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This paper provides sufficient conditions for the nonparametric identification of the
regression function m (·) in a regression model with an endogenous regressor x and
an instrumental variable z. It has been shown that the identification of the regres-
sion function from the conditional expectation of the dependent variable on the
instrument relies on the completeness of the distribution of the endogenous regres-
sor conditional on the instrument, i.e., f (x|z). We show that (1) if the deviation of
the conditional density f (x|zk ) from a known complete sequence of functions is
less than a sequence of values determined by the complete sequence in some dis-
tinct sequence {zk : k = 1,2,3, . . .} converging to z0, then f (x|z) itself is complete,
and (2) if the conditional density f (x|z) can form a linearly independent sequence
{ f (·|zk ) : k = 1,2, . . .} in some distinct sequence {zk : k = 1,2,3, . . .} converging
to z0 and its relative deviation from a known complete sequence of functions under
some norm is finite then f (x|z) itself is complete. We use these general results to
provide specific sufficient conditions for completeness in three different specifica-
tions of the relationship between the endogenous regressor x and the instrumental
variable z.

1. INTRODUCTION

We consider a nonparametric regression model as follows:

y = m(x)+ u, (1)

where y is an observable scalar random variable, and x is a dx × 1 vector of
regressors and may be correlated with a zero mean regression error u. The param-
eter of interest is the nonparametric regression function m(·). A dz × 1 vector of
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instrumental variables z is conditional mean independent of the regression error
u, i.e., E(u|z) = 0, which implies

E[y|z] =
∫ +∞

−∞
m(x) f (x |z)dx, (2)

where the probability measure of x conditional on z is absolutely continuous w.r.t.
the Lebesgue measure.1 We observe a random sample of {y,x,z}, and denote
the support of these random variables as Y , X , and Z , respectively. This paper
provides sufficient conditions on the conditional density f (x |z) under which the
regression function m (·) is nonparametrically identified from, i.e., uniquely deter-
mined by, the observed conditional mean E[y|z]. We show that (1) if the deviation
of the conditional density f (x |zk) from a known complete sequence of functions
is less than a sequence of values determined by the complete sequence in some
distinct sequence {zk : k = 1,2,3, . . .} converging to z0, then f (x |z) itself is com-
plete, and (2) if the conditional density f (x |z) can form a linearly independent
sequence { f (·|zk) : k = 1,2, . . .} for some distinct sequence {zk : k = 1,2,3, . . .}
converging to z0 and its relative deviation from a known complete sequence of
functions under some norm is finite then f (x |z) itself is complete. Consequently,
the regression function m (·) is nonparametrically identified. Our sufficient condi-
tions for completeness impose no specific functional form on f (x |z), such as the
exponential family.

The nonparametric IV regression model is applicable for a large range of empir-
ical research. We provide a few examples in which there may exist an endogenous
variable and the model is applicable. Consider an empirical study for estimating
the impact of education on the female labor supply. The endogeneity may arise in
the presence of an “ability bias” or the measurement error problem of education.
We may use father’s education as an instrumental variable for woman’s educa-
tion. Another example is to estimate Engel curves that describe the allocation of
total nondurable consumption expenditure. In the application, total expenditure
can be endogenous and we may use the gross earnings of the household head as
an instrument for total expenditure.

We assume the regression function m (·) is in a Hilbert space H of functions
defined on X , the support of regressor x . This paper considers a weighted L2

space L2(X ,ω) = {h(·) :
∫
X |h(x)|2ω(x)dx < ∞} with the inner product

〈 f,g〉 ≡ ∫
X f (x)g(x)ω(x)dx, where the positive weight function ω(x) is

bounded almost everywhere and
∫
X ω(x)dx < ∞.2 The corresponding norm is

defined as: ‖ f ‖2 = 〈 f, f 〉. The space L2(X ,ω) is complete under the norm ‖ · ‖
and is a Hilbert space.

One may show that the uniqueness of the regression function m(·) is implied
by the completeness of the family { f (·|z) : z ∈ O} in H, where O ⊆ Z is a sub-
set of Z , the support of z. The set O may be Z itself or some subset of Z . In
particular, this paper considers the question of completeness with the set O being
a distinct converging sequence {zk : k = 1,2,3, . . .} in Z . This case corresponds
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to a sequence of functions { f (·|zk) : k = 1,2, . . .}. We start with a definition of
completeness in a Hilbert space H.

DEFINITION 1. Denote H ≡ L2(X ,ω) as a Hilbert space with the weight
function ω. The family { f (·|z) ∈ H : z ∈ O} for some set O ⊆ Z is said to be

complete in H if for all z ∈ O,
∫
X

f (x |z)2

ω(x) dx < ∞ and for any h (·) ∈ H∫
X

h(x) f (x |z)dx = 0 for all z ∈ O

implies h(·) = 0 almost surely in X .3 When it is a conditional density function
defined on X ×Z , f (x |z) is said to be a complete density.4

The uniqueness (identification) of the regression function m(·) is implied by
the completeness of the family { f (·|z) : z ∈ O} in H for some set O ⊆ Z . This
sufficient condition may be shown as follows. Suppose that m(·) is not identified
so that there are two different functions m(·) and m̃(·) in H which are observa-
tionally equivalent, i.e., for any z ∈ Z

E[y|z] =
∫
X

m(x) f (x |z)dx =
∫
X

m̃(x) f (x |z)dx . (3)

We then have for some h(x) = m(x)− m̃(x) 
= 0∫
X

h(x) f (x |z)dx = 0 for any z ∈ Z

which implies that { f (·|z) : z ∈ O} for any O ⊆ Z is not complete in H. There-
fore, if { f (·|z) : z ∈ O} for some O ⊆ Z is complete in H, then m(·) is uniquely
determined by E[y|z] and f (x |z), and therefore, is nonparametrically identified.

This definition implies that the equality in the definition can be rewritten as

0 =
∫
X

h(x) f (x |z)dx =
∫
X

h(x)
f (x |z)
ω(x)

ω(x)dx =
〈
h,

f (·|z)
ω(·)

〉
for all z ∈ O.

Therefore, we use the weighted function f (x |z)
ω(x) instead of f (x |z) in the inner

product of the Hilbert space L2(X ,ω), when we consider a complete sequence in
the Hilbert space in the appendix. The definition certainly imposes tail conditions
on the conditional density function f (x |z). On the other hand, because existing
complete distribution functions used in this study are the exponential family and
a translated density function with exponentially decaying tails, the definition is
not very restrictive to the nonparametric extension of completeness from these
existing complete distribution functions.

The completeness introduced in Definition 1 is close to L2- completeness
considered in Andrews (2012) with H = L2(X , fx ), where the density fx may
be considered as the weight function ω in L2(X ,ω).5 Andrews (2012) pro-
vides broad (nonparametric) classes of L2-complete distributions that can have

https://doi.org/10.1017/S0266466617000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466617000251


662 YINGYAO HU AND JI-LIANG SHIU

any marginal distributions and a wide range of strengths of dependence. The
L2-complete distributions are constructed by bivariate density functions with
respect to Fx × Fz which are constructed through orthonormal bases of L2(Fx )
and L2(Fx ). Depending on which regularity conditions are imposed on the regres-
sion function m (·), a different version of completeness can be also considered.
For example, D’Haultfoeuillle (2011) considers three different types of complete-
ness including (1) “standard” completeness, where h satisfies E(|h(X)|) < ∞,
(2) P-completeness, where h is bounded by a polynomial, and (3) bounded com-
pleteness for any bounded h in nonparametric models between the two vari-
ables with an additive separability and a large support condition. D’Haultfoeuillle
(2011) defines completeness in terms of dependence condition between x and z
such as x = μ(ν(z)+ε), where μ and ν are mappings and z and ε are independent.
The results are useful in nonparametric regression models with a limited endoge-
nous regressor. Regardless of whether the support X is bounded or unbounded,
such as the unit interval [0,1] or the real line R, respectively, the completeness in
L2(X ,ω) is more informative for identification than the bounded completeness
because a bounded function always belongs to the weighted L2 space L2(X ,ω).6

Therefore, we consider L2-completeness with a Hilbert space H = L2(X ,ω) in
this paper.

In the extreme case where x and z are discrete, completeness is the same as a
no-perfect-collinearity or a full rank condition on a finite number of distributions
of x conditional on different values of z.7 Our results for continuous variables
extend this interpretation. Suppose that the family of conditional distributions
in { f (·|zk) : k = 1,2, . . .} is complete in L2(X ,ω). As shown in the Appendix,
we can extract a subfamily { f (·|zrk ) : k = 1,2, . . .} as a basis in L2(X ,ω). This
basis interpretation implies that (1) there is no exact linear relationship among
the family of the conditional distribution { f (·|zrk ) : k = 1,2, . . .} or a conditional
distribution at each point z can not be expressed as a linear combination of others,
and (2) every function in L2(X ,ω) can be approximated by linear combinations
of the conditional distributions in { f (·|zrk ) : k = 1,2, . . .}. In this general continu-
ous case, a function in L2(X ,ω) may be expressed as an infinite sum of functions
and the convergence of the infinite sum is under the norm ‖ · ‖.

The L2 completeness for the nonparametric regression model (1) implies that
identification is achieved among functions whose difference with the true one is
square integrable w.r.t. the weighted Lebesgue measure. As an illustration, sup-
pose that m(x) = α+βx . With completeness in L2(R,ω), the regression function
m can be identified within the set of functions of the form {α +βx + g(x) : g ∈
L2(R,ω)}. Therefore, under our framework the functional form of the regression
function m may be very flexible. Notice that the function g cannot be linear over
R under bounded completeness, which implies that bounded completeness is not
enough to distinguish the true linear regression function m(x) = α + βx from
another linear function m̃(x) = α̃ + β̃x .

The following two examples of complete f (x |z) are from Newey and Powell
(2003) (See their Theorems 2.2 and 2.3 for details.8):
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Example 1
Suppose that the distribution of x conditional on z is N(a + bz,σ 2) for σ 2 > 0
and the support of z contains an open set, then E[h(x)|z = z1] = 0 for any z1 ∈ Z
implies h(·) = 0 almost surely in X ; equivalently, { f (·|z) : z ∈ Z} is complete.9

Another case where the family { f (x |z) : z ∈ O} is complete in H is that f (x |z)
belongs to an exponential family as follows:

Example 2
Let f (x |z) = s(x)t (z)exp[μ(z)τ (x)], where s(x) > 0, the mapping from x →
τ (x) is one-to-one in x , and support of μ(z), Z , contains an open set, then
E[h(x)|z = z1] = 0 for any z1 ∈ Z implies h(·) = 0 almost surely in X ; equiva-
lently, the family of conditional density functions { f (·|z) : z ∈ Z} is complete.

These two examples show the completeness of a family { f (x |z) : z ∈ O}, where
O is an open set. In order to extend the completeness to general density functions,
we further reduce the set O from an open set to a countable set with a limit point,
i.e., a converging sequence in the support Z .

This paper focuses on the sufficient conditions for completeness of a condi-
tional density. These conditions can be used to obtain global or local identifi-
cation in a variety of models including the nonparametric IV regression model
(see Newey and Powell (2003), Darolles, Fan, Florens, and Renault (2011), Hall
and Horowitz (2005), and Horowitz (2011)), semiparametric IV models (see Ai
and Chen (2003) and Blundell, Chen, and Kristensen (2007)), nonparametric IV
quantile models (see Chernozhukov and Hansen (2005), Chernozhukov, Imbens,
and Newey (2007), and Horowitz and Lee (2007)), measurement error models
(see Hu and Schennach (2008), An and Hu (2012), Carroll, Chen, and Hu
(2010), and Chen and Hu (2006)), random coefficient models (see Hoderlein,
Nesheim, and Simoni (2012)), and dynamic models (see Hu and Shum (2012) and
Shiu and Hu (2013)), etc. We refer to D’Haultfoeuille (2011) and Andrews (2012)
for more complete literature reviews. On the other hand, Canay, Santos, and
Shaikh (2013) consider hypothesis testing for completeness against very gen-
eral alternatives and they show that the completeness condition is, without further
restrictions, untestable.

