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Abstract

Conditional two-part random-effects models have been proposed for the analysis of healthcare cost panel data that contain

both zero costs from the non-users of healthcare facilities and positive costs from the users. These models have been

extended to accommodate more flexible data structures when using the generalized Gamma distribution to model the

positive healthcare expenditures. However, a major drawback with the extended model, which is inherited from the

conditional models, is that it is fairly difficult to make direct marginal inference with respect to overall healthcare costs

that includes both zeros and non-zeros, or even on positive healthcare costs. In this article, we first propose two types of

marginalized two-part random-effects generalized Gamma models (m2RGGMs): Type I m2RGGMs for the inference on

positive healthcare costs and Type II m2RGGMs for the inference on overall healthcare costs. Then, the concepts of

marginal effect and incremental effect of a covariate on overall and positive healthcare costs are introduced, and estimation

of these effects is carefully discussed. Especially, we derive the variance estimates of these effects by following the delta

methods and Taylor series approximations for the purpose of making marginal inference. Parameter estimates of Type I and

Type II m2RGGMs are obtained through maximum likelihood estimation. An empirical analysis of longitudinal healthcare

costs collected in the China Health and Nutrition Survey is conducted using the proposed methodologies.
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1 Introduction

Healthcare cost data collected in health service research and health economics studies exhibit the prominent features
that the non-negative expenditure data (i) are substantially right-skewed with a heavy right tail, (ii) have excess zeros
from the non-usersof health services, and (iii) have heteroscedastic variancewith respect toat least one of the covariates.
Quantitative methods have been proposed in the literature to account for these features in analyzing cross-sectional
healthcare expenditure data.1–3Manning et al.,1 as well asMullahy2 and Blough et al.,3 recognized the semicontinuous
natureof health costdata (i.e., thedata comprise a substantial portionof zeroobservations inhealthcare costs fromnon-
users and positive costs fromhealth service users) and developed the two-partmodels with a logistic or probitmodel for
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the probability of observing a positive cost in part (I) and a generalized linear regressionmodel for the observed positive
healthcare costs in part (II). However, a large number of empirical studies are designed to repeatedly collect healthcare
costs from the same cross section of individuals over time. As a result, many rich healthcare cost panel data, such as the
Medical Expenditure Panel Survey data (https://meps.ahrq.gov) and the German Socioeconomic Panel data (https://
www.diw.de/en/soep), havebeendeveloped in the areaof health economics. The two-partmodels havebeen extended in
order toaccommodate the repeatedmeasures inhealthcare costpaneldata, but the extendedmodels still have significant
limitations in term of making inference on marginal effects of covariates.

Quantitative methods that incorporate latent random effects into the analysis of healthcost panel data initially
emerged in the work reported by Olsen and Schafer4 and Tooze et al.5 Olsen and Schafer4 extended the two-part
regression models for cross-sectional data to the settings of panel data, by introducing unobserved random
coefficients into both parts of the models. To obtain maximum likelihood estimates, Olsen and Schafer4 created
an approximate Fisher scoring algorithm, in which a sixth-order multivariate Laplace approximation was
employed to numerically evaluate the integrals in marginal likelihood. Tooze et al.5 introduced a similar two-
part random-effects model as in Olsen and Schafer,4 assuming a lognormal model for the observed positive
healthcare costs in part (II) instead of a normal model in Olsen and Schafer.4 Tooze et al.5 also distinguished
their work from Olsen and Schafer4 in computational strategy as they maximized the marginal likelihood using
quasi-Newton optimization, in which the integrals were approximated by an adaptive Gaussian quadrature. The
rationale behind these two-part random-effects models is that the random effects from part (I) and part (II) are
assumed to be correlated so that the probability of observing a positive cost in part (I) is correlated to the amount
of the positive cost. Of course, the random effects are able to characterize individual variation in each model
component as usual. The two-part random-effects models typically employ a logistic or probit random-effects
model in part (I) for the binary outcomes of presence or absence of healthcare expenditures. However, in part (II),
there has been some debate on whether or not the use of a transformation on healthcare cost outcomes is preferred
over the sophisticated parametric models. This debate applies to the empirical analysis of both cross-sectional and
panel healthcare expenditure data. At the beginning, Duan et al.6 proposed the ‘‘smearing’’ method, promoting the
approach of estimating the mean of a untransformed healthcare cost outcomes after fitting a linear regression
model with a nonparametric error term to the transformed outcomes. Yet, Mullahy,2 Zhou et al.,7 and Zhou et al.8

showed that this ‘‘transformation and re-transformation’’ technique had its embedded drawback as it cannot
stabilize the variance and thus heteroscedasticity may be omitted. Especially, Mullahy2 described the
circumstances where the conventional two-part models with homoscedastic transformation failed to provide
consistent inference on marginal effects of covariates. To address these concerns, Manning et al.9 proposed to
use the three-parameter generalized Gamma distribution (GGD) for modeling the positive healthcare
expenditures. GGD is particularly superior to others because (i) it avoids the troubles brought by conducting
transformation and then re-transformation, (ii) it includes the standard Gamma, inverse Gamma, Weibull,
exceptional, and lognormal distributions as its special cases, (iii) it provides much more flexibility in the
circumstances where none of above distributions adequately fit the data, and (iv) it allows for the existence of
substantial heteroscedasticity. Taking the advantages of the three-parameter GGD in Manning et al.,9 Liu et al.10

constructed a flexible two-part random-effects model for clustered medical expenditures, in which the lognormal
random-effects model developed by Tooze et al.5 in Part (II) was extended to be a generalized Gamma regression
model with latent random effects and with a scale parameter that was allowed to depend on covariates.

This article is devoted to developing two types of marginalized two-part random-effects generalized Gamma
models (m2RGGMs) that can achieve the goal of making direct inference on the marginal effects of
covariates11,12 in both Part (I) and Part (II) of the two-part models and making inference on the marginal effects
of covariates with respect to both positive and overall healthcare costs. The fact is that the two-part random-effects
models discussed in Olsen and Schafer,4 Tooze et al.,5 and Duan et al.6 are conditional models. Liu et al.10

encountered difficulties when formulating the strategy of conducting marginal inference in the context of the
conditional two-part random-effects generalized Gamma models. This is because the conditional models have
their inherent drawback in that the conditional models target at subject-specific characteristics instead of
population-average interpretations and therefore a tedious differentiation procedure is inevitable in deriving
estimates for marginal effects. It will be even harder to obtain variances of the estimates of marginal effects if
statistical inference on the marginal effects is required for the conditional models. Yet, the primary objective of
health service research and health economics studies is usually to make marginal inference on the treatment effect of
a policy intervention or the partial effects of some covariates with respect to the expected amount of overall
healthcare costs. In such circumstances, a marginal mean model is much more convenient, especially for the
analysis of panel data. In this article, we describe how the correlation among healthcare costs over time can be
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characterized by embedding the marginal mean structure within a complete multivariate probability model based on
random effects dependence assumption. This is achieved in both Part (I) and Part (II) of the two-part models, and
eventually completes the construction of m2RGGMs in which Part (II) is built upon a generalized Gamma
regression. There are two types of marginalized models proposed in this article: Type I m2RGGMs and Type II
m2RGGMs. In the Type I m2RGGMs, the mean (or the first moment) regression parameters represent the change in
expected positive healthcare expenditure, whereas in the Type II m2RGGMs, the regression parameters represent the
change in the overall mean of healthcare expenditures including both zeros and non-zeros. In both types of models,
correlations among healthcare expenditure responses given the covariates, even if reasonably attributed to shared
unobservable latent variables, is accounted for by a separate dependence model in both Part (I) and Part (II). The
motivation to further propose the Type II m2RGGM over the Type I m2RGGM is well supported by the empirical
examples in the literature. Liu et al.10 reported an empirical example, in which the pharmacy cost data collected from
mid-western US managed care organization on 56,245 adult patients served by 239 primary care physicians were
analyzed. The primary interest of the empirical analysis in Liu et al.10 lied in identifying the patient-level factors that
may affect the overall pharmaceutical expenditures that included both positive costs and zero costs. Huang and
Gan13 investigated the impact of Urban Employee Basic Medical Insurance (UEBMI) and other individual
observable characteristics on healthcare expenditures among urban residents in China. Huang and Gan13 also
focused on the overall healthcare expenditures, instead of only investigating the positive costs. There are several
advantages of the marginal approach in the proposed Type I and Type II m2RGGMs. First, the interpretation of the
regression parameters on the positive and overall healthcare cost mean is invariant with respect to specification of the
random-effects dependence model. Analysis with the marginal mean regression model but different association
models has exactly the same target of marginal inference. Second, by introducing the marginally specified models
in both Part (I) and Part (II) of the two-part models, we allow a choice as to whether the marginal mean structure or
the conditional mean structure is the focus of modeling when using a latent random effects formulation. Third, by
integrating both conditional and marginal models together into one two-part model, m2RGGMs allow making both
conditional (subject-specific) and marginal (population-average) inferences simultaneously. Lastly, the m2RGGMs
inherit all attributes of the generalized Gamma model in Manning et al.9 to allow for more flexible and more
adequate model fitting than the lognormal models and simultaneously allow for variance heteroscedasticity.

The scientific contributions of this article are twofold. Besides the development of m2RGGMs, this article is
also devoted to deriving the estimates, as well as the variance estimates, of marginal effects of a covariate with
respect to both overall and positive healthcare costs when the m2RGGMs are used. Marginal effect, or partial
effect, is a basic concept and often the quantity of interest in econometrics.14 Two variants of the marginal effect,
elasticity and semi-elasticity, are also important quantities for the interpretation of empirical analysis. Basu and
Rathouz15 defined incremental effect, an analogous parameter of marginal effect, for discrete covariates. In this
article, we derive the marginal effects, including the incremental effect, elasticity and semi-elasticity, for the
proposed m2RGGMs and provide explicit formulas for the estimates of these effects. Note that there are two
classes of marginal effects introduced in this article: (conventional) marginal effects and average marginal effects.
Marginal effects refer to the conventional marginal effects whose estimates depend on both parameter estimates
and specific (or subject-specific) covariate values, whereas average marginal effects are the population average of
the conventional marginal effects. Here, we actually provide the estimates of both classes of marginal effects for the
m2RGGM. More importantly, we use the delta methods and Taylor series approximations to obtain the variance
estimates of these marginal effects and average marginal effects for the m2RGGMs. This is essential to making
direct marginal inferences with these quantities when the m2RGGMs are employed. To demonstrate the
capabilities of the proposed methodologies in empirical analysis, a set of longitudinal healthcare cost data
collected in the China Health and Nutrition Survey (CHNS) is analyzed.

