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A simple test of completeness in a class of nonparametric
specification

Yingyao Hua and Ji-Liang Shiub

aDepartment of Economics, Johns Hopkins University, Baltimore, Maryland, USA; bInstitute for Economic and
Social Research, Jinan University, Guangzhou, China

ABSTRACT
This paper provides a test for completeness in a class of nonparametric
specification with an additive and independent error term. It is known that
such a nonparametric location family of functions is complete if and only if
the characteristic function of the error term has no zeros on the real line.
Because a zero of the error characteristic function implies that of an
observed marginal distribution, we propose a simple test for zeros of char-
acteristic function of the observed distribution, in which rejection of the
null hypothesis implies the completeness. This test is applicable to many
popular settings, such as nonparametric regression models with instrumen-
tal variables, and nonclassical measurement error models. We describe the
asymptotic behavior of the tests under the null and alternative hypotheses
and investigate the finite sample properties of the proposed test through
a Monte Carlo study. We illustrate our method empirically by estimating a
measurement error model using the CPS/SSR 1978 exact match file.
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1. Introduction

In this paper, we consider the testability of completeness in a nonparametric class. The complete-
ness conditions have been employed in the nonparametric identifications of many econometric
models including nonparametric IV regression models, nonclassical measurement error models,
and panel data models, etc. The completeness condition can be expressed in terms of a family of
functions as follows: For all measurable real functions m such that E½jmðXÞj� < 1, andð

mðxÞf ðx, zÞdx ¼ 0 a:e: in Z, (1)

then mð�Þ ¼ 0 a.e. Bounded completeness is similarly defined by stating that the only solution to
Eq. (1) among all bounded functions is mð�Þ ¼ 0 a.e. In this paper, we focus on testing issues on
bounded completeness and refer the family ff ðx, zÞ : z 2 Zg satisfying the above restriction as a
complete family. Define the set of all absolutely integrable and bounded functions with domain
A as L1bndðAÞ ¼ fhð�Þ : ÐXjhðxÞj1dx < 1 and supa2A hðaÞ < 1g, where A is a closed interval
in R: We can rewrite Eq. (1) as an integral operator with the kernel function f(x, z) through the
following:

ðLf hÞðzÞ ¼
ð
Xz

hðxÞf ðx, zÞdx, (2)

where Lf is an integral operator from L1bndðXÞ to L1bndðZÞ: The completeness of the family
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ff ðx, zÞ : z 2 Zg over L1bndðXÞ is equivalent to the injective property of the integral operator Lf
using f(x, z) as a kernel function.

The injectivity of the conditional expectation operator using the conditional distribution
f ðXjZÞ as a kernel function is used to obtain the nonparametric identification of nonparametric
IV regression models (see Ai and Chen, 2003; Blundell, Chen, and Kristensen, 2007;
Chernozhukov and Hansen, 2005; Chernozhukov, Imbens, and Newey, 2007; Darolles, Fan,
Florens, and Renault, 2011; Horowitz, 2011; Horowitz and Lee, 2007; Newey and Powell, 2003).
Hu, Schennach, and Shiu (2017) use the result of the Volterra equation to provide sufficient con-
ditions for nonparametric identification of IV regression models in compact supports. Further, as
discussed in Horowitz (2012), an identification condition may not exist when an instrument is
not valid. This raises the question whether it is possible to test for the completeness. Canay,
Santos, and Shaikh (2013) consider the hypothesis testing problems for testing completeness in
the nonparametric IV regression model and show the completeness condition is, without further
restrictions, untestable against very general alternatives. Any test that controls asymptotic size will
have trivial asymptotic power against any alternative because distributions for which completeness
fails are arbitrarily close to distributions for which completeness holds. Freyberger (2017) pro-
vides a test for a restricted completeness by linking the outcome of the test to consistency of
an estimator.

The method developed in this paper builds on Theorem 2.1 in Mattner (1993), the nonpara-
metric location family of functions ffVðx� zÞ : z 2 Rg is complete if and only if the characteristic
function of V is everywhere nonvanishing. Under nonparametric specifications for an additive
functional form and an independent error term, the everywhere nonvanishing property of the
characteristic function of observables is a sufficient condition for the completeness condition.
This enables us to construct test statistics for the completeness using the squared modulus of
empirical characteristic functions. Compared with the other tests for completeness, the test statis-
tics are relatively simple because they are based on marginal distributions of observables instead
of joint distributions.1 One of the advantages of the property is that the test statistics can be used
to test completeness conditions related to unobservables. Under the nonparametric specifications,
rejection of the null hypothesis implies the nonparametric family of conditional density functions
ffVðx� zÞ : z 2 Rg is complete in L1bndðXÞ: Our nonparametric restrictions on the class of func-
tions are strong enough to allow testability for completeness. We illustrate the proposed simple
test statistics for the completeness conditions in nonparametric IV regression models, and non-
classical measurement error models with instrumental variables.

The completeness condition has been used to obtain global or local identification in a variety
of nonparametric econometric models other than nonparametric IV models such as measurement
error models (see Carroll, Chen, and Hu, 2010; Chen and Hu, 2006; Hu and Schennach, 2008),
and panel data models (see Shiu and Hu, 2013), etc. Several papers including Newey and Powell
(2003), Andrews (2017), D’Haultfoeuille (2011), and Hu and Shiu (2018) have provided sufficient
conditions for different versions of completeness.

There are three major implications of the results in our paper:

1. Uniform or pointwise tests
This paper provides a useful result for the test of completeness condition in a class of models
based on convolution. This result is complementary to the nontestability result of the com-
pleteness condition in Canay, Santos, and Shaikh (2013). They consider a very general class
of models and show that any test that controls asymptotic size uniformly over a large class
of noncomplete distributions has trivial asymptotic power against any alternative. Denote P0

1Other tests for completeness such as a full rank test for completeness of discrete cases in Robin and Smith (2000), and a test
for a restricted version of completeness in Freyberger (2017) are derived in terms of joint distributions.
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as some class of distributions where the completeness fails and P1 is the class of distributions
where the completeness holds. A uniform result on size control is to control size uniformly
over P0: Canay, Santos, and Shaikh (2013) show any distribution in P1 can be arbitrarily
approximated by a sequence of distributions in P0: This means the impossibility of having a
nontrivial test that controls size over a large set of possible DGPs. Within the class of models
considered in our paper, P0 corresponds to the set of vanishing ch.f., i.e., characteristic func-
tions with zeros on the real line, and P1 corresponds to the set of nonvanishing ch.f. It can
be shown that none of nonvanishing ch.f. can be arbitrarily approximated by a sequence of
vanishing ch.f. That is where the testability of completeness comes from in our paper.

On one hand, a general result on testability is of interest in econometric theory; On the
other hand, practitioners usually work on a specific model in empirical applications and
want to know what can be tested for such a specific model instead of an extremely general
model. Since our test only focuses on a class of models, it would control size pointwisely for
any distribution satisfying the null hypothesis but would not control size uniformly. If an
empirical model falls into our class of specifications, this paper shows that testing the com-
pleteness condition is feasible and actually simple. In that sense, our results are complemen-
tary to the result in Canay, Santos, and Shaikh (2013). Therefore, we believe the pointwise
results in our paper are very useful for empirical research using this class of models, espe-
cially given the existing uniform nontestability result.

2. Nontestability of continuity
The same uniformity argument can be applied to tests of the continuity assumption. Suppose
we consider a general nonparametric regression model Y ¼ mðXÞ þ g with X 2 R and want
to test the continuity assumption imposed on the regression function mð�Þ over the real line
using a random sample of {Y, X}. Without imposing enough restrictions, one can establish a
nontestability result of the continuity assumption simply because we only observe a countable
number of possible values in the support of regressor X as the sample size goes to infinity.
One can always find a discontinuous function that is observationally equivalent to the true
continuous regression function mð�Þ: In other words, a continuous function over the real line
only exists at the population level. Such a nontestability result is empirically vacuous.

Furthermore, the results in Canay, Santos, and Shaikh (2013) actually rely on such a con-
tinuity restriction. In their paper, the completeness of f ðXjZÞ is defined on the whole support
of two continuous variables X and Z with X 2 R and Z 2 R: They show that one can always
use a sequence of discontinuous step functions to approximate the continuous distribution
function f ðXjZÞ defined on the support. The completeness, which is defined in a functional
space of continuous functions over R, does not hold with these discontinuous step func-
tions.2 Given a random sample, the limit of that sequence of discontinuous step functions is
observationally equivalent to the true continuous distribution function f ðXjZÞ: That is why
the completeness condition is not testable in this general setting. In other words, their proof
of the nontestability of completeness is in fact based on the nontestability of the continuity
restriction. That is also why they directly rule out cases with a discrete X. The full support of
a discrete X can be identified in a large sample. It is well known that completeness is the
same as the full rank condition of a matrix, which is testable, in the discrete case.