There are cases where identification and consistent estimation are relatively
straightforward and not related to completeness. In the nonstationary dependent
case, identification can be achieved because of the nonstationary nature of the
regressor, which can act as its own instrument (see Wang and Phillips (2009),
Wang and Phillips (2016), and Wang and Phillips (2007)). In the microecono-
metric context, identification can also be achieved by infill and spatial shifting
nonstationarity (see Phillips and Su (2011)). Finally, in threshold regression cases
thresholding parameters are identifiable and consistently estimable in spite of
endogeneity of the regressor (see Yu and Phillips (2017)).

In this paper, we provide sufficient conditions for the completeness of a general
conditional density without imposing particular functional forms. We first show
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the set O of the family { f (·|z) : z ∈ O} in the definition of completeness can be
as small as a converging sequence {zk : k = 1,2,3, . . .} for some known complete
families. This implies that the family

{
fx |z(·|zk)/ω(·) : k = 1,2, . . .

}
can form a

complete sequence in a Hilbert space with the weight function ω. We then use the
stability properties of complete sequences in a Banach space and a Hilbert space
(Sections 9 and 10 of Chapter 1 in Young (2001) and Gurarij and Meletidi (1970))
to show that (1) if the deviation of the conditional density f (x |zk) from a known
complete sequence of functions is less than a sequence of values determined by
the complete sequence in some distinct sequence {zk : k = 1,2,3, . . .} converging
to z0, then f (x |z) itself is complete, and (2) if the conditional density f (x |z) can
form a linearly independent sequence { f (·|zk) : k = 1,2, . . .} for some distinct
sequence {zk : k = 1,2,3, . . .} converging to z0 and its relative deviation from a
known complete sequence of functions under some norm is finite then f (x |z)
itself is complete.

Another observation is that this stability property of completeness is actually
consistent with a result in Canay et al. (2013) that a distribution for which com-
pleteness fails can be arbitrarily close to distributions for which completeness
holds. Notice that Canay et al. (2013) approach f (X, Z) by a sequence of step
functions (with a finite number of “steps”). The limit may be a complete func-
tion but each step function in the sequence cannot be complete. Each of the step
functions in their sequence corresponds to a truncated sequence { f1, f2, . . . , fK }
with fk = fX |Z (.|Z = zk) for some finite K in our paper. The limit of this
sequence { f1, f2, . . . , fK } is { fk}k=1,2,... , which may be complete. But the trun-
cated sequence { f1, f2, . . . , fK } is not complete with a continuous X . The key
issue is approximation to f (X, Z) from both dimensions of X and Z . If f (X, Z)
is only approximated by step functions of X , but not of Z , completeness may still
hold because a sequence of step functions, such as the so-called Haar sequence,
may still be complete.

We apply the general results to show the completeness in three scenarios. First,
we extend Example 1 to a general setting. In particular, we show the completeness
of f (x |z) when x and z satisfy for some function μ(·) and σ (·)
x = μ(z)+σ (z)ε with z ⊥ ε.

Second, we consider a general control function

x = h(z,ε) with z ⊥ ε,

and provide conditions for completeness of f (x |z) in this case. Third, our results
imply that the completeness of a multidimensional conditional density, e.g.,

f (x1,x2|z1,z2),

may be reached by completeness of two conditional densities of lower dimension,
i.e., f (x1|z1) and f (x2|z2).

This paper is organized as follows: Section 2 provides sufficient conditions for
completeness; Section 3 applies the main results to the three cases with different
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specifications of the relationship between the endogenous variable and the instru-
ment; Section 4 concludes the paper and all the proofs are in the appendix.

2. SUFFICIENT CONDITIONS FOR COMPLETENESS

In this section, we show that (1) if the deviation of the conditional density f (x |zk)
from a known complete sequence of functions is less than a sequence of values
determined by the complete sequence in some distinct sequence {zk : k =
1,2,3, . . .} converging to z0, then f (x |z) itself is complete, and (2) if the con-
ditional density f (x |z) can form a linearly independent sequence { f (·|zk) : k =
1,2, . . .} for some distinct sequence {zk : k = 1,2,3, . . .} converging to z0 and its
relative deviation from a known complete sequence of functions under some norm
is finite then f (x |z) itself is complete. We start with the introduction of two well-
known complete families in Examples 1 and 2. Notice that these completeness
results are established on an open set O instead of a countable set with a limit
point, i.e., a converging sequence. In order to extend the completeness to a new
function f (x |z), we first establish the completeness on a sequence of zk .

As we will show below, the completeness of an existing sequence {g(·|zk) :
k = 1,2, . . .} is essential to show the completeness for a new function f (x |z).
An important family of conditional distributions which admit completeness is
the exponential family. Many distributions encountered in practice can be put
into the form of exponential families, including Gaussian, Poisson, Binomial, and
certain multivariate forms of these. Another family of conditional distributions
which implies completeness is in the form of a translated density function, i.e.,
g(x |z) = g(x − z).10

Based on the existing results, such as in Examples 1 and 2 in the introduction,
we may generate complete sequences from the exponential family or a translated
density function. We start with an introduction of a complete sequence in the expo-
nential family. Example 2 shows the completeness of the family {g(·|z) : z ∈ O},
where O is an open set in Z . In the next lemma, we reduce the set O from an open
set to a countable set with a limit point, i.e., a converging sequence in Z .11

LEMMA 1. Suppose that X is a connected set. Denote O as an open set in
Z ⊂ R. Let {zk : k = 1,2, . . .} be a sequence of distinct zk ∈ O converging to z0
in the open set O. Define

g(x |z) = s(x)t (z)exp[μ(z)τ (x)]

on X ×Z with s(·) > 0 and t (·) > 0 are continuous positive functions. Suppose
that g(·|z) ∈ L1(X ) for z ∈ O and

i) μ(·) is continuous differentiable with μ′ (z0) 
= 0;

ii) τ (·) is C1-diffeomorphism from X to τ (X ).12

Then, the sequence {g(·|zk) : k = 1,2, . . .} is complete in L2(X ,ω), where the

weight function ω(x) satisfies
∫
X

s(x)2 exp[2(μ(z0)τ (x)+δ|τ (x)|)]
ω(x) dx < ∞ for some δ > 0.
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Proof. See the appendix. �
The restrictions on the weight function are mild and there are many poten-

tial candidates. For example, suppose τ (·) > 0, since O is open and μ(·) is
continuous with μ′ (z0) 
= 0, there exists some z̃ ∈ O and δ > 0 such that
μ(z0)τ (x) + δ|τ (x)| < μ(z̃)τ (x). One particular choice of the weight function
is ω(x) = s(x)exp

[
μ(z̃)τ (x)

]
.

Another case where the completeness of g(x |z) is well studied is when
g(x |z) = fε (x − z), which is usually due to a translation between the endoge-
nous variable x and instrument z as follows

x = z + ε with z ⊥ ε.

Example 1 implies that the family {g(·|z) ∈H : z ∈O} is complete if O is an open
set in Z and ε is normal. Again, we show the completeness still holds when the
set O is a converging sequence.

In order to allow the space of the regression functions m to contain linear
functions and polynomials, we consider X = R with some weight function
(Lemma 2). We summarize the results as follows.

LEMMA 2. Let X = R. Denote O as an open set in Z . Let {zk : k = 1,2, . . .}
be a sequence of distinct zk ∈ O converging to z0 in the open set O. Define

g(x |z) = fε(x − z)

on R×Z . If the distribution of ε is normal, then the sequence {g(·|zk) : k =
1,2, . . .} is complete in L2(R,ω), where the weight function ω(x) satisfies ω(x) =
e−δ′x2

for some δ′ ∈ (0,δ3) and δ3 is defined in equation (A.4).

Proof. See the appendix. �
We need the exponentially decaying weight function to identify the possibly

unbounded regression function, such as linear functions, over the whole real line
in a L2 functional space. However, this may limit the distribution of ε to be
normal. Theorem 2.4 of Mattner (1993) shows that the only L1 complete loca-
tion family over a real line is the Gaussian one.13 One remedy is to impose more
restrictions on the functional space, such as bounded functions over the whole
real line. As Theorem 2.1 of Mattner (1993) shows, a location family is bound-
edly complete if and only if its characteristic function is not zero in the whole real
line. This can allow ε to have various distributions. Unfortunately, this rules out
linear functions over the whole real line.

With the complete sequences explicitly specified in Lemmas 1 and 2, we are
ready to extend the completeness to a more general conditional density f (x |z).
We will apply three different types of the stability results in Hilbert spaces to
obtain the completeness. The first two are only involved with a small pertur-
bation of a complete sequence and the third one is linked to an added struc-
ture of a Hilbert space, an orthonormal basis. The existence of such stability
is based on two facts: (1) completeness is preserved by an invertible operator
and (2) a bounded linear operator T on a Hilbert space is invertible whenever
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‖I − T‖op < 1, where ‖·‖op is an operator norm. Our first two sufficient condi-
tions for completeness are summarized as follows:

THEOREM 1. Denote H ≡ L2(X ,ω). Suppose f (·|z) and g(·|z) are condi-
tional densities. For every z ∈ Z , let f (·|z) and g(·|z) be in the Hilbert space H
of functions defined on X with norm ‖ · ‖. Set N (z0) = {z ∈ Z : ‖z − z0‖ < ε
for some small ε > 0}⊆ Z as an open neighborhood for a point z0 such that

i) for every sequence {zk : k = 1,2, . . .} of distinct zk ∈ N (z0) converging to
z0, the corresponding sequence {g(·|zk) : k = 1,2, . . .} is complete in a
Hilbert space H;

ii) there exists a complete sequence {g(·|zk) : k = 1,2, . . .} such that f (·|z)
satisfies

n∑
k=1

‖ck(g(·|zk)/ω(·)− f (·|zk)/ω(·))‖ < λ

n∑
k=1

‖ck g(·|zk)/ω(·)‖

for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, . . . ,cn

(n = 1,2,3, . . .).

Then, the family { f (·|z) : z ∈ N (z0)} is complete in H.

Proof. See the appendix. �
THEOREM 2. Denote H ≡ L2(X ,ω). Suppose f (·|z) and g(·|z) are condi-

tional densities. For every z ∈ Z , let f (·|z) and g(·|z) be in the Hilbert space H
of functions defined on X with norm ‖ · ‖. Set N (z0) = {z ∈ Z : ‖z − z0‖ < ε
for some small ε > 0}⊆ Z as an open neighborhood for a point z0 such that

i) for every sequence {zk : k = 1,2, . . .} of distinct zk ∈ N (z0) converging to
z0, the corresponding sequence {g(·|zk) : k = 1,2, . . .} is complete in a
Hilbert space H;

ii) there exists a sequence of positive numbers {Ck : k = 1,2, . . .} which
depends on the normalized sequence { g(·|zk)/ω(·)

‖g(·|zk)/ω(·)‖ : k = 1,2, . . .} such that
n∑

k=1
Ckεk < 1 for a sequence of positive numbers {εk : k = 1,2, . . .} and

∥∥∥∥ g(·|zk)/ω(·)
‖g(·|zk)/ω(·)‖ − f (·|zk)/ω(·)

∥∥∥∥ < εk .

Then, the family { f (·|z) : z ∈ N (z0)} is complete in H.