2 Modeling framework

2.1 The generalized Gamma distribution

GGD as a generalization of the standard two-parameter Gamma distribution is a continuous probability
distribution with one-scale parameter and two-shape parameters. For a non-negative response variable y, the
probability density function for the GGD is parameterized as a function of the scale parameter � and the shape
parameters � and �9

fGGð y;�, �, �Þ ¼
��

�y
ffiffiffi
�
p

�ð�Þ
expðz

ffiffiffi
�
p
� uÞ, y � 0 ð1Þ
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where � ¼ j�j�2, z ¼ signð�Þflogð yÞ � �g=� and u ¼ � expðj�jzÞ. The formulation of density (1) is nicely presented
by Manning et al.9 for modeling skewed cross-sectional medical cost data. GGD is very appealing for modeling
positive medical expenditure data, as it includes Gamma, inverse Gamma, Weibull, exponential, and log-normal
distributions as its special cases. When �¼ 1, the GGD becomes the Weibull distribution and the density (1)

reduces to 1
�y exp

logð yÞ��
� � exp logð yÞ��

�

n oh i
. When �! 0, the GGD converges to the log-normal distribution with a

density of 1
�y
ffiffiffiffi
2�
p exp � flogð yÞ��g

2

2�2

h i
. If � ¼ �4 0, the GGD degenerates to the Gamma distribution and the density

(1) reduces to 1

�2��2y�ð��2Þ
exp logð yÞ���y expð��Þ

�2

h i
. If � ¼ ��4 0, the GGD degenerates to the inverse Gamma

distribution and the density (1) reduces to 1

�2��2y�ð��2Þ
exp ��logð yÞ�expð�Þ=y

�2

h i
. When � ¼ � ¼ 1, the GGD becomes

the exponential distribution with a density of exp � y
expð�Þ � �

h i
.

The generalized Gamma regression model is constructed through the parameter � that is replaced by
�ðxÞ ¼ x0�, where x is the vector of the covariates including an intercept, and � is the vector of coefficients to
be estimated. The generalized Gamma regression model can be extended to allow for heteroscedasticity by
parameterizing logf�ðxÞg ¼ x0�. For the GGD, the rth moment is given by

Eð yrÞ ¼ expðr�Þ
�2r�=��ð1=�2 þ r�=�Þ

�ð1=�2Þ
ð2Þ

From (2), the expected value and variance of y conditional on x in the heteroscedastic generalized Gamma
regression model can be derived as

Eð yjxÞ ¼ expf�ðxÞg
�2�ðxÞ=��ð1=�2 þ �ðxÞ=�Þ

�ð1=�2Þ
ð3Þ

and

varð yjxÞ ¼ expf2�ðxÞg�4�ðxÞ=�
�ð1=�2 þ 2�ðxÞ=�Þ

�ð1=�2Þ

� �
�

�ð1=�2 þ �ðxÞ=�Þ

�ð1=�2Þ

� �2
" #

respectively.

2.2 Conditional two-part random-effects models

In this subsection, we reiterate the conditional model proposed in Liu et al.10 with minor modification to conform
healthcare cost panel data. Suppose a set of healthcare cost panel data is collected repeatedly on the same cross
section of individuals over time. Denote Yit, a semicontinuous (either zero or positive) response, as the amount of
the healthcare cost of the ith individual measured at recorded time t and denote Xit as a K-dimensional covariate
vector, in which t ¼ 1, 2, . . .,T and i ¼ 1, 2, . . .,N indexes the N individuals in the study. The conditional two-part
random-effects generalized Gamma model (c2RGGM) introduced in Liu et al.10 consists of two parts. In Part (I),
as in standard two-part random-effects models, it is assumed that, conditioning on covariates Xit and the vector of
unobserved random effects ai ¼ ðai1, . . ., aiTÞ

0, Yi1, . . .,YiT are independent and the probability of observing a
positive cost in Yit is formulated as

�hc1 ½PðYit 4 0jXit, aitÞ� ¼ X0it�c þ ait ð4Þ

in which �hc1ð�Þ denotes a link function (such as a probit link function or a logit link function) and �c is a vector of
regression coefficients. A single scalar random effect ait is used in (4), but this representation is more general
because it includes several common models as its special cases: the random-intercept model corresponds to
assuming ait ¼ ai0 for t ¼ 1, 2, . . .,T; the mixed-effects model corresponds to assuming ait ¼ Z0ita

�
i , where a�i is a

q-dimensional random effect vector and the vector Zit includes the covariates pertaining to the random effects;
among others. In Part (II), it is assumed that, conditional on covariates Xit and the vector of unobserved random
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effects bi ¼ ðbi1, . . ., biTÞ
0 and given Yit> 0 for t ¼ 1, 2, . . .,T, Yi1, . . .,YiT are independent and Yit follows GGD

with a density of fGGð yit; �,�it, �itÞ. The effects of covariates are connected to the parameters through

ð�itjYit 4 0,Xit, bitÞ ¼ X0it�c þ bit ð5Þ

and logð�itjYit 4 0,XitÞ ¼ X0it	c, in which �c and 	c are two vectors of regression coefficients. The scalar random
effect bit is similarly formulated as the ait in (4): assuming bit ¼ bi0 for random-intercept models, or assuming
bit ¼ Z0itb

�
i for mixed-effects models. The random effects ait in (4) and bit in (5) are assumed to be correlated and

follow a multivariate normal distribution. The format and dimension of the multivariate normal distribution
depend on the specifications of ait and bit. If (4) and (5) are two random-intercept models or equivalently
ait ¼ ai0 and bit ¼ bi0, then ðai0, bi0Þ follows a bivariate normal distribution. If (4) and (5) are two mixed-effects
models with ait ¼ Z0ita

�
i and bit ¼ Z0itb

�
i , then it can be assumed that ða�i , b

�
i Þ follows a (2q)-dimensional multivariate

normal distribution N2qð0, ~�iÞ and consequently ðait, bitÞ follows N2ð0, ðZ
0
it,Z

0
itÞ

~�iðZ
0
it,Z

0
itÞ
0
Þ. In both cases, the odds

of having a non-zero cost and the amount of positive cost for an individual are associated through the correlation
between ait in (4) and bit in (5). If the correlation coefficients in covðai, biÞ are zero, then the two parts of the model
are separated, indicating that the presence or absence of healthcare cost at one occasion has no influence on the
amount, if any, at this or other occasions. In practice, however, this is frequently not true and therefore the
random effects from two parts are usually correlated. In c2RGGMs, intercepts and slopes of the covariates in Xit

for either Part (I) and Part (II) may be fixed or random. Additional static or time-varying covariates also may be
included in either one. The same set of covariates may appear as it is presented now in (4) and (5), but this is not
required. If it is needed, different covariates can be used by simply fixing the corresponding fixed or random effects
at zero. Healthcare expenditure responses Yit’s in c2RGGMs need not be recorded at the same set of time points
for all individuals, and the data may be unbalanced by design or have ignorably missing values. In c2RGGMs, the
log-linear dependence of �it on covariates Xit allows for heteroscedasticity, and hypothesis testing procedures can
formally test for the existence of heteroscedasticity in c2RGGMs.

2.3 Type I marginalized two-part random-effects models

The c2RGGMs introduced in Section 2.2 cannot directly make marginal inference and thus the interpretation of �c
and �c can be particularly difficult. In this subsection, we propose to modify the c2RGGMs by augmenting the
marginal mean model, so that a direct marginal inference can be achieved in two-part models for healthcare cost
panel data.

In Part (I), a marginal model for the probability that the ith individual has a positive healthcare cost at the
recorded time t is given as

�hm1
½PðYit 4 0jXitÞ� ¼ X0it�m ð6Þ

in which �hm1
ð�Þ denotes the link function and �m is a vector of marginal regression coefficients. However, (6) only

identifies the marginal mean (first moment) of the complete multivariate distribution of Yi ¼ ðYi1, . . .,YiTÞ
0.

In order to complete model specification, the dependence among repeated measures of healthcare costs is
required. As a result, a conditional model that characterizes the dependence among healthcare costs Yit’s is
further specified as

�hc1 ½PðYit 4 0jXit, aitÞ� ¼ �itðX
0
it�m, varðaitÞÞ þ ait ð7Þ

In (7), �hc1ð�Þ denotes the link function and ait is a random effect as described in Section 2.2. The link function in
(6) and (7) can in general be different, although in practice we usually choose them to be identical. It is assumed
that, given the latent random vector ai ¼ ðai1, . . ., aiTÞ

0, Yi1, . . .,YiT are independent and that in general
ai � Nð0,Aið
AÞÞ, in which the covariance matrix Ai is a function of random effect covariates Zit’s and the
vector 
A that contains variance-covariance parameters. In (7), the parameter �it ¼ �itðX

0
it�m, varðaitÞÞ is a

function of marginal mean predictor X0it�m, the random effect variance varðaitÞ, and possibly other parameters.
Equations (6) and (7) together constitute the marginally specified model for the probability of observing a positive
healthcare cost in Y½11,12�it , in which (6) captures the systematic variation in the mean that is due to Xit and (7)
provides measures of random variation both across individuals and over time. By this way, the marginalized
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models (6) and (7) separate the model for systematic variation from the model for random variation. From (6), we
have

PðYit 4 0jXitÞ ¼ �h�1m1
ðX0it�mÞ

If fait ð�Þ denotes the distribution of ait and �ð�Þ denotes the probability density function of a standard normal
distribution, (7) indicates that

PðYit 4 0jXitÞ ¼

Z
PðYit 4 0jXit, aitÞ fait ðaitÞdait ¼

Z
�h�1c1
½�it þ varðaitÞ

1=2s��ðsÞds

Therefore, �it can be obtained as the solution to the convolution equation

�h�1m1
ðX0it�mÞ ¼

Z
�h�1c1
½�it þ varðaitÞ

1=2s��ðsÞds ð8Þ

This equation can be solved for �it using numerical integration combined with Newton-Raphson or quasi-
Newton algorithm, but a close-form solution may exist in some cases.