The key of the testability of the completeness condition actually lies in the case where X
has a support with infinitely countable points. Because one can only observe or identify such
a support with a random sample as the sample size goes to infinity, restrictions imposed

2It is possible that a sequence of step functions is complete in the functional space of continuous functions over a compact
set. For example, a sequence of the so-called Haar wavelet functions, which are discontinuous step functions, can uniformly
approximate any continuous real function with compact support.
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beyond such a support will have to be put into nontestable assumptions. Whether complete-
ness is testable in this countable discrete case is an open question for future research.

3. Bounded completeness – identification of density functions
Our paper tests bounded completeness, i.e., completeness over a space of bounded functions.
One argument against considering the set of bounded function is that it rules out polyno-
mials, in particular, linear functions over the real line. In a standard nonparametric IV
model, we need the completeness of f ðXjZÞ to identify regression function mð�Þ from
E½YjZ� ¼ Ð mðXÞf ðXjZÞdX: Therefore, bounded completeness is not enough to nonparametri-
cally identify mð�Þ in the case where the support of X is the whole real line and mð�Þ is linear.
However, the bounded completeness is very useful in measurement error models, where the
goal is to identify the density function of a latent variable X� from f ðXÞ ¼Ð
f ðXjX�Þf ðX�ÞdX�: The key identification assumption is the completeness of f ðXjX�Þ: In this

case, bounded completeness is useful enough even if the support of X� is the whole real line
because it is a quite mild restriction to assume f ðX�Þ is bounded. Our tests are based on a
convolution setting, where f ðXjX�Þ ¼ f�ðX � X�Þ with a classical measurement error �. In
such a convolution setting, completeness has a simple implication, i.e., a nonvanishing ch.f.
of �. Under the so-called nondifferential measurement error assumption, we may consider
the relationship between dependent variable Y and X� though f ðX,YÞ ¼Ð
f ðXjX�Þf ðX�,YÞdX�: Notice that bounded completeness is enough to identify the joint

density f ðX�,YÞ Zf ðX�,YÞ: That means we can also identify the conditional mean function
E½YjX�� ¼ Ð Yf ðYjX�ÞdY , which does not need to be bounded even if the support of Y is the
whole real line. In that sense, the possible unboundedness of the mean function is due to the
unboundedness of the function, i.e., g(Y) ¼ Y, of which we are taking expectation
E½gðYÞjX��, while the density function f ðYjX�Þ is usually bounded. In other words, bounded
completeness is still useful for models with an unbounded conditional mean function
through the identification of the corresponding density function.

The rest of this paper is organized as follows. Section 2 gives sufficient conditions for the
existence of a complete nonparametric family ff ðx, zÞ : z 2 Zg in L1bndðXÞ: Section 3
describes the several asymptotic properties related to the squared modulus of the empirical
characteristic functions. Section 4 applies the asymptotic results in Section 3 to construct test
statistics for nonparametric IV regression models, and nonclassical measurement error mod-
els with instrumental variables. Then, we show the asymptotic behavior of the test under the
null and alternative hypotheses. Section 5 provides the Monte Carlo study. In Section 6, we
apply our test statistic in an empirical study using the CPS/SSR 1978 exact match file.
Section 7 concludes. All technical proofs are in the Appendix.

2. Sufficient conditions for completeness

Although the nontestable result in Canay, Santos, and Shaikh (2013) has been established in very
general settings, we can provide a test for the completeness for a subclass of conditional density
functions. The next lemma is directly from Theorem 2.1 in Mattner (1993).

Lemma 2.1. The nonparametric family ffVðx� zÞ : z 2 Rg is complete in L1bndðXÞ if and only if
the characteristic function of V is everywhere nonvanishing.

A range of a function m is denoted by RangeðmÞ ¼ fm1 : m1 ¼ mðz1Þ for some z1 2 Zg,
where Z is the support of z. We can write the result as follows.

Lemma 2.2. Suppose RangeðmÞ ¼ R and V is independent of Z. Consider

X ¼ mðZÞ þ V: (3)
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Then, the nonparametric family of conditional density functions ff ðxjzÞ ¼ fVðx�mðzÞÞ : z 2
Zg is complete in L1bndðXÞ if and only if the characteristic function of V is everywhere
nonvanishing.

Let i ¼ ffiffiffiffiffiffiffi�1
p

be the unit imaginary number. Define the marginal characteristic functions
/X ,/m and /V by /XðtÞ ¼ E½eitX�,/mðtÞ ¼ E½eitmðZÞ� and /VðtÞ ¼ E½eitV �, respectively. Given V is
independent of Z and X ¼ mðZÞ þ V, we have

/XðtÞ ¼ E eitX½ � ¼ E eitmðZÞ½ � � E eitV½ � ¼ /mðtÞ � /VðtÞ: (4)

This implies that nonzero points of the characteristic function of X are also nonzero points of
the characteristic function of V. If the characteristic function of X is everywhere nonvanishing,
then the characteristic function of V is also everywhere nonvanishing.

Proposition 2.1. Consider X ¼ mðZÞ þ V, where RangeðmÞ ¼ R and V is independent of Z. If the
characteristic function of X is everywhere nonvanishing, then the nonparametric family of condi-
tional density functions ff ðxjzÞ ¼ fVðx�mðzÞÞ : z 2 Zg is complete in L1bndðXÞ:

Under the range restriction and the independent condition, the characteristic functions /XðtÞ
do not vanish on the real line is a sufficient condition for the completeness which is testable. The
common distribution families such as the normal, chi-squared, Cauchy, gamma, Student, Laplace,
and a-stable and exponential distributions have this nonvanishing property for their characteris-
tic functions.

D’Haultfoeuille (2011) extends the nonparametric additive models with independent errors in
Eq. (3) to the following nonparametric models with an additive separability:

X ¼ KðmðZÞ þ VÞ: (5)

We summarize part (i) of Theorem 2.1 in D’Haultfoeuille (2011) in the following lemma.

Lemma 2.3. Suppose Eq. (5) holds. Assume RangeðmÞ ¼ R and V is independent of Z. If the char-
acteristic function of V is smooth or equivalently, of class C1 and everywhere nonvanishing, then
the nonparametric family ff ðxjzÞ : z 2 Rg is complete in L1bndðXÞ:

Thus, under the nonparametric specifications in Eqs. (3) and (5), the completeness condition
is more accessible and the high-level completeness conditions required for identifications in many
econometric models can be verified in practice by examining the nonvanishing property of char-
acteristic functions.

3. Asymptotic properties of the squared modulus of empirical
characteristic functions

In this section, we will provide large sample results of the squared modulus of empirical charac-
teristic functions and then use the result to construct test statistics in the next section. The empir-
ical characteristic function is defined as

/X, nðtÞ ¼
1
n

Xn
j¼1

eitXj (6)

where Xi, i ¼ 1, :::, n is an i.i.d. sequence of random variables. The empirical characteristic func-
tion is directly calculated from the empirical distribution and all the calculation is done in the
complex domain. Because the characteristic function has a one-to-one correspondence with the
distribution function, the empirical characteristic function retains all the information present in
the sample. The asymptotic theory for the empirical characteristic function in the i.i.d. case is
well understood in Feuerverger and Mureika (1977). Because the sufficient conditions for
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completeness are related to the nonvanishing property of characteristic function, we consider the
squared modulus of the characteristic function and the empirical characteristic function and
denote them as

aXðtÞ ¼ j/XðtÞj2, and aX, nðtÞ ¼ j/X, nðtÞj2: (7)

The squared modulus of the empirical characteristic function can be reduced to the following
expression

aX, nðtÞ ¼ 1
n
þ 2
n2

X
1�j<k�n

cos ðtðXj � XkÞÞ: (8)

The following two results are straightforward consequences by Feuerverger and Mureika
(1977) and Murota and Takeuchi (1981) and they are adopted to show the asymptotic properties
of convergence of the squared modulus of the empirical characteristic function to squared modu-
lus of the true characteristic function.3

Proposition 3.1. (Strong Law of Large Numbers) For fixed T < 1,

P lim
n!1 sup

jtj<T
jaX, nðtÞ � aXðtÞj ¼ 0

� �
¼ 1: (9)

Proposition 3.2. (Asymptotic Normality) For fixed T < 1. Let RnðtÞ be a stochastic process that is
a residual of the squared modulus of the empirical characteristic function and the squared modulus
of the population characteristic function:

RnðtÞ ¼
ffiffiffi
n

p
aX, nðtÞ � aXðtÞð Þ, for t 2 �T,T½ �: (10)

As n ! 1, the random process RnðtÞ converges to a zero-mean Gaussian process R(t) satisfying
RðtÞ ¼ Rð�tÞ and

E RðtÞRðsÞ½ � ¼ 2Ref/Xð�tÞ/Xð�sÞ/Xðt þ sÞ þ /Xð�tÞ/XðsÞ/Xðt � sÞg � 4aXðtÞaXðsÞ: (11)

Since Proposition 3.2 provides the asymptotic behavior of the squared modulus of the empir-
ical characteristic function for a fixed single point t, any statistical procedure developed based on
the behavior may depend on the choice of the value of t. If a characteristic function fails the non-
vanishing property, then there exists at least one zero point of the characteristic function.
Information of the location of this zero point is essential for the inferential procedures based on
the asymptotic behavior of the squared modulus of the empirical characteristic function.
Therefore, a potential test for the completeness is the problem of estimating the first zero point
of the squared modulus of a characteristic function as well as an application of the inferential
procedures to the estimated zero point.