Proof. See the appendix. �
Theorem 2 implies that a new complete sequence always exists, although its

distance from the existing complete sequence is determined by that sequence.
The second stability criteria related to an orthonormal basis is the following.
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THEOREM 3. Denote H ≡ L2(X ,ω). For every z ∈ Z , let f (·|z) and g(·|z)
be conditional densities in the Hilbert space H of functions defined on X with
norm ‖ · ‖. Set N (z0) = {z ∈ Z : ‖z − z0‖ < ε for some small ε > 0}⊆ Z as an
open neighborhood for a point z0 such that

i) for every sequence {zk : k = 1,2, . . .} of distinct zk ∈ N (z0) converging to
z0, the corresponding sequence {g(·|zk) : k = 1,2, . . .} is complete in a
Hilbert space H;

ii) there exists a complete sequence {g(·|zk) : k = 1,2, . . .} such that the corre-
sponding sequence { f (·|zk) : k = 1,2, . . .} satisfies that

∞∑
k=1

∥∥∥vg
k − v

f
k

∥∥∥2

∥∥vg
k

∥∥2
< ∞,

where for h ∈ {g, f }, the sequence of functions vh
k is defined as vh

1 (·) =
h(·|z1)/ω(·),. . . ,vh

k (·) = h(·|zk)/ω(·)−
k−1∑
j=1

〈
h(·|zrk )/ω(·),vh

j (·)
〉

〈
vh

j (·),vh
j (·)

〉 vh
j , and that for

any finite subsequence
{
zki : i = 1,2, . . . , I

} { f (·|zki ) : i = 1,2, . . . , I } is
linearly independent, i.e.,

I∑
i=1

ci f (x |zki ) = 0 for all x ∈ X implies ci = 0.

Then, the family { f (·|z) : z ∈ N (z0)} is complete in H.

Proof. See the appendix. �

This theorem utilizes the structure of an inner product that allows length and
angle in a Hilbert space. We show that if the distance between the two correspond-
ing orthogonal sequences is finite and the new sequence is linearly independent,
then the new sequence is complete.

Condition i) provides complete sequences, which may be from Lemmas 1,
and 2. Condition ii) requires that the total sum of relative quadratic deviation
from the orthogonal sequence

{
v

g
k : k = 1,2, . . .

}
constructed by {g(·|zrk )/ω(·) :

k = 1,2, . . .} and an orthogonal sequence
{
v

f
k : k = 1,2, . . .

}
constructed by

{ f (·|zrk )/ω(·) : k = 1,2, . . .} is finite.
The linear independence in condition iii) imposed on { f (·|zk)} implies that

there are no redundant terms in the sequence in the sense that no term can be
expressed as a linear combination of some other terms. Because a weight function
is positive, the linear independence of { f (·|zk)} is equivalent to the linear inde-
pendence of { f (·|zk)/ω(·)}. For simplification, we use an ordered sequence zk .
When the support of f (·|zk) is the whole real line for all zk , a sufficient condition
for the linear independence is that
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lim
x→−∞

f (x |zk+1)

f (x |zk)
= 0 for all k, (4)

which implies limx→−∞ f (x |zk+m)
f (x |zk)

= 0 for any m ≥ 1 and for all x . If∑I
i=1 ci f (x |zki ) = 0 for all x ∈ (−∞,+∞), we may have

−c1 =
I∑

i=2

ci
f (x |zki )

f (x |zk1)
.

The limit of the right-hand side is zero as x → −∞ so that c1 = 0. Similarly,
we may show c2,c3, . . . ,cI = 0 for all i by induction. Notice that the exponen-
tial family satisfies equation (4) for appropriate choices of μ, τ , and a sequence.
When the support X is bounded, for example, X = [0,1], the condition (4) may
become

lim
x→0

f (x |zk+1)

f (x |zk)
= 0 for all k. (5)

For example, the Corollary (Müntz) on page 91 in Young (2001) implies that the

family of function {x z1,x z2,x z3 , . . .} is complete in L2([0,1]) if
∞∑

k=1

1
zk

= ∞. This

family also satisfies the condition (5) for a strictly increasing {zk}. For an existing
function g(x |z) > 0, we may always have f (x |z) = f (x |z)

g(x |z) × g(x |z). If the exist-

ing sequence {g(·|zk)} satisfies equation (4), i.e., limx→−∞ g(x |zk+1)
g(x |zk)

= 0, then the

condition 0 <
(

limx→−∞ f (x |zk)
g(x |zk)

)
< ∞ implies limx→−∞ f (x |zk+1)

f (x |zk)
= 0 or linear

independence of { f (·|zk)}. Furthermore, when f (x |z) = h(x |z)×g(x |z), the con-

dition (4) is implied by limx→−∞ g(x |zk+1)
g(x |zk)

= 0 and
(

limx→−∞ h(x |zk+1)
h(x |zk)

)
< ∞.

Suppose the function f (x |z) is differentiable with respect to the variable x up
to any finite order for all the zk in the sequence. We may consider the so-called
Wronskian determinant as follows:

W (x) = det

⎛⎜⎜⎝
f (x |zk1) f (x |zk2) ... f (x |zkI )
f ′(x |zk1) f ′(x |zk2) ... f ′(x |zkI )

... ... ... ...
d(I−1)

dx (I−1) f (x |zk1)
d(I−1)

dx (I−1) f (x |zk2) ... d(I−1)

dx (I−1) f (x |zkI )

⎞⎟⎟⎠ (6)

If there exists an x0 such that the determinant W (x0) 
= 0 for every{
zki : i = 1,2, . . . , I

}
, then { f (·|zk)} is linear independent.

Another sufficient condition for the linear independence is that the so-called
Gram determinant G f is not equal to zero for every

{
zki : i = 1,2, . . . , I

}
, where

G f = det
([〈

f (·|zki ), f (·|zkj )
〉]

i, j

)
. This condition does not require that the func-

tion has all derivatives. We summarize these results on the linear independence as
follows:
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LEMMA 3. The sequence { f (·|zk)} corresponding to a sequence
{zk : k = 1,2, . . .} of distinct zk ∈ N (z0) converging to z0 is linearly inde-
pendent if one of the following conditions holds:

1)
∑I

i=1 ci f (x |zki ) = 0 for all x ∈ X implies ci = 0 for all I.

2) for all k, limx→−∞ f (x |zk+1)
f (x |zk)

= 0 or limx→x0
f (x |zk+1)

f (x |zk)
= 0 for some x0;

3) there exists an x0 such that the determinant W (x0) 
= 0 for every{
zki : i = 1,2, . . . , I

}
. In particular, dk

dxk F0(0) 
= 0 for k = 1,2, . . . if

f (x |z) = d
dx F0(μ(z)τ (x)) with μ′(z0) 
= 0, τ (0) = 0.

4) for every
{
zki : i = 1,2, . . . , I

}
, det

([〈
f (·|zki ), f (·|zkj )

〉]
i, j

)

= 0.

Proof. See the appendix. �

In order to illustrate the relationship between the complete sequence {g(·|zk)}
and the sequence { f (·|zk)}, we present numerical examples of these two functions
as follows. Theorem 4 in Gurarij and Meletidi (1970) also shows that if a sequence
{ fn : n = 1,2,3, . . .} satisfies ‖ fn − xn‖ < εn for any εn such that limεnan = 0
for every positive a then the sequence is also complete. Thus, we may consider
g(x |z) = xz and f (x |z) = x z + z−z x2 and then { f (·|z) : z ∈ Z} is complete for
Z = R. Figure 1 presents a 3D graph of g(x |z) and f (x |z) for (x,z) in [0,1] ×
[1,4] to illustrate the relationship between the complete sequence {g(·|zk)} and
the sequence { f (·|zk)}.

FIGURE 1. An example of g(x|z) and f (x|z) in Theorem 2.
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3. APPLICATIONS

We consider three applications of our main results: first, we show the sufficient
conditions for the completeness of f (x |z) when x = μ(z) + σ (z)ε with z ⊥ ε;
second, we consider the completeness with a general control function x = h(z,ε);
finally, we show how to use our results to transform a multivariate completeness
problem to a single variable one.

3.1. Extension of the Convolution Case

Lemma 2 provides a complete sequence when x = z + ε. Using Theorems 1, 2
and 3, we may provide sufficient conditions for the completeness of f (x |z) when
the endogenous variable x and the instrument z satisfy a general heterogeneous
structure as follows:

x = μ(z)+σ (z)ε with z ⊥ ε.

Without loss of generality, we set

μ(z) = z.

We summarize the result as follows:

LEMMA 4. For every z ∈ Z ⊂ R, let f (·|z) be in L1 (R). Suppose that there
exists a point z0 with its open neighborhood N (z0)⊆ Z such that

i) set fε(·) = f (·|z0) and the function fε is normally distributed as in
Lemma 2;

ii) there exists { f (·|zk) : k = 1,2, . . .} such that one of the following conditions
holds:

1) σ (z) = 1 f or ‖z − z0‖ < ε for some small ε > 0;
2) σ (z) satisfies

n∑
k=1

∥∥∥∥ck( fε (·− zk)/ω(·)− 1

σ (zk)
fε

( ·− zk

σ (zk)

)
/ω(·))

∥∥∥∥
< λ

n∑
k=1

‖ck fε (·− zk)/ω(·)‖

for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, . . . ,cn

(n = 1,2,3, . . .);
3) there exists a sequence {Ck : k = 1,2, . . .} which depends on the nor-

malized sequence { fε(·−zk)/ω(·)
‖ fε(·−zk)/ω(·)‖ : k = 1,2, . . .} such that

n∑
k=1

Ckεk < 1

for a sequence of positive numbers {εk : k = 1,2, . . .} and∥∥∥∥ fε (·− zk)/ω(·)
‖ fε (·− zk)/ω(·)‖ − 1

σ (zk)
fε

( ·− zk

σ (zk)

)
/ω(·)

∥∥∥∥ < εk,
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4) σ (z) satisfies

∞∑
k=1

∥∥∥v f
k − v

fσ
k

∥∥∥2

∥∥∥v f
k

∥∥∥2
< ∞,

where v
f

k and v
fσ

k are defined as in Theorem 3 with f (x) =
fε(x − z)/ω(·)and fσ (x) = 1

σ(z) fε
(

x−z
σ(z)

)
/ω(·), and that for any

finite subsequence
{
zki : i = 1,2, . . . , I

}
, the family of functions{

1
σ
(
zki

) fε

(
·−zki
σ
(
zki

)) : i = 1,2, . . . , I

}
is linearly independent.

Then, the family { f (·|z) : z ∈ Z} is complete in L2 (R,ω), where the weight func-
tion ω(x) satisfies ω(x) = e−δ′x2

for some δ′ ∈ (0,δ3).

The first part of Lemma 4 implies that one may always make a convolution
sequence coincide with a complete sequence in Lemma 2 at an open neighborhood
of a limit point and thereby provide more complete families. The rest of Lemma 4
is to provide sufficient conditions for the completeness under a small perturbation
of the deviations defined in Theorems 1, 2, and 3. The first case immediately pro-
vides the completeness of the normal distribution with heteroskedasticity which
is more flexible than the normal distribution with homoskedasticity. Suppose
ε ∼ N(0,1) and φ is a standard normal PDF. Then, by Lemma 4 we have the fam-

ily
{

f (x |z) = 1
σ(z)φ

(
x−z
σ(z)

)
: z ∈ N (z0)

}
is complete in L2(R,ω) if σ (z) = 1 for

‖z − z0‖ < ε for some small ε > 0. This result is new to the literature and pro-
vides the identification for models with heteroskedasticity. Therefore, our results
have shown many complete DGPs that are not previously known. Notice that a
family of functions that deviate from a location family may not be in the location

family anymore. To be specific, x = z + σ (z)ε leads to f (x |z) = 1
σ(z)φ

(
x−z
σ(z)

)
not in a location family. Therefore, the completeness of f (x |z) does not con-
flict with Theorem 2.4 of Mattner (1993) after assuming that ε has a normal
distribution.14

Another point to emphasize is that we only need the restrictions of Lemmas 2
and 3 to hold for fε(·) = f (·|z0) at an open neighborhood of the limit point z0
not over all z. Any distribution containing a normal factor, say a convolution of
normal and another distribution, satisfies this tail restriction.