In Part (II), we propose the following marginally specified model for the mean of the positive healthcare costs

�hm2
½EðYitjYit 4 0,XitÞ� ¼ X0it�m ð9Þ

in which �hm2
ð�Þ is a link function and �m is the vector of marginal regression coefficients for the positive healthcare

costs. The rationale of (9) is to provide direct marginal inference on the mean of the positive healthcare costs while
using the two-part models for healthcare cost panel data. In order to characterize the dependence among repeated
measurements on positive costs, we assume that, conditioning on covariates Xit, random effect bit and Yit> 0, Yit

follows GGD with a density of fGGð yit; �,�it, �itÞ. Furthermore, a conditional model is constructed for �it as

ð�itjYit 4 0,Xit, bitÞ ¼ �itðX
0
it�m,X

0
it	m, varðbitÞÞ þ bit ð10Þ

and logð�itjYit 4 0,XitÞ ¼ X0it	m, in which bit is a random effect as described in Section 2.2, 	m is the vector of
regression coefficients for �it, and the parameter �it ¼ �itðX

0
it�m,X

0
it	m, varðbitÞÞ is a function of linear predictors

X0it�m, X
0
it	m, the random effect variance varðbitÞ, and possibly other parameters. It is assumed that Yi1, . . .,YiT are

independent given the unobserved random vector bi ¼ ðbi1, . . ., biTÞ
0 and that bi � Nð0,Bið
BÞÞ, in which the

covariance matrix Bi is a function of Zit’s and the variance-covariance parameter vector 
B. From (9), we have

EðYitjYit 4 0,XitÞ ¼ �h�1m2
ðX0it�mÞ

It can be derived from (10) that

EðYitjYit 4 0,XitÞ ¼

Z
EðYitjYit 4 0,Xit, bitÞ fbit ðbitÞdbit

¼

Z
exp½�it þ varðbitÞ

1=2s�
�2 expðX

0
it	mÞ=��ð1=�2 þ expðX0it	mÞ=�Þ

�ð1=�2Þ
�ðsÞds

¼
�2 expðX

0
it	mÞ=��ð1=�2 þ expðX0it	mÞ=�Þ

�ð1=�2Þ
exp �it þ

varðbitÞ

2

� �

Therefore, (9) and (10) lead to

�it ¼ log
�h�1m2
ðX0it�mÞ�ð1=�

2Þ

�2 expðX
0
it
	mÞ=��ð1=�2 þ expðX0it	mÞ=�Þ

" #
�
varðbitÞ

2
ð11Þ

Models (6), (7), (9), and (10) together constitute a m2RGGM that emphasizes the inference of the marginal
effects of covariates on positive costs. Here we name it as ‘‘Type I m2RGGM’’, in contrast to the ‘‘Type II
m2RGGM’’ introduced in Section 2.4. As in Section 2.2, the random effects ait in (7) and bit in (10) are
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assumed to be correlated and follow a multivariate normal distribution so that the two parts are correlated; that is,
we assume generally ðait, bitÞ

0
� N2ð0,�ð
A, 
B, 
ABÞÞ, in which 
AB is a vector that contains those additional

unknown parameters in � other than the ones in 
A and 
B. Note that there is a critical distinction between
marginal parameters �m and �m in m2RGGMs and the conditional parameters �c and �c in c2RGGMs. The
conditional regression coefficients contrasts the expected healthcare cost response in different covariate values
under the condition that the values of the latent random effects are equivalent, whereas the marginal coefficients do
not control for the unobserved random effects when characterizing the probabilities of positive costs or the mean
of positive costs. A marginal treatment effect directly compares the mean of treatment group to the mean of
control group, while a conditional treatment effect compares these means assuming the latent random effects are
equal.

2.4 Type II marginalized two-part random-effects models

In health economics and health service research, the inference on the overall mean of the healthcare expenditures
that include both zero and non-zero records may be much more influential than the inference on the marginal
effects of covariates on positive costs only. Apparently, the proposed Type I m2RGGMs in Section 2.3 are not able
to achieve the goal of providing direct marginal inference with respect to the marginal mean of overall healthcare
costs (including both zero and positive costs) over time. In order to accomplish this goal, we propose to use the
following marginally specified model to replace (9) in Type I m2RGGMs

�hm3
½EðYitjXitÞ� ¼ X0it�m ð12Þ

in which �hm3
ð�Þ is a link function and �m is the vector of marginal regression coefficients for overall healthcare costs.

The rationale of this proposal is to promote direct marginal inference on the overall healthcare costs, while still
using a similar parametric specification in (10) for Part (II) of Type I m2RGGMs. As in (10), we still assume that,
conditioning on covariates Xit, random effect bit and Yit> 0, Yit follows GGD with a density of fGGð yit; �,�it, �itÞ.
In addition, a conditional model is constructed for �it as

ð�itjYit 4 0,Xit, bitÞ ¼ �itðX
0
it�m,X

0
it�m,X

0
it	m, varðbitÞÞ þ bit ð13Þ

and logð�itjYit 4 0,XitÞ ¼ X0it	m, in which the parameter �it ¼ �itðX
0
it�m,X

0
it�m,X

0
it	m, varðbitÞÞ is a function of

linear predictors X0it�m, X
0
it�m, X

0
it	m, the random effect variance varðbitÞ, and possibly other parameters.

Models (12) and (13) together constitute the marginally specified model for Part (II) of Type II m2RGGMs.
Part (I) of Type II m2RGGMs remain identical to that of Type I m2RGGMs. As in Section 2.3, with the
assumption that the random effects ait in (7) and bit in (10) jointly follow a multivariate normal distribution.
Models (6), (7), (12), and (13) together constitute the Type II m2RGGM, which emphasizes the inference of the
marginal effects of covariates on the overall mean of the panel healthcare costs. From (12), we have

EðYitjXitÞ ¼ �h�1m3
ðX0it�mÞ

It can be derived from (6) and (13) that

EðYitjXitÞ ¼ PðYit 4 0jXitÞEðYitjYit 4 0,XitÞ

¼ �h�1m1
ðX0it�mÞ

�2 expðX
0
it	mÞ=��ð1=�2 þ expðX0it	mÞ=�Þ

�ð1=�2Þ
exp �it þ

varðbitÞ

2

� �

Therefore, (10) and (12) lead to

�it ¼ log
�h�1m3
ðX0it�mÞ�ð1=�

2Þ

�h�1m1
ðX0it�mÞ�

2 expðX0
it
	mÞ=��ð1=�2 þ expðX0it	mÞ=�Þ

" #
�
varðbitÞ

2
ð14Þ

Note that the proposed Type I m2RGGM in Section 2.3 cannot be subsumed under the Type II m2RGGM.
The Type II m2RGGM specifies a marginal model (12) directly on the expected overall healthcare cost, whereas
the counterpart in the Type I m2RGGM is the marginal model (9) that characterizes the marginal association
between the covariates and the expected positive healthcare cost.
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3 Marginal and incremental effects

In the panel studies on healthcare costs, the quantities of interest are often the marginal effects of changes in the
covariates at a specific time point.16–18 Let yit be the semicontinuous response variable that represents the amount
of the healthcare cost (either zero or positive cost) of the ith individual measured at the time t. Let
xit ¼ ðxit1, xit2, . . ., xitKÞ be a vector of K covariates. The marginal effect, or partial effect, of the kth covariate
xitk at the time t on the expected overall healthcare cost Eð yitjxitÞ is defined as the partial derivative of Eð yitjxitÞ
with respect to covariate xitk

�kðxit,#Þ ¼
@Eð yitjxitÞ

@xitk
ð15Þ

in which # denotes the vector that includes all unknown parameters (also see Section 4). The assumptions for (15)
include that xitk is continuous and that Eð yitjxitÞ is differentiable with respect to xitk for k ¼ 1, 2, . . .,K. The
marginal effect allows us to quantify the marginal change in the expected overall healthcare cost when
covariate xitk is increased by a small amount while holding other covariates xit,�k ¼ ðxit1, . . ., xit,k�1,
xit,kþ1, . . ., xitKÞ constant. Note that the marginal effect �kðxit,#Þ is usually a function of both unknown
parameters # and covariates xit, although it can be simplified when Eð yitjxitÞ is a linear combination of the
covariates. When xitk is categorical representing multiple levels or experimental groups, the quantities of
interest is usually the incremental effect15 that is defined as

�kðxit,�k,#Þ ¼ Eð yitjxitk ¼ l2, xit,�kÞ � Eð yitjxitk ¼ l1, xit,�kÞ

in which l1 and l2 are two levels of xitk. The incremental effect quantifies the difference in the expected overall
healthcare cost Eð yitjxitÞ at the two levels of xitk while holding other covariates xit,�k constant. When xitk is binary
that takes values 1 and 0 to represent two experimental groups (e.g., treatment and control groups), the
incremental effect is

�kðxit,�k,#Þ ¼ Eð yitjxitk ¼ 1,xit,�kÞ � Eð yitjxitk ¼ 0, xit,�kÞ

It is especially convenient to derive the marginal and incremental effects of a covariates on overall healthcare
costs, when the Type II m2RGGMs are used. From (12), it can be directly derived for the Type II m2RGGMs that
the marginal and incremental effects are

�kðxit,#Þ ¼
@�h�1m3
ðx0it�mÞ

@ ðx0it�mÞ
� �m,k ¼ _�h�1m3

ðx0it�mÞ � �m,k

and

�kðxit,�k,#Þ ¼ �h�1m3
½ðxit1, . . ., xitk ¼ l2, . . ., xitKÞ�m� � �h�1m3

½ðxit1, . . ., xitk ¼ l1, . . ., xitKÞ�m�

respectively. Here, �m,k denotes the regression coefficient for covariate xitk. The dot on _�h�1m3
indicates it is the

derivative of �h�1m3
ð�Þ; that is, _�h�1m3

ðxÞ ¼
@�h�1m3
ðxÞ

@x . If the link function �hm3
ð�Þ is a log link (i.e., �hm3

ð�Þ ¼ logð�Þ), then the

marginal and incremental effects for the Type II m2RGGMs are

�kðxit,#Þ ¼ expðx0it�mÞ � �m,k

and

�kðxit,�k,#Þ ¼ exp½ðxit1, . . ., xitk ¼ l2, . . ., xitKÞ�m� � exp½ðxit1, . . ., xitk ¼ l1, . . ., xitKÞ�m�

respectively. In some empirical analysis of healthcare costs, two particular functions of the marginal effect are the
quantities of primary interest: elasticity and semi-elasticity. In a panel study, the elasticity and semi-elasticity of the
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expected overall healthcare cost Eð yitjxitÞ with respect to covariate xitk are defined as

ekðxit,#Þ ¼
@Eð yitjxitÞ=Eð yitjxitÞ

@xitk=xitk
¼
@Eð yitjxitÞ

@xitk
�

xitk
Eð yitjxitÞ

¼
@ logEð yitjxitÞ

@ log xitk
ð16Þ

and

skðxit,#Þ ¼
@Eð yitjxitÞ=Eð yitjxitÞ

@xitk
¼
@Eð yitjxitÞ

@xitk
�

1

Eð yitjxitÞ
¼
@ logEð yitjxitÞ

@xitk

respectively. In (16), xitk> 0 is assumed only when it is needed. The elasticity measures the percentage change in
the expected overall healthcare cost Eð yitjxitÞ to a percentage change in covariate xitk at the time point t, while the
semi-elasticity quantifies the percentage change in the expected overall healthcare cost Eð yitjxitÞ when xitk is
increased by one unit. Specifically, the elasticity and semi-elasticity for the Type II m2RGGMs are

ekðxit,#Þ ¼
@ log �h�1m3

ðx0it�mÞ

@ logxitk
¼

_�h�1m3
ðx0it�mÞ

�h�1m3
ðx0it�mÞ

xitk�m,k

and

skðxit,#Þ ¼
@ log �h�1m3

ðx0it�mÞ

@xitk
¼

_�h�1m3
ðx0it�mÞ

�h�1m3
ðx0it�mÞ

�m,k

If the link function �hm3
ð�Þ is a log link, then the elasticity and semi-elasticity for the Type II m2RGGMs are

ekðxit,#Þ ¼ xitk�m,k

and

skðxit,#Þ ¼ �m,k

respectively. In contrast to the Type I m2RGGMs which will be discussed promptly, estimation on marginal effect
�kðxit,#Þ, as well as incremental effect �kðxit,�k,#Þ, elasticity ekðxit,#Þ and semi-elasticity skðxit,#Þ on the expected
overall healthcare cost, is much more convenient in the Type II m2RGGMs due to the concise marginal expression
in the models.

