and X∗t , which has been made in many applied
settings to enable the estimation of the Mt law of motion directly from the data, it does rule
out models such as Mt = h(Mt−1, X

∗
t−1) + ηt, which implies the alternative timing assump-

tion that X∗t is realized after Mt.6 For the special case of unobserved heterogeneity, where
5Moreover, if we move outside the class of these models, the above display also shows that Assumption

1 does not rule out the dependence of Yt on Yt−1 or Mt−1, which corresponds to some models of state
dependence. These may include linear or nonlinear panel data models with lagged dependent variables, and
serially correlated errors, cf. Arellano and Honoré (2000). Arellano (2003, chs. 7–8) considers linear panel
models with lagged dependent variables and persistent unobservables, which is also related to our framework.

6Most empirical applications of dynamic optimization models with unobserved state variables satisfy
the Markov and limited feedback conditions: examples from the industrial organization literature include
Erdem, Imai, and Keane (2003), Crawford and Shum (2005), Das, Roberts, and Tybout (2007), Xu (2007),
and Hendel and Nevo (2006).
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X∗t = X∗t−1, ∀t, the limited feedback assumption is trivial. Finally, the limited feedback
assumption places no restrictions on the law of motion for X∗t , and allows X∗t to depend
stochastically on X∗t−1, Yt−1,Mt−1. �

For this paper, we assume that the unobserved state variable X∗t is scalar-valued, and
is drawn from a continuous distribution.7 An important role in the identification argument
is played by many integral equalities which demonstrate the equivalence of multivariate
density functions which contain the latent variable X∗t as an argument (which are not
identified directly in the data), and those containing only observed variables Wt (which are
identified directly from the data). To avoid cumbersome repetition, we will express these
integral equalities in the convenient notation of linear operators, which we introduce here.

Let R1, R2, R3 denote three random variables, with supportR1, R2, andR3, distributed
with joint density fR1,R2,R3(r1, r2, r3) with support R1 × R2 × R3.8 The linear operator
LR1|r2,R3

is a mapping from the Lp-space of functions of R3 to the Lp space of functions of
R1,9 defined as

(
LR1|r2,R3

h
)

(r1) =
∫
fR1|R2,R3

(r1|r2, r3)h(r3)dr3; h ∈ Lp (R3) , r2 ∈ R2.

Similarly, we define the diagonal (or multiplication) operator

(
Dr1|r2,R3

h
)

(r3) = fR1|R2,R3
(r1|r2, r3)h(r3); h ∈ Lp (R3) , r1 ∈ R1, r2 ∈ R2.

In the next section, we show that our identification argument relies on a spectral de-
composition of a linear operator generated from LWt+1,wt|wt−1,Wt−2

, which corresponds to
the observed density fWt+1,Wt|Wt−1,Wt−2

. (A spectral decomposition is the operator analog
of the eigenvalue-eigenvector decomposition for matrices, in the finite-dimensional case.)10

The next two assumptions ensure the validity and uniqueness of this decomposition.

Assumption 2. Invertibility: There exists variable(s) V ⊆W such that for any (wt, wt−1) ∈
Wt ×Wt−1:
(i) LVt−2,wt−1,wt,Vt+1 is one-to-one; (ii) LVt+1|wt,X∗t

is one-to-one; (iii) LVt−2,wt−1,Vt is one-

7A discrete distribution for X∗t , which is assumed in many applied settings (eg. Arcidiacono and Miller
(2006)) is a special case, which we will consider as an example in Section 4 below.

8Here, capital letters denote random variables, while lower-case letters denote realizations.
9For 1 ≤ p < ∞, Lp(X ) is the space of measurable real functions h (·) integrable in the Lp-norm, ie.∫

X |h(x)|pdµ (x) < ∞, where µ is a measure on a σ-field in X . One may also consider other classes of
functions, such as bounded functions in L1, in the definition of an operator.

10Specifically, when Wt, X
∗
t are both scalar and discrete with J (< ∞) points of support, the operator

LWt+1,wt|wt−1,Wt−2 is a J × J matrix, and spectral decomposition reduces to diagonalization of this matrix.
This discrete case is discussed in detail in Section 4, example 1.
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to-one.

Assumption 2 enables us to take inverses of certain operators, and is analogous to
assumptions made in the nonclassical measurement error literature. Specifically, treating
Vt−2 and Vt+1 as noisy “measurements” of the latent X∗t , Assumption 2(i,ii) imposes the
same restrictions between the measurements and the latent variable as Hu and Schennach
(2008, Assumption 3) and Carroll, Chen, and Hu (2009, Assumption 2.4). Compared
with these two papers, Assumption 2(iii) is an extra assumption we need because, in our
dynamic setting, there is a second latent variable, X∗t−1, in the Markov law of motion
fWt,X∗t |Wt−1,X∗t−1

. Below, we show that Assumption 2(ii) implies that pre-multiplication by
the inverse operator L−1

Vt+1|wt,X∗t
is valid, while 2(i,iii) imply that post-multiplication by,

respectively, L−1
Vt+1,wt|wt−1,Vt−2

and L−1
Vt|wt−1,Vt−2

is valid.11

The statements in Assumption 2 are equivalent to completeness conditions which have
recently been employed in the nonparametric IV literature: namely, an operator LR1|r2,R3

is one-to-one if the corresponding density function fR1|r2,R3
satisfies a “completeness” con-

dition: for any r2,

(
LR1|r2,R3

h
)

(r1) =
∫
f(r1|r2, r3)h(r3)dr3 = 0 for all r1 implies h(r3) = 0 for all r3. (2)

Completeness is a high-level condition, and special cases of it have been considered in, eg.
Newey and Powell (2003), Blundell, Chen, and Kristensen (2007), d’Haultfoeuille (2009).
However, sufficient conditions are not available for more general settings. Below, in Section
4, we will construct examples which satisfy the completeness requirements, and also consider
necessary conditions for completeness.