We may then consider the nonparametric identification of a regression
model

y = α +βx + u, E[u|z] = 0, (7)

with x = z + σ (z)ε and ε ∼ N(0,1). Here the true regression function m(x)
is linear, which is unknown to researchers. We have shown that the family
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f (x |z) = 1

σ(z)φ
(

x−z
σ(z)

)
: z ∈ N (z0)

}
is complete in L2(R,ω) if σ (z) = 1 for

‖z − z0‖ < ε for some small ε > 0, which implies the above linear model is
uniquely identified among all the functions in L2(R,ω). Notice that the bounded
completeness is not enough for such an identification.

3.2. Completeness with a Control Function

We then consider a general expression of the relationship between the endogenous
variable x and the instrument z. Let a control function describe the relationship
between an endogenous variable x and an instrument z as follows:15

x = h(z,ε), with z ⊥ ε. (8)

We consider the case where x and ε have the support R. Denote CDF of
ε as F (ε). It is well known that the function h is related to the CDF Fx |z
as h(z,ε) ≡ F−1

x |z (F (ε) |z) when the inverse of Fx |z exists and h is strictly
increasing in ε. Given the function h, we are interested in what restrictions on
h are sufficient for the completeness of the conditional density f (x |z) implied by
equation (8).

LEMMA 5. Let N (z0) ⊆ Z ⊂ R be an open neighborhood of some z0 ∈ Z
and equation (8) hold with h(z0,ε) = ε, where the distribution function of
ε, fε , satisfies

∫
R

| fε (ε)|2 dε < ∞, and the conditions in Lemma 2 with a weight
function ω. Suppose that

i) for z ∈ N (z0), the function h(z,ε) is strictly increasing in ε and twice
differentiable in z and ε;

ii) there exists { f (·|zk) ≡ ∂
∂x Fε

(
h−1(z,x)

) = ∣∣ ∂
∂x h−1(zk, ·)

∣∣ fε
(
h−1(zk, ·)

)
:

k = 1,2, . . .} satisfies one of the following conditions:

1) h(z,ε) = cz + ε, f or a constant c 
= 0 and z satisfying ‖z − z0‖ < ε
for some small ε > 0;

2) f (·|zk) satisfies

n∑
k=1

‖ck( fε (·− zk)/ω(·)− f (·|zk)/ω(·))‖ < λ

n∑
k=1

‖ck fε (·− zk)/ω(·)‖

for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, . . . ,cn

(n = 1,2,3, . . .);
3) there exists a sequence {Ck : k = 1,2, . . .} which depends on the nor-

malized sequence
{

fε(·−zk)/ω(·)
‖ fε(·−zk)/ω(·)‖ : k = 1,2, . . .

}
such that

n∑
k=1

Ckεk < 1

for a sequence of positive numbers {εk : k = 1,2, . . .} and∥∥∥∥ fε (·− zk)/ω(·)
‖ fε (·− zk)/ω(·)‖ − f (·|zk)/ω(·)

∥∥∥∥ < εk,
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4) f (·|zk) satisfies

∞∑
k=1

∥∥∥v f
k − v

fz
k

∥∥∥2

∥∥∥v f
k

∥∥∥2 < ∞,

where v
f

k and v
fz

k are defined as in Theorem 3 with f (·) =
fε(· − z)/ω(·)and fz(·) = f (·|z)/ω(·), and that for any finite sub-
sequence

{
zki : i = 1,2, . . . , I

}
,
{

f (·|zki ) : i = 1,2, . . . , I
}

is linearly
independent.

Then, the family { f (·|z) : z ∈ N (z0)} is complete in L2(R,ω).

Proof. See the appendix. �
Condition i) guarantees that the conditional density f (x |z) is continuous in

both x and z. The condition h(z0,ε) = ε is not restrictive because one may always
redefine ε. Therefore, f (x |z) satisfies f (x |z0) = fε (x). The first part of Lemma 5
implies that key sufficient assumptions for the completeness of f (x |z) using the
control function in equation (8) is that the control function h is locally linear
in a neighborhood of a limit point in the support of z. Our results may provide
sufficient conditions for completeness with a general h. For example, suppose
c 
= 0, and small ε > 0, we may have

h (z,ε) =
{

cz + ε if z ∈ (z0 − ε,z0 + ε),

z + ez−z0ε +∑J
j=0 (z − z0)

2 j h j (ε) else,

where hj (·) are increasing functions. The function h may also have a nonsepara-
ble form such as

h (z,ε) =
{

cz + ε if z ∈ (z0 − ε,z0 + ε),

z + ln
[
(z − z0)

2 + exp(ε)
]

else.

3.3. Multivariate Completeness

When the endogenous variable x and the instrument z are both vectors, our
main results in Theorems 1 and 3 still apply. In other words, our results can be
extended to the multivariate case straightforwardly. In this section, we show that
one can use Theorems 1, 2, and 3 to reduce a multivariate completeness prob-
lem to a single variate one. Without loss of generality, we consider x = (x1,x2),
z = (z1,z2), X = X1 ×X2, and Z = Z1 ×Z2. One may show that the complete-
ness of f (x1|z1) and f (x2|z2) implies that of f (x1|z1)× f (x2|z2). Theorems 1, 2,
and 3 then imply that if conditional density f (x1,x2|z1,z2) has a small deviation
from f (x1|z1)× f (x2|z2) at some converging sequence in Z under the deviations
defined in Theorems 1, 2, and 3 then f (x1,x2|z1,z2) is complete. We summarize
the results as follows:
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LEMMA 6. Denote H= L2(X ,ω) as a Hilbert space. For every z ∈Z =Z1 ×
Z2, let fx |z(·|z) be in the Hilbert space H of functions defined on X = X1 ×X2
with norm ‖·‖. The weight function is a multiplicative product of weight functions
of Hilbert spaces defined on X1 and X2, i.e., ω(x1,x2) = ω(x1)ω(x2).16 Suppose
that there exists a point z0 = (z10,z20) with its open neighborhood N (z0)⊆ Z
such that

i) for every sequence {zk : k = 1,2,3, . . .} of distinct zk ∈ N (z0) converg-
ing to z0, the corresponding sequence { fx1|z1(·|z1k) : k = 1,2,3, . . .} and
{ fx2|z2(·|z2k) : k = 1,2,3, . . .} are complete in Hilbert spaces H of functions
defined on X1 and X2;

ii) there exists { f (·|zk) : k = 1,2, . . .} for which one of the following conditions
holds:

1) fx |z(·, ·|z1,z2) = fx1|z1(·|z1) fx2|z2(·|z2) for ‖z1 − z10‖ < ε1 and
‖z2 − z20‖ < ε2 for small ε1,ε2 > 0;

2) fx |z(·|zk) satisfies

n∑
k=1

∥∥ck( fx1 |z1 (·|zk1)/ω(·) fx2 |z2(·|zk2)/ω(·)− fx|z(·, ·|zk1, zk2)/ω(·, ·))∥∥
< λ

n∑
k=1

∥∥ck fx1 |z1(·|zk1)/ω(·) fx2 |z2(·|zk2)/ω(·)∥∥
for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, . . . ,cn

(n = 1,2,3, . . .);
3) there exists a sequence {Ck : k = 1,2, . . .} which depends on the

normalized sequence

{
fx1|z1 (·|zk1)/ω(·) f x2|z2 (·|zk2)/ω(·)∥∥ fx1|z1 (·|zk1)/ω(·) f x2|z2 (·|zk2)/ω(·)∥∥ : k = 1,2, . . .

}
such that

n∑
k=1

Ckεk < 1 for a sequence of positive numbers {εk : k =
1,2, . . .} and∥∥∥∥∥ fx1|z1(·|zk1)/ω(·) fx2|z2(·|zk2)/ω(·)∥∥ fx1|z1(·|zk1)/ω(·) fx2|z2(·|zk2)/ω(·)∥∥ − fx |z(·, ·|zk1, zk2)/ω(·, ·)

∥∥∥∥∥< εk ,

4) fx |z(·|zk) satisfies

∞∑
k=1

∥∥∥v fz1 z2
k − v

fz
k

∥∥∥2

∥∥∥v f
k

∥∥∥2 < ∞,

where v
fz1 z2

k and v
fz

k are defined as in Theorem 3 with fz1z2(·) =
fx1|z1(·|zk1)/ω(·) fx2|z2(·|zk2)/ω(·) and fz(·) = fx |z(·|z)/ω(·, ·), and
that

{
f (·|zki ) : i = 1,2, . . . , I

}
is linearly independent for any finite

subsequence
{
zki : i = 1,2, . . . , I

}
.
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Then, the sequence { fx |z(·, ·|z1,z2) : z ∈ Z} is complete in the Hilbert space H
of functions defined on X1 ×X2.

Proof. See the appendix. �
In many applications, it is difficult to show the completeness for a mul-

tivariate conditional density. The results above use Theorems 1, 2, and 3
to extend the completeness for the one-dimensional sequences { fx1|z1(·|z1k) :
k = 1,2,3, . . .} and { fx2|z2(·|z2k) : k = 1,2,3, . . .} to the multiple dimensional
sequence { fx |z(·, ·|z1k,z2k) : k = 1,2,3, . . .}. The key assumption is that the
endogenous variables are conditionally independent of each other for some value
of the instruments, i.e.,

fx |z(·, ·|z10,z20) = fx1|z1(·|z10) fx2|z2(·|z20). (9)

We may then use the completeness of one-dimensional conditional densities
fx1|z1(·|z1k) and fx2|z2(·|z2k) to show the completeness of a multi-dimensional
density fx |z(·, ·|z1k,z2k). Therefore, Lemma 6 may reduce the dimension as well
as the difficulty of the problem.

What we need for the multivariate case (Lemma 6) in equation (9) includes two
steps: first, we need the independence between x1 and x2 only at z = z0, i.e.,

x1 ⊥ x2 | z = z0; (10)

The second step requires with z0 = (z10,z20)

fx1|z(·|z0) = fx1|z1(·|z10) and fx2|z(·|z0) = fx2|z2(·|z20).

This step is for simplicity and convenience because fx1|z(·|z10,z20) and
fx2|z(·|z10,z20) are already one-dimensional densities and we may re-define
the two sequences in condition i) in Lemma 6 corresponding to fx1|z(·|z0)
and fx2|z(·|z0). Such simplification is particularly useful when one can find an
instrument corresponding to each endogenous variable.

The completeness of a conditional density function f (x |z) implies there exists
a sequence of conditional density function { f (x |zk) : k = 1,2,3, . . .} as a com-
plete sequence. At these points zk = (z1k,z2k), an intuitive idea of Lemma 6 is the
fact that the tensor product of univariate complete sequences forms a multivariate
complete sequence. With the completeness of the sequence of product function
{ fx1|z1(·|z1k) fx2|z2(·|z2k) : k = 1,2,3, . . .}, we can utilize the main perturbation
results, Theorems 1, 2, and 3, to extend the result to other sequences of func-
tions close to the sequence of the product function. At these “small” perturbation
sequences, { fx |z(·, ·|z1k ,z2k) : k = 1,2,3, . . .} can be nonseparable and satisfies
the condition (10). For example, set fx1|z1(x1|z1) = 1

z1
e−x1z1 and fx2|z2(x2|z2) =

1
z2

e−x2z2 , where z1,z2 > 0 and x1,x2 ∈ {0}∪R+. Applying the results of Lemma 1
(a generalized version of Example 2) to these two density functions, we can
obtain the completeness of the two families { fx1|z1(·|z1k) : k = 1,2,3, . . .} and
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{ fx2|z2(·|z2k) : k = 1,2,3, . . .}, where z1k and z2k are distinct sequences converg-
ing to 1.

