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Abstract

This paper is concerned with online time series forecasting, where unknown dis-
tribution shifts occur over time, i.e., latent variables influence the mapping from
historical to future observations. To develop an automated way of online time
series forecasting, we propose a Theoretical framework for Online Time-series
forecasting (TOT in short) with theoretical guarantees. Specifically, we prove that
supplying a forecaster with latent variables tightens the Bayes risk—the benefit
endures under estimation uncertainty of latent variables and grows as the latent
variables achieve a more precise identifiability. To better introduce latent variables
into online forecasting algorithms, we further propose to identify latent variables
with minimal adjacent observations. Based on these results, we devise a model-
agnostic blueprint by employing a temporal decoder to match the distribution of
observed variables and two independent noise estimators to model the causal infer-
ence of latent variables and mixing procedures of observed variables, respectively.
Experiment results on synthetic data support our theoretical claims. Moreover, plug-
in implementations built on several baselines yield general improvement across
multiple benchmarks, highlighting the effectiveness in real-world applications.

1 Introduction

Time series data stream in sequentially like an endless tide. Online time-series forecasting [Anava
et al., 2013, Pham et al., 2023, Lau et al.] aims to leverage recent T observed variables x;_,.; to
predict the future segment x;1.7. In real-world scenarios, each observation x; may be partially
observed, while a set of unobserved latent variables z, governs the evolving relationship between past
and future. These latent variables introduce unknown distribution shifts [Zhang et al., 2024b, Zhao
and Shen, 2024], i.e., the conditional distribution p(x¢11.7 | X¢—-.¢) changes over time, resulting
in suboptimal performance of time series forecasting algorithms. Therefore, how to adapt to these
distribution shifts automatically is a key challenge for online time series forecasting.

To overcome this challenge, different methods are proposed to handle the time-varying distributions.
Specifically, some methods devise different model architectures to adapt to nonstationarity. For
example, Pham et al. [2022] considers that the fast adaptation capability of neural networks can
handle the distribution changes, so they propose the fast and slow learning networks to balance fast
adaptation to recent changes while preserving the old knowledge. Another similar idea is yee Ava Lau
et al. [2025], which harnesses slow and fast streams for coarse predictions and near-future forecasting,
respectively. Another solution focuses on concept drift estimation. For example, Zhang et al. [2024b]
detects the temporal distribution shift and updates the model in an aggressive way. Considering that
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the ground-truth future values are delayed until after the forecast horizon, Zhao and Shen [2024] first
estimates the concept drift and then incorporates it into forecasters. And Cai et al. [2025] estimates
the nonstationarity with sparsity constraint by assuming the temporal distribution shifts are led by the
unknown interventions. Please refer to Appendix A for more discussion of the related works.

Despite demonstrating empirical gains in mitigating temporal shifts, these methods leave some
theoretical questions unanswered. Specifically, existing approaches incorporating distribution shifts
into model architectures [Pham et al., 2023, yee Ava Lau et al., 2025, Zhang et al., 2024b, Zhao
and Shen, 2024] offer few theoretical guarantees explaining why conditioning on such estimated
shifts yields a systematic reduction in forecasting error. Although recent work Cai et al. [2025]
provides theoretical results, it often imposes strict conditions on the data generation process, i.e.,
nonstationarity is led by interventions on latent variables. Moreover, the uncertainty inherent in
distribution shift estimation is rarely considered in the generalization bounds of error risk, leaving the
discrepancy between empirical and ground-truth generalization risks uncharacterized. Furthermore,
how to shrink the aforementioned gap theoretically and empirically remains underexplored. Therefore,
a general theoretical framework for online time-series forecasting is urgently needed.

In this paper, we propose a Thretical framework for Online Time-series forecasting (TOT) with
theoretical guarantees. Specifically, we first consider a general time series generation process, where
the temporal distribution shifts are led by latent variables z;. Sequentially, we show that conditioning
the forecaster on z; tightens the Bayes risk; the reduction persists under estimation noise and improves
as identifiability sharpens. We further show that both the latent variables and their causal dynamics
can be identified using only four adjacent observations, yielding a concrete, minimal-data criterion.
Building on these theoretical results, we devise a model-agnostic blueprint with a temporal decoder
to match the marginal distributions of observations and two independent noise estimators to model
the temporal dynamics of observed and latent variables. Experiment results on synthetic data verify
our theoretical results, and plug-in versions atop different baselines achieve general improvement
across several benchmarks. The key contributions of our work are summarized as follows:

* We establish formal risk-bound guarantees for online forecasting under latent-driven distribution
shift, furnishing explicit theoretical guidance to enhance forecasting performance.

* We prove that both latent states and their temporal causal dynamics can be uniquely identified from
only four consecutive observations.

* We propose a plug-and-play model architecture and achieve general improvement on several
benchmark datasets of online time series forecasting.

2 Problem Setup

We first introduce a data generation process as shown in Figure @ e @

1. Specifically, we let x; = {241, -, Z¢n} be a n—dimension
random vector that represents the observations. We further assume @ ° @
that they are generated by the historical observations x;_1, hidden

variables z, = {2;1,-- - , 2.}, and independent noise €} via a
nonlinear mixing function g. Moreover, the latent variables z; ;
is generated by the time-delayed parents Pay(z; ;), instantaneous

parents Pa.(2;), and independent noise €7 ; via latent causal in-
fluence f;. Putting them together, the data generation process can

Figure 1: Illustration of the gen-
eration process for time series
data, where the mapping of ob-
served variables x;_1 — X; 18

be formulated as Equation (1). influenced by latent variables z;.
o z o z
x; =gz, Xe—1,€0,), 2 = fi(Paa(zei), Pac(2ei), €55), Qi ~pee,, €6 ~per,. (1)
Nonlinear Mixing Procedure Latent Causal Influence

To better understand our theoretical results, we provide the definitions of subspace-wise [Von Kiigel-
gen et al., 2021] and component-wise identifiability [Kong et al., 2022]. Please refer to Appendix B
for the description of the notations.

Definition 1 (Block-wise Identifiability of Latent Variables z;). The block-wise identifiability of
z; € R™ means that for ground-truth z;, there exists z; and an invertible function H : R — R",
such that z; = H(zy).



Definition 2 (Component-wise Identifiability of Latent Variables z;, ;). The component-wise
identifiability of z, € R"™ is that for each z; ;,7 € {1,--- ,n}, there exists a corresponding estimated
component Z, j,j € {1,--- ,n} and an invertible function h; : R — R, such that z, ; = hi(Ze,5).

3 Theoretical Framework for Online Time Series Forecasting

Based on the aforementioned data generation process, we present theoretical results for online time
series forecasting. Specifically, we first demonstrate that incorporating latent variables z; reduces
forecasting risk, and that improved identifiability of these latent variables narrows the gap between
estimated and ground-truth risk (Theorem 1). To ensure identifiability, we first identify the joint
distribution of x; and z; by matching the marginal distribution of four consecutive observations
(Theorem 2). Subsequently, by imposing a sparse constraint on the estimated mixing procedure, i.e.
z — X, we further establish component-wise identifiability of the latent variables z; (Theorem 3).

3.1 Predictive-Risk Analysis

We begin with the predictive risk analysis regarding different types of inputs of a time series forecaster.

Theorem 1. (Predictive-Risk Reduction via Temporal Latent Variables) Let x4, z;, and Z; be the ob-
served variables, ground-truth latent variables, and the estimated latent variables, respectively. We let
Xi—7it = {Xt—r, -+ ,X¢ } be the historical (T+1)-step observed variables. Moreover, we let Ro, R,
and R be the expected mean squared error for the models that consider {X¢— .4}, {Xt—r:t, 24 }, and
{Xt—r.t, 2}, respectively. Then, in general, we have Ro > Ry > R,, and if z, is identifiable we
have Ro > R; = R,.

Discussion: The proof can be found in Appendix C.1. This risk bound can be derived by leveraging
the law of total expectation and the law of total variance to decompose the expected mean squared
error. Intuitively, Theorem 1 highlights the critical role latent variables play in reducing predictive
risk for online time series forecasting. Specifically, it reveals three distinct scenarios:

First, if the ground-truth latent variables z, have no influence on the observed variables x;, the
predictive risk remains unchanged irrespective of whether latent variables are considered, i.e., Ro =
R; = R.. However, this scenario rarely occurs in practice because z; having no influence on the
mapping xX;_,.; — X;+1 implies that the observed time series data is stationary, and it is typically
challenging to collect all relevant observations without any influence from exogenous variables.

Second, when latent variables do influence observed variables, incorporating the ground-truth latent
variables reduces the predictive risk compared to using observations alone, leading to Ro > R,.
Practically, however, ground-truth latent variables z; are unknown, and we can only access the
estimated latent variables z;. If these latent variables are fully identifiable, the estimated latent
variables can achieve the same risk reduction as the true latent variables, resulting in R, > Rs; = R,.

Third, if the estimated latent variables z, partially identify the ground-truth latent variables, meaning
there exists at least one dimension j € 1,--.,n for which, for all # € 1,.--,n, no function
h; satisfies z;; = h;(2;;). Consequently, the estimated latent variables Z; capture only certain
aspects of the temporal dynamics while omitting others due to incomplete identifiability, resulting
in Ro > Rz > R,. In the worst case, when the estimated latent variables are completely non-
identifiable (e.g., z; are purely random noise), we have R, = Rz > R.,.

Based on the aforementioned discussion, we have the following two takeaway conclusions.

1. Incorporating latent variables to characterize distribution shifts helps reduce forecasting error.
ii. The more accurately the latent variables are identified, the lower the predictive risk.

3.2 Identify Joint Distribution of Latent and Observed Variables

Based on the aforementioned results, we further propose to identify the latent variables from observa-
tions. By leveraging four consecutive observed variables, i.e., X;_2,X;_1, X¢, and X441, we can find
that the block (x, z,) is block-wise identifiable. For a better explanation of these results, we first
introduce the definition of the linear operator as follows:

Definition 3 (Linear Operator Hu and Schennach [2008], Dunford and Schwartz [1971]). Consider
two random variables a and b with support A and B, the linear operator Ly, is defined as a



mapping from a probability function p, in some function space F (A) onto the probability function
Pb = Lp|a © Pa in some function space F(B),

F(A) = F(B) : pp = Lija 0 pa = /A Poja(-|a)pa(a)da. @

Theorem 2. (Block-wise Identification under 4 Adjacent Observed Variables.) Suppose that
the observed and latent variables follow the data generation process. By matching the true joint
distribution of 4 adjacent observed variables, i.e., {Xt_2,X¢—1,X¢, Xt41 }, we further consider the
following assumptions:

* Al (Bound and Continuous Density): The joint distribution of x, z and their marginal and condi-
tional densities are bounded and continuous.

* A2 (Injectivity): There exists observed variables x; such that for any x; € X, there exist a
X;_1 € X;_1 and a neighborhood * N around (x;,x;_1) such that, for any (X;,%;_1) € N,

Ly, xii1)xe_2,%e_1 15 injective; Ly, | x, 200 Lxi|xi_s,xs_1 IS injective for any xy € Xy and x4—1 €

+_1, respectively.

* A3 (Uniqueness of Spectral Decomposition) For any x; € X; and any z; # 7z € Z, there exists a
X;_1 € Xy_1 and corresponding neighborhood N satisfying Assumption A2 such that, for some
(X, X¢1) € NT with Xy # Xq, Xp—1 7 Xp—1!

i k(X¢, X¢,X¢—1,X¢-1,2t) < C < 0o for any z; € Z; and some constant C.
i k(X¢, X, Xe—1,X¢-1,%¢) 7 k(Xe, Xe, X¢1, %41, Z¢), where
o pxt\xt,l,zt (Xt ‘ Xt—lazt)pxﬂxt,l,zt (it | )_(t—hzt)

k(xe, Xe, Xe—1,X4-1,2¢) = - — G
Pxi|xi_1,2¢ (Xt \ Xt—lazt)pxﬂxt,l,zt (Xt | Xt—hzt)

Suppose that we have learned (g, f ,De) to achieve Equations (1), then the combination of Markov
state z;, Xy is identifiable, i.e., [2¢,%X;] = H (2., X¢), where H is invertible and differentiable.

Implication and Proof Sketch. This theory is based on Hu and Shum [2012] and it shows that the
block (x;,z;) can be identified via consecutive observations. Please find the proof in Appendix C.2.
Although both [Fu et al., 2025a] and our theory employ the technique of eigenvalue-eigenfunction
decomposition, our result is a general case of Fu et al. [2025a], which demonstrates the identifiability
results under the assumption that there is no causal relationship between the observed variables.
Moreover, we further relax the monotonicity and normalization assumption (Please find the details of
this assumption in Appendix C.4) in Hu and Shum [2012], which requires that the function form of
p(Xt+1|2¢,X¢) — 2¢ is known. This adjustment allows our conclusion to better align with real-world
time series data.

The proof can be summarized into the following three steps. First, under the data generation process in
Figure 1, we establish the relationship between the linear operators acting on the observed and latent
variables. Sequentially, by introducing the neighborhood of (x;—1, X;), we derive an eigenvalue-
eigenfunction decomposition for the observations, accounting for different transition probabilities
of observed variables. Finally, by leveraging the uniqueness property of spectral decomposition
(Theorem XV.4.3.5 Dunford and Schwartz [1971]), we demonstrate that the latent variables are
block-wise identifiable when the marginal distribution of the observed variables is matched.

Connection with Previous Results. To better understand our results and highlight the contributions
of our work in comparison to previous studies, we further discuss the different intuitions between
our work and prior works. In Fu et al. [2025b], due to the absence of causal edges between the
observed variables x;, conditioning on z;, the three consecutive observations (i.e., X;—1, X¢, X¢+1)
are conditionally independent, which allows us the use different observations to describe the variance
of latent variable. Meanwhile, because there are causal edges between the observed variables, and the
latent variable z; influences the mapping x;—1 — x;, we use different transitions of observations, i.e.,
p(X¢|X¢—1,2¢) to describe the variance of z;, making the identifiability of latent variables possible.

Discussion on Assumptions. We provide a detailed explanation of the assumptions to clarify their
real-world implications and enhance the understanding of our results.

*Please refer to Appendix C.5 for the definition of neighborhood.



First, the assumption of the bound and continuous conditional densities is a standard assumption in
the works of identifiability of latent variables [Hu and Schennach, 2008, Hu, 2008, Fu et al., 2025a].
It implies that the transition probability densities of observed and latent variables are bounded and
continuous. This assumption is easy to meet in practice, for instance, the temperature records in the
climate data are changing continuously within a reasonable range.