For the Type I m2RGGMs, the marginal effects of a covariate on the expected overall healthcare cost Eð yitjxitÞ
can also be derived. When the Type I m2RGGMs are used, we have from (6) and (9) that

EðYitjXitÞ ¼ PðYit 4 0jXitÞEðYitjYit 4 0,XitÞ ¼ �h�1m1
ðX0it�mÞ�h

�1
m2
ðX0it�mÞ

It implies that the marginal effect on the expected overall healthcare cost Eð yitjxitÞ with respect to covariate
xitk is

�kðxit,#Þ ¼ _�h�1m1
ðx0it�mÞ�h

�1
m2
ðx0it�mÞ � �m,k þ �h�1m1

ðx0it�mÞ_�h
�1
m2
ðx0it�mÞ � �m,k

in which �m,k denotes the regression coefficient of covariate xitk in (6). In addition, the elasticity and semi-elasticity
of the expected overall healthcare cost Eð yitjxitÞ when the Type I m2RGGMs are used can be derived as follows

ekðxit,#Þ ¼ �kðxit,#Þ �
xitk

Eð yitjxitÞ

¼
_�h�1m1
ðx0it�mÞ

�h�1m1
ðx0it�mÞ

xitk�m,k þ
_�h�1m2
ðx0it�mÞ

�h�1m2
ðx0it�mÞ

xitk�m,k
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and

skðxit,#Þ ¼ �kðxit,#Þ �
1

Eð yitjxitÞ

¼
_�h�1m1
ðx0it�mÞ

�h�1m1
ðx0it�mÞ

�m,k þ
_�h�1m2
ðx0it�mÞ

�h�1m2
ðx0it�mÞ

�m,k

When xitk is a categorical variable with multiple levels, the incremental effect on the expected overall healthcare
cost Eð yitj yit 4 0,xitÞ from level l2 to level l1 of covariate xitk is

�kðxit,�k,#Þ ¼ �h�1m1
½ðxit1, . . ., xitk ¼ l2, . . ., xitKÞ�m��h

�1
m2
½ðxit1, . . ., xitk ¼ l2, . . ., xitKÞ�m�

� �h�1m1
½ðxit1, . . ., xitk ¼ l1, . . ., xitKÞ�m��h

�1
m2
½ðxit1, . . ., xitk ¼ l1, . . ., xitKÞ�m�

However, comparing to the marginal effects that are exhibited above for the Type II m2RGGMs, these effects
on the expected overall healthcare cost are more complicated.

The marginal effect �kðxit,#Þ in (15) can be evaluated at any particular combination of covariate values, say
Xit ¼ x

ð0Þ
it . Therefore, the effect only represents a negligible portion of the entire population. In the most of health

economics and health service studies, however, investigators would assess the marginal effect on the expected
overall healthcare cost in the whole population. For this purpose, the investigators are commonly interested in the
expected value of �kðxit,#Þ over the population distribution of all covariates Xit ¼ ðXit1,Xit2, . . .,XitKÞ. This
quantity, named average marginal effect, is given by

��kð#Þ ¼
1

T

XT
t¼1

EXit
½�kðXit,#Þ� ¼

1

T

XT
t¼1

Z
�kðxit,#ÞdFXit

ðxitÞ ð17Þ

where Fxitð�Þ is the joint distribution of random vector Xit at the time point t, and the expectation EXit
½�� is taken

with respect to covariate Xit at the time point t. The average marginal effect (17) represents the population-average
rate of marginal change (marginally with respect to the population distribution of Xit over time) in the expected
overall healthcare cost with respect to covariate xitk over time, when controlling for other factors xit,�k. Similarly,
the average elasticity and average semi-elasticity of the expected overall healthcare cost Eð yitjxitÞ with respect to
covariate xitk over time can be defined as

�ekð#Þ ¼
1

T

XT
t¼1

EXit
½ekðXit,#Þ�

and

�skð#Þ ¼
1

T

XT
t¼1

EXit
½skðXit,#Þ�

respectively. When xitk is categorical, the average incremental effect is given by

��kð#Þ ¼
1

T

XT
t¼1

EXit
½�kðXit,#Þ�

The quantity ��kð#Þ is the population-average contrast in the expected overall healthcare cost Eð yitjxitÞ over time
at the two levels of xitk adjusting for all other covariates.

For the Type I and Type II m2RGGMs, marginal and incremental effects on the expected overall healthcare
cost with respect to a covariate are given above. Estimators of these effects can be obtained by replacing the
unknown parameters with the estimates of the parameters. When the Type II m2RGGMs are used, the marginal
effects on the expected overall healthcare cost are estimated by

�̂kðxit, #̂Þ ¼ _�h�1m3
ðx0it�̂mÞ � �̂m,k
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êkðxit, #̂Þ ¼
_�h�1m3
ðx0it�̂mÞ

�h�1m3
ðx0it�̂mÞ

xitk�̂m,k

ŝkðxit, #̂Þ ¼
_�h�1m3
ðx0it�̂mÞ

�h�1m3
ðx0it�̂mÞ

�̂m,k

and

�̂kðxit,�k, #̂Þ ¼ �h�1m3
½ðxit1, . . ., xitk ¼ l2, . . .,xitKÞ�̂m� � �h�1m3

½ðxit1, . . ., xitk ¼ l1, . . ., xitKÞ�̂m�

Here, the hat on the marginal effects indicates that they have been estimated by replacing the unknown
parameters with the estimates. When the Type I m2RGGMs are used, the marginal effects on the expected
overall healthcare cost are estimated by

�̂kðxit, #̂Þ ¼ _�h�1m1
ðx0it�̂mÞ�h

�1
m2
ðx0it�̂mÞ � �̂m,k þ �h�1m1

ðx0it�̂mÞ_�h
�1
m2
ðx0it�̂mÞ � �̂m,k

êkðxit, #̂Þ ¼
_�h�1m1
ðx0it�̂mÞ

�h�1m1
ðx0it�̂mÞ

xitk�̂m,k þ
_�h�1m2
ðx0it�̂mÞ

�h�1m2
ðx0it�̂mÞ

xitk�̂m,k

ŝkðxit, #̂Þ ¼
_�h�1m1
ðx0it�̂mÞ

�h�1m1
ðx0it�̂mÞ

�̂m,k þ
_�h�1m2
ðx0it�̂mÞ

�h�1m2
ðx0it�̂mÞ

�̂m,k

and

�̂kðxit,�k, #̂Þ ¼ �h�1m1
½ðxit1, . . ., xitk ¼ l2, . . ., xitKÞ�̂m��h

�1
m2
½ðxit1, . . ., xitk ¼ l2, . . ., xitKÞ�̂m�

� �h�1m1
½ðxit1, . . ., xitk ¼ l1, . . ., xitKÞ�̂m��h

�1
m2
½ðxit1, . . .,xitk ¼ l1, . . ., xitKÞ�̂m�

Estimators of the average marginal effects can be obtained by averaging the individual marginal effects. When the
Type II m2RGGMs are used, the average marginal effects on the expected overall healthcare cost are estimated by

�̂�kð#̂Þ ¼
1

NT

XN
i¼1

XT
t¼1

_�h�1m3
ðx0it�̂mÞ � �̂m,k

n o

�̂ekð#̂Þ ¼
1

NT

XN
i¼1

XT
t¼1

_�h�1m3
ðx0it�̂mÞ

�h�1m3
ðx0it�̂mÞ

xitk�̂m,k

( )

�̂skð#̂Þ ¼
1

NT

XN
i¼1

XT
t¼1

_�h�1m3
ðx0it�̂mÞ

�h�1m3
ðx0it�̂mÞ

�̂m,k

( )

and

��kð#̂Þ ¼
1

NT

XN
i¼1

XT
t¼1

�h�1m3
½ðxit1, . . ., xitk ¼ l2, . . ., xitKÞ�̂m�

n
��h�1m3

½ðxit1, . . ., xitk ¼ l1, . . ., xitKÞ�̂m�
o

Likewise, when the Type I m2RGGMs are used, the average marginal effects on the expected overall healthcare
cost are estimated by

�̂�kð#̂Þ ¼
1

NT

XN
i¼1

XT
t¼1

_�h�1m1
ðx0it�̂mÞ�h

�1
m2
ðx0it�̂mÞ � �̂m,k þ �h�1m1

ðx0it�̂mÞ_�h
�1
m2
ðx0it�̂mÞ � �̂m,k

n o

�̂ekð#̂Þ ¼
1

NT

XN
i¼1

XT
t¼1

_�h�1m1
ðx0it�̂mÞ

�h�1m1
ðx0it�̂mÞ

xitk�̂m,k þ
_�h�1m2
ðx0it�̂mÞ

�h�1m2
ðx0it�̂mÞ

xitk�̂m,k

( )

�̂skð#̂Þ ¼
1

NT

XN
i¼1

XT
t¼1

_�h�1m1
ðx0it�̂mÞ

�h�1m1
ðx0it�̂mÞ

�̂m,k þ
_�h�1m2
ðx0it�̂mÞ

�h�1m2
ðx0it�̂mÞ

�̂m,k

( )

Zhang et al. 3049



and

�̂�kð#̂Þ ¼
1

NT

XN
i¼1

XT
t¼1

f�h�1m1
½ðxit1, . . .,xitk ¼ l2, . . ., xitKÞ�̂m� � �h�1m2

½ðxit1, . . .,xitk ¼ l2, . . ., xitKÞ�̂m�

� �h�1m1
½ðxit1, . . ., xitk ¼ l1, . . ., xitKÞ�̂m� � �h�1m2

½ðxit1, . . ., xitk ¼ l1, . . ., xitKÞ�̂m�g

In some panel studies on healthcare costs, investigators may also be interested in the marginal effects on the
positive healthcare costs, besides the effects on the overall costs that includes both zero and non-zero costs. This
happens when they aim to study the impact of some covariates on the healthcare expenditures given the fact that
the healthcare expenditures actually occur. Marginal and incremental effects on the expected positive healthcare
costs are defined in Web Appendix 1.

Variance estimation of the marginal effects and average marginal effects introduced above is essential for
statistical inference procedures, such as confidence interval estimation and hypothesis testing, when using the
m2RGGMs. Variance estimators for these effects, which are obtained using either the delta methods or Taylor
series approximations, are derived in Web Appendix 2.