The variable(s) Vt ⊆ Wt defined in Assumption 2 may be scalar, multidimensional, or
Wt itself. Intuitively, by Assumption 2(ii), the variable(s) Vt+1 are components of Wt+1

which “transmit” information on the latent X∗t conditional on Wt, the observables in the
previous period. We consider suitable choices of V for specific examples in Section 4.12

Assumption 2(ii) rules out models whereX∗t has a continuous support, butWt+1 contains
only discrete components. In this case, there is no subset Vt+1 ⊆Wt+1 for which LVt+1|wt,X∗t

can be one-to-one. Hence, dynamic discrete-choice models with a continuous unobserved
state variable X∗t , but only discrete observed state variables Mt, fail this assumption, and
may be nonparametrically underidentified without further assumptions. Moreover, models
where the Wt and X∗t processes evolve independently will also fail this assumption. �

11Additional details are given in Section 2 of the online appendix (Hu and Shum (2009)).
12There may be multiple choices of V which satisfy Assumption 2. In this case, the model may be

overidentified, and it may be possible to do specification testing. We do not explore this possibility here.
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Assumption 3. Uniqueness of spectral decomposition:
(i) For any (wt, wt−1, x

∗
t ) ∈ Wt×Wt−1×X ∗t , the density fWt|Wt−1,X∗t

(wt|wt−1, x
∗
t ) is bounded

away from zero and infinity.
(ii) For any wt ∈ Wt and any x∗t 6= x̃∗t ∈ X ∗t , there exists wt−1 ∈ Wt−1 such that the density
fWt|Wt−1,X∗t

satisfies

∂2

∂zt∂zt−1
ln fWt|Wt−1,X∗t

(wt|wt−1, x
∗
t ) 6= ∂2

∂zt∂zt−1
ln fWt|Wt−1,X∗t

(wt|wt−1, x̃
∗
t ), (3)

where zt (resp. zt−1) denotes a continuous-valued component of wt (resp. wt−1).

Assumption 3 ensures the uniqueness of the spectral decomposition of a linear operator
generated from LVt+1,wt|wt−1,Vt−2

. As Eq. (13) below shows, the eigenvalues in this de-
composition involve the density fWt|Wt−1,X∗t

, and conditions (i) and (ii) are restrictions on
this density which guarantee that these eigenvalues are, respectively, bounded and distinct
across all values of x∗t .13 In turn, this ensures that the corresponding eigenfunctions are
linearly independent, so that the spectral decomposition is unique. �

Assumption 4. Monotonicity and normalization: For any wt ∈ Wt, there exists a known
functional G such that G

[
fVt+1|Wt,X∗t

(·|wt, x
∗
t )
]

is monotonic in x∗t . We normalize x∗t =

G
[
fVt+1|Wt,X∗t

(·|wt, x
∗
t )
]
.

The eigenfunctions in the aforementioned spectral decomposition correspond to the den-
sities fVt+1|Wt,X∗t

(·|wt, x
∗
t ), for all values of x∗t . SinceX∗t is unobserved, the eigenfunctions are

only identified up to an arbitrary one-to-one transformation of X∗t . To resolve this issue, we
need additional restrictions deriving from the economic or stochastic structure of the model,
which “pin down” the values of the unobserved X∗t relative to the observed variables. In
Assumption 4, this additional structure comes in the form of the functional G which, when
applied to the family of densities fVt+1|Wt,X∗t

(·|wt, x
∗
t ) is monotonic in x∗t , given wt. Given

the monotonicity restriction, we can normalize X∗t by setting, x∗t = G
[
fVt+1|Wt,X∗t

(·|wt, x
∗
t )
]

without loss of generality.14 The functional G, which may depend on the value of wt, could
be the mean, mode, median, or another quantile of fVt+1|Wt,X∗t

. �

13Assumptions 2 and 3, as stated here, are stronger than necessary. An earlier version of the paper (Hu
and Shum (2008)) contained less restrictive, but also less intuitive, versions of these assumptions.

14To be clear, the monotonicity assumption here is a model restriction, and not without loss of generality;
if it were false, our identification argument would not recover the correct CCP’s and laws of motion for
the underlying model. See Matzkin (2003) and Hu and Schennach (2008) for similar uses of monotonicity
restrictions in the context of nonparametric identification problems.
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Assumptions 1-4 are the four main assumptions underlying our identification arguments.
Of these four assumptions, all except Assumption 2(i,iii) involve densities not directly ob-
served in the data, and are not directly testable.

3 Main nonparametric identification results

We present our argument for the nonparametric identification of the Markov law of motion
fWt,X∗t |Wt−1,X∗t−1

by way of several intermediate lemmas. The first two lemmas present con-
venient representations of the operators corresponding to the observed density fVt+1,wt|wt−1,Vt−2

and the Markov law of motion fwt,X∗t |wt−1,X∗t−1
, for given values of (wt, wt−1) ∈ Wt ×Wt−1:

Lemma 1. (Representation of the observed density fVt+1,wt|wt−1,Vt−2
): For any t ∈

{3, . . . , T − 1}, Assumption 1 implies that for any (wt, wt−1) ∈ Wt ×Wt−1,

LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗t

Dwt|wt−1,X∗t
LX∗t |wt−1,Vt−2

. (4)

Lemma 2. (Representation of Markov law of motion): For any t ∈ {3, . . . , T − 1},
Assumptions 1 and 2 imply that, for any (wt, wt−1) ∈ Wt ×Wt−1,

Lwt,X∗t |wt−1,X∗t−1
= L−1

Vt+1|wt,X∗t
LVt+1,wt|wt−1,Vt−2

L−1
Vt|wt−1,Vt−2

LVt|wt−1,X∗t−1
. (5)

Proofs: in Appendix. �

Since L
Vt+1,wt|wt−1,Vt−2

and LVt|wt−1,Vt−2
are observed, Lemma 2 implies that the identifi-

cation of the operators LVt+1|wt,X∗t
and LVt|wt−1,X∗t−1

implies the identification of Lwt,X∗t |wt−1,X∗t−1
,

the operator corresponding to the Markov law of motion. The next lemma postulates that
LVt+1|wt,X∗t

is identified just from observed data.

Lemma 3. (Identification of fVt+1|Wt,X∗t
): For any t ∈ {3, . . . , T − 1}, Assumptions 1,

2, 3, 4 imply that the density fVt+1,Wt|Wt−1,Vt−2
uniquely identifies the density fVt+1|Wt,X∗t

.

This lemma encapsulates the heart of the identification argument, which is the iden-
tification of fVt+1|Wt,X∗t

via a spectral decomposition of an operator generated from the
observed density fVt+1,Wt|Wt−1,Vt−2

. Once this is established, re-applying Lemma 3 to the
operator corresponding to the observed density fVt,Wt−1|Wt−2,Vt−3

yields the identification of
fVt|Wt−1,X∗t−1

. Once fVt+1|Wt,X∗t
and fVt|Wt−1,X∗t−1

are identified, then so is the Markov law
of motion fwt,X∗t |wt−1,X∗t−1

, from Lemma 2.
Proof: (Lemma 3) By Lemma 1, LVt+1,wt|wt−1,Vt−2

= LVt+1|wt,X∗t
Dwt|wt−1,X∗t

LX∗t |wt−1,Vt−2
.