Second, according to Definition 3, the linear operator Ly, denotes the mapping from p, to py,
and the injectivity of the linear operator means that there is enough variation in the density of b for
different distributions of a. For example, Ly, x,.|x,_, x,_, means that the historical observations
have sufficient influence on the future observations, i.e., the historical values of temperature should
have a strong influence on the future values. Please refer to Appendix C.3 for more examples of the
injectivity of linear operators.

Third, the third assumption implies that the changing of latent variables z; produces a visibly different
Dy |1z (Xt [Xt—1,2¢)
! d

Pxy|xy_1,2¢ (xi‘x{—lvzt)

influence on the mapping from x;_; to x;. Concretely, we let p,, 1 =

Dy |31 1z (Kt [Xt—1,2¢)
Pz2 = Dyl _1,2¢ (Xe|Xe—1,2¢)
state (i.e., x;—1 and X;_1) to the same current states (x; or X;). Assumption A3 says that for any
two different values of latent values, there exist different historical states x; 1, X;_1, so that at least
one of these ratios changes. Intuitively, this means the latent variable must have a sufficiently large
influence on x;_; — x;. For example, if z; encodes the information of seasons and x; denotes
the temperature, then the typical day-to-day temperature jump in winter versus summer will differ
markedly. Since A3 asks for the existence of any two such states, it is easy to be satisfied in several
real-world scenarios with continuous x;. More discussion can be found in Appendix C.6.

be the probability of transitioning rate from two different historical

3.3 Component-wise Identification of Latent Variables

Based on the block-wise identifiability of (z:,x;) from Theorem 2, we further show that z; is
component-wise identifiable. For a better understanding of our results, we first provide the definition
of the Intimate Neighbor Set [Li et al., 2024b, Zhang et al., 2024a] as follows.

Definition 4 (Intimate Neighbor Set Li et al. [2024b], Zhang et al. [2024a]). Consider a Markov
network My over variables set U, and the intimate neighbor set of variable u, ; is

U ad,,, (W) £ {ue ;| w; is adjacent to u, ;,

and it is also adjacent to all other neighbors of uy ;, we ; € \{us;} }

Based on this definition, we consider u; = {z;_1,X¢_1, 2, X¢}, then the identifiability can be

ensured with the help of historical information (x;_1,2z;—1) and the sparse mixing procedure.
Theorem 3. (Component-wise Identification of z; under sparse mixing procedure.) For a series
of observations x; € R™ and estimated latent variables Z, € R™ with the corresponding process

fi,p(€), §, suppose the marginal distribution of observed variables is matched. Let My, be the

Markov network over u; £ {Zt—_1,X¢—1,2¢,%X¢}. Besides the common assumptions like smooth,
positive density, and sufficient variability assumptions in [Li et al., 2025], we further assume:

» A4 (Sparse Mixing Procedure): For any z; ; € z, the intimate neighbor set of z, ; is an empty set.

When the observational equivalence is achieved with the minimal number of edges of the estimated
mixing procedure, there exists a permutation  of the estimated latent variables, such that z, ; and
Zy (i) is one-to-one corresponding, i.e., z ; is component-wise identifiable.

Proof Sketch and Connection with Existing Results. Proof can be found in the Appendix C.7. For
simplicity, we omit the subscript in conditional distributions. We exploit the sparsity of the mixing
procedure from z; to x;. Concretely, if a latent component z; ; does not contribute to an observed
variable x; j, where 7, j € {1,--- ,n}, there is no causal edge between them. In the Markov network
over uy, implying the conditional independence of z; ; AL x¢ j|u;\{z¢:, 2 ;}, Vi, j € {1,--- ,n}.
This conditional independence implies that the corresponding mixed second-order partial derivative

32P(met|zt717

of p(z¢, X¢|Ze—1,X¢—1) 1S zero, i.e. E T
via sufficient changes assumptions in Li et al. [2025] and further results in identifiability of z;. More

discussion can be found in Appendix C.8.

*1=1) — (), which can further yields a linear system




While our argument leverages the
same technique used in Li et al. O/O Observed/Latent Variables Sparse Latent Process
[2025], deriving zero-derivative con-

ditions from sparsity in the Markov -- »/—— Deterministic/Causal Process Sparse Mixing Process

network, our contribution is orthogo-

nal in three main respects: 1) Noisy @ e

Mixing Procedure. Li et al. [2025] "( /i

assume an invertible, noise-free mix- @ e

ing from latent to observed vari- L S

ables. In contrast, we allow addi- I // | /@

tional noise in the mixing procedure ' '

z; — Xy, thereby accommodating @

measurement error in X;. Since the

real-world datasets always contain (a) Data Generation (b) Data Generation
Process of IDOL. Process of Our Method.

measurement uncertainty, our model
explicitly accounts for observation
noise, making our theoretical results
suitable for real-world scenarios. 2)
Temporal relations among Observations. Previous methods on temporal causal representation
learning Li et al. [2025], Yao et al. [2021, 2022] usually assume that there are no causal links between
x¢—1 and x; due to the difficulties of reconstructing z; directly. However, our method allows the
temporal relationships among observed variables, which is more suitable for real-world scenarios.

3) Different Sparsity Assumptions. Although IDOL Li et al. [2024b] and LSTD Cai et al. [2025]
also leverage the sparsity assumption, we would like to highlight that these sparsity assumptions are
different. Specifically, IDOL imposes sparsity constraints on the latent process as shown in Figure
2 (a). We instead assume sparsity in the mixing procedure from z; to x; as shown in Figure 2 (b).
According to the data generation process shown in Equation (1), there is no instantaneous relations
within x,, the intimate set of any 2, ; are more easy to be empty, implying that the sparsity condition
in our work is simpler to be met in practice.

Figure 2: Illustration of the difference between sparse causal
influence and sparse mixing procedure.

4 Model-Agnostic Blueprint

The aforementioned results tell us the importance of in-
troducing the latent variables z; into online time series ¢
forecasting and how to identify them theoretically. To I Lk I Ly
show how to identify the latent variables empirically, ér; X1 Xe
we further devise a general neural architecture as shown ]
in Figure 3, where the gray blocks can be replaced

e . Latent Decoder | | Forecaster

with dlfferent backbpne networks by decomposing the Transition

forecasting models into encoders and forecasters. We Estimator

let x1.; and x;41.7 be historical and future observa- € P e

tion, respectively. Since the proposed architecture is {19, 21,20 Bpan, 2p :

built upon the variational autoencoder [Kingma, 2013, € e R e

Zhang et al., 2018, Blei et al., 2017], we first derive the 1

evidence lower bound (ELBO) in Equation (4). TObse_rv_ed
ransition

ELBO =Ey(z, 1 |x,.,) np(X1:7|21:7) Estimator . ..y,
Ly and L,

(4)  Figure 3: Illustration of the proposed
— 8Dkl a)lp(zi)), ph%g-and-play architecture, wheré)thg gray
L blocks (encoder and forecaster) can be
where /3 denotes the hyper-parameters and Dy, is the replaced with different backbones. The
Kullback—Leibler divergence. ¢(z1.7|x1.) is used to dashed lines denote the backpropagation.
approximate the prior distribution and implemented by
encoders. p(x1.7|z1.7) is used to reconstruct the historical observation x;.; and predict the future
observation X;1.7, which are implemented by decoders and forecasters. The encoder ¢(-) and
decoder v (+) can be formalized as:.

Z1.7 = ¢(X1:t), X4 = 7//(21:t)~ (5)




And the details of the forecaster can be found in Subsection 4.2.

4.1 Latent and Observed Transition Estimators

To estimate the prior distribution of latent variables z;, we further model the transitions z;_; — z;
and z;,x;_1 — X; by estimating the independent noise €7 and €7, respectively. For the latent
transition, we first let ¥ be a set of trainable inverse transition function that take z; ; and z;_ as input
and estimate the noise term €7 ;, i.e., €7 ; = r¥ (2., 2:—1). And each r; is implemented by Multi-layer
Perceptron networks (MLPs). As a result, we can develop a transformation k5 : (Z—1,%Z:) —

Zi_1,€7), whose Jacobian is J,, ]Iz Oz , where J%=diag o7 ) and J% =diag ori ).
¢ J J 0Z¢_1,i € 0%t 4

Sequentially, we have Equation (6) via the change of variables formula.

VA

or?
92 ‘ (6)

t,%

log p(2¢,2¢—1) = log p(2¢—1,€F) + log |

According to the generation process, the noise et ; should be independent of z;_1, so we can enforce
the independence of the estimated noise term €7 ;. And Equation (6) can be further rewritten as

X ) n . n (97"12
logp(z1.7) = logp(21) + Z (Z log p(€% ;) + Z log |3zt|> , (N
=2 \i=1 i=1 i

where p(é- ;) is assumed a Gaussian distribution. Details of prior derivation are in Appendix D.1.3.

According to the ELBO in Equation (4), we can model the mapping from z;.7 to x;.7 via any
neural architecture directly. But the temporal relations might be omitted since they are not explicitly
modeled, resulting a suboptimal performance. Therefore, we employ a similar solution to model
the transition of observed variables. Specifically, we use another MLP to implement 7§ to estimate
noise term €7, i.e., €7; = r9(2,X;—1,X,;). Therefore, we can devise another transformation

I 0 O
Ko : (Zt,X¢t—1,%Xt) — (%¢,%¢—1,€2) and the corresponding Jacobian J,, = <O I 0 >, where
* % J°

J°o = diag ( 8(1? ) And we further have Equation (8):

0

8 tzl
®)

(x¢|xt—1,2¢) =log p(&7)+log|

log p(x¢, X¢—1,%¢) =log p(X¢—1, Z¢, €7)

As a results, we can model the relationship among z;, x;_1, and x; by enforcing the independence of
the estimated noise term €7 ;. In practice, we assume p(€ ;) also follows a Gaussian distribution, so

we employ a prior Gaussian distribution to constrain p(é‘;ﬂ-), which is denoted by L% .

4.2 Observation Residual Forecaster and Sparsity Constraint on Mixing Procedure

According to Theorem 1, we should leverage the historical observations and the estimated latent
variables for forecasting. Hence, different from previous methods [Cai et al., 2023, Fu et al., 2025a]
that only use latent variables, we devise a “residual” forecaster network as shown in Equation (9).

X1 = @(it+1:T7 77(X1:t))7 9)

where 7 is an MLP for dimensionality reduction. Guided by the results of Theorem 3, the mixing
procedure is assumed to be sparse. However, without further constraints, the estimated mixing struc-
ture induced by the MLP-based architecture 7 may be dense since we only restrict the independence
of the estimated noise. Moreover, the spurious causal edges may lead to the incorrect estimation of
p(x1.7), which further results in the suboptimal forecasting performance. To solve this problem, we
propose to enforce the sparsity of the estimated mixing procedure by applying L1 penalty on the
partial derivative of X; with respect to z;, which are shown as follows:

> 2

t=14,5€{1,

Oy

10t

(10)

1



Table 1: Experiment results on simulation data for identifiability and forecasting evaluation.

Method ‘ TOT IDOL TDRL Inputs ‘ Ours (x¢ and Z¢) Upper Bound (x¢ and z¢) Baseline (x¢)
A 0.9258(0.0034)  0.3788(0.0245)  0.3572(0.0523) A 0.5027(0.0045) 0.4978(0.0002) 0.7005(0.0088)
B 0.9324(0.0078)  0.8593(0.0092)  0.8073(0.0786) B 0.4395(0.0097) 0.4195(0.0017) 0.6532(0.0062)

(a) MCC results for identifiability evaluation. (b) MSE results for forecasting evaluation.

Table 2: Mean Square Error (MSE) results on the different datasets and different backbones.

LSTD+ roceed-T+ OneNet+ OneNet-T+ . Online-T+
Models ‘ Len | LSTD TOT proceed-T p TOT OneNet TOT OneNet-T TOT Online-T TOT
1 0377 0374 1.537 1.001 0.380 0.361 0.411 0.364 0.502 0.385
ETTh2 24 | 0.543  0.532 2.908 2.360 0.532 0.525 0.772 0.691 0.830 0.733
48 | 0.616  0.564 4.056 3.956 0.609 0.562 0.806 0.773 1.183 0.874
1 0.081  0.081 0.106 0.102 0.082 0.082 0.082 0.077 0.085 0.077
ETTml 24 | 0102 0.107 0.531 0.530 0.098 0.096 0.212 0.154 0.258 0.221
48 | 0115  0.117 0.704 0.697 0.108 0.098 0.223 0.177 0.283 0.246
1 0.153  0.153 0.346 0.313 0.156 0.151 0.171 0.150 0.206 0.145
WTH 24 | 0.136  0.116 0.707 0.703 0.175 0.149 0.293 0.263 0.308 0.265
48 | 0.157  0.152 0.959 0.956 0.200 0.158 0.310 0.263 0.302 0.276
1 2112 2.038 3.270 3.131 2.351 2.301 2.470 2.211 3.309 2.172
ECL 24 | 1422 1.390 5.907 5.852 2.074 2.000 4.713 4.671 11.339 4.381
48 | 1.411 1.413 7.192 7.403 2.201 2.143 4.567 4.445 11.534 4.574
1 0.231 0.229 0.333 0.312 0.241 0.222 0.236 0.211 0.334 0.212
Traffic 24 | 0.398  0.397 0.413 0.410 0.438 0.354 0.425 0.401 0.481 0.386
48 | 0426  0.421 0.454 0.454 0.473 0.377 0.451 0.407 0.503 0.413
1 0.013  0.013 0.012 0.009 0.017 0.015 0.031 0.017 0.113 0.010
Exchange | 24 | 0.039  0.037 0.129 0.102 0.047 0.030 0.060 0.042 0.116 0.035
48 | 0.043  0.042 0.267 0.195 0.062 0.039 0.065 0.051 0.168 0.040

Finally, the total loss of the proposed method can be summarized as follows:
Ltotal :Ly"_aLr_ﬁ(L?(L_L?(L)—’_’yLS? (11)
where «, 5, and -y are hyper-parameters.

S Experiment

5.1 Synthetic Experiment

Data Generation We generate the simulated time series data with the fixed latent and observed
causal process. We provide different synthetic datasets with different time lags, different dimensions
of latent variables, latent structure, and mixing structure, respectively. Due to the page limitation, we
put other synthetic experiment results in Appendix D.1.5 and report the results of Dataset A and B in
the main text. Dataset A strictly follows the data generation process in Figure 1. For dataset B, we do
not consider the causal influence of x;_; when generating x;, i.e., x; = g(2¢, €7). Please refer to
Appendix D.1.1 for the details of the synthetic data and implementation details of our method.