If aXðt0Þ ¼ 0 for some t0, then aXð�t0Þ ¼ 0: Thus, by the symmetry, we only consider aXðtÞ
on the positive half line. Set

A0 ¼ infft > 0 : aXðtÞ ¼ 0g, (12)

and if A0 does not exist, we denote A0 ¼ 1, and define the random variable

An ¼ infft > 0 : aX, nðtÞ ¼ 0g: (13)

We first show the convergence result of An to A0 and then present some results concerning
the estimation of An.

3Related results can be found as Theorem 2.1 in Feuerverger and Mureika (1977) and Theorem 1 in Murota and
Takeuchi (1981).

378 Y. HU AND J.-L. SHIU



Theorem 3.1. Suppose A0 < 1 is an isolated zero of aXðtÞ, and aXðtÞ is smooth in some neighbor-
hood of A0. Then,

An !a:s:A0 as n ! 1: (14)

From Eqs. (52) and (53), the locations of minimums are determined by the derivatives @aXðtÞ
@t

and @aX, nðtÞ
@t : Using Eq. (8), we have the following U statistic expression for @aX, nðtÞ

@t

@aX, nðtÞ
@t

¼ � 2
n2

X
1�j<k�n

sin ðtðXj � XkÞÞðXj � XkÞ: (15)

Applying asymptotic normality result of U statistics,4 we obtain

Proposition 3.3. For a fixed T < 1, if EðjXjÞ < 1, for t 2 �T,T½ �, we have
ffiffiffi
n

p @aX, nðtÞ
@t

� @aXðtÞ
@t

� �
!d Nð0,r2ðtÞÞ, (16)

where r2ðtÞ < 1:
Following the approach in Heathcote and H€usler (1990), we can prove the limiting behavior

of
ffiffiffi
n

p ðAn � A0Þ:

Theorem 3.2. Suppose EðjXjÞ < 1,A0 < 1 is an isolated zero of aXðtÞ, and aXðtÞ is smooth in

some neighborhood of A0. Set a00XðA0Þ ¼ @2aXðtÞ
@2t jt¼A0

and rðtÞ is the asymptotic variance in

Proposition 3.3. For rn ¼ A0 þ zrðA0Þffiffi
n

p
a00XðA0Þ with z 2 R, as n ! 1, we have

PfAn � rng ! UðzÞ for every z 2 R, (17)

where U is the CDF of the standard normal distribution. In other words,

ffiffiffi
n

p
An � A0ð Þ!d N 0,

rðA0Þ2
a00XðA0Þ2

 !
(18)

For n> 1, it is infeasible to calculate An explicitly, because the equation aX, nðtÞ ¼ 0 often does
not have a unique root and standard approximation methods may fail. Welsh (1986) presents a
simple explicit method of calculation of the first positive zero of the real part of a characteristic
function which requires only a fractional moment condition on the distribution of X. We will fol-
low the approach in Welsh (1986) to develop an iterative procedure for calculating a realization
of An, and establish almost sure convergence to A0.

Let s 2 ½0,AnÞ: Then, for any t 2 ðs,AnÞ, using the expression in Eq. (8), we have

jaX, nðtÞ � aX, nðsÞj < ¼ 2
n2

X
1�j<k�n

j cos ðtðXj � XkÞÞ � cos ðsðXj � XkÞÞj

¼ 2
n2

X
1�j<k�n

j sin ðt � sÞðXj � XkÞ
2

� �
� 21�ajt � sjama, 0 < a � 1,
�� (19)

where

4See Chapter 5 of Serfling (2009) for detailed results.
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ma ¼ 1
n2

X
1�j<k�n

jXj � Xkja, 0 < a � 1: (20)

This implies that for t 2 ðs,AnÞ,
aX, nðsÞ � 21�ajt � sjama � aX, nðtÞ: (21)

The left-hand side of the above inequality is an approximation of aX, nðtÞ on ðs,AnÞ and its
zero is an approximation of An. Set TX, n, 0 ¼ 0 and

TX, n, kþ1 ¼ TX, n, k þ aX, nðTX, n, kÞ
21�ama

� �1
a

, k ¼ 0, 1, 2, ::: (22)

The notation Fx refers to the CDF of X. The asymptotic properties of TX, n, k are summarized
in the following theorem.

Theorem 3.3.
i. For each fixed n < 1, TX, n, k is a monotone increasing sequence which converges to An, almost

surely as k ! 1; (ii) If A0 < 1 is an isolated zero of aXðtÞ, aXðtÞ is smooth in some neighbor-
hood of A0, and ð ð

jx1 � x2jadFx1dFx2 < 1 (23)

for some 0 < a � 1, then for N large enough

sup
n�N

jTX, n, k � Anj!a:s: 0 as k ! 1: (24)

iii Suppose the assumptions in (ii) hold. Then, for a sufficiently large n, there exists k depending
on n such that

jTX, n, k � Anj � 1ffiffiffi
n

p a:s:: (25)

4. Testing completeness in nonparametric specifications

In this section, we will apply the asymptotic results of the squared modulus of the empirical char-
acteristic functions in Section 3 to provide simple tests for the completeness that is used for iden-
tifying several econometric models. We will construct test statistics for nonparametric IV
regression models with or without a convolution structure between x and z, and nonclassical
measurement error models with instrumental variables. Because the structures of the two models
are different, we discuss the testing issues in the context of these models.

4.1. Nonparametric IV regression models

Consider a nonparametric IV regression model as follows:

y ¼ lðxÞ þ �, with E �jz½ � ¼ 0: (26)

We observe a random sample of Y ,X,Zf g, and denote the supports of these random variables
as Y,X; and Z, respectively. The conditional expectation of Eq. (26) has the following integral
equation
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E yjz� � ¼ ð lðxÞf ðxjzÞdx a:e: in Z: (27)

The object of interest is the unknown function lð�Þ which is not observable from the distribu-
tion of Y ,X,Zf g: For the identification of the function lð�Þ, Newey and Powell (2003) and
Darolles, Florens, and Renault (2006) imposed the completeness condition for the conditional dis-
tribution f ðXjZÞ: Suppose there exists l1 and l2 satisfy

E yjz� � ¼ ð l1ðxÞf ðxjzÞdx ¼
ð
l2ðxÞf ðxjzÞdx: (28)

This implies that

0 ¼
ð
ðl1ðxÞ � l2ðxÞÞf ðxjzÞdx a:e: in Z: (29)

The completeness of the nonparametric family of conditional density functions ff ðxjzÞ : z 2
Zg ensures that there is a unique solution l ¼ l1 ¼ l2 in L1bndðXÞ:
Assumption 4.1. (i) the range of the conditional mean function E XjZ ¼ z½ � is the whole real
line;(ii) write X ¼ E XjZ ¼ z½ � þ V, and assume V is independent of Z.

Proposition 2.1 implies that under Assumption 4.1, if the characteristic function of X is every-
where nonvanishing, then the nonparametric family of conditional density functions ff ðxjzÞ ¼
fVðx� E XjZ ¼ z½ �Þ : z 2 Zg is complete in L1bndðXÞ: Therefore, a test for an everywhere nonvan-
ishing characteristic function of X under Assumption 4.1 can be regarded as a test for
completeness.

The null hypothesis of the test is

H0 : /XðtÞ ¼ 0 for some t: (30)

The alternative hypothesis is

H1 : /XðtÞ 6¼ 0 for all t: (31)

As explained in Proposition 2.1, under Assumption 4.1, H1 is true implies the completeness of
ff ðxjzÞ ¼ fVðx� E XjZ ¼ z½ �Þ : z 2 Zg in L1bndðXÞ: Under H0, we have the A0 in Eq. (12) exists
and finite and aXðA0Þ ¼ 0: We may want to apply the asymptotic result of Proposition 3.2 at the
point A0 to construct a test statistic. Theorem 3.3 ensures the iterative estimator TX, n, k in Eq.
(22) satisfying TX, n, k !a:s: A0 as n, k ! 1: Given the estimator TX, n, k for A0, we apply Proposition
3.2 at the estimator TX, n, k to obtain

RnðTX, n, kÞ ¼
ffiffiffi
n

p
aX, nðTX, n, kÞ � aXðTX, n, kÞð Þ (32)

converges to a zero-mean Gaussian process with the variance E½RðTX, n, kÞ2� as n ! 1: Under H0,
the term aXðTX, n, kÞ in Eq. (32) is close to zero as aXðTX, n, kÞ !a:s: aXðA0Þ ¼ 0 as n, k ! 1: On the
other hand, under H1, the term aXðTX, n, kÞ is nonzero. According to the results, we construct a
test statistic with

sXn ¼
ffiffiffi
n

p
aX, nðTX, n, kÞ: (33)

The assumptions in Theorem 3.2 and Theorem 3.3 are needed to derive the asymptotic prop-
erties of sXn and we collect them in the next assumption.