The first term on the RHS, LVt+1|wt,X∗t
, does not depend on wt−1, and the last term
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LX∗t |wt−1,Vt−2
does not depend on wt. This feature suggests that, by evaluating Eq. (4)

at the four pairs of points (wt, wt−1), (w̄t, wt−1), (wt, w̄t−1), (w̄t, w̄t−1), such that wt 6= w̄t

and wt−1 6= w̄t−1, each pair of equations will share one operator in common. Specifically:

for (wt, wt−1) : LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗t

Dwt|wt−1,X∗t
LX∗t |wt−1,Vt−2

, (6)

for (wt, wt−1) : LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗t

Dwt|wt−1,X∗t
LX∗t |wt−1,Vt−2

, (7)

for (wt, wt−1) : LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗t

Dwt|wt−1,X∗t
LX∗t |wt−1,Vt−2

, (8)

for (wt, wt−1) : LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗t

Dwt|wt−1,X∗t
LX∗t |wt−1,Vt−2

. (9)

Assumptions 2(ii) and 3(i) imply that we can solve for LX∗t |wt−1,Vt−2
from Eq. (7) as

D−1
wt|wt−1,X∗t

L−1
Vt+1|wt,X∗t

LVt+1,wt|wt−1,Vt−2
= LX∗t |wt−1,Vt−2

.

Plugging in this expression to Eq. (6) leads to

LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗t

Dwt|wt−1,X∗t
D−1

wt|wt−1,X∗t
L−1

Vt+1|wt,X∗t
LVt+1,wt|wt−1,Vt−2

.

Lemma 1 of Hu and Schennach (2008) shows that, given Assumption 2(i), LVt+1,wt|wt−1,Vt−2

is invertible, and we can postmultiply by L−1
Vt+1,wt|wt−1,Vt−2

, to obtain:

A ≡ LVt+1,wt|wt−1,Vt−2
L−1

Vt+1,wt|wt−1,Vt−2

= LVt+1|wt,X∗t
Dwt|wt−1,X∗t

D−1
wt|wt−1,X∗t

L−1
Vt+1|wt,X∗t

. (10)

Similar manipulations of Eqs. (8) and Eq. (9) lead to

B ≡ LVt+1,wt|wt−1,Vt−2
L−1

Vt+1,wt|wt−1,Vt−2

= LVt+1|wt,X∗t
Dwt|wt−1,X∗t

D−1
wt|wt−1,X∗t

L−1
Vt+1|wt,X∗t

. (11)

Finally, we postmultiply Eq. (10) by Eq. (11) to obtain

AB = LVt+1|wt,X∗t
Dwt|wt−1,X∗t

D−1
wt|wt−1,X∗t

(
L−1

Vt+1|wt,X∗t
LVt+1|wt,X∗t

)
×

×Dwt|wt−1,X∗t
D−1

wt|wt−1,X∗t
L−1

Vt+1|wt,X∗t

= LVt+1|wt,X∗t

(
Dwt|wt−1,X∗t

D−1
wt|wt−1,X∗t

Dwt|wt−1,X∗t
D−1

wt|wt−1,X∗t

)
L−1

Vt+1|wt,X∗t

≡ LVt+1|wt,X∗t
Dwt,wt,wt−1,wt−1,X∗t

L−1
Vt+1|wt,X∗t

, where (12)

10



(
Dwt,wt,wt−1,wt−1,X∗t

h
)

(x∗t ) =
(
Dwt|wt−1,X∗t

D−1
wt|wt−1,X∗t

Dwt|wt−1,X∗t
D−1

wt|wt−1,X∗t
h
)

(x∗t )

=
fWt|Wt−1,X∗t

(wt|wt−1, x
∗
t )fWt|Wt−1,X∗t

(wt|wt−1, x
∗
t )

fWt|Wt−1,X∗t
(wt|wt−1, x∗t )fWt|Wt−1,X∗t

(wt|wt−1, x∗t )
h(x∗t )

≡ k (wt, wt, wt−1, wt−1, x
∗
t )h (x∗t ) .

(13)

This equation implies that the observed operator AB on the left hand side of Eq. (12) has
an inherent eigenvalue-eigenfunction decomposition, with the eigenvalues corresponding to
the function k (wt, wt, wt−1, wt−1, x

∗
t ) and the eigenfunctions corresponding to the density

fVt+1|Wt,X∗t
(·|wt, x

∗
t ). The decomposition in Eq. (12) is similar to the decomposition in Hu

and Schennach (2008) or Carroll, Chen, and Hu (2009).
Assumption 3 ensures that this decomposition is unique. Specifically, Eq. (12) im-

plies that the operator AB on the LHS has the same spectrum as the diagonal operator
Dwt,wt,wt−1,wt−1,X∗t

. Assumption 3(i) guarantees that the spectrum of the diagonal operator
Dwt,wt,wt−1,wt−1,X∗t

is bounded. Since an operator is bounded by the largest element of its
spectrum, Assumption 3(i) also implies that the operator AB is bounded, whence we can
apply Theorem XV.4.3.5 from Dunford and Schwartz (1971) to show the uniqueness of the
spectral decomposition of bounded linear operators.

Several ambiguities remain in the spectral decomposition. First, Eq. (12) itself does
not imply that the eigenvalues k (wt, wt, wt−1, wt−1, x

∗
t ) are distinctive for different values

x∗t . When the eigenvalues are the same for multiple values of x∗t , the corresponding eigen-
functions are only determined up to an arbitrary linear combination, implying that they
are not identified. Assumption 3(ii) rules out this possibility. When wt (resp. wt−1) is
close to w̄t (resp. w̄t−1), Eq. (13) implies that the logarithm of the eigenvalues in this de-
composition can be represented as a second-order derivative of the log-density fWt|Wt−1,X∗t

as in Assumption 3(ii). Therefore, Assumption 3(ii) implies that for each wt, we can find
values w̄t, wt−1, and w̄t−1 such that the eigenvalues are distinct across all x∗t .15 A sufficient
condition for 3(ii) is that ∂3

∂zt∂zt−1∂x∗t
ln fWt|Wt−1,X∗t

is continuous and nonzero, which implies

that ∂2

∂zt∂zt−1
ln fWt|Wt−1,X∗t

is monotonic in x∗t for any (wt, wt−1).
Second, the eigenfunctions fVt+1|Wt,X∗t

(·|wt, x
∗
t ) in the spectral decomposition (12) are

unique up to multiplication by a scalar constant. However, these are density functions, so
their scale is pinned down because they must integrate to one. Finally, both the eigenvalues
and eigenfunctions are indexed by X∗t . Since our arguments are nonparametric, and X∗t is

15Specifically, the operators AB corresponding to different values of (wt, wt−1, wt−1) share the same
eigenfunctions fVt+1|Wt,X∗

t
(·|wt, x

∗
t ). Assumption 3(ii) implies that, for any two different eigenfunctions

fVt+1|Wt,X∗
t

(·|wt, x
∗
t ) and fVt+1|Wt,X∗

t
(·|wt, x̃

∗
t ), one can always find values of (wt, wt−1, wt−1) such that

the two different eigenfunctions correspond to two different eigenvalues, i.e., k (wt, wt, wt−1, wt−1, x
∗
t ) 6=

k (wt, wt, wt−1, wt−1, x̃
∗
t ).
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unobserved, we need an additional monotonicity condition, in Assumption 4, to pin down
the value of X∗t relative of the observed variables. This was discussed earlier, in the remarks
following Assumption 4.