Baselines. To evaluate our theoretical claims, we consider two different tasks. Specifically, to
evaluate Theorem 2 and 3, we consider the identifiability performance of latent variables with Mean
Correlation Coefficient (MCC) metric and choose IDOL Li et al. [2025] and TDRL Yao et al. [2022]
as baselines. To evaluate Theorem 1, we consider the performance of forecasting with Mean Square
Error (MSE) metric. We choose MLPs as a forecasting model. Moreover, we let the models with only
x¢, with x¢, z¢, and with x;, z; be baselines, our method and upper bound, respectively. We repeat
each method over three different random seeds and report the mean and standard deviation.

Results and Discussion. Experiment results of the simulation datasets are shown in Table 1. The
identification results in Table 1 (a) show that 1) the proposed TOT can well identify the latent variables,
while the other methods can hardly achieve it since they do not model the temporal causal inference
of observations. 2) Even when the temporal causal inference of observations is omitted, TOT still
achieves a better performance, since IDOL and TDRL are not suitable to the noisy mixing procedure.
The forecasting results in Table 1 (b) also align with the results from Theorem 1. Specifically, the
MSE results of our method and upper bound method outperform than that of baseline, i.e., only
considering the historical observations, demonstrating the importance of latent variables. We also find
that our forecasting results are close to but weaker than that of the upper bound method, indirectly
reflecting that the proposed method can well identify the latent variables.



Table 3: Mean Absolute Error (MAE) results on the different datasets and different backbones.

LSTD+ roceed-T+ OneNet+ OneNet-T+ . Online-T+
Models ‘ Len | LSTD TOT proceed-T P TOT OneNet TOT OneNet-T TOT Online-T TOT
1 0.347  0.346 0.447 0.401 0.348 0.346 0.374 0.350 0.436 0.348
ETTh2 24 | 0411  0.390 0.659 0.615 0.407 0.403 0.511 0.508 0.547 0.490
48 | 0423 0420 0.767 0.728 0.436 0.435 0.543 0.521 0.589 0.530
1 0.187  0.187 0.190 0.185 0.187 0.184 0.191 0.183 0.214 0.180
ETTml 24 | 0217  0.237 0.447 0.442 0.225 0.224 0.319 0.288 0.381 0.346
48 | 0.249  0.249 0.521 0.505 0.238 0.229 0.371 0.312 0.403 0.369
1 0.200  0.200 0.143 0.138 0.201 0.192 0.221 0.198 0.276 0.189
WTH 24 | 0223 0.207 0.382 0.376 0.225 0.229 0.345 0.333 0.367 0.326
48 | 0242 0.229 0.493 0.491 0.279 0.239 0.356 0.340 0.362 0.336
1 0.226  0.221 0.286 0.282 0.254 0.253 0.411 0.302 0.635 0.214
ECL 24 | 0292 0278 0.387 0.380 0.333 0.333 0.513 0.403 1.196 0.324
48 | 0294  0.289 0.431 0.422 0.348 0.357 0.534 0.402 1.235 0.343
1 0225  0.224 0.268 0.256 0.240 0.221 0.236 0.203 0.284 0.200
Traffic 24 | 0316 0313 0.291 0.289 0.346 0.300 0.346 0.313 0.385 0.298
48 | 0332 0.328 0.308 0.309 0.371 0.318 0.355 0.322 0.380 0.320
1 0.070  0.069 0.063 0.051 0.085 0.078 0.117 0.085 0.169 0.055
Exchange | 24 | 0.132  0.129 0.211 0.189 0.148 0.118 0.166 0.137 0.213 0.124
48 | 0.142  0.142 0.300 0.260 0.170 0.137 0.173 0.152 0.258 0.132
0.045 Exchange(MSE) 0.145 Exchange(MAE) 0.90 ETTh2(MSE) 0.48 ETTh2(MAE)
0.813 0.461
0.042 0.041  0.140 0137  0.80 0.46
0.039 0.039 0.135 0.70 0.44
0.130 0.590 0.418
0.036 0.033 0.034 0.130 0.60 0.523 0.563 0.42 0,399 0402
0.033{ 7 0.1251) 155 0:124 0.50 0.40{"
0.030 0.120 0.40 0.38
0.027 0.115 0.30 0.36
) 0 <\ e < 0 <N e < R < e < R < e
<0 (O"ﬁ (O« (O"’d <0 (0«5 (O" (O«’é <0 »(O«'(j (O’( (O(’d <0 «0"5 «O« «0(,6

Figure 4: Ablation study on the Exchange and ETTh2 datasets.
5.2 Real-world Experiment
5.3 Experiment Setup

Datasets We follow the setting of Wen et al. [2023] and consider the following datasets. ETT is an
electricity transformer temperature dataset, which contains two separate datasets {ETTh2, ETTm1}.
Exchange is the daily exchange rate dataset from eight foreign countries. Weather is recorded
at the Weather Station at the Max Planck Institute for Biogeochemistry in Germany. ECL is an
electricity-consuming load dataset with the electricity consumption. Traffic is a dataset of traffic
speeds collected from the California Transportation Agencies Performance Measurement System.

Baseline: We consider the following methods as our backbone networks: OneNet Wen et al. [2024]
(including two model variants), Procced-T (TCN is abbreviated as T) Zhao and Shen [2024], Online-
T Zinkevich [2003], and LSTD Cai et al. [2025]. For each method, we only modify the model
architecture and keep the training strategy fixed. We repeat each method over three random seeds.
Since some methods report the best results on the original paper, we show the best results on the
main text. We also provide the experiment results with mean and variance over three random seeds
in Appendix D.2.4. Please refer to Appendix D.2.2 and D.2.3 for implementation details and more
experiment results based on other backbone networks, respectively.

5.4 Results and Discussions

Experiment results of different benchmarks under different backbone networks are shown in Table
2 and 3. According to the experiment results, we can draw the following conclusions: (1) Our
framework consistently outperforms all backbones on most datasets, demonstrating its effectiveness
in real-world scenarios. (2) The gains with the OneNet backbone are larger than with LSTD or
Proceed, since OneNet models only dependencies of observed variables, whereas LSTD and Proceed
already leverage some information of distribution shifts led by latent variables. (3) Compared to
LSTD, our improvements are smaller on a few tasks like ECL, this is because LSTM employs a similar
neural architecture to identify latent variables. However, we still match or exceed its performance on



most benchmarks since our method is suitable for more flexible and realistic real-world scenarios. We
further devise three model variants named TOT-Sp, TOT-kl, and TOT-de, which remove the sparsity
constraint Ly, KL divergence L1, and the reconstruction loss L., respectively. Experiment results
in Figure 4 reflect the necessity of each loss term and model architecture.

6 Conclusion

This paper presents a general theoretical and practical framework for online time-series forecasting
under distribution shifts caused by latent variables. We first show that introducing these latent
variables yields a provable reduction in Bayes risk, and that this benefit scales with the precision
of latent-state identifiability. We then show that both the latent states and their underlying causal
transitions can be uniquely identified from just four consecutive observations, under mild injectivity
and variability conditions. Building on these results, we design a plug-and-play architecture with
an additional temporal decoder and two independent noise estimators. Extensive experiments on
synthetic and real-world benchmarks confirm our theoretical guarantees and demonstrate consistent
improvements over several baselines. Future work aims to extend these results to related tasks, such
as causal discovery on time series data and video understanding. Limitation: Our theoretical results
assume fully observed, discretely sampled data. Extending this framework to continuous, irregular,
or multi-rate sampling time series data remains an important and meaningful direction.
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A Related Works

A.1 Time Series Forecasting

Recent advancements in time series forecasting have been driven by the application of deep learning
techniques, which have proven to be highly effective in this area. These methods can be broadly
categorized into several groups. First, Recurrent Neural Networks (RNNs) are commonly used for
capturing temporal dependencies by leveraging their recursive structure and memory to model hidden
state transitions over time [Graves and Graves, 2012, Lai et al., 2018, Salinas et al., 2020]. Another
popular approach is based on Temporal Convolutional Networks (TCNs), which employ a shared
convolutional kernel to model hierarchical temporal patterns and extract relevant features [Bai et al.,
2018, Wang et al., Wu et al., 2022]. Additionally, simpler yet highly effective methods, such as
Multi-Layer Perceptrons (MLP) [Oreshkin et al., 2019, Zeng et al., 2023, Zhang et al., 2022, Li et al.,
2024a] and state-space models [Gu et al., 2022, 2021b,a], have also been utilized in forecasting tasks.
Among these, Transformer-based models have emerged as particularly noteworthy, demonstrating
significant progress in the time series forecasting domain [Kitaev et al., 2020, Liu et al., 2021, Wu
etal., 2021, Zhou et al., 2021]. Despite the success of these methods, they are generally designed for
offline data processing, which limits their applicability to real-time, online training scenarios.

A.2 Online Time Series Forecasting

The rapid growth of training data and the need for real-time updates have made online time series
forecasting more popular than offline methods [Anava et al., 2013, Liu et al., 2016, Gultekin and
Paisley, 2018, Aydore et al., 2019]. Recent approaches include Pan et al. [2024], which uses structural
consistency regularization and memory replay to retain temporal dependencies, and Luan et al. [2024],
which applies tensor factorization for low-complexity online updates. Additionally, Mejri et al. [2024]
addresses nonlinear forecasting by mapping low-dimensional series to high-dimensional spaces for
better adaptation. Online forecasting is widely used in practice due to continuous data and frequent
concept drift. Models are trained over multiple rounds, where they predict and incorporate new
observations to refine performance. Recent work, such as [Pham et al., 2022, Cai et al., 2025, yee
Ava Lau et al., 2025] and Wen et al. [2024], focuses on optimizing fast adaptation and information
retention. However, simultaneously adapting to new data while retaining past knowledge can lead to
suboptimal results, highlighting the need to decouple long- and short-term dependencies for improved
predictions. However, most of these methods rarely explore the theoretical guarantees for online time
series forecasting.

A.3 Continual Learning

Our work is also related to continual learning. Continual learning is an emerging field focused on
developing intelligent systems that can sequentially learn tasks with limited access to prior experience
[Lopez-Paz and Ranzato, 2017]. A key challenge in continual learning is balancing the retention
of knowledge from current tasks with the flexibility to learn future tasks, known as the stability-
plasticity dilemma [Lin, 1992, Grossberg, 2013]. Inspired by neuroscience, various continual learning
algorithms have been developed. This approach aligns with the needs of online time series forecasting,
where continuous learning allows models to update in real time as new data arrives, improving their
ability to adapt to changing data dynamics and enhancing forecasting accuracy.

A.4 Causal Representation Learning

To ensure the identifiability of latent variables, Independent Component Analysis (ICA) has been
widely used for causal representation learning [Yao et al., 2023, Scholkopf et al., 2021, Liu et al.,
2023, Gresele et al., 2020]. Traditional ICA methods assume a linear mixing function between
latent and observed variables [Comon, 1994, Hyvirinen, 2013, Lee and Lee, 1998, Zhang and Chan,
2007], but this is often impractical. To address this, studies have proposed assumptions for nonlinear
ICA, such as sparse generation processes and auxiliary variables [Zheng et al., 2022, Hyvérinen and
Pajunen, 1999, Hyvirinen et al., 2024, Khemakhem et al., 2020b, Li et al., 2023]. For example, Aapo
et al. confirmed identifiability by assuming latent sources belong to the exponential family, with
auxiliary variables like domain and time indices [Khemakhem et al., 2020a, Hyvarinen and Morioka,
2016, 2017, Hyvarinen et al., 2019]. In contrast, Zhang et al. showed that nonlinear ICA can achieve
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component-wise identifiability without the exponential family assumption [Kong et al., 2022, Xie
et al., 2023, Kong et al., 2023, Yan et al., 2024].

Other studies also use sparsity assumptions to achieve identifiability without supervised signals. For
instance, Lachapelle et al. applied sparsity regularization to discover latent components [Lachapelle
et al., 2023, Lachapelle and Lacoste-Julien, 2022], while Zhang et al. used sparse structures to
maintain identifiability under distribution shifts [Zhang et al., 2024a]. Nonlinear ICA has been
used for time series identifiability [Hyvarinen and Morioka, 2016, Yan et al., 2024, Huang et al.,
2023, Hélvd and Hyvarinen, 2020, Lippe et al., 2022]. Aapo et al. used variance changes to detect
nonstationary time series data identifiability, while permutation-based contrastive learning was applied
for stationary time series [Hyvarinen and Morioka, 2016]. More recently, techniques like TDRL
[Yao et al., 2022], LEAP [Yao et al., 2021] and IDOL [Li et al., 2025] incorporated independent
noise and variability features. Additionally, Song et al. identified latent variables without domain-
specific observations [Song et al., 2024], and Imant et al. used multimodal comparative learning for
modality identifiability [Daunhawer et al., 2023]. Yao et al. showed that multi-perspective causal
representations remain identifiable despite incomplete observations [Yao et al., 2023]. However, these
methods typically assume invertibility in the mixing process. This paper relaxes that assumption and
provides identifiability guarantees for online time series forecasting.

B Notations

This section collects the notations used in the theorem proofs for clarity and consistency.

Table A4: List of notations, explanations, and corresponding values.

Index Explanation Support
n Number of variables n € Nt
i,7,k,1  Index of latent variables i,7,k,le{l,--- ,n}
t Time index te Nt
Variable
Xy Support of observed variables in time-index ¢ X, CR?
Zy Support of latent variables Z; CR™
Xy Observed variables in time-index ¢ x; € R®
Zy Latent variables in time-index ¢ z; € R™
u {Ze—1, %1, 2¢,%¢ } u, € R¥*"
€ Independent noise of mixing procedure € ~ Peo
€, Independent noise of the latent transition of z;; €7 ; ~ pez
Function
Pafp(- | b)  Density function of a given b /
g(-) Nonlinear mixing function R2xn+l 5 R®
fi(9) Transition function of z; ; Rt 5 R
h(-) Invertible transformation from z; to z; R™ — R"”
() Permutation function R” — R"”
F Function space /
My, Markov network over uy /
o) Encoder for 2! /
U Decoder /
e Noise estimator of €7 ;. /
e Noise estimator of €7 . /
Symbol
R Bayes Risk /
Jx Jacobian matrix of ri /
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C Proof

C.1 Proof of Theorem 1

Theorem Al. (Predictive-Risk Reduction via Temporal Latent Variables) Let X;,z;, and Z; be
the observed variables, ground-truth latent variables, and the estimated latent variables, respec-
tively. We let X¢ .t = {Xt—r, -+ , Xt} be the historical (T + 1)-step observed variables. More-
over, we let Ro, R4, and R; be the expected mean squared error for the models that consider
{Xt—rit}y {Xt—r1t, 2t }, and {X¢_r.t, 21}, respectively. Then, in general, we have Ro > Rz > R,
and if z, is identifiable we have Ry > R = R.,.