4 Maximum likelihood estimation and simulation studies

Maximum likelihood estimation of the marginalized two-part random-effects models is as demanding as the
conditional two-part random-effects models. For both Type I and Type II m2RGGMs introduced in Section 2,
let # ¼ ð�m, 
A,�m, 
B, 	m, �, 
ABÞ

0 denote the parameter vector that contains all unknown parameters. Then, the
likelihood function of the models is

Lð#Þ ¼
YN
i¼1

Z
ai

Z
bi

YT
t¼1

Pð yit 4 0jxij, aitÞ
Ið yit 4 0ÞPð yit ¼ 0jxij, aitÞ

1�Ið yit 4 0Þf ð yitj yit 4 0, xij, bitÞ
Ið yit 4 0Þ

( )
faibiðai, biÞdaidbi

ð18Þ

in which Pð yit 4 0jxij, aitÞ ¼ �h�1c1
ð�it þ aitÞ, Pð yit ¼ 0jxij, aitÞ ¼ 1� �h�1c1

ð�it þ aitÞ, f ð yitj yit 4 0, xij, bitÞ ¼
fGGð yit; �,�it ¼ �it þ bit, �it ¼ expðX0it	mÞÞ as defined in (10), and faibiðai, biÞ is the joint distribution of ai ¼ ðaitÞ

0

and bi ¼ ðbitÞ
0. The �it can be obtained by solving (8) and the �it can be found in either (11) and (14). Partial

derivatives of �it and �it with respect to the unknown parameters are given in Web Appendix 3. Adaptive
Gaussian quadrature can be employed to numerically evaluate the integrals in (18). Combined with a
optimization algorithm such as the Newton-Raphson or quasi-Newton, the maximum likelihood estimates of
the unknown parameters can be obtained. Variance–covariance matrix of the maximum likelihood estimator #̂
is the inverse of the Fisher information matrix, and standard errors (SEs) of the maximum likelihood estimators of
the unknown parameters can be estimated by the inverse of the observed information matrix.

Simulation studies were conducted to evaluate the performance of maximum likelihood estimation for
unknown parameters and marginal effects in the Type I and Type II m2RGGMs. In the first simulation study,
simulation data sets were generated from a Type I m2RGGM with the form of

Part ðIÞ : ��1½PðYit 4 0jXitÞ� ¼ �m0 þ Xit1�m1,

��1½PðYit 4 0jXit, aitÞ� ¼ �itðX
0
it�m, varðaitÞÞ þ ai0;

Part ðIIÞ : log½EðYitjYit 4 0,XitÞ� ¼ �m0 þ Xit1�m1 þ Xit2�m2 þ Xit3�m3,

ð�itjYit 4 0,Xit, bitÞ ¼ �itðX
0
it�m,X

0
it	m, varðbitÞÞ þ bi0,

logð�itjYit 4 0,XitÞ ¼ 	m0 þ Xit1	m1

ð19Þ

and from a Type II m2RGGM with the form of

Part ðIÞ : ��1½PðYit 4 0jXitÞ� ¼ �m0 þ Xit1�m1,

��1½PðYit 4 0jXit, aitÞ� ¼ �itðX
0
it�m, varðaitÞÞ þ ai0;
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Part ðIIÞ : log½EðYitjXitÞ� ¼ �m0 þ Xit1�m1 þ Xit2�m2 þ Xit3�m3,

ð�itjYit 4 0,Xit, bitÞ ¼ �itðX
0
it�m,X

0
it�m,X

0
it	m, varðbitÞÞ þ bi0,

logð�itjYit 4 0,XitÞ ¼ 	m0 þ Xit1	m1 ð20Þ

in which the time-invariant covariate Xit1 followed a Bernoulli distribution with PðXit1 ¼ 1Þ ¼ PðXit1 ¼ 0Þ ¼ 0:5,
the time-invariant covariate Xit2 followed a uniform distribution Uniformð0, 1Þ, Xit3 ¼ t=4 with t ¼ 1, 2, 3, 4,
�m ¼ ð�m0,�m1Þ

0
¼ ð�0:5, � 0:5Þ0, �m ¼ ð�m0,�m1,�m2,�m3Þ

0
¼ ð2, 1, 1, 1Þ0, 	m ¼ ð	m0, 	m1Þ

0
¼ ð�0:2, � 0:4Þ0, and

the correlated random intercepts ai0 and bi0 followed a bivariate normal distribution with varðai0Þ ¼
varðbi0Þ ¼ 0:5 and corrðai0, bi0Þ ¼ 0:5. The shape parameter � was set to be 2 in both (19) and (20). This
simulation study was conducted with 100 simulation data sets, each of which consists of N¼ 2000 individuals
(j ¼ 1, 2, . . .,N). For the data sets simulated from (19) and (20), 76.659% of the simulated healthcare expenditures
were zero. In (19), the average positive healthcare expenditure was 50.811 with a standard deviation of 84.396. In
(20), the average overall healthcare expenditure was 60.261 with a standard deviation of 269.594. The maximum
likelihood estimates of unknown parameters were obtained by using the SAS procedure NLMIXED for numerical
evaluation and optimization of likelihood (18). Table 1 reports the true values of parameters, the means of
parameter estimates, the standard deviations, the means of SEs, and the coverage probabilities of the
corresponding 95% confidence interval for the Type I and Type II m2RGGMs. The simulation results in
Table 1 demonstrate that the empirical biases of the parameter estimates are negligible. The standard
deviations of the parameter estimates are small enough to conclude that the estimates are unbiased. The
average SEs are generally close to standard deviations. The coverage probabilities for most of the parameters
are acceptable comparing to the nominal level 0.95. But, for the heteroscedastic variance parameters 	m0, 	m1 and
�, the coverage probabilities are lower than 0.95, which may be caused by the small finite sample bias in both
parameter estimates and SEs. We investigated the performance of estimating the incremental effect of Xit1 and the
marginal effects (including elasticity and semi-elasticity) of Xit2 on the expected overall healthcare expenditure at
Xit2 ¼ 0:5 and t¼ 4 for the Type II m2RGGM (20), as well as the incremental effect of Xit1 and the marginal effects
of Xit2 on the expected positive healthcare expenditure at Xit2 ¼ 0:5 and t¼ 4 for the Type I m2RGGM (19).
Estimates of the average incremental effect of Xit1 and the average marginal effects of Xit2 on the expected overall
healthcare expenditure for (20) and on the expected positive healthcare expenditure for (19) were also evaluated.
Table 2 reports the true values of (average) marginal and incremental effects, the means of the effect estimates, the
standard deviations, the means of SEs, and the coverage probabilities of the corresponding 95% confidence
interval for the Type I and Type II m2RGGMs. Table 2 shows that the estimates of the marginal and
incremental effects in (19) and (20) perform well as the parameter estimates do, and the empirical biases of the
effect estimates are negligible as well.

Two additional simulation studies were conducted to evaluate the performance of maximum likelihood
estimation in the Type I and Type II m2RGGMs with four random effects and to evaluate the impact of

Table 1. True values, parameter estimates, standard deviations (SD), standard errors (SE), and coverage probabilities (CP) for the

Type I and Type II m2RGGMs in the simulation study.

Type I m2RGGM Type II m2RGGM

Estimand True value Estimate SD SE CP True value Estimate SD SE CP

�m0 �0.5 �0.501 0.026 0.026 0.94 �0.5 �0.500 0.024 0.026 0.99

�m1 �0.5 �0.500 0.040 0.039 0.93 �0.5 �0.496 0.036 0.039 0.96

�m0 2 2.001 0.077 0.091 0.98 2 1.984 0.100 0.098 0.93

�m1 1 1.003 0.064 0.065 0.96 1 1.003 0.080 0.091 0.98

�m2 1 0.995 0.116 0.107 0.93 1 1.007 0.111 0.107 0.94

�m3 1 0.999 0.081 0.087 0.95 1 1.021 0.094 0.087 0.94

	m0 �0.2 �0.212 0.185 0.099 0.82 �0.2 �0.264 0.223 0.098 0.81

	m1 �0.4 �0.398 0.068 0.058 0.88 �0.4 �0.395 0.061 0.058 0.92

varðai0Þ 0.5 0.502 0.044 0.047 0.97 0.5 0.500 0.048 0.046 0.95

varðbi0Þ 0.5 0.486 0.063 0.059 0.92 0.5 0.482 0.059 0.056 0.92

corrðai0, bi0Þ 0.5 0.506 0.088 0.078 0.90 0.5 0.486 0.101 0.078 0.87

� 2 2.062 0.531 0.248 0.79 2 2.212 0.664 0.254 0.80
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random effects misspecification on maximum likelihood estimation. The results of these simulation studies are
reported in Web Appendix 4 and Web Appendix 5, respectively.

5 Analysis of healthcare cost data from China

In this section, a set of healthcare cost panel data is taken from the CHNS19,13 and analyzed using the marginalized
and conditional two-part random-effects models introduced in Section 2.

5.1 Data description

As a collaborative project between the Carolina Population Center at the University of North Carolina at Chapel
Hill and the National Institute for Nutrition and Health at the Chinese Center for Disease Control and
Prevention, the CHNS is designed to investigate the effects of health and nutrition programs implemented by
Chinese governments throughout the past one and half decades. The primary goal of the CHNS is to determine
how the social and economic transformation in China impacts the health and nutritional status of the population
during China’s rapid economic ascendance. The first wave of the CHNS was conducted in 1989, followed by eight
subsequent waves in 1991, 1993, 1997, 2000, 2004, 2006, 2009, and 2011. During each wave, the survey
implemented a multistage, random cluster process of data collection to draw a sample of households and the
individuals within. The household and individual surveys contain several modules on respondent demographics,
health, nutrition, and income. Until 2011, the survey covers a total number of nine provinces that vary
substantially in geographical factors, economic development, public resources, and health indicators. The
names of the nine provinces are Liaoning, Heilongjiang, Guangxi, Guizhou, Henan, Hubei, Hunan, Jiangsu,
and Shandong. CHNS has been expanded to include a health services section, which contains detailed data on
insurance coverage, medical providers, healthcare utilization, and healthcare costs in the past four weeks.
Questions about accessibility to healthcare facilities, time and travel costs to receive medical care, and
perceived quality of medical care are also asked. Information on illnesses and on all uses of the health system
during the previous month is collected for all household members.

The primary dependent variable in our analysis regarding the healthcare expenditures in the CHNS data is the
total medical expenditure of each individual during the previous four weeks of the survey (denoted by Yit for
individual i at the tth survey year). The key explanatory variables include whether the individual came from a rural
area (this variable, although denoted by Xit1, is not time-varying with 1 representing the individual came from a
rural area and 0 representing urban area), baseline age of the individual (denoted by Xit2 but not time-varying),
whether the individual had at least one type of diseases listed in the survey questionnaire (denoted by Xit3; 1
represents the individual had either diabetes, hypertension, myocardial infarction, apoplexy, bone fracture or
asthma and 0 represents otherwise), nature logarithm of one plus individual income (denoted by Xit4), health
insurance status (denoted by Xit5; 1 represents the individual was covered by at least one type of health insurance
and 0 represents otherwise), and survey wave (i.e., survey year; denoted by Xit6). The total medical expenditure and

Table 2. True values, estimates, standard deviations (SD), standard errors (SE), and coverage probabilities (CP) of (average)

incremental and marginal effects for the Type I and Type II m2RGGMs in the simulation study.