Therefore, altogether the density fVt+1|Wt,X∗t
or LVt+1|wt,X∗t

is nonparametrically identi-
fied for any given wt ∈ Wt via the spectral decomposition in Eq. (12). Q.E.D.

By re-applying Lemma 3 to the observed density fVt,Wt−1|Wt−2,Vt−3
, it follows that the

density fVt|Wt−1,X∗t−1
is identified.16 Hence, by Lemma 2, we have shown the following result:

Theorem 1. (Identification of Markov law of motion, non-stationary case):
Under the Assumptions 1, 2, 3, and 4, the density fWt+1,Wt,Wt−1,Wt−2,Wt−3 for any t ∈
{4, . . . , T − 1} uniquely determines the density fWt,X∗t |Wt−1,X∗t−1

.

3.1 Initial conditions

Some CCP-based estimation methodologies for dynamic optimization models (eg. Hotz,
Miller, Sanders, and Smith (1994), Bajari, Benkard, and Levin (2007)) require simulation
of the Markov process (Wt, X

∗
t ,Wt+1, X

∗
t+1,Wt+2, X

∗
t+2, . . .) starting from some initial values

Wt−1, X
∗
t−1. When there are unobserved state variables, this raises difficulties because X∗t−1

is not observed. However, it turns out that, as a by-product of the main identification
results, we are also able to identify the marginal densities fWt−1,X∗t−1

. For any given initial
value of the observed variables wt−1, knowledge of fWt−1,X∗t−1

allows us to draw an initial
value of X∗t−1 consistent with wt−1.

Corollary 1. (Identification of initial conditions, non-stationary case): Under the
Assumptions 1, 2, 3, and 4, the density fWt+1,Wt,Wt−1,Wt−2,Wt−3 for any t ∈ {4, . . . , T − 1}
uniquely determines the density fWt−1,X∗t−1

.

Proof: in Appendix. �

3.2 Stationarity

In the proof of Theorem 1 from the previous section, we only use the fifth period of dataWt−3

for the identification of LVt|wt−1,X∗t−1
. Given that we identify LVt+1|wt,X∗t

using four periods of
data, i.e., {Wt+1,Wt,Wt−1,Wt−2}, the fifth period Wt−3 is not needed when LVt|wt−1,X∗t−1

=
LVt+1|wt,X∗t

. This is true when the Markov kernel density fWt,X∗t |Wt−1,X∗t−1
is time-invariant.

Thus, in the stationary case, only four periods of data, {Wt+1,Wt,Wt−1,Wt−2}, are required
to identify fWt,X∗t |Wt−1,X∗t−1

. Formally, we make the additional assumption:

16Recall that Assumptions 1-4 are assumed to hold for all periods t. Hence, applying Lemma 3 to the
observed density fVt,Wt−1|Wt−2,Vt−3 does not require any additional assumptions.

12



Assumption 5. Stationarity: the Markov law of motion of (Wt, X
∗
t ) is time-invariant:

fWt,X∗t |Wt−1,X∗t−1
= fW2,X∗2 |W1,X∗1

, ∀ 2 ≤ t ≤ T.

Stationarity is usually maintained in infinite-horizon dynamic programming models.
Given the foregoing discussion, we present the next corollary without proof.

Corollary 2. (Identification of Markov law of motion, stationary case): Under as-
sumptions 1, 2, 3, 4, and 5, the observed density fWt+1,Wt,Wt−1,Wt−2 for any t ∈ {3, . . . , T − 1}
uniquely determines the density fW2,X∗2 |W1,X∗1

.

In the stationary case, initial conditions are still a concern. The following corollary,
analogous to Corollary 1 for the non-stationary case, postulates the identification of the
marginal density fWt,X∗t

, for periods t ∈ {1, . . . , T − 3}. For any of these periods, fWt,X∗t

can be used as a sampling density for the initial conditions.17

Corollary 3. (Identification of initial conditions, stationary case): Under assump-
tions 1, 2, 3, 4, and 5, the observed density fWt+1,Wt,Wt−1,Wt−2 for any t ∈ {3, . . . , T − 1}
uniquely determines the density fWt−2,X∗t−2

.

Proof: in Appendix. �

4 Comments on Assumptions in Specific Examples

Even though we focus on nonparametric identification, we believe that our results can be
valuable for applied researchers working in a parametric setting, because they provide a
guide for specifying models such that they are nonparametrically identified. As part of
a pre-estimation check, our identification assumptions could be verified for a prospective
model via either direct calculation, or Monte Carlo simulation using specific parameter
values. If the prospective model satisfies the assumptions, then the researcher could proceed
to estimation, with the confidence that underlying variation in the data, rather than the
particular functional forms chosen, is identifying the model parameters, and not just the
particular functional forms chosen. If some assumptions are violated, then our results
suggest ways that the model could be adjusted in order to be nonparametrically identified.