Proof. Suppose that the observed variables x;, ground-truth latent variables z;, and estimated latent
variables z; follow the data generation process as shown in Figure 1. We let Fo, := 0 (X¢—r.t), Fz =
0(X¢—r1t,2¢), and Fy = 0(X¢—r.t,2) be the information o-algebras generated by the variables
available to the forecaster in the three settings (only observed variables, observed and ground
truth latent variables, observed and the estimated latent variables). And the corresponding optimal
Bayes forecaster can be formalized as xﬁ)l = E[xpp1|xe—rit], fcgi)l = E[X¢41|Xt—r:t,2¢], and

fcgi)l = E[xt+1 |x¢—r:t, 2¢], respectively. Then we let Ro, R, and R be the corresponding Bayes

risk. By using the law of total expectation, we have:
Ro =B x40 = K27 = B B[O = %2070 ()
= Ex, ., [Var(xepa[xe—rit)];

R. = ]Ext+1,xt77:t7zt [(Xt+1 - igj-)l)z] - Ext TitsZt [Ext+1\xt Tty %t [(Xt-‘rl - }Acg-)l)QH (A2)
= Exf it Bt [V (Xt+1 |Xt*7':t7 Zt)],
Ri = ]Ext+1yxt—7:t7it [(Xt+1 - i§1)1)2] = Ext b2 t[
[

- Ext ot y5t Va (Xt+1|xt—7':t72t)]-

=

xt+1‘xt ity 2t [(Xt+1 - )/\ng-)l)2” (A3)

By using the law of total variance, Equation (A1) can be written as:

Ex,_,. [Var(xey1[xe—7:t)] =Ex,_ ., 2 [Var(xe41[Xe—r:t, 2e)]

Ro Rz

(A4)
=+ Extfﬂ':t [Varzt [X¢—7:t (E[Xt+1 |Xt—7'1t7 Zt])]’
and
Ex, .. [Var(xep1|Xe— 7)) =Bx, .., 5, [Var(Xes1[Xe—ret, 2e)]
. Rs (A5)

+ ]Ext—rzt [Varitlxtfmt (E[Xt+1 |Xt—7':f/a if])} .

€

Suppose in Equation (A4), ¢ = 0. That implies Var,, x, ., (E[X;1|X¢—r.,2¢]) = 0, meaning that
z; does not have any influence on the mapping x;_ ..+ — X¢41, which is false because z; 1 x¢11 |
X¢—r.¢. This leads to a contradiction, which implies ¢ > 0 and hence R, > R,.

Consider Equation (AS5). Here, in general, for any z; we have e > 0 and hence R, > R;.
Then we leverage the law of total variance again and have:
Vary, x, . (E(X¢41[Xt— 76, 2¢))
=Es, 1,10 (VAT xo e (BXer1[Xe 7o, 2e])] + Varg, x, ., (Ba,x, 2 EXe 1 Xt Z¢])

:Eit |Xt—7:t [Varzt‘xt—rzhit (E[Xt+1 |Xt*7'¢t7 Zt])] + Varit|xt—-r:t (E[Xt+1 |Xt*7'¢t’ it])
(A6)

Then we take the expectation on both sides of Equation (A6) and have :
B, o [Varg, s, ., (BXeq1]Xe—rit, 2e])] =Ex, ., [Varz,x, ., (E[Xer1[Xe—7:t, 2¢])]
c c (A7)
+ By [Vars, s,z (BXe 1] X7, 2¢])]
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Similarly’ Eit7xt7ﬂ':t [Varztlxt—‘r:tvit (E[XtJrl |xt7‘r:t7 Zt])] = 0 means that
Vary, |x, _..,a (B[Xt41|X¢t—r:t,2¢]) = 0, implying that E[x; 1[x; 7.,2¢ is a constant, i.e.,
z; and z; have a one-to-one correspondence. Therefore, in general, ¢ > e, and ¢ = e iff z; is
identifiable.

By combining Equation (A4) and (AS), in general, we have R, > Rs > R, and if z; is identifiable
we have Ry > Ry = R,.

O

C.2 Proof of Theorem 2.

For a better understanding of our proof, we begin by introducing an additional operator to represent
the point-wise distributional transformation. For generality, we denote two variables as a and b, with
corresponding support sets A and B.

Definition 5. (Diagonal Operator) Consider two random variable a and b, density functions p,
and py, are defined on some support A and B, respectively. The diagonal operator Dy, maps the
density function p, to another density function Dy, o p, defined by the pointwise multiplication of
the function py, at a fixed point b:

pb|a(b | ')pa = Db|a OmeheVe Db|a = pb|a(b | ) (A8)

Theorem A2. (Block-wise Identification under 4 Adjacent Observed Variables.) Suppose that
the observed and latent variables follow the data generation process. By matching the true joint
distribution of 4 adjacent observed variables, i.e., {X;—2,X¢_1, Xt, X¢4+1}, we further consider the
following assumptions:

* Al (Bound and Continuous Density): The joint distribution of x, z and their marginal and condi-
tional densities are bounded and continuous.

* A2 (Injectivity): There exists observed variables x; such that for any x; € X, there exist a

x;_1 € X;_1 and a neighborhood > N around (x;,x;_1) such that, for any (X;,%¢_1) € N,

L, xoir|xi_2,%01 IS injective; Ly, . 1x, 20 Lix,|x,_2,x,_, 1S injective for any x; € Xy and x;—1 €

+—1, respectively.

* A3 (Uniqueness of Spectral Decomposition) For any x; € X; and any z; # 7z € Z, there exists a
X;_1 € Xy_1 and corresponding neighborhood N satisfying Assumption A2 such that, for some
(X, Xy1) € N with Xy # Xq, Xp—1 7 Xp—1!

i k(x¢,X¢,X¢—1,X¢-1,2¢) < C < 00 for any z; € Z; and some constant C.
ll k(xt,ihxt—l,it—lyit) 7é k(xt,it,xt_l,it_l,it), Where
o pxt\xt_l,zt (Xt ‘ Xt717zt)pxt|xt_1,zt ()_(t | )_(tfhzt)

k(xtaitaxt—lait—lazt) - — — . (A9)
pxt\xt,l,zt (Xt ‘ Xt—lazt>pxt|xt,1,zt (Xt | Xt—17zt)

Suppose that we have learned (

, f ,De) to achieve Equations (1), then the combination of Markov
state 7., Xy is identifiable, i.e., [z, %¢]

= H(z,x¢), where H is invertible and differentiable.

3Please refer to Appendix C.5 for the definition of neighborhood.

20



Proof. By the definition of data generation process, the observed density py, . , x,,x,_1,x,_» €quals

pxt+17xt7xt71;xt72
://pxt{»lvxhztaztfl7xt717xt—2 dztdzt—l
://pxt+1‘xhxt—l;xt—2;zt7zt—1pxt;zt‘xt—l7xt—27zt—1pzt—17xt—17xt,—2 dztdzt—l
://px,,+1\xt,ztpxt,zf,\xt,l,zt,lpzt_l,xt_l,xt_Q dthZt,1
://pxt+1‘xmzt,pxtlxt,—l7Zt,-,zt—1pzt|xt,—17xt,—27Zt—1pxt71,xt—2-,zt—1 dztdztfl'

= //pxt+l |x¢,2¢ Pxe [3¢—1 ,thzt—lpztvxt—laxt—2szt—ldztdzt71'

According to the property of Markov process,

Pxyq1,%xe,%x¢—1,%0—2 = /pr,+1|xf,-,thxf,\xt—1,Zt (/pzt,ztl,xtlgxtQ dztl) dz;
= /pxt+1|xt,ztpxt\xt,hztpzt,xtfl,xtfz dzt' (AIO)

In operator notation, given values of (x;,X;—1) € X; X X;_1, this is

th+17xt,,xt—1»xt—2 = th+1\Xt7ZtDXt|Xt71,ZtLZt»thl-,xt72' (All)

After obtaining the representation of observed density function, furthermore, the structure of Markov
process implies the following two equalities:

Pxip1xix¢—1,%x¢—2 = /pxt+1\xt,ztpr,,zuxt,fuxt,fz dzy,

Pxyozy % —1,%0—2 = /pxtazt|xt—1,Zt—1pzt—17Xt—1-,Xt—2 dzi—1. (A12)
In operator notation, for fixed x;, x;_1, the above equations are expressed:
th+17xt7xt—11xt—2 = th+1|Xt»Ztht>Zf,7Xt—1,Xt—27
LXt7Zt,Xt,1,Xt,2 = th’zt|xt71,Zt—letfl:xt—17xt—2' (A13)

Substituting the second line into the first, we get

th+1-,Xt7xt—1,xt—2 = th,+1|xt7Zt,th,»zt|xt—17zt—1th—l»xt—lyxt—2
_r—1
e Lxhzt‘xt—l7Zt—1LZt—1’xt—17xt—2 - th+1|xt7thxt,+17xt,»xt—17xt—2' (A14)

The second line uses Assumption A2. Next, we eliminate L,, | x, , x, »
using the conditional independence of Markov process, we have:

from the above. Again,

Px¢xi—1,%xe—2 — /pr,\xt,l,zt,lpzt_1yxt—17xt—2 dztfl’ (AIS)

which can be represented in terms of operator (for fixed x;_1) as:

thyxt—lyxt—Z = thlxt,—l7Zt—1LZt717xt717xt72’

= th—lyxt—lyxt—Q =L} th7xt—17xt—2' (A16)

xtlxt—l,zt—l

The R.H.S. applies Assumption A2. Hence, substituting the above into Eq. A14, we obtain the desired
representation:
—1 _ 71
X2t |Xe—1,2¢—1 th |Xt—1,2¢—1 th Xt—1,Xt—2 th+1 |X¢,2¢ th+1 Xty Xt —1,X¢—2

_ 71 -1
= th»ztlxt—lyzt—l - th+1|xt7thxt+17xtyxtflaxt72th,Xt717Xt72thyxt—17zt—1' (A17)
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-1

X1 %1 1.%;_»» While in the third line, we

The second line applies Assumption A2 to post-multiply by L
postmultiply both sides by Ly, |x,_,,

Zi—1°

For each x;, choose a x;_; and a neighborhood A" around (x;,x;_1) to satisfy Assumption A2
and A2, and pick a (X;,X;_1) within the neighborhood N/ to satisfy Assumption A2. Because
(X¢,X4—1) € N7, also (x4,%X¢—1), (X¢,%x¢—1) € N". By the representation of observations in
Eq. All, we have

th+17xtaxt—1-,xt—2 = th+1 \Xt7ZtDXt|Xt71 s 4t LZt»Xt—l,Xt—2 .

The first term on the R.H.S., th+1 [%6,Zs > does not depend on x;_1, and the last term L, , | x, ,
does not depend on x;. This feature suggests that, by evaluating Eq. A1 at the four pairs of points
(xt,Xt—1), (Xt,Xt—1), (Xt,Xt—1), (Xt,Xt—1), each pair of equations will share one operator in
common. Specifically:

th+17xt;xt717xt72 = th+1‘xt’ztDxtlxt—l,thztyxt717Xt72’ (A18)
th+17itht—1-,xt—2 = th+1‘ihzt‘D’_‘t|xt,—17Z1,thaxt—1»xt—2’ (A19)
th+17xt;it71>xt72 = th+1‘xt’ztDxtlit—l,thztaitflyxt72’ (A20)
th+1,>_ct,)_<t_1,xt_2 - th+1\)’(t,zth(,,b’(t,l,thzf,,)_ct_l,xt_y (AZI)

Assumption A2 implies that Ly, |,z 1S invertible. ~Moreover, Assumption A2 implies
Pxilxs 1,2 (Xe | X¢e—1,2¢) > 0 for all z4, so that Dy, |x, , 5, is invertible. We can then solve
for L,, x, ,x, , from Eq. A19 as

—1 -1

Xi|xt—1,2¢ Xt+1‘iuZtht*’lvihxt*laxtf? =Ly x, 1 x5 (A22)
Plugging this expression into Eq. A18 leads to
— - -1
th+1,xt7xt—1axt72 = th+1|xt1ztht|xfl—17ztDs(t‘xtflxzt Xt+1|)7(t7Zthf+1:it7xt717xt—2' (A23)

Lemma 1 of Hu and Schennach [2008] shows that, given the injectivity of L as in

Assumption A2, we can postmultiply by Lz ! to obtain:

Xt4+1,Xt, Xt —1,Xt—2

Xt—2,Xt—1,X¢,X¢41

— -1 _ —1 -1
A= th+1,xt7xt717xt72th+1,xt,xt_1,xt_2 - th+1‘xmzt,Dxt,‘xt—l7zth(t|xt,1,zt Xi41|Xe,2¢ " (A24)
Similarly, manipulations of Eq. A20 and Eq. A21 lead to
B=1L Lt =L

K4 1,Xe, Xt —1,Xe—2Xy 11, X¢, Kt —1,X¢—2

Ds, 1212 Dy )| L' (A25)

Xt41|X¢,2¢ X |Re—1,2¢ 7 XKpp1|Xe,2¢ "
Assumption A2 guarantees that, for any x;, (X¢, X;—1, X¢—1) exist so that Eq. A24 and Eq. A25 are
valid operations. Finally, we postmultiply Eq. A24 by Eq. A25 to obtain:

AB = th+1\XmZtht\xtthtD_l (L L

Xe|Xt—1,2¢

— -1 -1 —1
- th+1\xmzt (Dxt|xt71,ZtDit|xt_1,zth<t\5<t71,Ztht|it_1,zt) L

Xt41 ‘xt7zt

_ —1
= th+1 ‘xtvztDxtv’_‘tvxtflv’_(tfhzt,L (A26)

Xt41|X¢e,287

—1 —1

X Dit|it—17ztht\ict_1,zt Xi41|Xt,2¢

Xt4+1[Xe,2¢ Xt+1|5<uzt)

where

(D teomexosmh) (20) = (D10 Dl Dsse s Dl 1) (20)
_ Pxelxiiz (Xt | Xt—1,2¢)Px, 5o 1 20 (Xt | Xt—l,zt)h(Zt)

DPxcece—1,20 (Xt | Xe—1,20) Dy |y 20 (Xt | Xe—1,2¢)
= k(X X, X1, X1, Z¢ ) P (Z¢).- (A27)

By matching the marginal distribution of observed variables, we can define the operator AB as the
estimated counterpart of the operator AB, constructed using the estimated densities of X;_o, X;_1,
X¢, X¢41, and Z;. Since both the marginal and conditional distributions of the observed variables
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are matched, the true model and the estimated model yield the same distribution over the observed
variables. Therefore, we also have: .
AB = AB. (A28)

Eq. A26 implies that the observed operator AB has an inherent eigenvalue—eigenfunction de-
composition, with the eigenvalues corresponding to the function k(x¢, X4, X¢—1,X¢—1,2¢) and the
eigenfunctions corresponding to the density py, . ,|x, .z, (- | X¢,2¢). Furthermore, Eq. A28 implies

that AB and AB admit the same eigendecompositions, which are similar to the decomposition in Hu
and Schennach [2008] or Carroll et al. [2010]. Assumption A2 ensures that this decomposition is
unique. Specifically, the operator AB on the L.H.S. has the same spectrum as the diagonal operator
Dy, %,.x1_1,%_1,7,- Assumption A2 guarantees that the spectrum of the diagonal operator is bounded.
Since an operator is bounded by the largest element of its spectrum, Assumption A2 also implies that
the operator AB is bounded, whence we can apply Theorem XV.4.3.5 from Dunford and Schwartz
[1971] to show the uniqueness of the spectral decomposition of bounded linear operators:

_ -1 _ _ _ N ~ -1
th+1|xtvzt - CLﬁt+1\5<uitP : Dxt1xt7xt—17xt—1yzt - PDict,i,,,fct_l,it_l,itP (A29)

where C' is a scalar accounting for scaling indeterminacy and P is a permutation on the order of
elements in L, , | %, 2, as discussed in [Dunford and Schwartz, 1971]. These forms of indeterminacy
are analogous to those in eigendecomposition, which can be viewed as a finite-dimensional special

case. We will show how to resolve the indeterminacies in eigen(spectral) decomposition.