Assumption 4.2. Denote AX0 ¼ infft > 0 : aXðtÞ ¼ 0g. (i) Suppose EðjXjÞ < 1,AX0 is an isolated
zero of aXðtÞ, and aXðtÞ is smooth in some neighborhood of AX0;(ii)
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ð ð
jx1 � x2jadFx1dFx2 < 1: (34)

Since we have known the sampling distribution of sXn asymptotically converges to a zero-
mean Gaussian process with the variance E½RðTX, n, kÞ2� when H0 is true, we can determine a pre-
cise rejection rule for rejecting H0 at a chosen significance level. Thus, a consistent estimator of
the approximate critical value of sXn for a given significance level a can be obtained by the 1�
a=2 quantile of the distribution of Nð0, E½RðTX, n, kÞ2�Þ: Let c� be the 1� a=2 quantile of the sam-
ple distribution. One rejects H0 if:

jsXnj � c�:

We use sXn as the test statistic for testing H0 and the asymptotic properties of sXn are sum-
marized in the following theorem.

Theorem 4.1. If Assumptions 4.1 and 4.2 hold. Then,

1. under H0,

P jsXnj � c�ð Þ ! 0 as n ! 1:

2. under a fixed alternative H1,

P jsXnj � c�ð Þ ! 1 as n ! 1:

The critical value c� for the sXn is consistent against a fixed alternative. Therefore, under
Assumptions 4.1 and 4.2, rejection of the null H0 implies the nonparametric family of conditional
density functions ff ðxjzÞ ¼ fVðx� E XjZ ¼ z½ �Þ : z 2 Zg is complete in L1bndðXÞ:

Remark 4.1. The nonparametric specifications in Assumption 4.1(ii) are related to observable varia-
bles X, Z. A formal statistical test of the validity of the full independence between V and Z is pos-
sible because we can replace V by the residual of an estimator of E XjZ ¼ z½ � and X. Thus, we can
use an observable data to justify the maintained assumption.

Remark 4.2. In order to fulfill the requirement of an independent error term in the regression form
of X, we may add more exogenous variables. For example, consider a nonparametric regression
model as follows:

y ¼ mðx, z1Þ þ �, with Eð�jzÞ ¼ 0, z ¼ ðz1, z2Þ (35)

where x is an endogenous regressor and may be correlated with �, and z1, z2 are exogenous varia-
bles. In this case, the relation X ¼ E XjZ ¼ z½ � þ V, with V is independent of Z is more likely to
hold than without adding the exogenous variable z1. The completeness in this model is referred to
that the nonparametric family of conditional density functions ff ðxjzÞ ¼ fVðx� E XjZ ¼ z½ �Þ : z2 2
Z2g is complete in L1bndðXÞ for each z1 2 Z1, where Z ¼ Z1 �Z2 is the support of z.

Remark 4.3. It is tempting to estimate the conditional mean of X given Z and verify whether its
range fits the whole line for a given dataset. However, one should always be wary of using the sam-
ple observations to make a judgment about the support condition could be misleading. For example,
the realization of one sample from unbounded normal distributions may appear to indicate that
the unbounded support conditions fail.

Remark 4.4. Theorem 4.1 shows that for a fixed distribution, the proposed test is o(1) under the
null and consistent against a fixed alternative and this only establishes pointwise asymptotic size
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control. This pointwise result does not contradict to the uniform result in Canay, Santos, and
Shaikh (2013).

Remark 4.5. We have interpreted a rejection of null hypothesis using the proposed tests as evidence
of completeness. This is appropriately provided we maintain Assumptions 4.1 and 4.2. However, if
Assumption 4.1 is violated then a test for completeness can reject H0, even if the family is not com-
plete. Therefore, it would be better to test for the convolution structure in Assumption 4.1(ii) first,
since the specification is important to our result. Then, once we are satisfied with the test for the
convolution structure, we can test for completeness.5

4.1.1. Transformation models

Lemma 2.3 d escribes the conditions in which the completeness holds under the nonparametric
additive models with independent errors in Eq. (5). In this completeness result, one of the condi-
tions is related to the nonvanishing property of the characteristic function of the independent
error V which is unobservable from data. In order to get an estimate of V and apply the pro-
posed test to detect zeros of the characteristic function of V, we consider a transformation model
which is encompassed in Eq. (5):

X ¼ KðbZ þ VÞ, (36)

where Kð�Þ is strictly increasing function. Han (1987) proposes a maximum rank correlation esti-
mator to estimate b consistently. Sherman (1993) establishes the asymptotic normality of the
maximum rank correlation estimator. Given a

ffiffiffi
n

p
-consistent estimator for b, Horowitz (1996)

and Chen (2002) propose a rank-based estimator for K. Because b and K are estimable, we also
obtain an estimate of V. Denote an estimate of V as V̂ :

Assumption 4.3. (i) suppose Eq. (5) holds; (ii) RangeðmÞ ¼ R; (iii) assume V is independent of Z.
Under Assumption 4.3, we consider the following hypothesis testing:

H0 : /VðtÞ ¼ 0 for some t: (37)

H1 : /VðtÞ 6¼ 0 for all t: (38)

A proposed test statistic is

sV̂ n ¼
ffiffiffi
n

p
aV̂ , nðTV̂ , n, kÞ, (39)

where the notations aV̂ , n and TV̂ , n, k are the squared modulus of the empirical characteristic func-
tion of V̂ and TV̂ , n, k is an iterative estimator similar to TX, n, k: The rest testing procedure is simi-
lar to the procedure for sXn. A rejection of the null H0 implies the nonparametric family of
conditional density functions ff ðxjzÞ : z 2 Zg is complete in L1bndðXÞ:

4.2. Nonclassical measurement error models with instrumental variable

Consider nonclassical measurement error models with the following joint density:

fYX� ðy, x�Þ
where y is the dependent variable, and x� is the true explanatory variable. However, x� is not
observed, and we observe a measure of x� by x. Hu and Schennach (2008) rely on the availability
of an instrument z to show that the joint distribution fYX� is identified from knowledge of the

5We thank the editor Esfandiar Maasoumi to point this out.
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distribution of all observed variables Y, X, Z. Hu and Schennach (2008) show the equation

fYXZðy, x, zÞ ¼
ð
fYX� ðy, x�ÞfXjX� ðxjx�ÞfZjX� ðzjx�Þdx�

admits a unique solution ðfYX� , fXjX� , fZjX� Þ for a given observable joint distribution fY XZ. Define
the following integral operators:

LXjX� : L1bndðX�Þ ! L1bndðXÞ
ðLXjX�hÞðxÞ ¼

ð
hðx�ÞfXjX� ðxjx�Þdx�,

LZjX� : L1bndðX�Þ ! L1bndðZÞ
ðLZjX�hÞðzÞ ¼

ð
hðx�ÞfZjX� ðzjx�Þdx�:

Hu and Schennach (2008) utilize injectivity of these two integral operators, LXjX� and LZjX�

along with other location and normalization conditions to obtain uniqueness of spectral decom-
position of an integral operator and provide the identification result. The injectivity of the inte-
gral operators, LXjX� and LZjX� implies that the families of conditional density functions
ffXjX� ðxjx�Þ : x 2 Xg and ffZjX� ðzjx�Þ : z 2 Zg are complete in L1bndðX�Þ, respectively. The identi-
fication result in Hu and Schennach (2008) requires two completeness conditions, the complete-
ness of fXjX� and the completeness of fZjX� :

Follow the discussion in Section 2, we have

Proposition 4.1. Consider X ¼ m1ðX�Þ þ E1, where m1 is monotonic and E1 is independent of X�.
If the characteristic function of X is everywhere nonvanishing, then the nonparametric family of
conditional density functions ffXjX� ðxjx�Þ ¼ fE1ðx�m1ðx�ÞÞ : x 2 Xg is complete in L1bndðX�Þ:
Assumption 4.4. Assume X ¼ m1ðX�Þ þ E1 with m1 is monotonic and E1 is independent of X�:

Assumption 4.5. Denote AX0 ¼ infft > 0 : aXðtÞ ¼ 0g. (i) Suppose EðjXjÞ < 1,AX0 is an isolated
zero of aXðtÞ, and aXðtÞ is smooth in some neighborhood of AX0;(ii)ð ð

jx1 � x2jadFx1dFx2 < 1: (40)

Proposition 4.1 implies a test for an everywhere nonvanishing characteristic function of X
under Assumption 4.4 can be regarded as a test for completeness of fXjX� : We propose a test simi-
lar to the test in subsection 4.1. The null hypothesis of the test is

HX0 : /XðtÞ ¼ 0 for some t: (41)

The alternative hypothesis is

HX1 : /XðtÞ 6¼ 0 for all t: (42)