To this end, we present two examples of dynamic models here. Because some of the
assumptions that we made for our identification argument are quite abstract, we discuss
these assumptions in the context of these examples.18

17Even in the stationary case, where fWt,X∗
t |Wt−1,X∗

t−1
is invariant over time, the marginal density of

fWt−1,X∗
t−1

may still vary over time (unless the Markov process (Wt, X
∗
t ) starts from the steady-state). For

this reason, it is useful to identify fWt,X∗
t

across a range of periods.
18A third example, based on Rust (1987), is in the supplemental material (Hu and Shum (2009)).
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4.1 Example 1: A discrete model

As a first example, let (Wt, X
∗
t ) denote a bivariate discrete first-order Markov process where

Wt and X∗t are both binary scalars: ∀t, suppX∗t = suppWt ≡ {0, 1}. This is the simplest
example of the models considered in our framework. One example of such a model is a
binary version of Abbring, Chiappori, and Zavadil’s (2008) “dynamic moral hazard” model
of auto insurance. In that model, Wt is a binary indicator of claims occurrence, and X∗t is a
binary effort indicator, with X∗t = 1 denoting higher effort. In this model, moral hazard in
driving behavior and experience rating in insurance pricing imply that the laws of motion
for both Wt and X∗t should exhibit state dependence:

Pr(Wt = 1|wt−1, x
∗
t , x
∗
t−1) = p(wt−1, x

∗
t ); Pr(X∗t = 1|x∗t−1, wt−1) = q(x∗t−1, wt−1). (14)

These laws of motion satisfy Assumption 1.
Relative to the continuous case presented beforehand, some simplifications obtain in

this finite-dimensional example. Notationally, the linear operators in the previous section
reduce to matrices, with the L operators in the main proof corresponding to 2×2 square
matrices, and the D operators are 2×2 diagonal matrices. Specifically, for binary random
variables R1, R2, R3, the (i+ 1, j + 1)-th element of the matrix LR1,r2,R3 contains the joint
probability that (R1 = i, R2 = r2, R3 = j), for i, j ∈ {0, 1}.

Assumptions 2, 3, and 4 are quite transparent to interpret in the matrix setting. As-
sumption 2 implies the invertibility of certain matrices. From Lemma 1, the following
matrix equality holds, for all values of (wt, wt−1):

LWt+1,wt|wt−1,Wt−2
= LWt+1|wt,X∗t

Dwt|wt−1,X∗t
LX∗t |wt−1,Wt−2

. (15)

Assumption 2(i) implies that the matrix LWt−2,wt−1,wt,Wt+1 =
(
LWt+1,wt|wt−1,Wt−2

Dwt−1,Wt−2

)T
is invertible, which implies that LWt+1,wt|wt−1,Wt−2

is also invertible. Hence, by Eq. (15),
LWt+1|wt,X∗t

and LX∗t |wt−1,Wt−2
are both invertible, and that all the elements in the diag-

onal matrix Dwt|wt−1,X∗t
are nonzero. Hence, in this discrete model, Assumption 2(ii) is

redundant, because it is implied by 2(i).
Furthermore, Assumption 2(iii) is also implied by 2(i). Specifically, LWt−2,wt−1,Wt =(

LWt|wt−1,Wt−2
Dwt−1,Wt−2

)T with LWt|wt−1,Wt−2
= LWt|wt−1,X∗t−1

LX∗t−1|wt−1,Wt−2
. By As-

sumption 2(i), LWt|wt−1,X∗t−1
is invertible. Since LX∗t |wt−1,Wt−2

= LX∗t |wt−1,X∗t−1
LX∗t−1|wt−1,Wt−2

was shown above to be invertible, the matrix LX∗t−1|wt−1,Wt−2
is invertible, and hence so

is LWt|wt−1,Wt−2
. Since Assumption 2(i) also implies Dwt−1,Wt−2 is invertible, the matrix

LWt−2,wt−1,Wt is invertible.
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Assumption 3 puts restrictions on the eigenvalues in the spectral decomposition of the
AB operator. In the discrete case, AB is an observed 2×2 matrix, and the spectral de-
composition reduces to the usual matrix diagonalization. Assumption 3(i) implies that the
eigenvalues are nonzero and finite, and 3(ii) implies that the eigenvalues are distinctive. For
all (wt, wt−1), these assumptions can be verified, by directly diagonalizing the AB matrix.

In this discrete case, Assumption 4 is to an “ordering” assumption on the columns of
the LWt+1|wt,X∗t

matrix, which are the eigenvectors of AB. This is because, for a ma-
trix diagonalization T = SDS−1, where D is diagonal, and T and S are square matrices,
any permutation of the eigenvalues (the diagonal elements in D) and their corresponding
eigenvectors (the columns in S) results in the same diagonal representation of T .

If the goal is only to identify fWt,X∗t |Wt−1,X∗t−1
for a single period t, then we could dispense

with Assumption 4 altogether, and pick two arbitrary orderings in recovering LWt+1|wt,X∗t

and LWt|wt−1,X∗t−1
. By doing this, we cannot pin down the exact value of X∗t or X∗t−1, but the

recovered density of Wt, X
∗
t |Wt−1, X

∗
t−1 is still consistent with the two arbitrary orderings

for X∗t and X∗t−1, in the sense that the implied transition matrix X∗t |X∗t−1, wt−1 for every
wt−1 ∈ Wt−1 is consistent with the true, but unknown ordering of X∗t and X∗t−1.19

But this will not suffice if we wish to recover the transition density fWt,X∗t |Wt−1,X∗t−1
in

two periods t = t1, t2, with t1 6= t2. If we want to compare values of X∗t across these two
periods, then we must invoke Assumption 4 to pin down values of X∗t which are consistent
across the two periods. For this example, one reasonable monotonicity restriction is

for wt = {0, 1} : E[Wt+1|wt, X
∗
t = 1] < E[Wt+1|wt, X

∗
t = 0] (16)

The restriction (16) implies that future claims Wt+1 occur less frequently with higher effort
today, and imposes additional restrictions on the the p(· · · ) and q(· · · ) functions in (14).20

To see how this restriction orders the eigenvectors, and pins down the value of X∗t ,
note that E[Wt+1|wt, X

∗
t ] = f(Wt+1 = 1|wt, X

∗
t ), which is the second component of each

eigenvector. Therefore, the monotonicity restriction (16) implies that the eigenvectors (and
their corresponding eigenvalues) should be ordered such that their second components are
decreasing, from left to right. Given this ordering, we assign a value of X∗t = 0 to the
eigenvector in the first column, and X∗t = 1 to the eigenvector in the second column.

19We thank Thierry Magnac for this insight.
20See Hu (2008) for a number of other alternative ordering assumptions for the discrete case.

15



4.2 Example 2: generalized investment model

For the second example, we consider a dynamic model of firm R&D and product quality
in the “generalized dynamic investment” framework described in Doraszelski and Pakes
(2007).21 In this model, Wt = (Yt,Mt), where Yt is a firm’s R&D in year t, and Mt is the
product’s installed base. The unobserved state variable X∗t is the firm’s product quality.

Product quality X∗t is restricted to a bounded support:

X∗t = 0.8X∗t−1 + 0.1ψ (Yt−1) + 0.1νt; ψ (Yt−1) = U
eYt−1 − 1
eYt−1 + 1

; 0 < U < +∞. (17)

In the above, νt is a standard normal shock truncated to the interval [0, U ], distributed
independently over t. We assume X∗0 ∈ [0, U ], which ensures that X∗t ∈ [0, U ] for all t.