The family of the product function { fx1|z1(·|z1k) fx2|z2(·|z2k) : k = 1,2,3, . . .},
where fx1|z1(x1|z1) = 1

z1
e−x1z1 and fx2|z2(x2|z2) = 1

z2
e−x2z2 , is complete in

{0}∪R+2 because the family contains a subfamily as a basis in {0}∪R+2. Then,
by Theorems 1, 2, and 3 the family of multivariate density { fx |z(·, ·|z1k,z2k) : k =
1,2,3, . . .} may be complete when the family is sufficiently close to the family of
product functions under the deviations defined in Theorems 1, 2, and 3. On the
other hand, we can use condition ii) 1) to provide more complete families. For
small ε1,ε2 > 0, set Oz = (z10 − ε1,z10 + ε1)× (z20 − ε2,z10 + ε1). Consider the
multivariate density

fx |z(·, ·|z1,z2) =
{

fx1|z1(·|z1) fx2|z2(·|z2) if (z1,z2) ∈ Oz,
czk

z1k z2k
e−(x1z1k+x2z2k+(z1k−1)2(z2k−1)2x1x2) else,

where czk is a normalized coefficient, z1,z2 > 0, and x1,x2 ∈ {0}∪R+. The fam-
ily has an exponential decay tail over R+2 and is therefore integrable. The family
at Oz is the same as the family of product function { fx1|z1(·|z1k) fx2|z2(·|z2k) :
k = 1,2,3, . . .}, where fx1|z1(x1|z1) = 1

z1
e−x1z1 and fx2|z2(x2|z2) = 1

z2
e−x2z2 .

Lemma 6 implies the sequence { fx |z(·, ·|z1,z2) : z ∈ Z} is complete.

4. CONCLUSION

We provide sufficient conditions for the nonparametric identification of the
regression function in a regression model with an endogenous regressor x and
an instrumental variable z. The identification of the regression function from the
conditional expectation of the dependent variable is implied by the completeness
of the distribution of the endogenous regressor conditional on the instrument, i.e.,
f (x |z). Sufficient conditions are then provided for the completeness of f (x |z)
without imposing a specific functional form, such as the exponential family. We
use the results in the stability of complete sequences in Hilbert spaces to show
that (1) if the deviation of the conditional density f (x |zk) from a known complete
sequence of functions is less than a sequence of values determined by the com-
plete sequence in some distinct sequence {zk : k = 1,2,3, . . .} converging to z0,
then f (x |z) itself is complete, and (2) if the conditional density f (x |z) can form a
linearly independent sequence { f (·|zk) : k = 1,2, . . .} for some distinct sequence
{zk : k = 1,2,3, . . .} converging to z0 and its relative deviation from a known
complete sequence of functions under some norm is finite then f (x |z) itself is
complete. Therefore, the regression function is nonparametrically identified.

NOTES

1. In this paper, we need to consider E [Y |Z = z], i.e., conditional expectation of Y on the random
variable Z taking value z in its support Z . In other words, we need this conditional expectation to be
well-defined even for the zero-probability event {Z = z}. To avoid any confusion, we assume the con-
ditional expectation E [Y |Z = z] is a continuous function of z over the support Z . We are not the first
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study to use the conditional expectation in this way for completeness. For example, Newey and Powell
(2003) show that for exponential families and normal distribution, the conditional expectations in the
definition of completeness can be reduced to be defined over an open subset of Z . We follow their
definition of completeness to require that conditional expectations are defined for some set O ⊆ Z
and this paper shows that O can be a distinct converging sequence in Z .

2. We consider the quotient space ∈ L2(R,ω) where the equivalent relation ∼ is that f ∼ g if the
set {x : f (x) 
= g(x)} is a set of measure zero. If the set of elements for which a property does not hold
is a set of measure zero for a probability measure, we use almost surely to indicate the property.

3. The integral in the formula makes sense because
∫
X |h(x) f (x|z)|dx =∫

X |h(x)|ω(x)1/2 f (x|z)
ω(x)1/2 dx ≤

(∫
X |h(x)|2ω(x)dx

)1/2
(∫

X
f (x|z)2

ω(x) dx

)1/2
< ∞.

4. The conditional density function f (x|z) has a two dimensional variation from x and z and we
treat it as a special class of the function form f (x, z) which can have a support like X ×Z .

5. This is under the assumption that the density function fx exists. Closely related definitions of
L2-completeness can also be found in Florens, Mouchart, and Rolin (1990), Mattner (1996), and
San Martin and Mouchart (2007).

6. In a bounded domain, bounded completeness may also be less informative than L2-
completeness. For instance, consider a function h(x) = x−1/4 over (0,1). Bounded completeness
can not distinguish the case that the difference of two regression functions is h(x), i.e., h(x) =
m(x)− m̃(x), where m and m̃ are regression functions such that y = m(x)+u or y = m̃(x)+u.

7. When x, z ∈ {0,1}, the conditional expectation E[y|z] = ∫
X m(x) f (x|z)dx is equivalent

to

[
E[y|z = 0]
E[y|z = 1]

]T
=
[

m(0)

m(1)

]T [
fx|z (0|0) fx|z (0|1)

fx|z (1|0) fx|z (1|1)

]
. In this binary case, the regression m (·) may

be uniquely determined from observed E[y|z], and f (x|z) if the last matrix is invertible, i.e., two
vectors fx|z (·|0) and fx|z (·|1) are linearly independent

fx|z (·|0) :=
[

fx|z (0|0)

fx|z (1|0)

]
and fx|z (·|1) :=

[
fx|z (0|1)

fx|z (1|1)

]
.

Therefore, completeness is equivalent to no-perfect collinearity among { fx|z (·|i) : i = 1,2} or the rank

condition on the matrix

[
fx|z (0|0) fx|z (0|1)

fx|z (1|0) fx|z (1|1)

]
.

8. Theorems 2.2 and 2.3 in Newey and Powell (2003) do not specify the function space in which
completeness is discussed. The definition of the completeness on page 141 of Lehmann (1986) also
does not specify the function space. However, he starts to specify the property of completeness for all
bounded functions and call it boundedly complete on page 144.

9. In this paper, we would use a low subscript such as z0 to denote a point.
10. The term used here accords with the definition on page 182 of Rudin (1987), where the translate

of f is defined as f (x − z) for all x and a given z.
11. It is important to show the completeness of a family defined on a countable set because all the

statistical asymptotics are based on an infinitely countable number of observations, i.e., the sample
size approaching infinity, instead of a continuum of observations, for example, all the possible values
in an open set.

12. Given two open connected sets X and Y , a map f from X to Y is called a C1-diffeomorphism
if f is a bijection and both f : X → Y and its inverse f −1 : Y → X are continuously differentiable.

13. The family {p(·− z) : z ∈ Z} is L1 complete if, for all measurable real functions h such that
E[|h(X)|] < ∞,∫
X

h(x)p(x − z)dx = 0 for all z ∈ Z

implies h(·) = 0 almost surely in X . We thank a referee for pointing out the result.
14. In general, we can apply the stability results to the sequence in Lemma 2. Let us take a

complete sequence in Lemma 2, i.e., { fε(· − z1), fε(· − z2), fε(· − z3), fε(· − z4) . . .}. In order to
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generate a new complete sequence, we only change the first function fε(· − z1) with a very small
deviation to f̃ (· − z1). The stability result in Theorem 2 implies the new sequence { f̃ (· − z1),

fε(· − z2), fε(· − z3), fε(· − z4) . . .} is also a complete sequence. (Note that this argument also
applies to a sequence of basis functions.) The important observation is that the completeness of the
new sequence does not conflict with Mattner’s results because the new sequence is no longer in a
location family.

15. Here we call h the control function without assuming that the IV z is independent of (u,ε) as in
the usual control function approach.

16. A simple example of this type of weight function is ω(x1, x2) = e−(a1 x2
1 +a2 x2

2 ) =
e−a1 x2

1 e−a2 x2
2 = ω(x1)ω(x2), where a1,a2 > 0.
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APPENDIX A: Proofs

A.1. Preliminaries

This paper considers a weighted L2 space L2(X ,ω) = {h(·) :
∫
X |h(x)|2ω(x)dx < ∞}

with the inner product 〈 f,g〉 ≡ ∫
X f (x)g(x)ω(x)dx . We define the corresponding norm

as: ‖ f ‖2 = 〈 f, f 〉. The completion of L2(X ,ω) under the norm ‖ · ‖ is a Hilbert space,
which may be denoted as H. The conditional density of interest f (x|z) is defined over
X ×Z. Let ω be a weight function. If z only takes values from a countable set in Z then the
conditional density f (x|z) can be used to extend as a sequence of functions { f1, f2, f3, . . .}
in H with

fk(·) ≡ f (·|zk)

ω(·) ,

where {zk : k = 1,2,3, . . .} is a sequence in Z. The property of the sequence { fk} deter-
mines the identification of the regression function in (2).

We then introduce the definition of a basis in H.

DEFINITION A.1. A sequence of functions { f1, f2, f3, . . .} in H is said to be a basis if
for any h ∈ H there corresponds a unique sequence of scalars {c1,c2,c3, . . .} such that
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h =
∞∑

k=1

ck fk .

In our proofs, we limit our attention to linearly independent sequences when providing
sufficient conditions for completeness. The linear independence of an infinite sequence is
considered as follows.

DEFINITION A.2. A sequence of functions { fn (·)} of H is said to be ω−independent
if the equality

∞∑
n=1

cn fn (x) = 0 for all x ∈ X

is possible only for cn = 0, (n = 1,2,3, . . .).

It is obvious that the ω−independence implies linear independence. But the converse
argument does not hold. A complete sequence may not be ω−independent, but it contains
a basis, and therefore, contains an ω−independent subsequence.
The identification of a regression function in equation (2) actually only requires a
sequence { f1, f2, f3, . . .} containing a basis, instead of a basis itself. Therefore, we con-
sider a complete sequence of functions { f1, f2, f3, . . .} which satisfies that 〈g, fk〉 = 0
for k = 1,2,3 . . . implies g = 0.

In fact, one can show that a basis is complete. Since every element in H has a unique
representation in terms of a basis, there is redundancy in a complete sequence. Given a
complete sequence in H, we can construct a basis from the complete sequence. One of the
important properties of a complete sequence for H is that every element can be approxi-
mated arbitrarily close by finite combinations of the elements. We summarize these results
as follows.

LEMMA A.1. (1) A basis in H is also a complete sequence.

(2) Let W be a closed linear subspace of H. Set W⊥ = {h ∈ H : 〈h,g〉 = 0 for all
g ∈ W }. Then W⊥ is a closed linear subspace such that, W

⊕
W⊥ = H.

(3) Given a complete sequence of functions { f1, f2, f3, . . .} in H, we can construct an
orthonormal basis {g1,g2,g3, . . .} from the complete sequence for H.

Proof of Lemma A.1(1). Given a basis { f1, f2, f3, . . .} in H, applying the Gram-
Schmidt process to the basis yields an orthonormal sequence {g1,g2,g3, . . .} and
span({ f1, f2, f3, . . .}) = span({g1,g2,g3, . . .}). This implies that {g1,g2,g3, . . .} is also

a basis of the Hilbert space H and f =
∞∑

k=1
〈 f,gk 〉gk for any f ∈ H. Suppose that∫

fk(x)h(x)ω(x)dx = 0 for all k. It follows that 〈h,gk〉 = 0 for all k. Thus, h =
∞∑

k=1
〈h,gk〉gk = 0. { f1, f2, f3, . . .} is a complete sequence. �

The proof of Lemma A.1(2) can be found as a corollary on page 7 in Zimmer (1990).