Proposition 4.1 implies under Assumption 4.4, a rejection of HX0 implies ffXjX� ðxjx�Þ ¼
fE1ðx�m1ðx�ÞÞ : x 2 Xg is complete in L1bndðX�Þ: In a similar manner as subsection 4.1, the test
statistic is given by:

sXn ¼
ffiffiffi
n

p
aX, nðTX, n, kÞ, (43)

where aX, n is the squared modulus of the empirical characteristic function and TX, n, k is an itera-
tive estimator for finding AX0 ¼ infft > 0 : aXðtÞ ¼ 0g and its definition is in Eq. (22). However,
the test statistic only works for an inference for the completeness of fXjX� : To provide an infer-
ence for the completeness condition in Hu and Schennach (2008), we also need to incorporate an
inference for the completeness of fZjX� : Thus, our testing strategy consists of a two-step
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procedure: the first test is an test for the completeness of fXjX� while the second test is an test for
the completeness of fZjX� :

Assumption 4.6. Assume Z ¼ m2ðX�Þ þ E2 with m2 is monotonic and E2 is independent of X�:

Assumption 4.7. Denote AZ0 ¼ infft > 0 : aZðtÞ ¼ 0g. (i) Suppose EðjZjÞ < 1,AZ0 is an isolated
zero of aZðtÞ, and aZðtÞ is smooth in some neighborhood of AZ0;(ii)ð ð

jz1 � z2jadFz1dFz2 < 1 (44)

The null hypothesis of the second test is

HZ0 : /ZðtÞ ¼ 0 for some t: (45)

The alternative hypothesis is

HZ1 : /ZðtÞ 6¼ 0 for all t: (46)

The second test statistic is given by:

sZn ¼
ffiffiffi
n

p
aZ, nðTZ, n, kÞ, (47)

where aZ, n is the squared modulus of the empirical characteristic function for Z and TZ, n, k is an
iterative estimator for finding AZ0 ¼ infft > 0 : aZðtÞ ¼ 0g, where aZðtÞ is the squared modulus
of the characteristic function for Z. The definition of TZ, n, k is similar to TX, n, k in Eq. (22).

Under Assumptions 4.4 and 4.5, failure to reject HX0 rules out the completeness of fXjX�

asymptotically. Therefore, if we fail to reject the null hypothesis HX0, we stop the testing proced-
ure and decide against the two completeness conditions. On the other hand, if we reject the first
null HX0, but fail to reject the second one HZ0, one may still decide against the two completeness
conditions. Finally, if the null hypotheses of both tests are rejected, there is evidence that the two
completeness conditions hold. That means that if we reject both HX0 and HZ0, under
Assumptions 4.4, 4.5, 4.6, and 4.7, both families ffXjX� ðxjx�Þ : x 2 Xg and ffZjX� ðzjx�Þ : z 2 Zg
are complete in L1bndðX�Þ:

Let c�1 and c�2 be the 1� a=2 quantile of the sample distributions Nð0, E½RðTX, n, kÞ2�Þ and
Nð0, E½RðTZ, n, kÞ2�Þ, respectively. Based on the limiting distributions of sXn and sZn, we devise the
following two-step decision rule.

Decision Rule:

1. If jsXnj � c�1, we fail to reject HX0 and stop the testing procedure. We decide against the two
completeness conditions.

2. If jsXnj � c�1 and jsZnj � c�2, we decide against the two completeness conditions.
3. If jsXnj � c�1 and jsZnj � c�2, we decide in favor of the two completeness conditions.

We establish the validity of our testing procedure by the following theorem.

Theorem 4.2. Suppose Assumptions 4.4, 4.5, 4.6, and 4.7 hold. Then,

i. under HX0,

P jsXnj � c�1
� 	! 0 as n ! 1:

ii. under HX1 \ HZ0 for a fixed alternative HX1,

P jsXnj � c�1, jsZnj � c�2
� 	! 0 as n ! 1:
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iii. under HX1 \ HZ1 for fixed alternatives HX1 and HZ1,

P jsXnj � c�1, jsZnj � c�2
� 	! 1 as n ! 1:

Remark 4.6. The nonparametric specifications in Assumptions 4.4 and 4.6 are related to unob-
served variables X�. In this case, the two assumptions cannot be verified empirically as Assumption
4.1 in the nonparametric IV regression model in Section 4.1. To justify the nonparametric specifica-
tions, we can present discussions of these two assumptions for a particular empirical application.

4.3. Nonparametric IV regression models revisited

We reconsider the nonparametric IV regression model from Section 4.1, showing how we can
apply the results from previous sections to provide a test on the completeness of the family of
conditional density functions ff ðxjzÞ : z 2 Zg without a direct convolution structure between x
and z.

Assumption 4.8. Suppose there exist an exogenous latent variable W� satisfying (i) X ¼
m1ðW�Þ þ V1 with Rangeðm1Þ ¼ R and V1 is independent of W�, (ii) Z ¼ m2ðW�Þ þ V2 with m2

is monotonic and V2 is independent of W�, and (iii) V1 and V2 are conditionally independent given
W�, i.e., V1??V2jW�:

Assumption 4.8 is compatible with the validity of the chosen instrumental variable Z. This setup
attempts to control the endogeneity by exploiting the common exogenous latent variable W� in X
and Z, and the instrumental variable Z is not be related to the unobserved error U. It follows
that fXjZ,W� ¼ fXjW� :

Assumption 4.9. (Restrictions on densities) The joint density of x, z, and w� admits a bounded
density and all related marginal and conditional densities are also bounded.

Proposition 4.2. Suppose Assumptions 4.8 and 4.9 hold. If the characteristic functions of X and Z
are both everywhere nonvanishing, then the nonparametric family of conditional density functions
ff ðxjzÞ : z 2 Zg is complete in L1bndðXÞ:

Therefore, we can apply the two-step test procedure in subsection 4.2 using sXn in Eq. (43)
and sZn in Eq. (47) to test the completeness of ff ðxjzÞ : z 2 Zg under Assumptions 4.8 and 4.9.
Let c�1 and c�2 be the 1� a=2 quantile of the sample distributions Nð0, E½RðTX, n, kÞ2�Þ and
Nð0, E½RðTZ, n, kÞ2�Þ, respectively. Similar to the two-step test procedure in subsection 4.2, we have
the following decision rule.

Decision Rule:

1. If jsXnj � c�1, we stop the testing procedure and decide against the completeness condition.
2. If jsXnj � c�1 and jsZnj � c�2, we decide against the completeness condition.
3. If jsXnj � c�1 and jsZnj � c�2, we decide in favor of the completeness condition.

Theorem 4.3. Suppose Assumptions 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9 hold. Then,

i. under HX0,

P jsXnj � c�1
� 	! 0 as n ! 1:
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ii. under HX1 \ HZ0 for a fixed alternative HX1,

P jsXnj � c�1, jsZnj � c�2
� 	! 0 as n ! 1:

iii. under HX1 \ HZ1 for fixed alternatives HX1 and HZ1,

P jsXnj � c�1, jsZnj � c�2
� 	! 1 as n ! 1:

4.4. Implementation of the test statistic

In this subsection, we provide a detailed description of an algorithm that summarizes the steps in
the computation of the proposed test estimator sXn in Eq. (33). The algorithm can also be used
to compute sZn in Eq. (47).

Testing Algorithm for sXn

1. Given data fxi : i ¼ 1, :::, ng of sample size n, choose a from ð0, 1� and then compute ma in
Eq. (20).

2. Set TX, n, 0 ¼ 0 and construct the squared modulus of the empirical characteristic function
aX, nðtÞ ¼ j/X, nðtÞj2: Apply aX, nðtÞ and ma in Step 1 to the iterative formula in Eq. (22),

TX, n, kþ1 ¼ TX, n, k þ aX, nðTX, n, kÞ
21�ama

� �1
a

:

3. Calculate the test statistic estimator

sXn ¼
ffiffiffi
n

p
aX, nðTX, n, kÞ,

and its variance estimator

V2
Xn ¼ 2Ref/X, nð�TX, n, kÞ2/X, nð2TX, n, kÞ þ /X, nð�TX, n, kÞ/X, nðTX, n, kÞg � 4aX, nðTX, n, kÞ2:

(48)

4. Given a significance level a, use ca ¼ U�1 1� a
2

� 	
to construct the critical value c� ¼ caVXn:

5. Compare the test statistic sXn to the critical value c�: If jsXnj � c�, reject the null hypothesis
H0 : /XðtÞ ¼ 0 for some t in favor of the alternative hypothesis H1 : /XðtÞ 6¼ 0 for all t:
Under Assumptions 4.1 and 4.2, rejecting H0 implies the completeness of ff ðxjzÞ ¼
fVðx� E XjZ ¼ z½ �Þ : z 2 Zg in L1bndðXÞ: If the test statistic is less than the critical value, do
not reject the null hypothesis. Thus, no conclusion has been reached.