Installed base evolves as:

Mt+1 −Mt = exp(ηt+1 + k(X∗t+1)) k′(·) > 0 (18)

where ηt+1 is a standard normal shock, truncated to [0, 1], independently across t. Eq. (18)
implies that, ceteris paribus, product quality raises installed base.

Each period, a firm chooses its R&D to maximize its discounted future profits:

Yt = Y ∗(Mt, X
∗
t , γt)

= argmaxy≥0

[
Π(Mt, X

∗
t )︸ ︷︷ ︸

profits

− γt︸︷︷︸
shock

·1Yt≥0 · (κ+ Y 2
t )︸ ︷︷ ︸

R&D cost

+βEV (Mt+1, X
∗
t+1, γt+1)︸ ︷︷ ︸

value fxn

] (19)

κ > 0 is a fixed cost of R&D, and γt is a shock to R&D costs. We assume that the γt’s are
distributed U [0.5, 1] independently across t. Therefore, the RHS of Eq. (19) is supermodular
in Yt and −γt, for all (Mt, X

∗
t ). Accordingly, the firm’s optimal R&D investment Yt is

monotonically decreasing in γt, holding (Mt, X
∗
t ) fixed.

Assumption 1 is satisfied for this model.

Assumption 2 contains three invertibility assumptions. For the Vt variables in Assump-
tion 2, we use Vt = Mt, for all periods t.22 We begin by presenting a necessary condition for
an operator to be one-to-one, which is useful to determine when one-to-one is not satisfied.
Later, we will consider conditions which ensure that one-to-one is satisfied.

21See Hu and Shum (2009, Section 1.2) for additional discussion of dynamic investment models.
22Levinsohn and Petrin (2003) and Ackerberg, Benkard, Berry, and Pakes (2007) note that, with fixed

costs to R&D, Yt = 0 for many values of (Mt, X
∗
t ), and hence may not provide enough information on X∗t .
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Lemma 4. (Necessary conditions for one-to-one): If LR1,R3 is one-to-one, then for
any set S3 ⊆ R3 with Pr (S3) > 0, there exists a set S1 ⊆ R1 such that Pr (S1) > 0 and

∂

∂r3
fR1,R3(r1, r3) 6= 0 almost surely for ∀r1 ∈ S1, ∀r3 ∈ S3. (20)

Proof: in Appendix. �

Intuitively, the condition ensures enough variation in R1 for different values of R3.
Consider Assumption 2(i). Because product quality directly affects contemporaneous

installed base, the distribution of Mt+1 depends on X∗t+1. Similarly, the distribution of Mt−2

depends on X∗t−2. Since (X∗t+1, X
∗
t−2) are correlated, the density of (Mt+1, wt, wt−1,Mt−2)

varies in Mt−2, for different values of (Mt+1, wt, wt−1). For Assumption 2(ii), note that be-
cause we are not conditioning on X∗t+1, the conditional distribution of Mt+1|wt, X

∗
t depends

on X∗t . Similarly, for Assumption 2(iii), Mt depends on X∗t , which is correlated with Mt−2,
so that the density of (Mt, wt−1,Mt−2) varies in Mt−2 for different (wt−1,Mt).

Hence, so far, we have shown that our model specification satisfies necessary conditions
for Assumption 2. In the appendix, we discuss sufficient conditions for Assumption 2.

Assumption 3 contains two restrictions on the density fWt|Wt−1,X∗t
, which factors as

fWt|Wt−1,X∗t
= fYt|Mt,X∗t

· fMt|Yt−1,Mt−1,X∗t
. (21)

Assumption 3(i) requires that, for any (wt, wt−1), this density is bounded between 0 and
+∞. The first term is the density of R&D Yt. From the preceding discussion, we know that,
conditional on (Mt, X

∗
t ), the randomness in Yt results from, and is monotonically decreasing

in, the shock γt. Since, by assumption, the density of γt is bounded away from 0 and +∞
along its support, so will the conditional density fYt|Mt,X∗t

.
The second term fMt|Mt−1,X∗t

is the law of motion for installed base which, by assump-
tion, is a truncated normal distribution, so it is also bounded away from zero and +∞.
The bounded support assumptions on Mt may appear artificial but, in practice, imply little
loss in generality, because typically in estimating these models, one will take the upper and
lower bounds on Mt from the observed data.

For 3(ii), we derive that

∂2

∂mt∂mt−1
ln fWt|Wt−1,X∗t

(wt|wt−1, x
∗
t ) =

∂2

∂mt∂mt−1
[ln f(yt|mt, x

∗
t ) + ln f(mt|wt−1, x

∗
t )] .

The conditional density of mt|mt−1, x
∗
t ∼ φ̃ (log(mt −mt−1)− k(x∗t )) / [mt −mt−1] , where
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φ̃ denotes a truncated standard normal density. This is decreasing in x∗t for every (mt,mt−1),
and implies the condition in Assumption 3(ii).

For Assumption 4, note E[Mt+1|mt, yt, x
∗
t ] = mt+E[exp(ηt+1)]·E[exp(k(X∗t+1))|x∗t , yt].

Because the function k(·) is monotonic, the law of motion for product quality implies that
E[exp(k(X∗t+1))|x∗t , yt] is monotonic in x∗t . Hence, taking G to be the expectation functional,
we pin down x∗t =

∫
mt+1fMt+1|Mt,Yt,X∗t

(mt+1|mt, yt, x
∗
t )dmt+1.

5 Concluding remarks

We have considered the identification of a first-order Markov process {Wt, X
∗
t } when only

{Wt} is observed. Under non-stationarity, the Markov law of motion fWt,X∗t |Wt−1,X∗t−1
is

identified from the distribution of the five observations Wt+1, . . . ,Wt−3. Under stationarity,
identification of fWt,X∗t |Wt−1,X∗t−1

obtains with only four observations Wt+1, . . . ,Wt−2. Once
fWt,X∗t |Wt−1,X∗t−1

is identified, nonparametric identification of the remaining parts of the
models – particularly, the per-period utility functions – can proceed by applying the results
in Magnac and Thesmar (2002) and Bajari, Chernozhukov, Hong, and Nekipelov (2007),
who considered dynamic models without persistent latent variables X∗t .

For a general k-th order Markov process (k <∞), it can be shown that the 3k+2 observa-
tionsWt+k, . . . ,Wt−2k−1 can identify the Markov law of motion fWt,X∗t |Wt−1,...,Wt−k,X∗t−1,...,X∗t−k

,
under appropriate extensions of the assumptions in this paper.