Type I m2RGGM Type II m2RGGM

xit1 Estimand True value Estimate SD SE CP Estimand True value Estimate SD SE CP

�1ðxit,#Þ 56.902 57.128 4.902 5.557 0.98 �1ðxit,#Þ 56.902 57.955 7.568 7.446 0.95

x1 ¼ 0 �2ðxit,#Þ 33.115 32.958 4.565 4.069 0.89 �2ðxit,#Þ 33.115 33.779 4.920 4.280 0.91

x1 ¼ 1 �2ðxit,#Þ 90.017 89.731 11.541 11.564 0.95 �2ðxit,#Þ 90.017 92.268 15.018 12.582 0.91

x1 ¼ 0 e2ðxit,#Þ 0.5 0.498 0.058 0.054 0.93 e2ðxit,#Þ 0.5 0.503 0.056 0.053 0.94

x1 ¼ 1 e2ðxit,#Þ 0.5 0.498 0.058 0.054 0.93 e2ðxit,#Þ 0.5 0.503 0.056 0.053 0.94

x1 ¼ 0 s2ðxit,#Þ 1 0.995 0.116 0.107 0.93 s2ðxit,#Þ 1 1.007 0.111 0.107 0.94

x1 ¼ 1 s2ðxit,#Þ 1 0.995 0.116 0.107 0.93 s2ðxit,#Þ 1 1.007 0.111 0.107 0.94

��kð#Þ 42.367 42.603 3.801 4.111 0.96 ��kð#Þ 42.367 42.912 5.347 5.366 0.96

��kð#Þ 39.044 39.008 5.475 5.073 0.95 ��kð#Þ 45.840 46.709 7.096 6.158 0.93

�ekð#Þ 0.5 0.498 0.058 0.054 0.95 �ekð#Þ 0.5 0.504 0.056 0.054 0.94

�skð#Þ 1 0.995 0.116 0.107 0.93 �skð#Þ 1 1.007 0.111 0.107 0.94
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individual income, both in Chinese yuan (yuan is the official currency of China), were converted to the 2011 price
level according to the annual customer price indices published by the National Bureau of Statistics of China.20

Eight dummy variables were created to represent eight provinces (Ui1 for Heilongjiang Ui2 for Jiangsu, Ui3 for
Shandong, Ui4 for Henan, Ui5 for Hubei, Ui6 for Hunan, Ui7 for Guangxi, Ui8 for Guizhou), with Liaoning as the
reference province. At the end of 1998, Chinese government enacted an mandatory insurance program, the
UEBMI, to reform the urban employee medical insurance system.21 In 2003, China also launched a new health
insurance system, the New Cooperative Medical Scheme (NCMS), in rural areas where the majority of the
population does not have any kind of health insurance before the NCMS reform.22 In addition, the CHNS has
adopted a set of unified survey questionnaires since the year of 2004. Considering these two important reforms that
may dramatically affect medical expenses and considering the change of survey questionnaires in the CHNS, we
include in our analysis 2639 adults who participated the CHNS after the enactment of UEBMI and NCMS in four
waves from 2004 to 2011.

5.2 Statistical modeling

Our modeling strategy in analyzing the medical expenditure panel data collected from the CHNS is to take the
advantages of the proposed Type I and Type II m2RGGMs and provide instant marginal inference by estimating
the marginal effects of the key independent variables with respect to the total medical expenditures. The Type I
m2RGGM that was used to analyze the CHNS data takes the form of

Part ðIÞ : ��1½PðYit 4 0jXitÞ� ¼ �m0 þ
X6
k¼1

Xitk�mk þ
X8
k¼1

Uik�mðkþ6Þ,

��1½PðYit 4 0jXit, aitÞ� ¼ �itðX
0
it�m, varðaitÞÞ þ ai0;

Part ðIIÞ : log½EðYitjYit 4 0,XitÞ� ¼ �m0 þ
X6
k¼1

Xitk�mk þ
X8
k¼1

Uik�mðkþ6Þ,

ð�itjYit 4 0,Xit, bitÞ ¼ �itðX
0
it�m,X

0
it	m, varðbitÞÞ þ bi0,

logð�itjYit 4 0,XitÞ ¼ 	m0 þ
X6
k¼1

Xitk	mk þ
X8
k¼1

Uik	mðkþ6Þ

ð21Þ

The Type II m2RGGM that was used to analyze the CHNS data takes the form of

Part ðIÞ : ��1½PðYit 4 0jXitÞ� ¼ �m0 þ
X6
k¼1

Xitk�mk þ
X8
k¼1

Uik�mðkþ6Þ,

��1½PðYit 4 0jXit, aitÞ� ¼ �itðX
0
it�m, varðaitÞÞ þ ai0;

Part ðIIÞ : log½EðYitjXitÞ� ¼ �m0 þ
X6
k¼1

Xitk�mk þ
X8
k¼1

Uik�mðkþ6Þ,

ð�itjYit 4 0,Xit, bitÞ ¼ �itðX
0
it�m,X

0
it�m,X

0
it	m, varðbitÞÞ þ bi0,

logð�itjYit 4 0,XitÞ ¼ 	m0 þ
X6
k¼1

Xitk	mk þ
X8
k¼1

Uik	mðkþ6Þ ð22Þ

Type I m2RGGM (21) and Type II m2RGGM (22) are specific forms of the proposed Type I and Type II
m2RGGMs in Section 2, where �hm1

ð�Þ ¼ �hc1 ð�Þ ¼ ��1ð�Þ, �hm2
ð�Þ ¼ �hm3

ð�Þ ¼ logð�Þ. In addition, �m ¼
ð�m0,�m1, . . .,�m,14Þ

0, �m ¼ ð�m0,�m1, . . .,�m,14Þ
0, and 	m ¼ ð	m0, 	m1, . . ., 	m,14Þ

0 contain the regression coefficients
for the intercepts and key independent variables, and ai0 and bi0 are correlated random intercepts that follow a
bivariate normal distribution N2ð0,�Þ with varðai0Þ ¼ 


2
A, varðbi0Þ ¼ 


2
B, and corrðai0, bi0Þ ¼ 
AB. The maximum

likelihood estimates of the unknown parameters in (21) and (22) were obtained by maximizing (18), for which the
SAS procedure NLMIXED was used to perform numerical evaluation and optimization. The SAS program for
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the maximum likelihood estimation is demonstrated in Web Appendix 6. To supply a reliable initial value to the
numerical optimization in NLMIXED, we implemented a two-step procedure. For both Type I m2RGGM (21)
and Type II m2RGGM (22), a marginal likelihood function for Part (I)

L1ð�m, 
AÞ ¼
YN
i¼1

Z
ai0

YT
t¼1

½�ð�it þ ai0Þ�
Ið yit 4 0Þ

½1��ð�it þ ai0Þ�
1�Ið yit 4 0Þ

( )
fai0ðai0Þdai0 ð23Þ

was first maximized to provide an initial value for ð�m, 
AÞ, denoted by ð ~�m, ~
AÞ. Then, ð ~�m, ~
AÞ was inserted into
Lð#Þ in (18) and ð ~�m, ~
B, ~	, ~�, ~
ABÞ ¼ argmaxð�m,
B,	,�,
ABÞ Lð ~�m, ~
A,�m, 
B, 	, �, 
ABÞ was solved. The estimates
ð ~�m, ~
B, ~	, ~�, ~
ABÞ were classified as maximum pseudo-likelihood estimates by Gong and Samaniego.23 After
these two steps, we take ~# ¼ ð ~�m, ~
A, ~�m, ~
B, ~	, ~�, ~
ABÞ as the initial value. Here, we acknowledge that a major
limitation of the proposed Type I m2RGGMs and Type II m2RGGMs in Section 2 is that the computational
burden of maximizing the likelihood will sharply increase as the number of random coefficients goes up. Please see
Section 6 for more discussion and potential solutions. For the purpose of comparison, a c2RGGM with a form of

Part ðIÞ : ��1½PðYit 4 0jXit, aitÞ� ¼ �c0 þ
X6
k¼1

Xitk�ck þ
X8
k¼1

Uik�cðkþ6Þ þ ai0;

Part ðIIÞ : ð�itjYit 4 0,Xit, bitÞ ¼ �c0 þ
X6
k¼1

Xitk�ck þ
X8
k¼1

Uik�cðkþ6Þ, þ bi0,

logð�itjYit 4 0,XitÞ ¼ 	c0 þ
X6
k¼1

Xitk	ck þ
X8
k¼1

Uik	cðkþ6Þ

ð24Þ

was taken to analyze the CHNS data as well.

5.3 Empirical results

The analysis results from fitting the Type I m2RGGM to the CHNS data are summarized in Table 3. The table
reports the estimates, estimated SEs and p values associated with the regression parameters in Parts (I) and (II) of
the full model that includes all covariates and the reduced model in which the covariates with an insignificant p
value are excluded. Part (II) in Table 3 demonstrates that rural status, age, disease status, log income (logarithm of
one plus income), and survey year have statistically significant impact on the expected positive healthcare cost.
Insurance status is not a statistically significant factor on the expected positive healthcare cost, which implies that
whether or not the individual is insured does not affect the amount of the healthcare expenditure while controlling
for other factors. In Part (II) of Table 3, two provinces, Shandong and Guizhou, exhibit a significant departure
from the baseline province, Liaoning, in the expected amount of positive healthcare cost. Part (I) in Table 3
demonstrates that rural status, age, disease status, and log income have statistically significant impact on the
healthcare utilization (i.e., the probability of observing a positive healthcare cost or the presence of the healthcare
expenditure). The negative estimated coefficient for rural status in Part (I) implies the individuals from rural areas
accessed the healthcare system less frequently than the ones from urban areas. This is consistent with the urban–
rural inequality in healthcare system in China as China is still on its way of urbanization. The positive estimated
coefficients for age and disease status show the increase of healthcare utilization among the elders and the diseased.
It is interesting to observe the healthcare utilization was decreased as the log income increased. Insurance status is
still not a statistically significant factor on the healthcare utilization. The insignificance in survey year indicates
that the chance of utilizing the healthcare system for an individual did not vary over the years in China while
controlling for other factors. In Part (I) of Table 3, five provinces, Heilongjiang, Shandong, Henan, Hubei, and
Guizhou, exhibit a significant departure from the baseline province in the healthcare utilization, which is an
evidence of heterogeneity in the use of health care system across different provinces.

Heteroscedasticity among the positive healthcare costs is confirmed by the significance of disease status and the
province of Shandong (comparing to the baseline province) in the heteroscedastic variance model of the Type I
m2RGGM. There is a strong evidence that the shape parameter � (p< 0.0001) is not equal to zero, showing that
the generalized Gamma model in Part (II) is superior to the traditional lognormal model. The estimated variance
components 
̂A and 
̂B in Table 3 with highly significant p values (p< 0.0001) suggest that unexplained
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Table 3. Parameter estimates, estimated standard errors, and p values from fitting the Type I m2RGGM to the CHNS data.