5. Monte Carlo simulation

In this section, we carry out simulation experiments to study the finite sample performance of
the proposed test statistic using the Testing Algorithm in subsection 4.4. First, we consider the
generation processes for the variable X. Ten specifications of X are considered:
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DGP I : X 	 Uð0, 1Þ,
DGP II : X 	 Uð�1, 1Þ,
DGP III : X 	 Nð0, 1Þ,
DGP IV : X 	 Nð1, 1Þ,

DGP V : X 	 Gammað2, 2Þ,
DGP VI : X 	 Trið0, 1, 0Þ

DGP VII : X 	 Trið0, 1, 0:25Þ,
DGP VIII : X 	 Trið0, 1, 0:5Þ,

DGP IX : X 	 TrunðNð0, 1Þ, �1, 1½ �Þ,
DGP X : X 	 TrunðNð1, 1Þ, �1, 1½ �Þ,

where the shorthand Triða, b, cÞ is used to indicate that the random variable X has the triangular
distribution with the lower limit a, the upper limit b and the mode c and TrunðNða, bÞ, ½�1, 1�Þ
represents a truncated normal distribution over interval ½�1, 1� generated by F�1

Q ðu � ðFQðbÞ �
FQðaÞÞ þ FQðaÞÞ, where FQ is the CDF of the normal distribution N(a, b), F�1

Q is the inverse of
FQ, and u is a uniform random variable on ½0, 1�: We consider sample sizes 500, and 1,000 and
for each case, we consider 1,000 simulation replications. The estimation results for the proposed
test statistics are summarized in Table 1. For DGPs I and II, the rejection rates are very small,
which are close to zero. This implies that there is strong evidence that the null hypothesis is likely
to hold. That is the characteristic function of X is likely to vanish at some point. This implies
that under our nonparametric specifications in Section 4, the families ff ðxjzÞ ¼ fVðx�
E XjZ ¼ z½ �Þ : z 2 Zg and ffXjX� ðxjx�Þ ¼ fE1ðx�m1ðx�ÞÞ : x 2 Xg are not likely to be complete.
The characteristic functions of the population distributions in DGPs I and II have infinitely many
zeros so the proposed test performs well in the DGPs to detect their zeros. For DGPs III, IV, and
V, the rejection rates are much higher than the nominal size 5% and increase with sample size,
indicating that our test are consistent when the null hypothesis is violated. The estimation results
are also consistent with the population distributions in DGPs III, IV and V. DGPs VI, VII, VIII,
IX, and X are drawn from triangular distributions. While DGP VIII is bounded and symmetric,
DGPs VI, VII, IX, and X are bounded and asymmetric. For DGP VIII, the rejection rates are
0.008 and 0.072, which are close to the nominal size 5% given that there exists zeros for its popu-
lation distribution. For DGPs VI, VII, IX, and X, the rejection rates are much higher than the
nominal size 5% indicating a strong evidence against the null hypothesis. DGPs XI, and XII are
drawn from truncated normal distributions over interval ½�1, 1�: While DGP XI is symmetric,
DGP XII is asymmetric. The rejection rates of the estimation results indicate that the

Table 1. Test for nonvanishing C.F.: empirical size.

N¼ 500 N¼ 1,000 Distributions

DGP I: 0 0 Uð0, 1Þ
DGP II: 0.001 0 Uð�1, 1Þ
DGP III: 0.304 0.913 Nð0, 1Þ
DGP IV: 0.315 0.915 Nð1, 1Þ
DGP V: 1 1 Gammað2, 2Þ
DGP VI: 0.999 1 Trið0, 1, 0Þ
DGP VII: 0.943 1 Trið0, 1, 0:25Þ
DGP VIII: 0.008 0.072 Trið0, 1, 0:5Þ
DGP IX: 0.955 1 Trið0, 1, 0:75Þ
DGP X: 1 1 Trið0, 1, 1Þ
DGP XI: 0 0 TrunðNð0, 1Þ, ½�1, 1�Þ
DGP XII: 1 1 TrunðNð1, 1Þ, ½�1, 1�Þ
Note: Empirical size refers to the fraction of rejections when using the critical value corresponding to a 5% significant level.
Only the uniform, symmetric triangular, and symmetric truncated normal distributions fail to satisfy the nonvanishing prop-
erty for their characteristic functions.
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characteristic function of X in DGP XI is likely to vanish at some point and the characteristic
function of X in DGP XII does not have any zero.

At a neighborhood of A0, the squared modulus of the empirical characteristic function aX, n
has an associated confidence interval that the true parameter is in the proposed range with some
assigned confidence level. Following the Testing Algorithm in subsection 4.4, the
ðHTML translation failedÞ confidence interval with a ¼ 5% at TX, n, k is given by

Figure 1. The illustration of the confidence bands of aX , n and the estimator of An, TX, n, k:
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aX, nðTX, n, kÞ � caVXnffiffiffi
n

p , aX, nðTX, n, kÞ þ caVXnffiffiffi
n

p
� �

, (49)

The estimation results for the associated confidence intervals in DGPs I, III, VIII, and X are
plotted in Figs. 1 and 2 for N¼ 1,000. These plots show the shapes of the estimates aX, n (blue
lines), the location of the first zero estimator TX, n, k (red hexagram), the 2.5th and 97.5th percent-
ile confidence interval at TX, n, k (cyan solid line), the points of zeros (red solid line), and the
2.5th and 97.5th percentile confidence bands of aX, n are in black dashed lines.

Figure 2. The illustration of the confidence bands of aX , n and the estimator of An, TX, n, k:
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In the upper panel of Figs. 1 and 2, the confidence interval at TX, n, k containing the zero. This
indicates that the possible values of the squared modulus of the empirical characteristic function
at 95% significant level contain zero and the proposed test statistics do not reject the null hypoth-
esis, i.e., the characteristic function vanishes at some point. In the bottom panel of Figs. 1 and 2,
the confidence interval at TX, n, k does not contain the zero. This indicates that it is highly likely
that aX, n is bigger than zero and the proposed test statistics rejects the null hypothesis, i.e., the
characteristic function does not vanish.

6. Empirical illustration

This section applies the developed test statistics to a measurement model to illustrate our method
empirically. We use a dataset that matches self-reported earnings from the Current Population
Survey (CPS) to employer-reported social security records (SSR) earnings from 1978 (the CPS/
SSR Exact Match File). This dataset has been used by Bound and Krueger (1991), Bollinger
(1998), and Chen, Hong, and Tamer (2005). While Bound and Krueger (1991) and Bollinger
(1998) use this dataset to argue that the classical measurement error model is not appropriate for
reporting errors in male earnings, Chen, Hong, and Tamer (2005) studied the problem of param-
eter inference in econometric models allowing the data are measured with nonclassical measure-
ment error. As in Chen, Hong, and Tamer (2005) which assume that the SSR earnings are more
accurate, we treat the SSR reporting earnings as the correct earnings data. We will show how one
can use the proposed test statistics to make inference on the completeness of the family of condi-
tional density functions ffXjX� ðxjx�Þ : x 2 Xg, where we model the CPS earnings and the SSR
earnings as X and X�, respectively.

The population considered here is composed of both men and women, regardless of their age.
Following the selection criteria in Chen, Hong, and Tarozzi (2005), we obtain an exact match
sample of 38,759 observations. We further divide the data into three education categories: High
School or Lower, Some College, and College or Higher. Years of education assigned to each cat-
egory are 0–12, 13–15, and 16–19, respectively. Table 2 reports summary statistics for the three
subsamples. Individuals in High School or Lower are more likely to be older, and not white.
They also have smaller CPS and SSR earnings. Individuals in all three groups appear to report
higher earnings, i.e., the mean of the CPS earnings is higher than the mean of the SSR earnings.
The gap of the means in the CPS and SSR earnings increases with years of education.

Our approach to analyzing the relationship between the CPS earnings and the SSR earnings is
to consider the conditional mean function of the CPS earnings on the SSR earnings and the three
education categories:

E XjX�, Education½ �: (50)

Table 2. Descriptive statistics of CPS/SSR exact match 1978.

High school or lower Some college College or higher

Mean SD Mean SD Mean SD

CPS earnings (<$16.5) 7.043 6.075 8.980 7.097 13.496 10.535
SSR earnings (<$16.5) 6.865 5.322 8.046 5.425 9.994 5.891
Years of education 9.885 2.193 13.452 0.750 17.378 1.018
Age 41.606 16.310 35.153 13.865 35.487 12.035
Non-White 0.162 0.368 0.091 0.288 0.076 0.265
Married 0.635 0.481 0.629 0.483 0.643 0.479
Sample size 9,045 21,931 7,783

Note: All earnings are expressed in a thousand of dollars in 1977. The earnings in the SSR data are capped at the social secur-
ity maximum of ½dollar�16,500.