We have only considered the case where the unobserved state variable X∗t is scalar-
valued. The case where X∗t is a multivariate process, which may apply to dynamic game
settings, presents some serious challenges. Specifically, when X∗t is multi-dimensional, As-
sumption 2(ii), which requires that LVt+1|wt,X∗t

be one-to-one, can be quite restrictive.
Ackerberg, Benkard, Berry, and Pakes (2007, Section 2.4.3) discuss the difficulties with
multivariate unobserved state variables in the context of dynamic investment models.

Finally, this paper has focused on identification, but not estimation. In ongoing work,
we are using our identification results to guide the estimation of dynamic models with unob-
served state variables. This would complement recent papers on the estimation of paramet-
ric dynamic models with unobserved state variables, using non-CCP-based approaches.23

23Imai, Jain, and Ching (2009) and Norets (2006) consider Bayesian estimation, and Fernandez-Villaverde
and Rubio-Ramirez (2007) consider efficient simulation estimation based on particle filtering.
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APPENDIX A: Proofs

Proof: (Lemma 1) By Assumption 1(i), the observed density fWt+1,Wt,Wt−1,Wt−2 equals∫ ∫
fWt+1,Wt,Wt−1,Wt−2,X∗t ,X∗t−1

dx∗tdx
∗
t−1

=
∫ ∫

fWt+1|Wt,Wt−1,Wt−2,X∗t ,X∗t−1
fWt,X∗t |Wt−1,Wt−2,X∗t−1

fWt−1,Wt−2,X∗t−1
dx∗tdx

∗
t−1

=
∫ ∫

fWt+1|Wt,X∗t
fWt,X∗t |Wt−1,X∗t−1

fWt−1,Wt−2,X∗t−1
dx∗tdx

∗
t−1

=
∫ ∫

fWt+1|Wt,X∗t
fWt|Wt−1,X∗t ,X∗t−1

fX∗t |Wt−1,X∗t−1
fWt−1,Wt−2,X∗t−1

dx∗tdx
∗
t−1

=
∫ ∫

fWt+1|Wt,X∗t
fWt|Wt−1,X∗t ,X∗t−1

fX∗t |Wt−1,Wt−2,X∗t−1
fWt−1,Wt−2,X∗t−1

dx∗tdx
∗
t−1

=
∫ ∫

fWt+1|Wt,X∗t
fWt|Wt−1,X∗t ,X∗t−1

fX∗t ,X∗t−1,Wt−1,Wt−2dx
∗
tdx
∗
t−1.

(We omit all the arguments in the density functions.) Assumption 1(ii) then implies

fWt+1,Wt,Wt−1,Wt−2 =
∫
fWt+1|Wt,X∗t

fWt|Wt−1,X∗t

(∫
fX∗t ,X∗t−1,Wt−1,Wt−2dx

∗
t−1

)
dx∗t

=
∫
fWt+1|Wt,X∗t

fWt|Wt−1,X∗t
fX∗t ,Wt−1,Wt−2dx

∗
t .

Hence, by combining the above two displays, we obtain

fWt+1,Wt|Wt−1,Wt−2
=
∫
fWt+1|Wt,X∗t

fWt|Wt−1,X∗t
fX∗t |Wt−1,Wt−2

dx∗t . (22)

In operator notation, given values of (wt, wt−1) ∈ Wt ×Wt−1, this is

L
Wt+1,wt|wt−1,Wt−2

= LWt+1|wt,X∗t
Dwt|wt−1,X∗t

LX∗t |wt−1,Wt−2
. (23)

For the variable(s) Vt ⊆ Wt, for all periods t, introduced in Assumption 2, Eq. (23)
implies that the joint density of {Vt+1,Wt,Wt−1, Vt−2} is expressed in operator notation as
L

Vt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗t

Dwt|wt−1,X∗t
LX∗t |wt−1,Vt−2

, as postulated by Lemma 1. Q.E.D.
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Proof: (Lemma 2) Assumption 1 implies the following two equalities:

fVt+1,Wt|Wt−1,Vt−2
=

∫
fVt+1|Wt,X∗t

fWt,X∗t |Wt−1,Vt−2
dx∗t

fWt,X∗t |Wt−1,Vt−2
=

∫
fWt,X∗t |Wt−1,X∗t−1

fX∗t−1|Wt−1,Vt−2
dx∗t−1. (24)

In operator notation, for fixed wt, wt−1, the above equations are expressed:

LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗t

Lwt,X∗t |wt−1,Vt−2

Lwt,X∗t |wt−1,Vt−2
= Lwt,X∗t |wt−1,X∗t−1

LX∗t−1|wt−1,Vt−2
.

Substituting the second line into the first, we get

LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗t

Lwt,X∗t |wt−1,X∗t−1
LX∗t−1|wt−1,Vt−2

⇔ Lwt,X∗t |wt−1,X∗t−1
LX∗t−1|wt−1,Vt−2

= L−1
Vt+1|wt,X∗t

L
Vt+1,wt|wt−1,Vt−2

. (25)

where the second line uses Assumption 2(ii). Next, we eliminate LX∗t−1|wt−1,Vt−2
from the

above. Again using Assumption 1, we have

fVt|Wt−1,Vt−2
=
∫
fVt|Wt−1,X∗t−1

fX∗t−1|Wt−1,Vt−2
dx∗t−1 (26)

which, in operator notation (for fixed wt−1), is

LVt|wt−1,Vt−2
= LVt|wt−1,X∗t−1

LX∗t−1|wt−1,Vt−2
⇒ LX∗t−1|wt−1,Vt−2

= L−1
Vt|wt−1,X∗t−1

LVt|wt−1,Vt−2

where the right-hand side applies Assumption 2(ii). Hence, substituting the above into Eq.
(25), we obtain the desired representation

Lwt,X∗t |wt−1,X∗t−1
L−1

Vt|wt−1,X∗t−1
LVt|wt−1,Vt−2

= L−1
Vt+1|wt,X∗t

L
Vt+1,wt|wt−1,Vt−2

(27)

⇒ Lwt,X∗t |wt−1,X∗t−1
L−1

Vt|wt−1,X∗t−1
= L−1

Vt+1|wt,X∗t
L

Vt+1,wt|wt−1,Vt−2
L−1

Vt|wt−1,Vt−2
(28)

⇒ Lwt,X∗t |wt−1,X∗t−1
= L−1

Vt+1|wt,X∗t
L

Vt+1,wt|wt−1,Vt−2
L−1

Vt|wt−1,Vt−2
LVt|wt−1,X∗t−1

. (29)