First, Eq. A29 itself does not imply that the eigenvalues k(x;, X, X;—1,X¢—1, Z¢) are distinct for
different values z;. When the eigenvalues are the same for multiple values of z;, the corresponding
eigenfunctions are only determined up to an arbitrary linear combination, implying that they are not
identified. Assumption A2 rules out this possibility, and implies that for each x;, we can find values
Xy, X¢—1, X¢—1 such that the eigenvalues are distinct across all z;.

Second, since the normalizing condition
/A Dspr 30,20 AXp1 = 1 (A30)
Xiq1

must hold for every z;, one only solution is to set C' = 1, that is, the scaling indeterminacy is resolved.

Ultimately, the unorder of eigenvalues/eigenfunctions is left. We have match the observational
distributions x;, X; 1, X¢41, hence, the operator, Ly, . |x, 2, corresponding to the set {px, ., ,|x, .z, (" |
X¢,Z¢) + for all x;, z;, admits a unique solution (orderibng ambiguity of eigendecomposition only
changes the entry position):

P lxesze O | Xt Z0) Y = APy 300,20 (Xe1 | Xe,20) }, forall xq, 24, X¢, 24 (A31)

Due to the set is unorder, the only way to match the R.H.S. with the L.H.S. in a consistent order is to
exchange the conditioning variables, that is,
1 _Q 2) (2
{Pxeaierm (1617 2), P iea (157 27), )
) (1)

~(1
= {pxt+1\5<t,it(' | Xg ) 4t )> pxt+1‘§(t72t( |

~(2) ~(2)
()7 (2) ), ..}

(| X(W(l)) (Tf(l))) X(TF(Q)) ( ))) ]

pxt+1\xt7zt( |

(-] % A(W(l)) A(W(l)))

= [pxt+1|xuzt
% 7'r 2 5 (2

= [pxt+1\5<mit Dxcppr|%e,2,

where superscript (-) denotes the index of the conditioning variables [xt, zt], and s reindexing the
conditioning variables. We use a relabeling map H to represent its corresponding value mapping:

pxt+1|xt,zt(' | H(Xtazt)) :pxt+1|it,it(' | )A(tait)7 for all Xtazt7ﬁtait (A32)

By Assumption A2, different 2* corresponds to different py, . ,|x, .z, (- | H(X¢,2¢)), there is no
repeated elementin {py,  ,|x,z, (- | H(X¢,2¢))} (and {px, ., ,|%,.2,. (- | X¢,2¢)}). Hence, the relabelling
map H is one-to-one.

Furthermore, Assumption A2 implies that py, ., |x, 2, (- | H(X¢,2:)) determines a unique H (x¢, z;).
The same holds for the py, ., |x, .z, (- | Xt,2¢), implying that

Dxporlxcesze | H(Xe326)) = Dy 50,2 | Xty 2t) == X, 2¢ = H (X4, 24), (A33)
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implying that x;, z; is block-wise identifiable.

Next, suppose the implemented MLP used in the transition module is differentiable, then we can assert
that there exists a functional M such that M [px, ,|x,.2 (- | X¢,2¢)] = H(x¢,2) forall z, € Z; and
x; € X;, where H is differentiable, that is, we can learn a differentiable function H that

M [pxt+1|5<t,it(' | Xt zt)} =M I:pxt+1|xt;zt(. | H(Xt’ Zt))] = H(Xt’ Zt)’ (A34)
which is equal to X, z; only if H is differentiable. O

C.3 More Discussion of injective linear operators

A linear operator can be intuitively understood as a function that maps one distribution of random
variables to another. Specifically, when we assume the injectivity of a linear operator in the context
of nonparametric identification, we are asserting that distinct input distributions of the operator
correspond to distinct output distributions. This injectivity ensures that there is no ambiguity in the
transformation from the input space to the output space, making the operator’s behavior predictable
and identifiable. An example from a real-world scenario can be seen in weather forecasting. The
temperature on a given day can be influenced by several previous days’ temperatures. If we view the
relationship between past and future temperatures as a linear operator, injectivity would mean that
each unique pattern of past temperatures leads to a distinct forecast for the future temperature. The
injectivity of this operator ensures that the mapping from past weather data to future forecasts does
not result in ambiguity, allowing for more accurate and reliable predictions.

For a better understanding of this assumption, we provide several examples that describe the mapping
from p, — pp, where a and b are random variables.
Example 1 (Inverse Transformation). b = g(a), where g is an invertible function.

Example 2 (Additive Transformation). b = a + ¢, where p(e) must not vanish everywhere after the
Fourier transform (Theorem 2.1 in Mattner [1993]).

Example 3. b = g(a) + ¢, where the same conditions from Examples 1 and 2 are required.

Example 4 (Post-linear Transformation). b = g1(g2(a)+€), a post-nonlinear model with invertible
nonlinear functions g1, g2, combining the assumptions in Examples 1-3.

Example 5 (Nonlinear Transformation with Exponential Family). b = g(a, €), where the joint
distribution p(a, b) follows an exponential family.

Example 6 (General Nonlinear Transformation). b = g(a, €), a general nonlinear formulation.

Certain deviations from the nonlinear additive model (Example 3), e.g., polynomial perturbations,
can still be tractable.

C.4 Monotonicity and Normalization Assumption

Assumption 1 (Monotonicity and Normalization Assumption [Hu and Shum, 2012]). For any
Xy € A}, there exists a known functional G such that G [prrl Ixs 70 (Xt zt)] is monotonic in z;. We

normalize z; = G [pxtﬂ‘xhzt(-|xt, zt)].

C.5 Definition of Neighborhood

Definition 6 (Neighborhood). Givien a point x in a metric space, and a positive number r, the
neighborhood N* of x is defined as:

N'™(z) ={y:d(z,y) <r}. (A35)

C.6 More Discussion of Uniqueness of Spectral Decomposition

This assumption essentially states that, in order to identify the latent variables of the system, it is
necessary to observe four different transitions of the observed variables that are governed by the
same latent variables. For a better understanding of this assumption, we provide an economic model.
Consider an economic model where x; represents the inflation rate at time ¢, and z, represents the
economic regime (such as a recession or a period of growth). To accurately identify the economic
regime, we would need to observe inflation under four distinct scenarios: transitions from a high-
inflation state to a low-inflation state, and from a low-inflation state to a high-inflation state, under
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different historical conditions. These four observed inflation transitions allow us to identify whether
the economy is in a recession or growth phase, based on the changes in inflation behavior.

This assumption is straightforward to satisfy in real-world economic modeling, especially when
there is access to sufficient historical inflation data. In practice, there are often multiple transitions
between inflation states over time, corresponding to shifts in the economic regime (e.g., moving from
high inflation during an economic boom to low inflation during a recession). By collecting enough
observations across different periods of economic change, this assumption can be easily fulfilled,
ensuring that we can identify the underlying economic regime with confidence.

C.7 Proof of Theorem 3.

Lemma Al. (Component-wise Identification of z; with instantaneous dependencies under
sparse causal influence on latent dynamics.)Li et al. [2025] For a series of observed variables

x; € R"™ and estimated latent variables z; € R™ with the corresponding process fi,ﬁ(e),g,
where g is invertible, suppose the process subject to observational equivalence x; = g(z;). Let

c = {z4_1,2¢} € R2™ and M, be the variable set of two consecutive timestamps and the corre-
sponding Markov network, respectively. Suppose the following assumptions hold:

* A4 (Smooth and Positive Density): The conditional probability function of the latent variables c,

is smooth and positive, i.e., p(c;|z;_2) is third-order differentiable and p(c;|z;—2) > 0 over R?",

* A5 (Sufficient Variability): Denote | M., | as the number of edges in Markov network M,. Let

9 log p(ct|ze—2) 9° log p(ci|ze—2)
w(m) *( 80?7182},21”1 AR 803’2’”62}72’7” )@ A3
(82 logp(ci|ze—2) & logp(ct\zt,g)) . (83 log p(ci|zi—2) )
0c10zi—2m = Oc,2n0zt—2m Ocy,i0c,j0%—2,m /) (i,5)ee(Mq,)’

where @ denotes concatenation operation and (i, j) € E(M.,) denotes all pairwise indice such
that c; ;, ¢y ; are adjacent in Mc,. Form € [1,--- n|, there exist 4n + | M., | different values of
Zy—2 m, Such that the 4n + | M., | values of vector functions w(m) are linearly independent.

* A6 (Latent Process Sparsity): For any z;; € Z., the intimate neighbor set of z;; is an empty set.

When the observational equivalence is achieved with the minimal number of edges of the estimated
Markov network of Me,, there exists a permutation m of the estimated latent variables, such that z;;
and Zy ;) is one-to-one corresponding, i.e., zj; is component-wise identifiable.

Proof. The proof can be summarized into three steps. First, we leverage the sparsity among latent
variables to show the relationships between ground-truth and estimated latent variables. Sequentially,
we show that the estimated Markov network M, is isomorphic to the ground-truth Markov networks
M_,. Finally, we show that the latent variables are component-wise identifiable under the sparse
mixture procedure condition.

Step1: Relationships between Ground-truth and Estimated Latent Variables. We start from
the matched marginal distribution to develop the relationship between z; and z; as follows:

p(ke) = p(xe) == p(3(2:)) = p(g(21)) == p((g~" 0 9)(2¢)) = p(z) <= p(h=(2¢)) = p(z¢), (A3T)

where § : Z — X denotes the estimated mixing function, and h := g~! o § is the transformation

between the ground-truth latent variables and the estimated ones. Since § and g are invertible, h is
invertible as well. Since Equation (A37) holds true for all time steps, there must exist an invertible
function A, such that p(h.(¢;)) = p(c;), whose Jacobian matrix at time step ¢ is

Jniq 0O
Tps— [ e t]. (A38)

zs

Then for each value of x;_s, the Jacobian matrix of the mapping from (x;_s, ¢;) to (X;_2, ¢¢) can
be written as follows:

I 0

)
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where * denotes any matrix. Since x;_o can be fully characterized by itself, the left top and right
top block are 1 and 0 respectively, and the determinant of this Jacobian matrix is the same as [Jp, |-
Therefore, we have:

p(ét,xt—z) = P(Ct,Xt—z) - (A39)
Dividing both sides of Equation (A39) by p(x;_2), we further have:
p(€e|xi—2) = plee[xi—2) (A40)

Since p(ct|x¢—2) = p(ct|g(zi—2)) = p(ct|zi—2), and similarly p(€;|x¢—2) = p(€:|Z¢—2), we have:

log p(€:|2¢—2) = log p(ci|zi—2) + log [T, 4. (A41)
Let ¢; 1, ¢;,; be two different variables that are not adjacent in the estimated Markov network M,
over ¢; = {Z;_1,2;}. We conduct the first-order derivative w.r.t. ¢ j and have

Ologp(&ilz2) _ QZ Ologp(eilz—) Oeri | Dlog|Tn, |

A42
86757;@ P acm 6@,;9 8Ct k ( )
We further conduct the second-order derivative w.r.t. ¢, ;, and ¢ ;, then we have:
0?log p(€¢|2¢_2) ZZnQZn 02 logp(ci|zs_o) . ocyi . Ocy j
8Ct kact 1 =1 j=1 (‘30,5 l@ct i (‘36,5,;6 aétJ
(A43)

2n
01 - %cy 9?log |Jp,
+Z og p(ct|z 2). Ct, I og | ic,t|_

—1 5Ct,i aét,k:aét,l aét,kaét,l
1=

Since ¢;,¢,; are not adjacent in Me,, é ) and é;; are conditionally independent given
¢ \{¢¢k, ¢ }. Utilizing the fact that conditional independence can lead to zero cross derivative [Lin,
19971, for each value of z;_o, we have

0? logp(ét|it—2) 232 Ing(ét7k|ét\{ét,k7ét7l}»it—2) + 02 logp(ét,”ét\{ét,k;ét7l}7it—2)
0¢4 1,0Cy 0¢4 1,0Cy 0¢4 1,08
0*log p(¢e\{ét,k, 11} 21—2)
+ = =
8ct,k8ct,l

=0.
(A44)

Bring in Equation (A44), Equation (A43) can be further derived as
2n

0 f: 0 logp(ci|zi—2) ey ey Y 9 logp(ci|zi—2) ey Oeyg

aC?’i aét’k 86157[ aCtﬂiaCt’j aétﬁk 86257[

i=1 i=1j:(j,))€€(Mey)

@) i=j (ii)ct,; and c¢, ; are adjacent in M,

0*logp(ci|zi—2) Ocri Ocyj
3y 13

i=1 j:(j,i) ¢ (Me,) dcyidcy 0C . 0Cy

(ifi)c¢,; and ¢y ; are not adjacent in M,

+ in: dlog p(cy|zi—2) ] Py + dlog |Jp, i

P 8cm 86@1636“ aét,kaét,l ’

(A45)
where (j,1) € £(M,,) denotes that ¢, ; and ¢, ; are adjacent in M.,. Similar to Equation (A44), we
have % = 0 when ¢; 4, ¢; ; are not adjacent in M., . Thus, Equation (A45) can be rewritten
as

0— Z 0?logp(ci|zi—a) Ocyy . Ocy +§n: Z ?logp(ci|zs_o) ' Ocy i ' Ocy

oc2 06 OC D¢y :0¢t i OC
t,i t,k t,l i=1 j:(j,i) €€ (M) t,iUCt 5 t,k t,l

2n

01 - 0%cy dlog|J
+Z og p(ct|z 2). ¢ Ct,A i ?gl }fc’t|-
acm‘ act’kact’l aCt’kact’l

i=1

(A46)
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Then for each m = 1,2, --- ,n and each value of z;_5 ,,, we conduct partial derivative on both sides
of Equation (A46) and have:

2n
0— Z 0% log p(ce|zs_o) Oy Ocy +Z Z 3 logp(ci|zi—2) Oy Ocyg
30,%&821& 2,m 8ét7k 86“ =1 j:(j,)ee(M )8ct7ié)ct,jazt,2,m 86% 86“
+Z o log p(ct|z:—2) ) act2,i
6Ct i0%4_9 m 8ét,kaét,l

(A47)

Finally we have

2n

0 —Z 92 log p(ci|zi_2) e ey Z 0% log p(ce|zi_o) ' oc}

aCt L(‘?zt 2,m 8ét_’k 8ét 1 aCt Zazt 2,m aét,kc‘)éu

0 logp(ci|zs_o) . 30,5’1- .5‘0,57]- n Ocyj Ocyy

E (s o
i () EE(Me) (90,5}1‘80,57]‘82:75,27”1 act7k 8Ct)l é)cmk 8ct,l

(A48)

According to Assumption A2, we can construct 4n + | M| different equations with different values
of z;_2 ., and the coefficients of the equation system they form are linearly independent. To ensure
that the right-hand side of the equations are always 0, the only solution is

Oci Ocri (Ad9)
vy Oy
?t, ) CAt,J + ?m_ ft, —0, (A50)
Obry 0y Oy Oy
ac?,
2 Aa V- (A51)
8Ct7kact,l

Bringing Eq A49 into Eq AS50, at least one product must be zero, thus the other must be zero as well.
That is,
s Oy _y (A52)
8Ct’ k 8ct,l
According to the aforementioned results, for any two different entries é; ,¢;; € ¢, that are not
adjacent in the Markov network Mg, over estimated ¢;, we draw the following conclusions.
(i) Equation (A49) implies that, each ground-truth latent variable c; ; € c; is a function of at most
one of ¢; ; and ¢,
(ii) Equation (A52) implies that, for each pair of ground-truth latent variables c; ; and c; ; that are
adjacent in M., over c;, they can not be a function of ¢, ;, and ¢ ; respectively.

Step2: Isomorphism of Markov Networks First, we demonstrate that there always exists a row
permutation for each invertible matrix such that the permuted diagonal entries are non-zero [Zhang
et al., 2024a]. By contradiction, if the product of the diagonal entry of an invertible matrix A is zero
for every row permutation, then we have Equation

det(A) = Z (sgn Haa(ﬂ z), (A53)

c€ES,

by the Leibniz formula, where S, is the set of n-permutations. Thus, we have
Haa(i)ﬂ; = O, Vo € Sn, (A54)

which indicates that det(A) = 0 and A is non-invertible. It contradicts the assumption that A is
invertible, and a row permutation where the permuted diagonal entries are non-zero must exist. Since
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h. is invertible, for z, at time step ¢, there exists a permuted version of the estimated latent variables,
such that
8Zt,i

~ 7&07 Z.:17"'ana (ASS)
0%t x, (i)

where 7 is the corresponding permutation at time step ¢. Since ¢; = {2_1, Z, Z¢++1 }, by applying
M1, Tt, Ter1, We have 7/ such that

80,5,1'

- £0, i=1,---,3n. (A56)
¢ x (i)

Second, we demonstrate that M., is identical to M e’ where M er’ denotes the Markov network of
the permuted version of 7’(¢;).

Step3: Component-wise Identification of Latent Variables Finally, we prove that the latent
variables are component-wise identifiable. On the one hand, for any pair of (¢, j) such that ¢; ;, ¢ ;
are adjacent in M., while ¢; 1/ (;), ¢ x(j) are not adjacent in /\/lw , according to Equation (A52),

Ocy . dct i
e mii)  Oltimt ()
edge presents in M., must exist in M. On the other hand, since observational equivalence can

we have

= 0, which is a contradiction with how 7' is constructed. Thus, any

be achieved by the true latent process ( g f Pe, ), the true latent process is clearly the solution with
minimal edges.

Under the sparsity constraint on the edges of M., the permuted estimated Markov network M
must be identical to the true Markov network ./\/lC .- Thus, we claim that

(i) the estimated Markov network M, is isomorphic to the ground-truth Markov network M, .

Sequentially, under the same permutation 7, we further give the proof that 2 ; is only the function of
Z¢,m,(i)- Since the permutation happens on each time step respectively, the cross-time disentanglement
is prevented clearly.

Now let us focus on instantaneous disentanglement. Suppose there exists a pair of indices 7, j €

{1,---,n}. According to Equation (A55), we have az, “— =0and 5 az’ J( 5= = 0. Let us discuss it

case by case.

e If 2;; is not adjacent to z; ;, we have Z; ., ;) is not adjacent to Z; ;) as well according

to the conclusion of identical Markov network. Using Equation (A49), we have (93# .
JA = 0, which leads to L =0
Zt,me(5) t,me ()

e If z; ; is adjacent to z; j, we have Z; ., (;) is adjacent to 2 r, ;). When the Assumption A3
(Sparse Latent Process) is assured, i.e., the intimate neighbor set of z; ; is empty, there
exists at least one pair of (¢, k) such that 2z, 5, is adjacent to z; ; but not adjacent to z; ;.
Sumlarly, we have the same structure on the estlmated Markov network, which means that
2z, (k) 18 adjacent to Z; ., (;) but not adjacent to Z; ;). Using Equation (A52) we have

0zt i Ozt 0 Oz
T - 52— =0, which leads to ==—>*— =0
02y m (k) 024wy (5) 0%

azt i

In conclusion, we always have rmy 0. Thus, we have reached the conclusion that

(ii) there exists a permutation m of the estimated latent variables, such that z; ; and 2, ;) is one-to-one
corresponding, i.e., 2; ; is component-wise identifiable.

O

Theorem A3. (Component-wise Identification of z, under sparse mixing procedure.) For a series
of observations x; € R™ and estimated latent variables Z, € R™ with the corresponding process
fi,0(€), G, suppose the marginal distribution of observed variables is matched. Let My, be the

A . .. . .
Markov network over u; = {z1_1,X4_1,2¢,X¢} and My,. Besides the similar assumptions like
smooth, positive density, and sufficient variability assumptions, we further assume:
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* A7 (Sparse Mixing Procedure): For any z;; € z,, the intimate neighbor set of z;; is an empty set.

When the observational equivalence is achieved with the minimal number of edges of the estimated
mixing procedure, there exists a permutation T of the estimated latent variables, such that z;; and
Zy (i)t IS one-to-one corresponding, i.e., Zi; is component-wise identifiable.

Proof. By reusing Theorem 2 with more observations, (z;—1,X;—1, ¢, X;) is also block-wise identi-
fiable. So we have:

P(Ze, Xy, Zp—1,X¢—1) = D(Ze, X¢, Z—1, X¢—1) [ 1|
<= p(24, fit|it717 Xi—1) = p(Z¢, X¢|Zp—1, }A(tfl)|*]h| (A57)
= Inp(Z¢, Xe|Ze—1,%e—1) = Inp(zg, X¢ |21, X—1) + In [Ty,

where h : X', Z — X, Z denotes the invertible transformation. |J | stands for the absolute value of
the Jacobian matrix determinant of h. For any 2, ;, suppose that there exist X, j that Z; ; does not
contribute to the mixture of Xy j.

By using the sparse mixing procedure assumption (A7), we can constrain the sparsity of the estimated
mixing function, such that there exist two different estimated latent variables G ;, and G ; that are

92 log p(G¢|2¢—1,
and Oty 1,004 g

can replace p(c|z;—1) in Lemma 1 with p({;|Z¢—1,%¢—1), and then by reusing the proof process of
Lemma 1, we can prove that z is component-wise identifiable.

not adjacent in the estimated Markov networks M, *i-1) — Sequentially, we

O

C.8 More Discussion on the Sparse Mixing Procedure

Although recent works like Zheng et al. [2022], Zheng and Zhang [2023] also utilize the sparse
mixing process from z; to x; to achieve identifiability, our assumption is easier to satisfy compared
to these methods. The primary reason for this is that our generative process allows for noise in the
mixing process from z; to x;, thereby accounting for measurement errors in the observed data. In
contrast, methods like Zheng et al. [2022], Zheng and Zhang [2023] require the additional assumption
that the mixing process is invertible and free from noise.

D Experiment Details

D.1 Synthetic Experiment

D.1.1 Data Generation Process

We follow Equation (1) to generate the synthetic data. As for the temporally latent processes, we use
MLPs with the activation function of LeakyReLU to model the sparse time-delayed. That is:

21 = (LeakyReLU (W . - 24-1,0.2) + Vi - 2y <) - €1 + €ri (A58)

where W . is the ¢-th row of W* and V; ; is the first ¢ — 1 columns in the ¢-th row of V. Moreover,
each independent noise ¢; ; is sampled from the distribution of normal distribution. We further let the
data generation process from latent variables to observed variables be MLPs with LeakyReLU units.
And the generation procedure can be formulated as follows:

x; = LeakyReLU (LeakyReLU (0.2 x LeakyReLU (x¢—1-Wx, 0.2)+z:+€7,0.2)-W,,,), (A59)

where Wy and W,,, denote the weights of mixing function. We provide 4 datasets from A to D, whose
settings are shown in Table AS.

The total size of the dataset is 100,000, with 1,024 samples designated as the validation set. The
remaining samples are the training set.

D.1.2 Evaluation Metric

To evaluate the identifiability performance of our method under instantaneous dependencies, we
employ the Mean Correlation Coefficient (MCC) between the ground-truth z; and the estimated z;.
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Table AS5: Details of different synthetic datasets.

Dimension of Causal Edge

Latent Variables Time Lag among Observations
A 5 1 yes
B 5 1 no
C 5 2 yes
D 10 1 yes

A higher MCC denotes a better identification performance the model can achieve. In addition, we
also draw the estimated latent causal process to validate our method. Since the estimated transition
function will be a transformation of the ground truth, we do not compare their exact values, but only
the activated entries.

D.1.3 Prior Likelihood Derivation

We first consider the prior of In p(z;.;). We start with an illustrative example of stationary latent
causal processes with two time-delay latent variables, i.e. z; = [z 1, 2 2] with maximum time lag
L =1,ie., 2, = fi(z,-1, € ;) with mutually independent noises. Then we write this latent process
as a transformation map f (note that we overload the notation f for transition functions and for the
transformation map):

Zt—1,1 Zt—1,1
Zt—1,2 —f 2t—1,2
Zt,1 €t,1
2t,2 €t,2

By applying the change of variables formula to the map f, we can evaluate the joint distribution of
the latent variables p(2;_1,1, 2t—1,2, 2,1, 2¢,2) @s

p(zt_1,17 At—1,2, €t,1, 67572)

\detJf| ’

(A60)

p(thl,l, Zt—1,25 Rt,1, Zt,2) =

where J¢ is the Jacobian matrix of the map f, where the instantaneous dependencies are assumed to
be a low-triangular matrix:

1 0 0 0
0 1 0 0
Je = Ozt 1 02¢,1 02¢,1 0
Ozg_1,1 Ozy_1,2 Oeg,1
Ozt 2 Oz¢ 2 Oz¢ 2 Ozt 2

Ozg_1,1 Oz¢_1,2 et 1 et 2

8Zt,1',
€t,i
thermore, because the noise terms are mutually independent, and hence €, ; L € ; for j # ¢ and
€ L z;_1, so we can with the RHS of Equation (A60) as follows

Fur-

Given that this Jacobian is triangular, we can efficiently compute its determinant as [[,

;s P\€t i
=p(2t-1,1, 2t-1,2) X % (A61)

p(€t7175t72)
||

P(zi-11, 21,2, 201, Ze,2) = P(26-1,1, 26-1,2) X

Finally, we generalize this example and derive the prior likelihood below. Let {r;};=1 2 3,... be aset of
learned inverse transition functions that take the estimated latent causal variables, and output the noise
terms, i.e., €; = 7i(%:,i, {Z1—-}). Then we design a transformation A — B with low-triangular
Jacobian as follows:

. . T . . . T . In,xr 0
[Zt—1,--- ,2t—1,2:) mappedto [Z;—r, - ,Zi—1,éi] , withJa g = diae (2rii
* 1ag @

A B
(A62)

Similar to Equation (A61), we can obtain the joint distribution of the estimated dynamics subspace
as:

logp(A) =logp(z¢—r, - ,2e-1) + Z log p(é;;) +log(|det(Ja—B)]) (A63)

i=1

Because of mutually independent noise assumption
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Finally, we have:

(A64)

ZP €t,i +Zlog| 8“

Since the prior of p(Z¢41.7|21.¢) = HiT:t+1 p(2;]2;—1) with the assumption of first-order Markov
assumption, we can estimate p(Z;1.7|21.¢) in a similar way.

log pl {2 }2_1)

D.1.4 Evident Lower Bound

In this subsection, we show the evident lower bound. We first factorize the conditional distribution
according to the Bayes theorem.

p(xX1.7, 21.7)q(Z1:7]X1:¢)
p(Z1:T|X1;T) p(Z1 T|X1 T) (Z1:T\X1;f,)
> Eg(zy.0|x1.) Mp(X17|217) — Dip(q(21.7[X1:4)||p(Z1:7)) = ELBO.

L,and L, L%,

p(X1:T7Z1:T)

lnp(xliT) =In = Eq(zl:Tlxl:t) hl

(A65)

D.1.5 More Synthetic Experiment Results

We repeat each experiment with different random seeds. We further consider CariNG as baselines,
experiment results are shown in Table A6.

Table A6: MCC results of synthetic datasets.

| TOT IDOL CariNG TDRL
A | 0.9258(0.0034) 0.3788(0.0245) 0.7354(0.0346)  0.3572(0.0523)
B | 0.9324(0.0078) 0.8593(0.0092) 0.0823(0.0092) 0.8073(0.0786)
C | 0.9322(0.0052) 0.6073(0.0952) 0.7084(0.0361)  0.7134(0.0346)
D | 0.8433(0.0140) 0.7800(0.0387) 0.7371(0.0804)  0.7747(0.0690)

D.2 Real-world Experiment

D.2.1 Dataset Description

e ETT Zhou et al. [2021] is an electricity transformer temperature dataset collected from two
separated counties in China, which contains two separate datasets {ETTh2, ETTm1} for
one hour level.

* Exchange Lai et al. [2018] is the daily exchange rate dataset from of eight foreign coun-
tries including Australia, British, Canada, Switzerland, China, Japan, New Zealand, and
Singapore ranging from 1990 to.