Proof of Lemma A.1(3). We will construct gk using the Gram–Schmidt procedure.
First, let r1 = f1 and g1 = r1‖r1‖ . Then r2 = fs2 where s2 is the smallest index among
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{2,3,4, . . .} such that g̃2 ≡ fs2 − 〈 fs2 ,g1〉g1 
= 0. Denote g2 = g̃2‖g̃2‖ . Keep the selec-
tion process going, in the k-th step, we have rk = fsk where sk is the smallest index

among {sk−1 + 1,sk−1 + 2,sk−1 + 3, . . .} such that g̃k ≡ fsk −
k−1∑
i=1

〈 fsk ,gi 〉gi 
= 0 and

gk = g̃k
‖g̃k‖ . This selection procedure produces two sequences with the same span space,

i.e., span({ f1, f2, f3, . . .}) = span({g1,g2,g3, . . .}). In addition, {g1,g2,g3, . . .} is an
orthonormal sequence. To prove {g1,g2,g3, . . .} is a basis, it is sufficient to show (i) the
completion of span({g1,g2,g3, . . .}) = H, and (ii) {g1,g2,g3, . . .} is ω−independent. Let
W be the completion of the subspace span({g1,g2,g3, . . .}) under the norm ‖ · ‖. Let
W⊥ = {h ∈ H : 〈h,g〉 = 0 for all g ∈ W }. By Lemma A.1 (ii), W

⊕
W⊥ = H. Since the

sequence { f1, f2, f3, . . .} is complete and span({ f1, f2, f3, . . .}) = span({g1,g2,g3, . . .})
then W⊥ = {0} and W =H. On the other hand, suppose that

∞∑
k=1

ck gk = 0 for some scalars

c1,c2,c3, . . . . Because{g1,g2,g3, . . .} is an orthonormal sequence, 0 =
〈 ∞∑

k=1
ck gk ,gi

〉
= ci

for i = 1,2,3, . . . . This implies that {g1,g2,g3, . . .} is ω−independent. Therefore, the
sequence {g1,g2,g3, . . .} is a basis. �

Our proofs also need a uniqueness theorem of complex differentiable functions stated
in the corollary on page 209 in Rudin (1987).

A.2. Proofs of Completeness of Existing Sequences

Proof of Lemma 1. Set t (z) = 1 for simplicity. In order to use the above uniqueness
result of complex differentiable functions, we consider a converging sequence {zk : k =
1,2, . . .} in Z as the set with a limit point. Since μ(·) is continuous with μ′ (z0) 
= 0 for
some limit point z0 ∈Z, there exists δ > 0 and a subsequence {zki : i = 1,2, . . .} converging
to z0 such that

{
μ(zki ) : i = 1,2, . . .

} ∈ (μ(z0)− δ,μ(z0)+ δ) ⊂ μ(N (z0)) be a sequence
of distinct numbers converging to an interior point μ(z0) ∈ μ(N (z0)) and μ(zki )τ(x) <

μ(z0)τ(x)+ δ|τ(x)| for i = 1,2, . . . . In addition, since g(·|z) ∈ L1(X ) for z ∈ O,∫
X

s(x)exp
[
μ(z0)τ(x)+ δ|τ(x)|] dx < ∞.

Choose a weight function ω(x) satisfying
∫
X

s(x)2 exp[2(μ(z0)τ (x)+δ|τ (x)|)]
ω(x) dx < ∞ and it

follows that
∫
X g(x|z)2/ω(x)dx < ∞ for z ∈O. Given h0 ∈ L2(X ,ω) and pick a positive

constant δ1 such that 0 < δ1 < δ. Let w = a + ib, where a,b are real numbers. Then,
check the integrability of the function s(x)ewτ(x)h0(x) over x ∈ X for a ∈ (μ(z0)− δ1,

μ(z0)+ δ1). Use Cauchy–Schwartz inequality to the function,∣∣∣∣∫X s(x)ewτ(x)h0(x)dx

∣∣∣∣2 (A.1)

≤
(∫

X
s(x)eaτ (x)

ω(x)1/2
|h0(x)|ω(x)1/2dx

)2

≤
(∫

X
s(x)eμ(z0 )τ (x)+δ1|τ (x)|

ω(x)1/2
|h0(x)|ω(x)1/2dx

)2
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≤
(∫

X
s(x)eμ(z0 )τ (x)+δ|τ (x)|

ω(x)1/2
|h0(x)|ω(x)1/2dx

)2

≤
(∫

X
s(x)2 exp

[
2(μ(z0)τ(x)+ δ|τ(x)|)]

ω(x)
dx

)(∫
X

|h0(x)|2ω(x)dx

)
< ∞.

This implies that a complex function defined as an integral of the function exists and is
finite. Consider the complex function with the following form

f (w) =
∫
X

s(x)ewτ(x)h0(x)dx, (A.2)

where the complex variable w is in the vertical strip R ≡ {w : μ(z0) − δ1 < Re(w) <
μ(z0)+ δ1}. (A holomorphic (or analytic) function defined with a similar function form in
a strip is also discussed in the proof of Theorem 1 in Section 4.3 of Lehmann (1986). The
proof provided here is close to the proof of Theorem 9 in Section 2.7 of Lehmann (1986).)
Suppose η ∈ C such that |η| ≤ δ2 and δ1 + δ2 < δ. Given w ∈ R. Consider the difference
quotient of the integrand in equation (A.2), we have

|Q(x,η)| ≡
∣∣∣∣∣ s(x)e(w+η)τ(x)h0(x)− s(x)ewτ(x)h0(x)

η

∣∣∣∣∣
=
∣∣∣∣∣s(x)

ewτ(x)
(
eητ(x) −1

)
η

h0(x)

∣∣∣∣∣
≤ s(x)

∣∣∣∣∣ ewτ(x)+δ2|τ (x)|
δ2

∣∣∣∣∣ ∣∣h0(x)
∣∣

≤ s(x)

∣∣∣∣∣ e(w+δ2)τ (x) +e(w−δ2)τ (x)

δ2

∣∣∣∣∣ ∣∣h0(x)
∣∣

≤ 2s(x)
eμ(z0 )τ (x)+(δ1+δ2)|τ (x)|

δ2

∣∣h0(x)
∣∣,

where we have used (1) apply the inequality
∣∣ eaz−1

z

∣∣ ≤ eδ3 |a|
δ3

for |z| ≤ δ3 to the factor(
eητ (x)−1

)
η , (The inequality can be found on page 60 of Lehmann (1986).) and (2) w ∈ R.

The right-hand side is integrable when δ1 +δ2 < δ by a similar derivation in equation (A.1).
It follows from the Lebesgue dominated convergence theorem that

lim
η→0

∫
X

Q(x,η)dx =
∫
X

lim
η→0

Q(x,η)dx =
∫
X

s(x)τ(x)ewτ(x)h0(x)dx.

Therefore, f ′(w) exists and the function f defined through the integral is holomorphic.
The condition

∫
X s(x)eμ(zki )τ (x)h0(x)dx = 0 is equivalent to f (μ(zki )) = 0 by equa-

tion (A.2). This implies that the complex differentiable function f is equal to zeros in
the sequence {μ(zk1 ),μ(zk2 ),μ(zk3 ), . . .} which has a limit point μ(z0). Applying the
uniqueness theorem quoted above to f results in f (w) = 0 on {w : μ(z0)−δ1 < Re(w) <

μ(z0)+ δ1}. If X is a bounded domain, we extend h0 to a function in L2(R,ω) by

h̃0(x) =
{

h0(x) if x ∈ X ,

0 otherwise.
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We also extend s(x) and τ(x) to functions in R, s̃(x) and τ̃ (x) respectively with the fol-
lowing properties, s̃(x) > 0 and τ̃ ′(x) 
= 0 for every x . In particular, set w = μ(z̃)+ i t for
any real t and some z̃ ∈ O such that μ(z̃) ∈ (μ(z0)− δ1,μ(z0)+ δ1), we have

f (w) =
∫
X

s(x)eμ(z̃)τ (x)eitτ (x)h0(x)dx = 0

=
∫ ∞
−∞

s̃(τ−1(x))eμ(z̃)x eit x h̃0(τ̃−1(x))
1

τ̃ ′(x)
dx

≡
∫ ∞
−∞

eit x ĥ0(x)dx.

The last step implies that the Fourier transform of ĥ0(x) is zero on the whole real line. In
particular, equation (A.1) implies ĥ0 ∈ L1(R). (Recall that μ(z̃) ∈ (μ(z0)−δ1,μ(z0)+δ1),
and ĥ0(x) ≡ s̃(τ−1(x))eμ(z̃)x h̃0(τ̃

−1(x)) 1
τ̃ ′(x)

. Consider∫ ∞
−∞

∣∣ĥ0(x)
∣∣dx ≤

∫ ∞
−∞

∣∣∣∣s̃(τ−1(x))eμ(z̃)x h̃0(τ̃−1(x))
1

τ̃ ′(x)

∣∣∣∣dx

≤
∫
X

s(x)eμ(z̃)τ(x)
∣∣h0(x)

∣∣dx

≤
∫
X

s(x)eμ(z0)τ(x)+δ1 |τ(x)|
ω(x)1/2

|h0(x)|ω(x)1/2dx

≤
∫
X

s(x)eμ(z0)τ(x)+δ|τ(x)|
ω(x)1/2

|h0(x)|ω(x)1/2dx

≤
(∫

X
s(x)2 exp

[
2(μ(z0)τ (x)+ δ|τ (x)|)]

ω(x)
dx

)1/2(∫
X

|h0(x)|2ω(x)dx

)1/2
< ∞.

This shows that ĥ0 ∈ L1(R).) By the uniqueness theorem, for ĥ0 ∈ L1(R) we have
ĥ0 = 0 and therefore the function h0 = 0. This shows that the sequence {g(·|zk) =
s(·)t (zk)eμ(zk )τ (·) : k = 1,2, . . .} is complete in L2(X ,ω). �

Proof of Lemma 2. We start with the following two inequalities. Set some positive
constants ci for i = 1,2,3, and δi > 0 for i = 1,2,3,4,5. Suppose that∣∣∣ fε(x − z)e−δ1 z2

∣∣∣ < c1e−δ2(x−c2z)2
e−δ3 x2

(A.3)

and

0 <

∣∣∣∣∫ ∞
−∞

eit z fε(x − z)e−δ1z2
dz

∣∣∣∣ < c3e−δ4t2
e−δ3 x2

(A.4)

for all t ∈ R. We will show Gaussian distributions satisfy equations (A.3) and (A.4) and
then use these two equations to show the property of completeness. Assume fε(ε) =

cεe
− ε2

2σ2 for some σ 2 < 1, and write e
− (x−z)2

2σ2 = e
−
(

1
σ2 −1

)
x2
2 e−

(
x− z

σ2

)2

2 e
(1−σ2)z2

2σ4 . Set

δ1 = (1−σ 2)
2σ 4 . It follows that

fε(x − z)e−δ1 z2 = cεe
−(x−z)2

2σ2 e−δ1z2 = cεe
−
(

1
σ2 −1

)
x2
2 e−

(
x− z

σ2

)2

2 .
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Let z̃ = x − z
σ 2 and δp = 1

4

(
1
σ 2 −1

)
. Then

fε(x − z)e−δ1 z2 = cεe−2δp x2
e−z̃2/2,

and this implies that | fε(x − z)e−δ1z2 | ≤ cεe−δp x2
e−z̃2/4. Hence, the condition (A.3) is

satisfied with δ1 = (1−σ 2)
2σ 4 , c1 = cε , δ2 = 1

4 , c2 = 1
σ 2 , and δ3 = δp .

As for equation (A.4), consider the corresponding Fourier transform in the condi-
tion (A.4):∣∣∣∣∫ ∞

−∞
eit z fε(x − z)e−δ1 z2

dz

∣∣∣∣
=
∣∣∣∣∫ ∞

−∞
eit (σ 2 x−σ 2 z̃)cεe−2δp x2

e−z̃2/2(σ 2)dz̃

∣∣∣∣
= cεσ

2
∣∣∣∣eiσ 2 t x

∫ ∞
−∞

ei(−σ 2t)z̃e−2δp x2 · e−z̃2/2dz̃

∣∣∣∣
= cεσ

2 · e−2δp x2
∣∣∣∣∫ ∞

−∞
ei(−σ 2 t)z̃ · e−z̃2/2dz̃

∣∣∣∣
= cεσ

2e−2δp x2
∣∣∣F{e−z̃2/2}(−σ 2t)

∣∣∣
≤ cεσ

2e−2δp x2
e− σ4 t2

2

≤ cεσ
2e−δp x2

e− σ4 t2
4 ,

where we have used the fact that e−z̃2/2 is an eigenfunction of the Fourier transform,

F{e−z̃2/2}(t) = √
2πe−t2/2. This implies that the Gaussian distributions satisfy the con-

dition (A.4).
Next, choose a sequence of distinct numbers {zk } in the support Z converging to z0 ∈Z.