Full model Reduced model

Parameter Estimate SE p value Estimate SE p value

Part (I) Intercept (�m0) �1.547 0.108 <.0001 �1.583 0.097 <.0001

Rural (�m1) �0.144 0.040 0.000 �0.135 0.040 0.001

Age (�m2) 0.010 0.001 <.0001 0.010 0.001 <.0001

Disease (�m3) 0.560 0.042 <.0001 0.561 0.041 <.0001

Insurance (�m4) 0.075 0.044 0.091

log(1þIncome) (�m5) �0.018 0.004 <.0001 �0.016 0.004 0.000

Wave (�m6) �0.010 0.007 0.180

Heilongjiang (�m7) �0.500 0.078 <.0001 �0.453 0.067 <.0001

Jiangsu (�m8) 0.001 0.069 0.986

Shandong (�m9) �0.356 0.078 <.0001 �0.298 0.067 <.0001

Henan (�m10) �0.234 0.073 0.001 �0.185 0.060 0.002

Hubei (�m11) �0.184 0.071 0.009 �0.148 0.058 0.011

Hunan (�m12) �0.121 0.074 0.101

Guangxi (�m13) �0.050 0.074 0.501

Guizhou (�m14) �0.215 0.071 0.002 �0.173 0.057 0.003

Part (II) Intercept (�m0) 4.939 0.385 <.0001 4.914 0.343 <.0001

Rural (�m1) �0.284 0.142 0.045 �0.323 0.137 0.018

Age (�m2) 0.010 0.005 0.035 0.013 0.005 0.008

Disease (�m3) 0.842 0.131 <.0001 0.832 0.129 <.0001

Insurance (�m4) �0.168 0.145 0.246

log(1þIncome) (�m5) 0.037 0.015 0.017 0.029 0.014 0.045

Wave (�m6) 0.121 0.023 <.0001 0.104 0.017 <.0001

Heilongjiang (�m7) 0.169 0.292 0.562

Jiangsu (�m8) �0.039 0.225 0.863

Shandong (�m9) �0.614 0.271 0.024 �0.834 0.218 0.000

Henan (�m10) �0.037 0.282 0.896

Hubei (�m11) 0.215 0.239 0.369

Hunan (�m12) 0.347 0.246 0.158

Guangxi (�m13) �0.113 0.247 0.647

Guizhou (�m14) �0.485 0.237 0.041 �0.573 0.189 0.003

Heteroscedasticity Intercept (	m0) �0.523 0.224 0.020 �0.596 0.067 <.0001

Rural (	m1) �0.124 0.087 0.156

Age (	m2) 0.000 0.003 0.920

Disease (	m3) 0.191 0.084 0.023 0.169 0.078 0.030

Insurance (	m4) �0.109 0.113 0.331

log(1þIncome) (	m5) 0.012 0.010 0.216

Wave (	m6) 0.020 0.019 0.291

Heilongjiang (	m7) �0.188 0.177 0.288

Jiangsu (	m8) �0.181 0.131 0.168

Shandong (	m9) �0.375 0.177 0.035 �0.348 0.145 0.017

Henan (	m10) 0.219 0.152 0.151

Hubei (	m11) �0.116 0.138 0.401

Hunan (	m12) �0.146 0.149 0.329

Guangxi (	m13) 0.030 0.137 0.826

Guizhou (	m14) �0.149 0.142 0.292

Kappa (�) 2.747 0.215 <.0001 2.753 0.195 <.0001

Variance components 
A 0.513 0.034 <.0001 0.504 0.034 <.0001


B 1.523 0.047 <.0001 1.547 0.044 <.0001


AB 0.243 0.090 0.007 0.219 0.078 0.005
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heterogeneity may exist. The estimated correlation coefficient 
̂AB is significantly positive (p< 0.01) suggests a
strong positive correlation between the healthcare cost and the healthcare utilization.

Table 4 exhibits the analysis results from fitting the Type II m2RGGM to the CHNS data. Part (II) in Table 4
demonstrates that rural status, age, disease status, and survey year have statistically significant impact on the
expected overall healthcare cost. The negative estimated coefficient for rural status implies that the overall
healthcare expenditure among the individuals from rural areas is significantly less than urban areas. The
positive estimated coefficients in age and disease show the overall healthcare costs increase among the elders
and the diseased. According to the estimated coefficient in survey year and its p value (p< 0.0001), the overall
healthcare costs increase significantly from 2004 to 2011 in China. In Part (II) of Table 4, neither insurance status
nor log income is shown to be a statistically significant factor on the expected overall healthcare cost. Two
provinces, Shandong and Guizhou, exhibit a significant departure from the baseline province in the positive
healthcare costs, which is consistent with the analysis in the Type I m2RGGM. As in Table 3, Part (I) in Table
4 demonstrates that rural status, age, disease status, and log income have statistically significant impact on the
healthcare utilization, and insurance status and survey year are not statistically significant, and five provinces,
Heilongjiang, Shandong, Henan, Hubei, and Guizhou, exhibit a significant departure from the baseline province
in the healthcare utilization is confirmed by the significance of disease status and the province of Shandong in the
heteroscedastic variance model of the Type II m2RGGM. There is also a strong evidence that the shape parameter
� (p< 0.0001) is not equal to zero in the Type II m2RGGM. As in Table 3, the estimated variance components 
̂A
and 
̂B in Table 4 are highly significant p values (p< 0.0001) as the evidence of unexplained heterogeneity. The
estimated correlation coefficient 
̂AB is significantly positive (p¼ 0.038). This confirms a strong positive correlation
between the healthcare cost and the healthcare utilization. For the purpose of comparison, the analysis results
from fitting the c2RGGM to the CHNS data are also summarized in Table 5.

The likelihood ratio test statistics that serve to compare the reduced model to the full model were calculated for
two pairs in Tables 3 and 4. The corresponding p values are both less than 0.0001, suggesting the reduced models
are generally preferred. Furthermore, the Akaike information criterion (AIC) and Bayesian information criterion
(BIC) values of the reduced model are less than the values of the full model in both tables. However, this is only
simple model comparison and we are not committing to developing any sophisticated model selection procedure
for the m2RRGGMs since it is beyond the scope of this article.

5.4 Estimation of marginal effects

For Type II m2RGGM (22), we examine the incremental effect of rural status �1ðxit,#Þ, the marginal effect of age
�2ðxit,#Þ, and the incremental effect of disease status �3ðxit,#Þ on the expected overall healthcare cost. These effects
are estimated under the reduced model in Table 4 in order to eliminate the interference from the insignificant
covariates. Table 6 reports the estimates and the SEs of the effects at various combinations of rural and disease
status. To avoid reporting a large number of redundant tables, Table 6 only reports the effect estimates for the
hypothetic individuals whose age is equal to the sample average of the age variable (i.e., xit2¼ 60.839) at the year of
2011 and for the baseline province, although the effects are estimated and examined for other survey years and
significant provinces in the reduced model as well. It is observed from �̂1ðxit, #̂Þ that, for the individuals from
Liaoning province with an average age, their healthcare expenditures when living in urban areas in 2011 were
31.989 (SE: 14.181) yuan higher than living in rural areas if they are non-diseased, whereas this difference was
138.404 (60.169) yuan if they are diseased. The estimates of �̂3ðxit, #̂Þ show that for such individuals the healthcare
expenditures among the diseased were 235.995 (44.540) yuan higher in 2011 than the non-diseased when living in
rural areas, whereas this difference was 342.411 (66.801) yuan if they lived in urban areas. The largest marginal
effect of age, �̂2ðxit, #̂Þ ¼ 12:282 (2.957), occurred among the diseased living in urban areas. This quantifies the
marginal change of the expected overall healthcare cost among the subpopulation when age is increased by a small
amount while holding other factors. We also estimate the average incremental effect of rural status ��1ð#Þ, the
average marginal effect of age ��2ð#Þ, and the average incremental effect of disease status ��3ð#Þ on the expected
overall healthcare cost. The estimated average marginal effect of age on the expected overall healthcare cost is
2.500 (SE: 0.599). The estimated average incremental effects of rural status and disease status are�35.461 (15.177)
and 174.923 (28.804), respectively. The estimated average semi-elasticity �s2ð#Þ of age is instantly given by the
estimated coefficient of age, which is 0.028 (0.005). The interpretation of this estimated average semi-elasticity is
that there is an average change of 2.8% in the expected overall healthcare cost when age is increased by one.

For Type I m2RGGM (21), we examine the incremental effect of rural status �1ðxit,#Þ, the marginal effect of
age �2ðxit,#Þ, the incremental effect of disease status �3ðxit,#Þ, and the marginal effect of log income �5ðxit,#Þ on
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Table 4. Parameter estimates, estimated standard errors, and p values from fitting the Type II m2RGGM to the CHNS data.

Full model Reduced model

Parameter Estimate SE p value Estimate SE p value

Part (I) Intercept (�m0) �1.529 0.106 <.0001 �1.544 0.095 <.0001

Rural (�m1) �0.118 0.040 0.003 �0.121 0.039 0.002

Age (�m2) 0.009 0.001 <.0001 0.009 0.001 <.0001

Disease (�m3) 0.561 0.041 <.0001 0.570 0.041 <.0001

Insurance (�m4) 0.113 0.044 0.011

log(Incomeþ1) (�m5) �0.018 0.004 <.0001 �0.017 0.004 <.0001

Wave (�m6) �0.015 0.007 0.041

Heilongjiang (�m7) �0.481 0.077 <.0001 �0.437 0.061 <.0001

Jiangsu (�m8) �0.026 0.068 0.707

Shandong (�m9) �0.294 0.076 0.000 �0.301 0.066 <.0001

Henan (�m10) �0.244 0.072 0.001 �0.202 0.055 0.000

Hubei (�m11) �0.207 0.070 0.003 �0.181 0.053 0.001

Hunan (�m12) �0.133 0.073 0.069

Guangxi (�m13) �0.044 0.073 0.541

Guizhou (�m14) �0.210 0.069 0.002 �0.212 0.057 0.000

Part (II) Intercept (�m0) 2.070 0.443 <.0001 2.085 0.378 <.0001

Rural (�m1) �0.345 0.163 0.035 �0.372 0.145 0.011

Age (�m2) 0.026 0.006 <.0001 0.028 0.005 <.0001

Disease (�m3) 1.473 0.148 <.0001 1.465 0.137 <.0001

Insurance (�m4) 0.040 0.170 0.815

log(Incomeþ1) (�m5) 0.019 0.018 0.279

Wave (�m6) 0.101 0.027 0.000 0.109 0.018 <.0001

Heilongjiang (�m7) �0.633 0.331 0.056

Jiangsu (�m8) �0.186 0.257 0.469

Shandong (�m9) �1.122 0.306 0.000 �1.105 0.254 <.0001

Henan (�m10) �0.353 0.309 0.253

Hubei (�m11) �0.118 0.277 0.670

Hunan (�m12) 0.111 0.285 0.696

Guangxi (�m13) �0.159 0.291 0.585

Guizhou (�m14) �0.812 0.279 0.004 �0.808 0.220 0.000

Heteroscedasticity Intercept (	m0) �0.397 0.236 0.092 �0.570 0.055 <.0001

Rural (	m1) �0.047 0.091 0.601

Age (	m2) �0.003 0.003 0.347

Disease (	m3) 0.060 0.090 0.502

Insurance (	m4) �0.078 0.121 0.517

log(Incomeþ1) (	m5) 0.016 0.010 0.102

Wave (	m6) 0.020 0.020 0.319

Heilongjiang (	m7) �0.196 0.182 0.280

Jiangsu (	m8) �0.212 0.136 0.120

Shandong (	m9) �0.502 0.176 0.004 �0.483 0.172 0.005

Henan (	m10) 0.242 0.149 0.106

Hubei (	m11) �0.097 0.143 0.495

Hunan (	m12) �0.031 0.152 0.838

Guangxi (	m13) 0.021 0.145 0.884

Guizhou (	m14) �0.180 0.150 0.232

Kappa (�) 2.929 0.233 <.0001 2.903 0.185 <.0001

Variance components 
A 0.477 0.034 <.0001 0.497 0.034 <.0001


B 1.526 0.055 <.0001 1.562 0.052 <.0001


AB 0.318 0.139 0.023 0.133 0.064 0.038
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Table 5. Parameter estimates, estimated standard errors, and p values from fitting the c2RGGM to the CHNS data.