« ECL * is an electricity consuming load dataset with the electricity consumption (kWh)
collected from 321 clients.

» Traffic ° is a dataset of traffic speeds collected from the California Transportation Agencies
(CalTrans) Performance Measurement System (PeMS), which contains data collected from
325 sensors located throughout the Bay Area.

+ Weather © provides 10-minute summaries from an automated rooftop station at the Max
Planck Institute for Biogeochemistry in Jena, Germany.

D.2.2 Implementation Details

The implementations of our method based on different backbones are shown in Table A7 to Al1.

*https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
Shttps://pems.dot.ca.gov/
Shttps://www.bgc-jena.mpg.de/wetter/
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Table A7: LSTD+ToT Architecture details. 7', length of time series. |x¢|: input dimension. n:
latent dimension. LeakyReLLU: Leaky Rectified Linear Unit. ReLU: Rectified Linear Unit. Tanh:
Hyperbolic tangent function.

Configuration | Description | Output

10) | Latent Variable Encoder \

Input:x;.; Observed time series Batch Size xtx x dimension
Dense Convld Batch Size x 640X |x¢|
Dense t neurons,LeakyReLu Batch Sizextx |x|
Dense T neurons,LeakyReLu Batch Sizex Tx |x¢|
Dense 512 neurons,LeakyReLu Batch Sizex512x |x|
Dense t neurons,LeakyReLu Batch Sizextx |xy|
Dense T neurons,LeakyReLu Batch Sizex Tx |x|
) | Latent Variable Decoder \

Input:zy . Latent Variable Batch Size xtx2|xy|
Dense |x¢| neurons,LeakyReLu Batch Size xtx|xy|

n | Dimensionality reduction \

Input:xy.; Observed time series Batch Size xtx |x|
Linear t neurons,ReLu Batch Size xtx |xy|

© | Regressor \

Input:[z1.7;7(x1.¢)] | Latent Variable Batch Size x T x2|x¢|
Dense 512 neurons,LeakyReLU Batch SizexTx512
Dense |x¢| neurons,LeakyReLu Batch Size x T x |x]|
% | Latent Transition Estimator |

Input: z;.7 Latent Variable Batch Size x (n+1)
Dense 128 neurons,LeakyReLU (n+1)x 128

Dense 128 neurons,LeakyReLLU 128x 128

Dense 128 neurons,LeakyReLU 128 x 128

Dense 1 neuron Batch Sizex 1
Jacobian Compute Compute log(det(J)) Batch Size

ro | Observed Transition Estimator |

Input: z1.7 Latent Variable Batch Sizex(n+1)
Dense 128 neurons,LeakyReLU (n+1)x128

Dense 128 neurons,LeakyReLLU 128128

Dense 128 neurons,LeakyReLU 128 x 128

Dense 1 neuron Batch Sizex 1
Jacobian Compute Compute log(det(J)) Batch Size
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Table A8: OneNet+ToT Architecture details. T', length of time series. |x;|: input dimension. n:
latent dimension. LeakyReLLU: Leaky Rectified Linear Unit. ReLU: Rectified Linear Unit. Tanh:

Hyperbolic tangent function.

Configuration | Description | Output

1) | Latent Variable Encoder \

Input:x;. Observed time series Batch Size xtx x dimension
Linear n neurons Batch Sizexnx |x¢|
Convolution neural networks | 320 neurons Batch Size x320% |x,|
1) | Latent Variable Decoder \

Input:z;.; Latent Variable Batch Sizex320x |x|
Linear t neurons,ReLu Batch Sizextx |x|

n | Dimensionality reduction \

Input:x; . Observed time series Batch Size x tx |x|
Linear 320 neurons,ReLu Batch Size x320x |x;|
© | Regressor \

Input:[z1.7;7(X1.¢)] Latent Variable Batch Size x 640X |x;|
Linear |x¢| neurons,ReLU Batch Size x Tx |x¢]|
Linear n neurons,ReLu Batch Sizexnx |x|

Convolution neural networks
Linear

320 neurons
T neurons,ReLu

Batch Sizex320x |x;|
Batch Size xTx |x|

z

7’ | Latent Transition Estimator |

Input: z;.7 Latent Variable Batch Size x (n+1)
Dense 128 neurons,LeakyReLLU (n+1)x128

Dense 128 neurons,LeakyReLLU 128 x 128

Dense 128 neurons,LeakyReLLU 128x128

Dense 1 neuron Batch Sizex 1
Jacobian Compute Compute log(det(J)) Batch Size

o

rs | Observed Transition Estimator |

Input: z1.7 Latent Variable Batch Size x (n+1)
Dense 128 neurons,LeakyReLU (n+1)x128

Dense 128 neurons,LeakyReLLU 128x128

Dense 128 neurons,LeakyReLLU 128 x128

Dense 1 neuron Batch Sizex 1
Jacobian Compute Compute log(det(J)) Batch Size
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Table A9: OneNet-T+TOT Architecture details. 7', length of time series. |x;|: input dimension. n:
latent dimension. LeakyReLLU: Leaky Rectified Linear Unit. ReLU: Rectified Linear Unit. Tanh:

Hyperbolic tangent function.

Configuration | Description | Output

1) | Latent Variable Encoder \

Input:x;. Observed time series Batch Size xtx x dimension
Linear n neurons,ReLu Batch Sizexnx |x¢|
Dilation convolution T neurons, 10 layers Batch Size x Tx |x|

1) | Latent Variable Decoder \

Input:z;.; Latent Variable Batch Sizex320x |x|
Linear t neurons,ReLu Batch Sizextx |x|

n | Dimensionality reduction \

Input:x; . Observed time series Batch Size x tx |x|
Linear n neurons,ReLu Batch Sizexnx|x¢|

Dilation convolution

T neurons, 10 layers

Batch Size x T |x¢|

© Regressor

Input:[z1.7; 7(x1.¢)] Latent Variable Batch Size x Tx2|x|
Linear |x;| neurons,ReLU Batch Size xTx |x|
Linear n neurons,ReLu Batch Sizexnx |x]|

Convolution neural networks
Linear

320 neurons
T neurons,ReLu

Batch Size x320% |x|
Batch Size x Tx |x¢]|

z

T’ | Latent Transition Estimator |

Input: z1.7 Latent Variable Batch Sizex (n+1)
Dense 128 neurons,LeakyReLLU (n+1)x128

Dense 128 neurons,LeakyReLLU 128x128

Dense 128 neurons,LeakyReLLU 128x128

Dense 1 neuron Batch Sizex 1
Jacobian Compute Compute log(det(J)) Batch Size

o

TS | Observed Transition Estimator |

Input: z;.7 Latent Variable Batch Size x (n+1)
Dense 128 neurons,LeakyReLLU (n+1)x128

Dense 128 neurons,LeakyReLLU 128 x128

Dense 128 neurons,LeakyReLLU 128x128

Dense 1 neuron Batch Sizex 1
Jacobian Compute Compute log(det(J)) Batch Size
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Table A10: online-T+TOT Architecture details. 7', length of time series. |x;|: input dimension. n:
latent dimension. LeakyReLLU: Leaky Rectified Linear Unit. ReLU: Rectified Linear Unit. Tanh:

Hyperbolic tangent function.

Configuration | Description | Output

1) | Latent Variable Encoder \

Input:x; . Observed time series Batch Size xtx x dimension
Linear n neurons,ReLu Batch Sizexnx|x¢|

Convolution neural networks
Linear

320 neurons
t neurons,Rel.u

Batch Size x320% |x,|
Batch Sizextx |x;|

P | Latent Variable Decoder \

Input:z;.; Latent Variable Batch Sizex320x |x|
Linear t neurons,ReLu Batch Sizextx|x|

n | Dimensionality reduction \

Input:x;.; Observed time series Batch Sizextx|xy|
Linear t neurons,ReLu Batch Size xtX |x|

4 | Regressor |

Input:[z1.7; 7(x1.4)] Latent Variable Batch Size x2tx | x|

Moving average
Dilation convolution

kernel size,stride=1
320 neurons,5 layers,ReLu

Batch Sizex2tx |x,|
Batch Sizex320x |x;|

Padding patch length=6,ReLu Batch Size x |x;|x patch length x patch num
Transformer n neurons Batch Size x |x;|xnxpatch num

Linear T neurons,ReLu Batch SizexTx |x|

re | Latent Transition Estimator |

Input: z;.7 Latent Variable Batch Size x (n+1)

Dense 128 neurons,LeakyReLU (n+1)x128

Dense 128 neurons,LeakyReLLU 128x128

Dense 128 neurons,LeakyReLLU 128x 128

Dense 1 neuron Batch Sizex 1

Jacobian Compute Compute log(det(J)) Batch Size

o

TS | Observed Transition Estimator |

Input: z1.7 Latent Variable Batch Sizex (n+1)
Dense 128 neurons,LeakyReLLU (n+1)x128

Dense 128 neurons,LeakyReLLU 128x128

Dense 128 neurons,LeakyReLLU 128 x 128

Dense 1 neuron Batch Sizex 1
Jacobian Compute Compute log(det(J)) Batch Size
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Table Al1: Proceed-T+TOT Architecture details. 7', length of time series. |x;|: input dimension. n:
latent dimension. LeakyReLLU: Leaky Rectified Linear Unit. ReLU: Rectified Linear Unit. Tanh:

Hyperbolic tangent function.

Configuration | Description | Output

10) | Latent Variable Encoder \

Input:x;.; Observed time series Batch Size xtx x dimension
Linear n neurons,ReLu Batch Sizexnx|x|
Dilation convolution | T neurons,10 layers Batch Sizex Tx x|

P | Latent Variable Decoder \

Input:z;.¢ Latent Variable Batch Sizex320x |x|
Linear t neurons,ReLu Batch Size xtx |x|

7 | Dimensionality reduction \

Input:x;.; Observed time series Batch Size xtX |x|
Linear n neurons,ReLu Batch Sizexnx|x|

Dilation convolution

T neurons, 10 layers

Batch Size x Tx |x¢|

® | Regressor |

Input:[z;.7;7(x1.¢)] | Latent Variable Batch Size x Tx2|x;|
Linear |x¢| neurons,ReLu Batch Sizex Tx |x|
e | Latent Transition Estimator |

Input: z;.7 Latent Variable Batch Size x (n+1)
Dense 128 neurons,LeakyReLU (n+1)x128

Dense 128 neurons,LeakyReLU 128 x 128

Dense 128 neurons,LeakyReLU 128 x 128

Dense 1 neuron Batch Sizex 1
Jacobian Compute Compute log(det(J)) Batch Size

re | Observed Transition Estimator |

Input: z1.7 Latent Variable Batch Sizex(n+1)
Dense 128 neurons,LeakyReLU (n+1)x128

Dense 128 neurons,LeakyReL.U 128128

Dense 128 neurons,LeakyReLU 128 x 128

Dense 1 neuron Batch Sizex 1
Jacobian Compute Compute log(det(J)) Batch Size

D.2.3 More Experiment Results

We further consider MIR Aljundi et al. [2019a] and TFCL Aljundi et al. [2019b] as the backbone
networks, experimental results are shown in Table A12.

Table A12: MSE and MAE results of different datasets on TFCL and MIR backbone.

| | TFCL | TFCL+TOT | MIR | MIR+TOT | | | TFCL | TFCL4+TOT | MIR | MIR+TOT
Models ' Len Models Len
| | MSE MAE | MSE MAE | MSE MAE | MSE MAE | | | MSE MAE | MSE MAE | MSE MAE | MSE MAE
1 | 0557 0472 ] 0463 0.382 | 0486 041 | 0.447 0.378 1 2732 0524 | 3815 044 | 2575 0.504 | 3.396 0.589
ETTh2 | 24 | 0.846 0.548 | 0.825 0.554 | 0.812 0.541 | 0.652 0.465 ECL 24 | 12.094 1256 | 10.083 1.105 | 9.265 1.066 | 6.142 1.041
48 | 1.208 0.592 | 0.87 0.555 | 1.103 0.565 | 0.842 0.526 48 | 1211 1303 | 10.685 1.075 | 9411 1.079 | 6.479 1.090
1 0.087 0.198 | 0.081 0.187 | 0.085 0.197 | 0.083 0.188 1 0.306  0.297 | 0.304 0.263 | 0.298 0.284 | 0.294 0.267
ETTml | 24 | 0211 0341 | 0186 0.32 | 0.192 0.325 | 0.132 0.267 | Traffic 24 | 0441 0493 | 0389 0.314 | 0451 0443 | 0.39 0.339
48 | 0.236 0.363 | 0.196 0.331 | 0.210 0.342 | 0.129 0.265 48 | 0438 0.531 | 0.393 0.316 | 0.502 0.397 | 0.419 0.345
1 0.177 024 | 0.154 0.197 | 0.179 0.244 | 0.154 0.199 1 0.106  0.153 | 0.045 0.142 | 0.095 0.118 | 0.056 0.162
WTH 24 | 0301 0363 | 0.295 0.359 | 0.291 0.355 | 0.184 0.265 | Exchange | 24 | 0.098 0227 | 0.062 0.166 | 0.104 0.204 | 0.067 0.178
48 0323 0.382 | 0294 0.36 | 0.297 0.361 | 0.195 0.278 48 | 0.101  0.183 | 0.098 0.207 | 0.101 0.209 | 0.047 0.137

To demonstrate that the improvements of our approach are not due to an increase in parameters, we
increase the number of parameters of the baseline methods by adding additional layers to the neural
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Table A13: Evaluation on Same Size of Model
Model \ Len \ LSTD(Original) \ LSTD(Same size) \ LSTD+TOT
Matric \ \ MSE MAE \ MSE MAE \ MSE MAE

1 0.377 0347 | 0.378 0.349 0.374 0.346
ETTh2 24 | 0543 0411 | 0.778 0.465 0.532  0.390
48 | 0.616  0.423 | 0.620 0.443 0.564 0.420

1 0.153  0.200 | 0.155 0.202 0.153  0.200
WTH 24 10.136 0.223 | 0.126 0.215 0.116 0.207
48 | 0.157 0.242 | 0.168 0.251 0.152 0.239

1 2,112 0.226 | 2.109 0.234 2.038 0.221
ECL 24 | 1422 0292 | 1420 0.285 1.390 0.278
48 | 1411  0.294 | 1.442 0.303 1413 0.289

1 0231 0.225 | 0.231 0.225 0.229 0.224
Traffic 24 10398 0316 | 0.402 0.319 0.397 0.313
48 | 0426  0.332 | 0.427 0.333 0.421 0.328

1 0.013 0.070 | 0.013 0.071 0.013  0.069
Exchange | 24 | 0.039  0.132 | 0.040 0.135 0.037 0.129
48 | 0.043  0.142 | 0.043 0.142 0.042 0.142

network, making the number of parameters of our method and the baseline methods comparable.
Experiment results are shown in Table A13. According to the experiment results, we can find that our
method still achieves the general improvement.