The inequality

g(x|zk )2

ω(x)
= fε(x − zk )2

ω(x)
< c2

1e−2δ2(x−c2zk )2
e−(2δ3−δ′)x2

e2δ1z2
k

with δ2 > 0 and 2δ3 > δ′ implies that
∫
R

g(x |zk)
2

ω(x) dx < ∞ for all k. Suppose that for some

h0 ∈ L2(R,ω),
∫∞
−∞ h0(x) fε (x − zk )dx = 0. Divide it by eδ1z2

k and rewrite the equation as∫ ∞
−∞

h0(x)ω(x)
fε (x − zk )e−δ1z2

k

ω(x)
dx = 0 for all k. (A.5)

Consider

g (z) ≡
∫ ∞
−∞

h0(x)ω(x)
fε (x − z)e−δ1z2

ω(x)
dx, (A.6)

which is similar to a convolution and g (zk) = 0 for all k. Because h0 ∈ L2(R,ω), h0ω ∈
L1(R). (Suppose h0 ∈ L2(R,ω). Apply Cauchy-Schwartz inequality,

∫
R

|h0(x)ω(x)|dx =∫
R

|h0(x)|ω(x)1/2ω(x)1/2dx ≤
(∫

R
h0(x)2ω(x)dx

)1/2 (∫
R

ω(x)dx
)1/2

< ∞.
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This implies h0ω ∈ L1(R).) Then, the condition δ′ < δ3 implies the function g is
integrable because∫ ∞
−∞

|g(z)|dz ≤
∫ ∞
−∞

∫
R

|h0(x)|ω(x)
fε (x − z)e−δ1z2

ω(x)
dxdz

=
∫
R

|h0(x)|ω(x)

(∫ ∞
−∞

fε (x − z)e−δ1 z2

ω(x)
dz

)
dx

≤
∫
R

|h0(x)|ω(x)c1e−(δ3−δ′)x2
(∫ ∞

−∞
e−δ2(x−c2z)2

dz

)
dx

≤ c
∫
R

|h0(x)|ω(x)dx

(∫ ∞
−∞

e−δ2z2
dz

)
< ∞, for some c.

Let φg(t) = ∫∞
−∞ eit z g (z)dz be the Fourier transform of g. We can derive a bound for

φg(t) as follows:∣∣φg(t)
∣∣= ∣∣∣∣∫ ∞

−∞
eit z g (z)dz

∣∣∣∣
=
∣∣∣∣∣
∫ ∞
−∞

eit z
∫
R

h0(x)ω(x)
fε (x − z)e−δ1z2

ω(x)
dxdz

∣∣∣∣∣
≤
∫
R

|h0(x)|ω(x)

∣∣∣∣∣
∫ ∞
−∞

eit z fε (x − z)e−δ1z2

ω(x)
dz

∣∣∣∣∣dx

≤ c3

(∫
R

|h0(x)|ω(x)e−(δ3−δ′)x2
dx

)
e−δ4t2

≤ c3

(∫
R

|h0(x)|ω(x)dx

)
e−δ4t2

≤ c4e−δ4|t |, (A.7)

where we have used (i) an interchange of the order of integration (justified by applying
Fubini’s theorem to the integrable g), (ii) the inequality (A.4), and (iii) δ′ < δ3. Since
h0ω is integrable, φg(t) is also integrable. Both g and φg(t) are integrable, applying the

inversion theorem to g yields that g(z) = 1
2π

∫∞
−∞ e−it zφg(t)dt . Extend the function g

from R to C and define

f (w) =
∫ ∞
−∞

e−itwφg(t)dt,

with

w = z + ib for z,b ∈ R with |b| < r < δ4.

The function f (w) is bounded by using equation (A.7) through∣∣ f (w)
∣∣ = ∣∣∣∫ ∞

−∞
e−itwφg(t)dt

∣∣∣≤ ∫ ∞
−∞

e|b||t | ∣∣φg(t)
∣∣dt ≤ c4

∫ ∞
−∞

e−(δ4−|b|)|t | < ∞.

Since the right-hand side is finite, then f (w) exists and is finite in R = {z + ib : |b| < r}.
To prove f is analytic (complex differentiable) in R, we consider the difference quotient
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at a point w0 = z0 + ib0 in R. For |η| < r1 < r −|b0|,

|Q(t,η)| ≡
∣∣∣∣∣ e−it (w0+η)φg(t)− e−itw0 φg(t)

η

∣∣∣∣∣
=
∣∣∣∣ e−itw0 (e−itη −1)

η
φg(t)

∣∣∣∣
≤

∣∣e−itw0
∣∣er1 |t|

r1

∣∣φg(t)
∣∣

≤ eb0 t er1 |t|

r1

∣∣φg(t)
∣∣

≤ c4
e−(δ4−|b0|−r1)|t|

r1
,

where we have used the inequality
∣∣ ecζ −1

ζ

∣∣ ≤ er1 |c|
r1

for |ζ | ≤ r1 and equation (A.7). The
condition |b0| + r1 < r < δ4 makes the right-hand side integrable. Since the quotient is
bounded above by an integrable function, the Lebesgue dominated convergence theorem
implies

f ′(w0) = lim
η→0

∫ ∞

−∞
Q(t,η)dt =

∫ ∞

−∞
lim
η→0

Q(t,η)dt = −i t
∫ ∞

−∞
e−itw0 φg(t)dt.

Because w0 is arbitrary in R, w → f (w) is analytic (complex differentiable) in R =
{z + ib : |b| < r}. Consequently, the fact that f (z) = g (z) equals zero for a sequence
{z1, z2, z3, . . .} converging to z0 in equation (A.5) implies that f is equal to zero in R by
the uniqueness theorem cited in the proof of Lemma 1. This implies that f (w) is equal to
zero for all w = z on the real line, i.e.,

∫∞
−∞ e−it zφg(t)dt = 0 for all z ∈ R. Because the

function φg(·) is integrable, this yields φg(t) = 0 for all t . (See Theorem 9.12 on page 185

in Rudin (1987).) That is 0 = ∫
R

eit x h0(x)
(∫∞

−∞ eit(z−x) fε (x − z)e−δ1z2
dz
)

dx which

implies h0(·)
(∫∞

−∞ eit(z−·) fε (·− z)e−δ1z2
dz
)

= 0 a.e. By equation (A.4), we obtain

h0 = 0 a.e. The family {g(·|z) = fε(·− zk ) : k = 1,2, . . .} is complete in L2(R,ω). �

A.3. Proof of Theorem 1

The prototype of the stability result in Theorem 1 comes from Problem 2 on page 41 of
Young (2001) which implies the following sufficient condition for the stability of com-
pleteness in Hilbert spaces.

LEMMA A.2. Suppose {gk} is a complete sequence for a Hilbert space H. If { fk} is a
sequence in H such that

n∑
k=1

‖ck (gk − fk)‖ ≤ λ

n∑
k=1

‖ck gk‖ ,

for some constant λ, 0 ≤ λ < 1, and arbitrary scalars c1, . . . ,cn (n = 1,2,3, . . .).
Then { fk} is also complete in H.

Applying Lemma A.2 to the complete sequence in condition ii) in Theorem 1, we obtain
{ f (·|zk)/ω(·) : k = 1,2, . . .} is also a complete sequence. Because the weight function is
positive, we have shown the family { f (·|z) : z ∈ N (z0)} is complete in H.
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A.4. Proof of Theorem 2

The stability result used for Theorem 2 comes from Theorem 1 of Dostanić (1990) which
adopted the results from Gurarij and Meletidi (1970) for Banach spaces. We summarize
the stability results for completeness in Hilbert spaces.

LEMMA A.3. Let {ek : k = 1,2, . . .} be a complete normalized sequence in a Hilbert
space H with ‖ek‖ = 1. Then there is a sequence {Ck : k = 1,2, . . .} (Ck > 0) which
depends on {ek : k = 1,2, . . .}, with the following property: for every ε > 0 and e ∈ H,
‖e‖ = 1, there is a finite linear combination such that∥∥∥∥∥∥e −

N∑
k=1

bkek

∥∥∥∥∥∥ < ε,

and |bk | ≤ Ck for k = 1,2, . . . , N.

Gurarij and Meletidi (1970) used the above lemma to prove the following stability results
for completeness:

LEMMA A.4. Let {ek : k = 1,2, . . .} be a complete, normalized sequence in a Hilbert
space H. If {εk : k = 1,2, . . .} is a sequence of positive numbers such that

∑∞
k=1 Ckεk < 1

(sequence Ck depends on ek and is given by Lemma 12) and for a sequence
{ fk : k = 1,2, . . .} satisfies

‖ fk −ek‖ < εk ,

then the sequence { fk : k = 1,2, . . .} is complete in the Hilbert space H.

First, apply Lemma A.3 to the normalized complete sequence
{ g(·|zk)/ω(·)

‖g(·|zk)/ω(·)‖ : k =
1,2, . . .

}
to ensure the existence of the sequence {Ck : k = 1,2, . . .} in condition ii)

of Theorem 2. Then, by Lemma A.4, the sequence { f (·|zk)/ω(·) : k = 1,2, . . .} is a
complete sequence. Because the weight function is positive, we have shown the family
{ f (·|z) : z ∈ N (z0)} is also complete in H.

A.5. Proof of Theorem 3

We prove Theorem 3 in three steps:

1. The quadratic deviation from an orthonormal sequence

{
v

g
k∥∥vg
k

∥∥ : k = 1,2, . . .

}
to the

corresponding sequence

{
v

f
k∥∥vg
k

∥∥ : k = 1,2, . . .

}
is defined as

∞∑
k=1

∥∥∥vg
k −v

f
k

∥∥∥2

∥∥∥vg
k

∥∥∥2
. (A.8)

We show that if the quadratic deviation from an orthonormal basis to an ω−
independent sequence is finite, then the latter sequence is also a basis. This result is
summarized in Lemma A.5 which is Theorem 15 in Young (2001).
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2. Condition ii) implies that the quadratic deviation in equation (A.8) is finite for

an orthonormal sequence
{

v
g
k∥∥vg
k

∥∥ : k = 1,2, . . .

}
constructed by {g(·|zrk )/ω(·) :

k = 1,2, . . .} and an orthogonal sequence

{
v

f
k∥∥vg
k

∥∥ : k = 1,2, . . .

}
constructed by

{ f (·|zrk )/ω(·) : k = 1,2, . . .}.
3. A linearly independent sequence

{
f (·|zrk )

}
in a Hilbert space implies linear

independence of the orthogonal sequence

{
v

f
k∥∥vg
k

∥∥ : k = 1,2, . . .

}
. The linearly inde-

pendent sequence

{
v

f
k∥∥vg
k

∥∥ : k = 1,2, . . .

}
contains an ω−independent subsequence{

v
f

kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
. Finally, for an orthonormal sequence constructed by a com-

plete sequence
{

g(·|zrkl
)/ω(·)

}
in a Hilbert space and the ω−independent sequence{

v
f

kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
, equation (A.8) and Lemma A.5 imply that the sequence{

v
f

kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
is complete in a Hilbert space, and therefore, { f (·|z) : z ∈

N (z0)} is complete.

Step 1. We prove that if the quadratic deviation from an orthonormal basis to an ω−
independent sequence is finite, then the latter sequence is also a basis. This result is
Theorem 15 in Young (2001) and summarized in the following lemma.