The second line applies Assumption 2(iii) to postmultiply by L−1
Vt|wt−1,Vt−2

, while in the third
line, we postmultiply both sides by LVt|wt−1,X∗t−1

. Q.E.D.
Proof: (Lemma 4) For a contradiction, suppose Eq. (20) fails, so there exists an

interval S3 ≡ [r, r̄] such that, for ∀r3 ∈ S3 and ∀r1 ∈ R1, ∂
∂r3
fR1,R3(r1, r3) = 0. Define
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h0 (r3) = IS3 (r3) g(r3), where IS3(r3) denotes the indicator function for r3 ∈ S3. Then

(LR1,R3h0) (r1) =
∫
fR1,R3(r1, r3)h0(r3)dr3 =

∫
S3
fR1,R3(r1, r3)g(r3)dr3

≡
∫
S3
fR1,R3(r1, r3)dG(r3)

= fR1,R3(r1, r3)G(r3)|rr −
∫
S3
G(r3)

(
∂

∂r3
fR1,R3(r1, r3)

)
dr3

= fR1,R3(r1, r)G(r)− fR1,R3(r1, r)G(r)

Notice that fR1,R3(r1, r) = fR1,R3(r1, r). Thus, for ∀r1 ∈ R1

(LR1,R3h0) (r1) = fR1,R3(r1, r) [G(r)−G(r)] .

Then, pick any function g for which G(r) − G(r) =
∫ r̄
r g(r)dr = 0, but g(r) 6= 0 for any r

in a nontrivial subset of [r, r̄]. We have LR1,R3h0 = 0, but h0 6= 0. Therefore, Eq. (2) fails,
and LR1,R3 is not one-to-one. Q.E.D.

Proof: (Corollary 1)
From Lemma 3, fVt|Wt−1,X∗t−1

is identified from density fVt,Wt−1|Wt−2,Vt−3
. The equality

fVt,Wt−1 =
∫
fVt|Wt−1,X∗t−1

fWt−1,X∗t−1
dx∗t−1 implies that, for any wt−1 ∈ Wt,

fVt,Wt−1=wt−1 = LVt|wt−1,X∗t−1
fWt−1=wt−1,X∗t−1

⇔ fWt−1=wt−1,X∗t−1
= L−1

Vt|wt−1,X∗t−1
fVt,Wt−1=wt−1

where the second line applies Assumption 2(ii). Hence, fWt−1,X∗t−1
is identified. Q.E.D.

Proof: (Corollary 3)
Under stationarity, the operator LVt−1|wt−2,X∗t−2

is the same as LVt+1|wt,X∗t
, which is

identified from the observed density fVt+1,Wt|Wt−1,Vt−2
(by Lemma 3). Because fVt−1,Wt−2 =∫

fVt−1|Wt−2,X∗t−2
fWt−2,X∗t−2

dx∗t−2, the same argument as in the proof of Corollary 1 then
implies that fWt−2,X∗t−2

is identified from the observed density fVt−1,Wt−2 . Q.E.D.

APPENDIX B: Additional Details for Example 2

Here, we discuss sufficient conditions for Assumption 2, in the context of Example 2. We
use the fact that the laws of motion for this model (cf. Eqs. (17) and (18)) are either linear
or log-linear to apply results from the convolution literature, for which operator invertibility
has been studied in detail.

21



We proceed by establishing the invertibility of LMt+1,wt|wt−1,Mt−2
, LMt+1|wt,X∗t

, and
LMt|wt−1,Mt−2

. Subsequently, the fact that the components of these operators are all convo-
lutions immediately implies that LMt−2,wt−1,wt,Mt+1 and LMt−2,wt−1,Mt+1 are also invertible,
as required by Assumption 2(i,iii).24

As shown in the proof of Lemma 2, Assumption 1 implies that

LMt+1,wt|wt−1,Mt−2
= LMt+1|wt,X∗t

Dwt|wt−1,X∗t
LX∗t |wt−1,Mt−2

= LMt+1|wt,X∗t
Dwt|wt−1,X∗t

LX∗t |wt−1,X∗t−1
LX∗t−1|wt−1,Mt−2

(30)

LMt|wt−1,Mt−2
= LMt|wt−1,X∗t−1

LX∗t−1|wt−1,Mt−2
. (31)

Furthermore, we have LMt+1|wt,X∗t
= LMt+1|wt,X∗t+1

LX∗t+1|wt,X∗t
.

Hence, the invertibility of LMt+1,wt|wt−1,Mt−2
, LMt+1|wt,X∗t

, and LMt|wt−1,Mt−2
is implied

by the invertibility of LMt+1|wt,X∗t+1
, Dwt|wt−1,X∗t

, LX∗t |wt−1,X∗t−1
and LX∗t−1|wt−1,Mt−2

.25 It
turns out that assumptions we have made already for this example ensure that three of
these operators are invertible. We discuss each case in turn.

(i) For the diagonal operator Dwt|wt−1,X∗t
, the inverse has a kernel function which is

equal to 1/fwt|wt−1,X∗t
. Hence, by Assumption 3(i), which guarantees that fwt|wt−1,X∗t

is
bounded away from 0 and ∞, the inverse exists.

(ii) For LMt+1|wt,X∗t+1
, we use Eq. (18) whereby, for every (yt,mt), Mt+1 is a convolution

of X∗t+1, ie. log [Mt+1 −Mt] = k(X∗t+1)+ηt+1. As is well-known, as long as the characteristic
function of ηt+1 has no real zeros, which is satisfied by the assumed truncated normal
distribution, the corresponding operator is invertible.

(iii) Similarly, for fixed wt−1, X∗t is a convolution of X∗t−1, ie. X∗t = 0.8X∗t−1 +
0.1ψ (Yt−1) + 0.1νt (cf. Eq. (17). Hence, LX∗t |wt−1,X∗t−1

is invertible if the characteris-
tic function of νt has no real zeros, which is satisfied by the assumed normal distribution
truncated to [0, U ].

(iv) For the last operator, corresponding to the density fX∗t−1|wt−1,Mt−2
, the assumptions

made so far do not ensure that this operator is invertible. Following cases (ii) and (iii)
immediately above, a sufficient condition for invertibility is that X∗t−1 is a convolution of
Mt−2: ie, X∗t−1 = h1(Wt−1) + h2(Mt−2) + ξt−1, with h2 an increasing function and ξt−1 a
random variable with a characteristic function without any real zeros (which is satisfied by
the assumption that ξt−1 is standard normal, truncated to [0, 1]).

24For additional details, see Sakhnovich (1996, chapter 2).
25By stationarity, we do not need to consider LX∗

t+1|wt,X∗
t

and LMt|wt−1,X∗
t−1

separately.
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