D.2.4 Experiment Results of Mean and Standard Deviation
The mean and standard deviation of MAE and MSE are shown in Table A14, A15, A16, and A17,

respectively.

Table A14: Mean values of MSE on different datasets.

Models | Len | LSTD | LSTD+ToT | Proceed-T | Proceed-T+ToT | OneNet | OneNet+TOT | OneNet-T | OneNet-T+TOT | MIR | MIR+TOT | Online-T | Online-T+TOT | TFCL | TFCL+TOT

1 0.375 0.374 1.537 1.186 0.377 0.365 0.394 0.391 0.524 0.451 0.617 0.444 0.531 0.466

ETTh2 24 | 0543 0.540 2.908 2.444 0.548 0.515 0.943 0.697 0.816 0.587 0.832 0.757 0.851 0.830
48 0.616 0.616 4.056 4.013 0.622 0.574 0.926 0.783 1.098 0.740 1.188 0.977 1.211 0.891

1 0.082 0.081 0.106 0.105 0.086 0.082 0.091 0.079 0.082 0.085 0.208 0.077 0.085 0.082

ETTm1 24 | 0.102 0.108 0.531 0.516 0.105 0.097 0.213 0.174 0.189 0.119 0.263 0.224 0.216 0.195
48 | 0.115 0.118 0.704 0.703 0.110 0.102 0.216 0.188 0.223 0.138 0.271 0.255 0.240 0.203

1 0.155 0.153 0.346 0.336 0.157 0.151 0.157 0.161 0.182 0.152 0.213 0.145 0.176 0.160

WTH 24 | 0.139 0.136 0.707 0.697 0.173 0.158 0.276 0.264 0.286 0.166 0312 0.272 0.311 0.295
48 | 0.167 0.164 0.959 0.956 0.196 0.175 0.289 0.273 0.289 0.169 0.298 0.279 0.324 0.297

1 2228 2.116 3.27 3.156 2,675 2.330 2413 2.278 2.568 3513 3312 2.258 2.806 3.781

ECL 24 1.557 1.514 5.907 5.895 2.090 2.035 4.551 4.580 9.157 6.095 11.594 4.463 11.891 10.932
48 1.720 1.654 7.192 7.500 2.438 2.198 4.488 4472 9.391 8.209 11.912 4.548 12.109 10.235

1 0.234 0.231 0.333 0.326 0.241 0.229 0.236 0.222 0.298 0.296 0.334 0.211 0.306 0.304

Traffic 24 | 0417 0.401 0413 0.412 0.438 0.419 0.425 0413 0.451 0.435 0.481 0.411 0.441 0.366
48 | 0.431 0.422 0.454 0.452 0.473 0.412 0.451 0.439 0.502 0.458 0.503 0.425 0.438 0.391

1 0.014 0.013 0.012 0.009 0.017 0.016 0.031 0.018 0.095 0.057 0.113 0.010 0.106 0.054

Exchange | 24 | 0.039 0.036 0.129 0.105 0.047 0.041 0.060 0.041 0.104 0.077 0.116 0.026 0.098 0.081
48 0.049 0.046 0.267 0.200 0.062 0.056 0.065 0.056 0.101 0.085 0.168 0.029 0.101 0.099

Table A15: Mean values of MAE on different datasets.

Models Len | LSTD | LSTD+ToT | Proceed-T | Proceed-T+ToT | OneNet | OneNet+TOT | OneNet-T | OneNet-T+TOT | MIR | MIR+TOT | Online-T | Online-T+TOT | TFCL | TFCL+TOT
1 0.347 0.347 0.447 0.401 0.354 0.347 0.373 0.364 0.418 0.373 0.443 0.352 0.466 0.381
ETTh2 24 | 0411 0.394 0.659 0.619 0.415 0.406 0.532 0.510 0.543 0.439 0.545 0.497 0.539 0.569
48 | 0423 0.437 0.767 0.732 0.448 0.435 0.535 0.520 0.572 0.489 0.598 0.549 0.591 0.585
1 0.189 0.187 0.19 0.187 0.192 0.186 0.207 0.186 0.201 0.190 0.218 0.181 0.192 0.191
ETTml1 24 | 0217 0.240 0.447 0.442 0.234 0.226 0.343 0.306 0.327 0.252 0.376 0.348 0.346 0.329
48 | 0.259 0.251 0.521 0.507 0.242 0.232 0.348 0.322 0.347 0.273 0.415 0.376 0.357 0.339
1 0.200 0.200 0.143 0.140 0.202 0.193 0.206 0.212 0.182 0.200 0.210 0.189 0.169 0.204
WTH 24 | 0.224 0.221 0.382 0.375 0.255 0.239 0.337 0.334 0.317 0.250 0.317 0.332 0.314 0.360
48 0.250 0.247 0.493 0.493 0.277 0.255 0.354 0.345 0.289 0.255 0.334 0.339 0.325 0.368
1 0.232 0.230 0.286 0.282 0.268 0.254 0.280 0.337 0.519 0.580 0.641 0.214 0.273 0.436
ECL 24 | 0.288 0.282 0.387 0.384 0.341 0.340 0.405 0.393 1.035 1.036 1.291 0.330 1.194 1.098
48 | 0.348 0.302 0.431 0.425 0.367 0.360 0.423 0.405 1.184 0.992 1.219 0.344 1.304 1.079
1 0.229 0.227 0.268 0.263 0.240 0.228 0.236 0.212 0.284 0.269 0.284 0.202 0.297 0.264
Traffic 24 | 0332 0.315 0.291 0.285 0.346 0.338 0.346 0.318 0.443 0.359 0.385 0.311 0.493 0.310
48 | 0.344 0.329 0.308 0.311 0.371 0.338 0.355 0.340 0.397 0.381 0.380 0.325 0.531 0.313
1 0.070 0.069 0.063 0.051 0.085 0.081 0.117 0.087 0.118 0.144 0.169 0.057 0.153 0.147
Exchange | 24 | 0.132 0.128 0.211 0.191 0.148 0.135 0.166 0.137 0.204 0.188 0.213 0.106 0.227 0.191
48 0.150 0.147 0.3 0.263 0.170 0.157 0.173 0.161 0.209 0.196 0.258 0.113 0.183 0.208
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Table A16: Standard deviation of MSE on different datasets.

Models ‘ Len ‘ LSTD ‘ LSTD+ToT ‘ Proceed-T ‘ Proceed-T+ToT ‘ OneNet ‘ OneNet+TOT ‘ OneNet-T ‘ OneNet-T+TOT ‘ MIR ‘ MIR+TOT ‘ Online-T ‘ Online-T+TOT ‘ TFCL ‘ TFCL+TOT

1 0.0246 0.0031 0.1038 0.1351 0.0085 0.0041 0.0076 0.0233 0.1229 0.0168 0.0149 0.0535 0.1827 0.0049

ETTh2 24 | 0.0260 0.0078 0.0413 0.0620 0.0137 0.0128 0.1563 0.0087 0.1618 0.0309 0.0098 0.0341 0.0699 0.0070
48 | 0.0295 0.0494 0.1030 0.0414 0.0263 0.0145 0.0829 0.0137 0.0827 0.0561 0.0172 0.1233 0.1320 0.0206

1 0.00097 0.0004 0.0008 0.0006 0.0025 0.0007 0.0085 0.0023 0.1382 0.0019 0.0093 0.0007 0.1259 0.0018

ETTml 24 0.0003 0.0014) 0.0197 0.0129 0.0018 0.0014 0.0025 0.0341 0.1107 0.0142 0.0080 0.0051 0.1643 0.0079
48 0.0157 0.0012 0.0108 0.0049 0.0012 0.0044 0.0068 0.0093 0.0370 0.0173 0.0142 0.0151 0.0764 0.0063

1 0.00084 0.0003 0.0043 0.0040 0.0006 0.0004 0.0004 0.0157 0.1747 0.0006 0.0162 0.0001 0.1241 0.0057

WTH 24 | 0.0023 0.0024 0.0025 0.0043 0.0026 0.0020 0.0023 0.0007 0.1212 0.0031 0.0167 0.0036 0.1782 0.0028
48 | 0.0055 0.0044 0.0081 0.0050 0.0041 0.0191 0.0100 0.0112 0.1338 0.0035 0.0108 0.0035 0.1790 0.0035

1 0.0197 0.0189 0.0360 0.0673 0.0449 0.0415 0.0344 0.0731 0.0119 0.1042 0.0152 0.0582 0.0816 0.0484

ECL 24 0.0256 0.0662 0.0232 0.0612 0.0205 0.0120 0.0326 0.1260 0.0051 0.0907 0.0178 0.0669 0.0104 0.7811
48 0.2065 0.0278 0.2163 0.0867 0.1002 0.0908 0.0152 0.0246 0.0126 0.2878 0.0092 0.0799 0.0081 0.5162

1 0.0027 0.0008 0.0186 0.0079 0.0010 0.0017 0.0015 0.0097 0.0149 0.0014 0.0462 0.0125 0.0052 0.0002

Traffic 24 | 0.0070 0.0065 0.0135 0.0034 0.0068 0.0654 0.0046 0.0186 0.0148 0.0064 0.0134 0.0271 0.0103 0.0045
48 | 0.0024 0.0007 0.0063 0.0020 0.0289 0.0415 0.0015 0.0274 0.0159 0.0345 0.0180 0.0021 0.0175 0.0011

1 0.0005 0.0002 0.0005 0.00003 0.0011 0.0008 0.0021 0.0017 0.0130 0.0101 0.0086 0.0008 0.0158 0.0084

Exchange | 24 0.0004 0.0030 0.0027 0.0033 0.0064 0.0097 0.0010 0.0027 0.0070 0.0077 0.0137 0.0079 0.0139 0.0076
48 0.0054 0.0023 0.0037 0.0035 0.0170 0.0137 0.0022 0.0062 0.0038 0.0130 0.0067 0.0031 0.0126 0.0017

Table A17: Standard deviation of MAE on different datasets.

Models | Len | LSTD | LSTD+ToT | Proceed-T | Proceed-T+ToT | OneNet | OneNet+TOT | OneNet-T | OneNet-T+TOT | MIR | MIR+TOT | Online-T | Online-T+TOT | TFCL | TFCL+TOT

1 0.0073 0.0004 0.0105 0.0031 0.0053 0.0008 0.0066 0.0120 0.0130 0.0040 0.0175 0.0049 0.0183 0.0013

ETTh2 24 | 0.0032 0.0035 0.0094 0.0023 0.0061 0.0029 0.0174 0.0024 0.0408 0.0109 0.0066 0.0068 0.0470 0.0005
48 | 0.0060 0.0226 0.0104 0.0038 0.0099 0.0004 0.0125 0.0019 0.0098 0.0092 0.0115 0.0222 0.0037 0.0065

1 0.0021 0.0008 0.0013 0.0006 0.0045 0.0008 0.0123 0.0044 0.0143 0.0033 0.0175 0.0017 0.0517 0.0046

ETTm1 24 | 0.0008 0.0026 0.0096 0.0048 0.0022 0.0016 0.0020 0.0317 0.0526 0.0148 0.0048 0.0043 0.0571 0.0074
48 | 0.0118 0.0021 0.0012 0.0020 0.0012 0.0049 0.0062 0.0087 0.0086 0.0173 0.0126 0.0115 0.0565 0.0067

1 0.0011 0.0006 0.0010 0.0020 0.0005 0.0008 0.0004 0.0222 0.0091 0.0013 0.0078 0.0003 0.0163 0.0045

WTH 24 | 0.0010 0.0017 0.0004 0.0011 0.0027 0.0002 0.0023 0.0009 0.0078 0.0031 0.0157 0.0028 0.0089 0.0048
48 | 0.0044 0.0039 0.0014 0.0019 0.0039 0.0183 0.0050 0.0060 0.0132 0.0031 0.0063 0.0034 0.0184 0.0075

1 0.0055 0.0010 0.0006 0.0012 0.0013 0.0016 0.0045 0.0391 0.0085 0.0084 0.0013 0.0014 0.0575 0.0044

ECL 24 | 0.0044 0.0065 0.0004 0.0064 0.0025 0.0021 0.0001 0.0130 0.0581 0.0105 0.0152 0.0085 0.0176 0.0768
48 | 0.0686 0.0079 0.0018 0.0032 0.0047 0.0038 0.0013 0.0027 0.0125 0.0132 0.0179 0.0022 0.0056 0.0226

1 0.0028 0.0013 0.0044 0.0053 0.0006 0.0014 0.0014 0.0082 0.0072 0.0020 0.0105 0.0041 0.0125 0.0010

Traffic 24 | 0.0042 0.0046 0.0142 0.0105 0.0027 0.0411 0.0027 0.0088 0.0106 0.0077 0.0182 0.0137 0.0150 0.0066
48 | 0.0021 0.0012 0.0044 0.0019 0.0144 0.0241 0.0013 0.0162 0.0028 0.0188 0.0017 0.0016 0.0165 0.0012

1 0.0018 0.0006 0.0022 0.0006 0.0031 0.0024 0.0034 0.0048 0.0090 0.0072 0.0172 0.0034 0.0010 0.0061

Exchange | 24 | 0.0004 0.0047 0.0018 0.0024 0.0095 0.0154 0.0014 0.0051 0.0139 0.0119 0.0012 0.0152 0.0051 0.0098
48 | 0.0033 0.0036 0.0034 0.0018 0.0241 0.0210 0.0031 0.0089 0.0014 0.0153 0.0002 0.0054 0.0174 0.0025

E Broader Impacts

The proposed method for online time series forecasting presents a novel approach to address the
challenges posed by distribution shifts in temporal data. By leveraging the identification of latent
variables and their causal transitions, our framework demonstrates a provable reduction in Bayes
risk, with significant improvements in forecasting accuracy, making the method highly applicable to
real-time forecasting tasks in fields such as finance, healthcare, and energy management.

Our method not only outperforms existing models like IDOL and TDRL in both synthetic and
real-world experiments, but it also enhances the scalability and adaptability of forecasting systems in
dynamic environments. The theoretical advancements, coupled with the plug-and-play architecture,
facilitate seamless integration into existing forecasting pipelines, further promoting the use of causal
modeling in practical scenarios.

Furthermore, the broader implications of this work extend beyond time series forecasting. The ability
to identify and utilize latent variables in real-time systems opens the door to new applications in
domains such as anomaly detection, predictive maintenance, and environmental monitoring. With its
potential for improving decision-making processes in critical industries, our method sets a strong
foundation for future advancements in online forecasting and causal representation learning, thus
contributing to the evolution of machine learning models that can effectively handle complex, dynamic
data in real-world environments.
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