Full model Reduced model

Parameter Estimate SE p value Estimate SE p value

Part (I) Intercept (�c0) �1.847 0.125 <.0001 �1.861 0.112 <.0001

Rural (�c1) �0.117 0.045 0.010 �0.137 0.045 0.002

Age (�c2) 0.013 0.002 <.0001 0.012 0.002 <.0001

Disease (�c3) 0.607 0.047 <.0001 0.601 0.046 <.0001

Insurance (�c4) 0.086 0.050 0.084

log(1þIncome) (�c5) �0.019 0.005 <.0001 �0.017 0.005 <.0001

Wave (�c6) �0.010 0.008 0.234

Heilongjiang (�c7) �0.603 0.089 <.0001 �0.525 0.076 <.0001

Jiangsu (�c8) �0.011 0.077 0.883

Shandong (�c9) �0.394 0.088 <.0001 �0.338 0.075 <.0001

Henan (�c10) �0.314 0.082 <.0001 �0.223 0.068 0.001

Hubei (�c11) �0.235 0.080 0.003 �0.179 0.066 0.006

Hunan (�c12) �0.141 0.083 0.089

Guangxi (�c13) �0.051 0.083 0.537

Guizhou (�c14) �0.252 0.079 0.001 �0.214 0.064 0.001

Part (II) Intercept (�c0) 3.443 0.418 <.0001 3.829 0.347 <.0001

Rural (�c1) �0.221 0.147 0.132

Age (�c2) 0.021 0.005 <.0001 0.015 0.005 0.003

Disease (�c3) 0.813 0.139 <.0001 0.725 0.124 <.0001

Insurance (�c4) �0.097 0.152 0.525

log(1þIncome) (�c5) 0.042 0.016 0.008 0.040 0.014 0.004

Wave (�c6) 0.131 0.025 <.0001 0.103 0.017 <.0001

Heilongjiang (�c7) 0.212 0.309 0.492

Jiangsu (�c8) �0.038 0.233 0.869

Shandong (�c9) �0.461 0.288 0.110

Henan (�c10) �0.337 0.263 0.201

Hubei (�c11) 0.172 0.246 0.484

Hunan (�c12) 0.367 0.254 0.149

Guangxi (�c13) �0.176 0.254 0.488

Guizhou (�c14) �0.516 0.247 0.037 �0.456 0.192 0.018

Heteroscedasticity Intercept (	c0) �0.628 0.236 0.008 �0.532 0.063 <.0001

Rural (	c1) �0.116 0.090 0.195

Age (	c2) 0.002 0.003 0.409

Disease (	c3) 0.109 0.088 0.216

Insurance (	c4) �0.068 0.115 0.554

log(1þIncome) (	c5) 0.013 0.010 0.180

Wave (	c6) 0.023 0.020 0.244

Heilongjiang (	c7) �0.187 0.187 0.316

Jiangsu (	c8) �0.133 0.134 0.323

Shandong (	c9) �0.289 0.178 0.104

Henan (	c10) 0.122 0.146 0.406

Hubei (	c11) �0.160 0.141 0.258

Hunan (	c12) �0.144 0.150 0.336

Guangxi (	c13) �0.006 0.139 0.965

Guizhou (	c14) �0.129 0.143 0.366

Kappa (�) 2.545 0.269 <.0001 2.609 0.188 <.0001

Variance components 
A 0.509 0.034 <.0001 0.503 0.034 <.0001


B 1.561 0.048 <.0001 1.610 0.046 <.0001


AB 0.290 0.113 0.010 0.226 0.078 0.004
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the expected positive healthcare cost. These effects are estimated under the reduced model in Table 3 for the
hypothetic individuals whose age is equal to the sample average of the age variable and whose log income is equal
to the sample average (i.e., xit5¼ 2.993). Table 6 reports the estimates and the estimated SEs of the effects at
various combinations of rural status and disease status for the baseline province at the year of 2011. The
interpretations of these effects are similar to those in Table 4, but with respect to the expected positive
healthcare expenditure. We also examine the average incremental effect of rural status ��1ð#Þ, the average
marginal effect of age ��2ð#Þ, and the average incremental effect of disease status ��3ð#Þ on the expected positive
healthcare cost. The estimated average marginal effect of age and log income on the expected positive healthcare
cost is 8.098 (3.293) and 18.459 (9.551), respectively. The estimated average incremental effects of rural status and
disease status are �211.443 (96.138) and 552.109 (116.945), respectively. The estimated average semi-elasticities
�s2ð#Þ for age and �s5ð#Þ for log income are instantly given by the corresponding estimated coefficients 0.013 (0.005)
and 0.029 (0.014), respectively.

6 Discussion

In this article, we propose the Type I and Type II m2RGGms for modeling longitudinally observed healthcare
costs and medical expenditures. We subsequently derive the estimates and variance estimates of various marginal
effects of a covariate with respect to the expected overall and positive healthcare costs. Type I and Type II
m2RGGms are joint random-effects models, in which the two modeling components are correlated thorough
latent random effects. A major limitation of the proposed Type I and Type II m2RGGMs is that the
computational complexity of maximizing the full likelihood to obtain parameter estimates increases
dramatically if the total number of random effects in the two components of the m2RGGMs is increased.
This is caused by the exponentially increased dimension of the integral resided in the full likelihood that I have
to be numerically evaluated during the optimization process. However, this limitation is an inherent attribute as a

Table 6. Estimates (estimated standard errors) of marginal and incremental effects on the expected overall healthcare

cost (Type II m2RGGMs) and on the expected positive healthcare cost (Type I m2RGGMs) at various combinations of

rural status and disease status for the hypothetic individuals with an average age for the baseline province at the year of

2011 and, when it applies to the Type I m2RGGMs, for the hypothetic individuals with an average log income.

Rural–disease combination

xit1(Rural)¼ xit3(Disease)¼ Estimate (SE)

Type II m2RGGMs �̂1ðxit, #̂Þ – 0 �31:989ð14:181Þ

– 1 �138:404ð60:169Þ

�̂2ðxit, #̂Þ 0 0 2:839ð0:746Þ

0 1 12:282ð2:957Þ

1 0 1:957ð0:469Þ

1 1 8:465ð1:894Þ

�̂3ðxit, #̂Þ 0 – 342:411ð66:801Þ

1 – 235:995ð44:540Þ

Type I m2RGGMs �̂1ðxit, #̂Þ – 0 �204:576ð96:459Þ

– 1 �469:910ð216:537Þ

�̂2ðxit, #̂Þ 0 0 9:455ð3:892Þ

0 1 21:717ð8:397Þ

1 0 6:848ð2:699Þ

1 1 15:731ð5:873Þ

�̂3ðxit, #̂Þ 0 – 962:525ð218:928Þ

1 – 697:192ð159:810Þ

�̂5ðxit, #̂Þ 0 0 21:551ð10:809Þ

0 1 49:503ð24:442Þ

1 0 15:610ð8:421Þ

1 1 35:857ð19:216Þ

The hyphens ‘‘–’’ indicate that it is not required to specify the covariate values when the corresponding marginal effects are estimated.
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random-effects model. Therefore, this is not unique in the proposed models and is true in most of the random-
effects models. In fact, the proposed m2RGGMs retain the same level of computational complexity as the
c2RGGMs in Liu et al.10 In the statistical literature, the approaches that can resolve this issue have been well
documented. One option is to find maximum likelihood estimates using an approximate Fisher scoring procedure
based on high-order Laplace approximations as in Olsen and Schafer.4 Other alternatives include developing a
Monte Carlo expectation-maximization algorithm for maximizing the full likelihood24,25 or adopting a pseudo-
likelihood approach for parameter estimation.26 The development and discussion on these three methods are
beyond the scope of this article and can be pursued in the future research.

Direct marginal inference on the presence of healthcare utilization can be conducted thorough the
marginalization in Part (I) of the Type I and Type II m2RGGMs. The corresponding marginal and
incremental effects and their estimates can be similarly derived as in Section 3. It is not trivial to develop a
marginalized model for the two-part random-effects model with an alternative distribution for YitjYit 4 0 in
Part (II) (see Liu et al.27). This has been identified as future research and will be reported in a separated
manuscript. In addition, it is valuable as a topic of future research to compare the Type I and Type II
m2RGGMs with the marginal models using the generalized estimating equation approach and other types of
marginalized models that can provide direct marginal inference to healthcare cost panel data.

The development of the m2RGGMs in this article has connection with the work published in Su et al.28 and
Tom et al.,29 but there is clear distinction between their work and ours. Su et al.28 and Tom et al.29 aimed at the
marginal inference only on the probability of observing a positive cost in Part (I) of a two-part random-effects
model and ignored Part (II). We instead propose to marginalize both Part (I) and Part (II), with particular
emphasis on the marginal inference on the expected amount of overall healthcare costs. Also, Smith et al.30

shares the same vision with our work as both of us plan to achieve marginal inference on overall healthcare
costs. However, the concept ‘‘marginal inference’’ is used to highlight the fact that the regression models are not
conditioning on either other response variables or unobserved random effects, and consequently can make direct
inference on the effect of a covariate on marginal means.31 The model proposed by Smith et al.30 is still a
conditional model (please refer to Diggle et al.31 for connection and distinction between conditional models
and marginal models) and therefore, as we discussed above, direct marginal inference cannot be achieved (see
Liu et al.10). In addition, the m2RGGMs proposed here are built upon marginalization of the random-effects
generalized Gamma models in Part (II) of the two-part models. This is beyond and superior to the lognormal
models in Su et al.28 and Smith et al.30
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