ECONOMETRIC REVIEWS 391



Denote the residual from this nonparametric regression form as E. Write

X ¼ E XjX�, Education½ � þ E: (51)

The conditional mean function represents individual reporting behavior while the residual is a
random error. This implies that fXjX� ðxjx�, EducationÞ ¼ fEðx� E XjX� ¼ x�, Education½ �Þ:
Bollinger (1998) utilizes Nadaraya-Watson Kernel regression estimators to estimate the condi-
tional mean function. We adopt a series method to estimate the conditional mean function using
cubic splines with knots at E X�½ � � Std X�½ �, E X�½ �, and E X�½ � þ Std X�½ �:

Figure 3. The series estimation of the conditional mean E½XjX� ¼ x� , Education�:
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Figure 3 presents the estimation results of E XjX� ¼ x�, Education½ � at various education cate-
gories. In each plot, the blue hexagram line represents the series estimation of the conditional
mean function and the red solid line represents the 45o line. If the measurement error were not
related to earnings, the blue hexagram line would coincide with the 45o line and the measure-
ment error is classical. In the first plot for the education group, High School or Lower, individu-
als with more than ½dollar�8,000 SSR earnings are more likely to underreport their earnings.
However, individuals with less than ½dollar�2,000 SSR earnings are in average overreporting their
earnings. The overreporting pattern at low SSR earnings also appears in the second plot for the
education group, Some College. As for the third plot, all individuals with at least college educa-
tion are more likely to overreporting their earnings except for individuals with more than
½dollar�15,000 SSR earnings. In this education category, the overreporting is much severe at low
SSR earnings.

Finally, we investigate the zeros of the characteristic functions of the CPS earnings and the
residual by applying the proposed test statistic. Table 3 reports the results of the tests on the three
education categories. At each education category, the test statistics sXnandsEn are bigger than their
corresponding critical values with a 5% significant level. This provides strong evidence to reject
the null hypothesis that there exists a zero for the characteristic functions of XandE at each edu-
cation category. If we maintain that E XjX� ¼ x�, Education½ � is monotonic at x� and the residual
E is independent of X� then the rejection results imply that the family of conditional density
functions ffXjX� ðxjx�, EducationÞ ¼ fEðx� E XjX� ¼ x�, Education½ �Þ : x 2 Xg is more likely to
be complete in L1bndðX�Þ at each education category.

7. Conclusion

This paper has been concerned with hypothesis testing of the completeness condition in a class
of nonparametric specification. This study was motivated by a condition for the completeness in
Mattner (1993): the nonparametric location family of functions ffVðx� zÞ : z 2 Rg is complete if
and only if the characteristic function of V is everywhere nonvanishing. Based on the condition,
we present simple test statistics for the completeness in nonparametric IV regression models with
or without a convolution structure between the endogenous variable and the instrumental vari-
able, and nonclassical measurement error models with instrumental variables. The test statistics
are relatively simple because they are derived from marginal distributions of observables instead
of joint distributions. The advantage of the property is that the test statistics can be used to test
completeness conditions related to unobservables. We describe the asymptotic behavior of the
tests under the null and alternative hypotheses and investigate the finite sample properties of the
test through a Monte Carlo study. In our empirical illustration, we test for the completeness of a
measurement error model of self-reported earnings using data from the CPS/SSR 1978 exact
match file. We find evidence for the completeness of the family of conditional density functions
ffXjX� ðxjx�, EducationÞ ¼ fEðx� E XjX� ¼ x�, Education½ �Þ : x 2 Xg, where X represents the CPS
self-reported earnings and X� denotes SSR employer-reported earnings.

Our results provide a test for a class of complete distributions other than parametric distribu-
tions. On the other hand, Canay, Santos, and Shaikh (2013) consider the hypothesis testing prob-
lems for testing completeness in the nonparametric regression model against very general

Table 3. Test statistics for zeros of characteristic functions.

High school or lower Some college College or higher

sXn 2.528 1.850 0.386
c�X 0.455 0.311 0.180
sEn 2.110 1.927 1.165
c�E 0.421 0.320 0.320

Note: The significance level of the critical values c�X and c�E is 5%.
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alternatives and show the null hypothesis cannot be tested. Our test establishes only pointwise
asymptotic size control, while Canay, Santos, and Shaikh (2013) show that any test that controls
asymptotic size uniformly over a large class of noncomplete distributions has trivial asymptotic
power against any alternative. Their results imply that our Theorem 4.1 cannot be extended to a
uniform result, but do not rule out the possibility that a useful test is feasible for a particular class
of models. That is how our results are complementary to the results in Canay, Santos, and
Shaikh (2013).

One of the potential important applications for our results is to provide tests for many non-
parametric models involved with deconvolution methods because zero-freeness of the characteris-
tic function is a usual assumption among these approaches. This provides the possibility of data-
driven evidence for deconvolution problems.

A. Proofs
Proof of Theorem 3.1: Because aXðtÞ � 0andaX, nðtÞ � 0, by the definition of A0andAn, the

squared modulus functions aXðtÞandaX, nðtÞ attain their minimums at points A0andAn respect-
ively. Since A0 < 1 is an isolated zero of aXðtÞ, and the squared modulus functions
aXðtÞandaX, nðtÞ are smooth in some neighborhoods of A0andAn respectively, we can rewrite the
definitions of A0andAn as follow:

A0 ¼ inf t > 0 :
@aXðtÞ
@t

¼ 0,
@2aXðtÞ
@2t

> 0


 �
, (52)

An ¼ inf t > 0 :
@aX, nðtÞ

@t
¼ 0,

@2aX, nðtÞ
@2t

> 0


 �
: (53)

For a given d > 0: By the uniform convergence of aX, nðtÞ to aXðtÞ on each bounded interval
in Proposition 3.1 and locally smoothness of aX, nðtÞ and aXðtÞ, we have the uniform convergence

of @aX, nðtÞ
@t to @aXðtÞ

@t on each bounded interval. This implies that @aX, nðtÞ
@t < 0 almost surely for all 0 <

t < A0 � d for sufficiently large n: Because @aXðtÞ
@t takes positive values for some points of the

interval ðA0,A0 þ dÞ, for sufficiently large n, we have @aX, nðtÞ
@t > 0 almost surely for some point

inside ðA0,A0 þ dÞ: Therefore, for sufficiently large n, @aX, nðtÞ@t ¼ 0 for some point in ðA0 � d,A0 þ
dÞorAn 2 ðA0 � d,A0 þ dÞ almost surely. Since d is arbitrary, this means
that An !a:s: A0 as n ! 1:

Proof of Theorem 3.2: Using Proposition 3.2, the distribution limit of
ffiffiffi
n

p ð@aX, nðtÞ@t � @aXðtÞ
@t Þ exists

and is normally distributed. Let UðtÞ be the distribution limit with the variance function r2ðtÞ:
By the definition of An, we have

PfAn > rng ¼ P
@aX, nðtÞ

@t
< 0, for all t � rn


 �
(54)

¼ P
ffiffiffi
n

p @aX, nðtÞ
@t

� @aXðtÞ
@t

� �
< � ffiffiffi

n
p @aXðtÞ

@t
, for all t � rn


 �
(55)

¼ P UðtÞ < � ffiffiffi
n

p @aXðtÞ
@t

, for all t � rn


 �
: (56)

This implies

PfAn > rng � P UðrnÞ < � ffiffiffi
n

p @aXðrnÞ
@t


 �
¼ U � ffiffiffi

n
p @aXðrnÞ

@t

rðrnÞ

 !
: (57)
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By the choice of rn, as n ! 1 we have

ffiffiffi
n

p @aXðrnÞ
@t

rðrnÞ ¼
ffiffiffi
n

p @aXðrnÞ
@t � @aXðA0Þ

@t

rðrnÞ ¼
ffiffiffi
n

p
a00XðA0Þ rn � A0ð Þ

rðA0Þ þ oð1Þ ¼ z þ oð1Þ: (58)

Plugging the relation back to Eq. (57) yields

PfAn � rng � UðzÞ as n ! 1: (59)

On the other hand, for the reverse inequality, we consider

PfAn > rng (60)

¼ P UðtÞ < � ffiffiffi
n

p @aXðtÞ
@t

, 8t � rn


 �
(61)

¼ P UðtÞ < � ffiffiffi
n

p @aXðtÞ
@t

,8t � �n


 �
\ P UðtÞ < � ffiffiffi

n
p @aXðtÞ

@t
, 8�n � t � rn


 �
, (62)

where �n ¼ A0 � enffiffi
n

p with en ! 1buten ¼ o
ffiffiffi
n

p� 	
: For the first term in Eq. (62), consider its com-

plement

P UðsÞ � � ffiffiffi
n

p @aXðsÞ
@t

,9s � �n


 �
, (63)

Because
@aX ðtÞ

@t
rðtÞ is increasing in t, for sufficiently large n,

ffiffiffi
n

p @aX ðtÞ
@t

rðtÞ <
ffiffiffi
n

p @aX ð�nÞ
@t

rð�nÞ ¼
ffiffiffi
n

p a00XðA0Þð�n�A0Þ
rð�nÞ ¼

� a00XðA0Þen
rð�nÞ and a00XðA0Þen

rð�nÞ approaches to 1asn ! 1: It follows that

P
UðsÞ
rðsÞ � � ffiffiffi

n
p @aXðsÞ

@t

rðsÞ , 9s � �n

( )
� P

UðsÞ
rðsÞ � a00XðA0Þen

rð�nÞ ,9s � �n


 �
, (64)

By Fernique’s Lemma in Marcus (1970) and en ! 1, this last probability is bounded by
c2 exp ð�c1e2nÞ ! 0 as n ! 1 with some positive constants c1, and c2: Therefore, as n ! 1, we
obtain