LEMMA A.5. Suppose that

i) the sequence {en (·) : n = 1,2, . . .} is an orthonormal basis in a Hilbert space H;
ii) the sequence { fn (·) : n = 1,2, . . .} in H is ω−independent;

iii)
∑∞

n=1 ‖ fn (·)−en (·)‖2 < ∞.
Then, the sequence { fn(·) : n = 1,2, . . .} is a basis in H.

Step 2. First, by Lemma A.1(3), we can extract a convergence subsequence
{r1,r2,r3, . . .} such that the orthogonal basis constructed by the basis {g(·|zrk )/ω(·) : k =
1,2, . . .} is given by

v
g
1 (·) = g(·|zr1 )/ω(·),

v
g
2 (·) = g(·|zr2 )/ω(·)−

〈
g(·|zr2 )/ω(·),v1(·)

〉
〈v1(·),v1(·)〉 v

g
1 (·),

...

v
g
k (·) = g(·|zrk )/ω(·)−

k−1∑
j=1

〈
g(·|zrj )/ω(·),v j (·)

〉〈
v j (·),v j (·)

〉 v
g
j (·),

....
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We can normalize the orthogonal basis to obtain an orthonormal basis as {vg
k (·)/‖vg

k (·)‖ :
k = 1,2, . . .}. The orthogonal basis constructed by the basis { f (·|zrk )/ω(·) : k = 1,2, . . .}
is the following sequence

v
f

1 (·) = f (·|zr1 )/ω(·),

v
f

2 (·) = f (·|zr2 )/ω(·)−
〈
g(·|zr2 )/ω(·),v1(·)

〉
〈v1(·),v1(·)〉 v

f
1 (·),

...

v
f

k (·) = f (·|zrk )/ω(·)−
k−1∑
j=1

〈
g(·|zrj )/ω(·),v j (·)

〉〈
v j (·),v j (·)

〉 v
f
j (·),

....

This implies
∞∑

k=1

∥∥∥∥ v
g
k (·)

‖vg
k (·)‖ − v

f
k (·)

‖vg
k (·)‖

∥∥∥∥2

<
∞∑

k=1

∥∥∥vg
k −v

f
k

∥∥∥2

∥∥vg
k

∥∥2 < ∞ by Condition ii). This

implies the sequence

{
v

f
k (·)

‖vg
k (·)‖ : k = 1,2, . . .

}
is quadratically close to the orthonormal

basis

{
v

g
k (·)

‖vg
k (·)‖ : k = 1,2, . . .

}
.

Step 3. By the construction of

{
v

f
k∥∥vg
k

∥∥ : k = 1,2, . . .

}
and linear independence of

{ f (·|zk) : k = 1,2, . . .} in Condition iii),
{

v
f

k∥∥vg
k

∥∥ : k = 1,2, . . .

}
is also linearly independent.

According to the second Theorem in Erdös and Straus (1953), any linearly independent
sequence in a normed space contains an ω−independent subsequence. We obtain an

ω−independent subsequence

{
v

f
kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
.

We then show that the ω−independent subsequence

{
v

f
kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
is com-

plete in the Hilbert space H. Since the sequence
{
zrkl

}
corresponding to

{
f̃ (·|zrkl

)
}

is a subsequence of {zk} and also converges to z0, condition i) implies that the corre-
sponding sequence {g(·|zrkl

)/w(·)} is complete in the Hilbert space defined on X . This

implies the orthonormal sequence constructed by a complete sequence
{
g(·|zrkl

)/ω(·)}
and

{
v

f
kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
also satisfies equation (A.8). Lemma A.5 implies that{

v
f

kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
is a basis and thus

{
v

f
kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
is complete. By the con-

struction of

{
v

f
kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
, the completeness of

{
v

f
kl∥∥∥vg
kl

∥∥∥ : l = 1,2, . . .

}
implies that

the family { f (·|z) : z ∈ N (z0)} is also complete.
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A.6. Proof of the Linear Independence

Proof of Lemma 3(3). We have for z > 0 and 0 ∈ X

f (x|z) = d

dx
F0(z × x)

with

W (0) = �I
i=1

(
zki

d(i) F0(0)

dx(i)

)
×det

⎛⎜⎜⎝
1 1 ... 1

zk1 zk2 ... zkI
... ... ... ...

(zk1 )I−1 (zk2 )I−1 ... (zkI )
I−1

⎞⎟⎟⎠ .

According to the property of the Vandermonde matrix, the determinant W (x) in equation
(6) is not equal to zero when F0(x) has all the nonzero derivatives at x = 0 and zk are
nonzero and distinctive. We may also generalize the above argument to show { f (·|zk)} is
linear independent with

f (x|z) = d

dx
F0(μ(z)τ(x))

where μ′(z) 
= 0 and τ(·) is monotonic with τ(0) ≡ 0. While the restriction μ′(z) 
= 0
guarantees that the μ(zk) are different for a distinct sequence {zk} around z0, the condition
that τ(·) is monotonic ensures that the linear independence for any x is the same as that for

any τ(x). If
I∑

i=1
ci f (·|zki ) = 0, then it is equivalent to

I∑
i=1

ci
d

dx F0(μ(zki )τ(·)) = 0. This

implies
I∑

i=1
ci

d
dx F0(μ(zki )τ) = 0 for all τ ∈ τ(X ). Thus, we may show the determinant of

W (x) of the function f (x|z) is nonzero at x = 0. �

A.7. Proof of Completeness in Applications

Proof of Lemma 4. Since fε is normally distributed, by Lemma 2 we may generate
a complete sequence {g(x|zk ) = f (x − zk |z0) = fε(x − zk) : k = 1,2, . . .} satisfying con-
dition i) in Theorems 1, 2, and 3. Condition ii) 2), condition ii) 3), and condition ii) 4),
respectively, are condition ii) of Theorems 1, 2, and 3. Thus, condition i) and condition
ii) 2), condition i) and condition ii) 3), and condition i) and condition ii) 4), respectively,
satisfy conditions of Theorems 1, 2, and 3 and those theorems imply { f (·|z) : z ∈ Z} is
complete in L2 (R,ω).

As for the condition ii) 1), pick a distinct sequence {zk : k = 1,2, . . .} such that zk con-
verging to z0 and ‖zk − z0‖ < ε. Then, we have (1) { fε (·− zk ) : k = 1,2, . . .} satisfies
condition i) of Theorem 2 by condition i), and (2) condition ii) of Theorem 2 is also satis-
fies by∥∥∥∥ fε (·− zk )/ω(·)

‖ fε (·− zk )/ω(·)‖ − 1
‖ fε (·− zk )/ω(·)‖

1

σ (zk )
fε

( ·− zk

σ (zk)

)
/ω(·)

∥∥∥∥= 0,

because σ (zk) = 1 for k = 1,2, . . . . Theorem 2 implies that
{

fε
( ·−zk

σ(zk )

)
: z ∈ Z

}
is com-

plete in L2 (X ,ω). �
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Proof of Lemma 5. We take distinct zk → z0 such that |zk − z0| < ε. Consider the
sequence {g(x|zk ) = fε (x − zk ) : k = 1,2, . . .}. This implies that g(x|z0) = fε (x) =
f (x|z0) because h(z0,ε) = ε. In addition, the assumptions of ε imply {g(·|zk) : k =
1,2, . . .} is complete in L2(R,ω) for the weight function ω by Lemma 2. Then the complete
sequence {g(·|zk) : k = 1,2, . . .} satisfies the condition i) in Theorems 1, 2, and 3.

We may check that the family
{

f (x|zk ) = ∣∣ ∂
∂x h−1(zk , x)

∣∣ fε
(
h−1(zk , x)

)
: k = 1,2, . . .

}
is in L2(R,ω). Consider for some constant c1 and z ∈ N (z0)∫
R

| f (x|z)|2 dx =
∫
R

∣∣∣∣∣∂h−1(z, x)

∂x
fε
(

h−1(z, x)
)∣∣∣∣∣

2

dx

=
∫
R

∣∣∣∣∣
(

∂h(z,ε)

∂ε

)−1
fε (ε)

∣∣∣∣∣
2

∂h(z,ε)

∂ε
dε

=
∫
R

∣∣∣∣∂h(z,ε)

∂ε

∣∣∣∣−1
| fε (ε)|2 dε

≤ c1

∫
R

∣∣∣∣ ∂h(z0,ε)

∂ε

∣∣∣∣−1
| fε (ε)|2 dε

= c1

C

∫
R

| fε (ε)|2 dε < ∞.

The last step holds because condition i) and the assumption of ε imply
∣∣∣ ∂h(z0,ε)

∂ε

∣∣∣ > C > 0

and
∫
R

| fε (ε)|2 dε < ∞. That means f (x|z) ∈ L2(R) for z ∈ N (z0). Since the weight

function is bounded, f (x|z) ∈ L2(R,ω) for z ∈ N (z0).
Similar to the proof of Lemma 4, the results in condition ii) 2), condition ii) 3), and

condition ii) 4) are direct applications of Theorems 1, 2, and 3, and these results imply
that completeness of { f (·|z) : z ∈ N (z0)} in L2 (R,ω). As for the results in condition

ii) 1), for z such that ‖z − z0‖ < ε, f (·|z) =
∣∣∣ ∂
∂x h−1(z, ·)

∣∣∣ fε
(

h−1(z, ·)
)

= fε (·−cz).

Because c 
= 0, czk is also a converging sequence. Then, the assumptions of ε also imply
{ f (·|zk) : k = 1,2, . . .} is complete in L2(R,ω) by Lemma 2. We have the completeness of
{ f (·|z) : z ∈ N (z0)}. �

Proof of Lemma 6. Without loss of generality, we consider x = (x1, x2), z = (z1, z2),
X = X1 ×X2, and Z = Z1 ×Z2. Condition i) implies that { fx1|z1 (·|z1k) : k = 1,2,3, . . .}
and { fx2|z2 (·|z2k) : k = 1,2,3, . . .} are complete in their corresponding Hilbert spaces.

We then show the sequence { fx1|z1 (·|z1k) fx2|z2 (·|z2k) : k = 1,2,3, . . .} is complete
because { fx1|z1 (·|z1k) : k = 1,2,3, . . .} and { fx2|z2(·|z2k) : k = 1,2,3, . . .} are com-
plete in corresponding Hilbert spaces. Using the property of the weight function, we
obtain∫ ∫

h(x1, x2) f (x1|z1) f (x2|z2)dx1dx2

=
∫ ∫

h(x1, x2)
f (x1|z1) f (x2|z2)

ω(x1, x2)
ω(x1, x2)dx1dx2

=
∫ (∫

h(x1, x2)
f (x1|z1)

ω(x1)
ω(x1)dx1

)
f (x2|z2)

ω(x2)
ω(x2)dx2
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=
∫ (∫

h(x1, x2) f (x1|z1)dx1

)
f (x2|z2)dx2

≡
∫

h′ (x2, z1) f (x2|z2)dx2.

If the LHS is equal to zero for any (z1, z2) ∈ Z1 × Z2, then for any given z1∫
h′ (x2, z1) f (x2|z2)dx2 equals to zero for any z2. Since f (x2|z2) is complete, we have

h′ (x2, z1) = 0 for almost sure x2 ∈ X2 and any given z1 ∈ Z1. Furthermore, for any
given x2 ∈ X2, h′ (x2, z1) = 0 for any z1 ∈ Z1 implies h(x1, x2) = 0 for almost sure
x1 ∈ X1. Therefore, the sequence { fx1|z1 (·|z1k) fx2|z2(·|z2k) : k = 1,2,3, . . .} is complete.
Thus, we have a family of functions satisfying the condition i) in Theorems 1, 2, and 3.
Because its corresponding condition in the condition ii) in Theorems 1, 2, and 3 are
assumed directly in condition ii) 2), condition ii) 3), and condition ii) 4), respectively,
the sequence { fx1,x2|z1,z2(·, ·|z1k , z2k) : k = 1,2,3, . . .} is complete in these conditions.
As for the first part, we can regard it as a special case of the third part with zero deviation
in a converging sequence. We have reached our claim. �
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