P UðtÞ < � ffiffiffi
n

p @aXðtÞ
@t

,8t � �n


 �
! 1: (65)

As for the second term in Eq. (62), for any d > 0, sup�n�t�rn
UðtÞ
rðtÞ � UðrnÞ

rðrnÞ
��� ��� � d for sufficiently

large n, and then we have UðtÞ
rðtÞ � UðrnÞ

rðrnÞ þ d for sufficiently large n: This implies

P UðtÞ < � ffiffiffi
n

p @aXðtÞ
@t

,8�n � t � rn


 �
(66)

¼ P
UðtÞ
rðtÞ < � ffiffiffi

n
p @aXðtÞ

@t

rðtÞ , 8�n � t � rn

( )
(67)

� P
UðrnÞ
rðrnÞ þ d < �z þ oð1Þ, sup

�n�t�rn

UðtÞ
rðtÞ �

UðrnÞ
rðrnÞ

����
���� � d

( )
(68)

� Uð�z þ oð1Þ � dÞ � P sup
�n�t�rn

UðtÞ
rðtÞ �

UðrnÞ
rðrnÞ

����
���� > d

( )
: (69)

By Theorem 2.1 of Berman (1974), for 0 < a0 < 1 we have

P sup
�n�t�rn

UðtÞ
rðtÞ �

UðrnÞ
rðrnÞ

����
���� > d

( )
� const:� 1� Uðconst:� d� ðrn � �nÞ�a0=2Þ

� 
! 0 (70)
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as n ! 1: Combining the results for any d > 0, we have proved the reverse inequality and then
the statement in Eq. (17) follows.

Proof of Theorem 3.3:
i. Let bn be any number in ð0,AnÞ: Because bn < An, by the definition of An we have aX, nðtÞ >

0for0 � t � bn: Then set

Dn ¼ inf
aX, nðtÞ
21�ama

� �1
a

: 0 � t � bn

( )
: (71)

It follows that Dn > 0andTX, n, k is a monotone increasing sequence which is bounded by An:
Since TX, n, k > bn f or k > ½bnDn

� þ 1, where ½x� denotes the integer part of x, we
obtain TX, n, k !a:s: An as k ! 1:

i. Let d > 0 be given. By the definition of A0 in Eq. (52) and the continuity of aXðtÞ, we can
choose e > 0 such that

inf t � 0 : aXðtÞ ¼ e
� �

> A0 � d=2, (72)

inf t � A0 : aXðtÞ ¼ e
� �

< A0 þ d=2: (73)

Let B be a compact set of the real line containing ½0,A0 þ d=2�: By the uniform convergence
of aX, nðtÞ to aXðtÞ on each bounded interval in Proposition 3.1, there exists an N1 such that for
all n > N1,

0 � aX, nðtÞ � aXðtÞ þ e (74)

uniformly in t 2 B with probability as close to one. Therefore, with probability as close to one,
for all n > N1,

A0 � d=2 � An � A0 þ d=2: (75)

The moment condition in Eq. (23) implies that there exists an N2 such that, with probability
as close to one, for all n > N2

ma �
ð ð

jx1 � x2jadF1dF2 þ e 
 la þ e, (76)

by the strong law of large numbers. Combining these two results, with probability as close to
one, for n > N ¼ maxfN1,N1g, we obtain

eN ¼ inf
aXðtÞ � e

21�aðla þ eÞ
� �1

a

: 0 � t � A0 � d=2

( )
(77)

� inf
aX, nðtÞ
21�ama

� �1
a

: 0 � t � An � d

( )
(78)

because 0 � t � An � df g � 0 � t � A0 � d=2f g: By the choice of e, we have eN > 0: This
implies that with probability as close to one, for all k > ½A0�d=2

eN
� þ 1,

jTX, n, k � Anj � d: (79)

i. This part follows from the derivation in (ii) by choosing d ¼ 1ffiffi
n

p and k correspondingly.
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Proof of Theorem 4.1: Recall that under H0 and Assumption 4.2, the results in Theorem 3.3(iii)
and Theorem 3.2 hold. Consider

sXn ¼
ffiffiffi
n

p
aX, nðTX, n, kÞ � aX, nðAnÞð Þ þ ffiffiffi

n
p

aX, nðAnÞ � aX, nðA0Þð Þ þ ffiffiffi
n

p
aX, nðA0Þ � aXðA0Þð Þ (80)

¼ @aXðT�
X, n, kÞ

@t

ffiffiffi
n

p
TX, n, k � Anð Þ þ @aXðA�

nÞ
@t

ffiffiffi
n

p
An � A0ð Þ þ ffiffiffi

n
p

aX, nðA0Þ � aXðA0Þð Þ, (81)

where T�
X, n, k is a value between TX, n, kandAnandA�

n is a value between AnandA0: As n ! 1, we

have
@aXðT�

X, n, kÞ
@t ! @aXðA0Þ

@t ¼ 0 and @aXðA�
nÞ

@t ! @aXðA0Þ
@t ¼ 0: Because Theorem 3.3(iii) and Theorem 3.2

imply
ffiffiffi
n

p ðTX, n, k � AnÞand
ffiffiffi
n

p ðAn � A0Þ are bounded in probability, as n ! 1, we obtain

sXn ¼
ffiffiffi
n

p
aX, nðA0Þ � aXðA0Þð Þ þ opð1Þ: (82)

By using Proposition 3.2, we have proved sXn !d Nð0, E½RðA0Þ2�Þ with RðA0Þ ¼ 0:6 This gives
the desired statement at (i). As for the statement at (ii), consider

sXn ¼
ffiffiffi
n

p
aX, nðTX, n, kÞ � aXðTX, n, kÞð Þ þ ffiffiffi

n
p

aXðTX, n, kÞ: (83)

By Proposition 3.2, the first term is !d Nð0, E½RðTX, n, kÞ2�Þ which is bounded in probability.
But the second term diverges to 1underH1: This proves the statement at (ii).

Proof of Proposition 4.2: Because the characteristic function of X is everywhere nonvanishing,
under Assumption 4.8(i), Proposition 2.1 implies the nonparametric family of conditional density
functions ff ðxjw�Þ ¼ fV1ðx�m1ðw�ÞÞ : w� 2 W�g is complete in L1bndðXÞ: On the other hand, by
Propositions 4.1 if the characteristic function of Z is everywhere nonvanishing, then under
Assumption 4.8(ii), the nonparametric family of conditional density functions ff ðzjw�Þ ¼
fV2ðz �m2ðw�ÞÞ : z 2 Zg is complete in L1bndðW�Þ:

With the relation fXjZ,W� ¼ fXjW� from Assumption 4.8, by the law of the total probability, we
write

fXZðx, zÞ ¼
ð
W�

fXjZW� ðxjz,w�ÞfZjW� ðzjw�ÞfW� ðw�Þdw�

¼
ð
W�

fXjW� ðxjw�ÞfZjW� ðzjw�ÞfW� ðw�Þdw�:
(84)

Suppose that there exists h 2 L1bndðXÞ such that
Ð
XfXjZðxjzÞhðxÞdx ¼ 0 for a.e. z 2 Z:

Multiplying both sides of the equation by f ðzÞ yieldsð
X

fXZðx, zÞhðxÞdx ¼ 0 for a:e: z 2 Z: (85)

Plugging the expression of fXZ in Eq. (84) into Eq. (85) yieldsð
X

ð
W�

fXjW� ðxjw�ÞfZjW� ðzjw�ÞfW� ðw�Þdw�
� �

hðxÞdx ¼ 0 for a:e: z 2 Z: (86)

Interchanging the integrations, we obtainð
W�

ð
X

fXjW� ðxjw�ÞhðxÞdx
� �

fW� ðw�ÞfZjW� ðzjw�Þdw� ¼ 0 for a:e: z 2 Z: (87)

By Assumption 4.9, ðÐXfXjW� ðxjw�ÞhðxÞdxÞfW� ðw�Þ is a function in L1bndðW�Þ: Since the family
of conditional density functions ff ðzjw�Þ ¼ fV2ðz �m2ðw�ÞÞ : z 2 Zg is complete in L1bndðW�Þ,
we have ðÐXfXjW� ðxjw�ÞhðxÞdxÞfW� ðw�Þ ¼ 0 for a.e. w� 2 W�: This implies that

6Equation (11) and the fact that /X (A0)¼/X(�A0)¼ aX(A0) implies that R(A0)¼ 0.
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Ð
XfXjW� ðxjw�ÞhðxÞdx ¼ 0 for a.e. w� 2 W�: Because h 2 L1bndðXÞ and the nonparametric family of
conditional density functions ff ðxjw�Þ ¼ fV1ðx�m1ðw�ÞÞ : w� 2 W�g is complete in L1bndðXÞ, we
obtain hðxÞ ¼ 0 for a.e. x 2 X: We have reached the desired result that the nonparametric family
of conditional density functions ff ðxjzÞ : z 2 Zg is complete in L1bndðXÞ:
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