NONPARAMETRIC IDENTIFICATION USING INSTRUMENTAL VARIABLES: SUFFICIENT CONDITIONS FOR COMPLETENESS

Yingyao Hu Johns Hopkins University
JI-LIANG Shiu Jinan University

Abstract

This paper provides sufficient conditions for the nonparametric identification of the regression function $m(\cdot)$ in a regression model with an endogenous regressor x and an instrumental variable z. It has been shown that the identification of the regression function from the conditional expectation of the dependent variable on the instrument relies on the completeness of the distribution of the endogenous regressor conditional on the instrument, i.e., $f(x \mid z)$. We show that (1) if the deviation of the conditional density $f\left(x \mid z_{k}\right)$ from a known complete sequence of functions is less than a sequence of values determined by the complete sequence in some distinct sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ converging to z_{0}, then $f(x \mid z)$ itself is complete, and (2) if the conditional density $f(x \mid z)$ can form a linearly independent sequence $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ in some distinct sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ converging to z_{0} and its relative deviation from a known complete sequence of functions under some norm is finite then $f(x \mid z)$ itself is complete. We use these general results to provide specific sufficient conditions for completeness in three different specifications of the relationship between the endogenous regressor x and the instrumental variable z.

1. INTRODUCTION

We consider a nonparametric regression model as follows:
$y=m(x)+u$,
where y is an observable scalar random variable, and x is a $d_{x} \times 1$ vector of regressors and may be correlated with a zero mean regression error u. The parameter of interest is the nonparametric regression function $m(\cdot)$. A $d_{z} \times 1$ vector of

[^0]instrumental variables z is conditional mean independent of the regression error u, i.e., $E(u \mid z)=0$, which implies
$E[y \mid z]=\int_{-\infty}^{+\infty} m(x) f(x \mid z) d x$,
where the probability measure of x conditional on z is absolutely continuous w.r.t. the Lebesgue measure. ${ }^{1}$ We observe a random sample of $\{y, x, z\}$, and denote the support of these random variables as \mathcal{Y}, \mathcal{X}, and \mathcal{Z}, respectively. This paper provides sufficient conditions on the conditional density $f(x \mid z)$ under which the regression function $m(\cdot)$ is nonparametrically identified from, i.e., uniquely determined by, the observed conditional mean $E[y \mid z]$. We show that (1) if the deviation of the conditional density $f\left(x \mid z_{k}\right)$ from a known complete sequence of functions is less than a sequence of values determined by the complete sequence in some distinct sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ converging to z_{0}, then $f(x \mid z)$ itself is complete, and (2) if the conditional density $f(x \mid z)$ can form a linearly independent sequence $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ for some distinct sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ converging to z_{0} and its relative deviation from a known complete sequence of functions under some norm is finite then $f(x \mid z)$ itself is complete. Consequently, the regression function $m(\cdot)$ is nonparametrically identified. Our sufficient conditions for completeness impose no specific functional form on $f(x \mid z)$, such as the exponential family.

The nonparametric IV regression model is applicable for a large range of empirical research. We provide a few examples in which there may exist an endogenous variable and the model is applicable. Consider an empirical study for estimating the impact of education on the female labor supply. The endogeneity may arise in the presence of an "ability bias" or the measurement error problem of education. We may use father's education as an instrumental variable for woman's education. Another example is to estimate Engel curves that describe the allocation of total nondurable consumption expenditure. In the application, total expenditure can be endogenous and we may use the gross earnings of the household head as an instrument for total expenditure.

We assume the regression function $m(\cdot)$ is in a Hilbert space \mathcal{H} of functions defined on \mathcal{X}, the support of regressor x. This paper considers a weighted L^{2} space $L^{2}(\mathcal{X}, \omega)=\left\{h(\cdot): \int_{\mathcal{X}}|h(x)|^{2} \omega(x) d x<\infty\right\}$ with the inner product $\langle f, g\rangle \equiv \int_{\mathcal{X}} f(x) g(x) \omega(x) d x$, where the positive weight function $\omega(x)$ is bounded almost everywhere and $\int_{\mathcal{X}} \omega(x) d x<\infty$. ${ }^{2}$ The corresponding norm is defined as: $\|f\|^{2}=\langle f, f\rangle$. The space $L^{2}(\mathcal{X}, \omega)$ is complete under the norm $\|\cdot\|$ and is a Hilbert space.

One may show that the uniqueness of the regression function $m(\cdot)$ is implied by the completeness of the family $\{f(\cdot \mid z): z \in \mathcal{O}\}$ in \mathcal{H}, where $\mathcal{O} \subseteq \mathcal{Z}$ is a subset of \mathcal{Z}, the support of z. The set \mathcal{O} may be \mathcal{Z} itself or some subset of \mathcal{Z}. In particular, this paper considers the question of completeness with the set \mathcal{O} being a distinct converging sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ in \mathcal{Z}. This case corresponds
to a sequence of functions $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$. We start with a definition of completeness in a Hilbert space \mathcal{H}.

DEFINITION 1. Denote $\mathcal{H} \equiv L^{2}(\mathcal{X}, \omega)$ as a Hilbert space with the weight function ω. The family $\{f(\cdot \mid z) \in \mathcal{H}: z \in \mathcal{O}\}$ for some set $\mathcal{O} \subseteq \mathcal{Z}$ is said to be complete in \mathcal{H} if for all $z \in \mathcal{O}, \int_{\mathcal{X}} \frac{f(x \mid z)^{2}}{\omega(x)} d x<\infty$ and for any $h(\cdot) \in \mathcal{H}$
$\int_{\mathcal{X}} h(x) f(x \mid z) d x=0 \quad$ for all $z \in \mathcal{O}$
implies $h(\cdot)=0$ almost surely in $\mathcal{X} .{ }^{3}$ When it is a conditional density function defined on $\mathcal{X} \times \mathcal{Z}, f(x \mid z)$ is said to be a complete density. ${ }^{4}$

The uniqueness (identification) of the regression function $m(\cdot)$ is implied by the completeness of the family $\{f(\cdot \mid z): z \in \mathcal{O}\}$ in \mathcal{H} for some set $\mathcal{O} \subseteq \mathcal{Z}$. This sufficient condition may be shown as follows. Suppose that $m(\cdot)$ is not identified so that there are two different functions $m(\cdot)$ and $\widetilde{m}(\cdot)$ in \mathcal{H} which are observationally equivalent, i.e., for any $z \in \mathcal{Z}$
$E[y \mid z]=\int_{\mathcal{X}} m(x) f(x \mid z) d x=\int_{\mathcal{X}} \widetilde{m}(x) f(x \mid z) d x$.
We then have for some $h(x)=m(x)-\widetilde{m}(x) \neq 0$
$\int_{\mathcal{X}} h(x) f(x \mid z) d x=0$ for any $z \in \mathcal{Z}$
which implies that $\{f(\cdot \mid z): z \in \mathcal{O}\}$ for any $\mathcal{O} \subseteq \mathcal{Z}$ is not complete in \mathcal{H}. Therefore, if $\{f(\cdot \mid z): z \in \mathcal{O}\}$ for some $\mathcal{O} \subseteq \mathcal{Z}$ is complete in \mathcal{H}, then $m(\cdot)$ is uniquely determined by $E[y \mid z]$ and $f(x \mid z)$, and therefore, is nonparametrically identified.

This definition implies that the equality in the definition can be rewritten as
$0=\int_{\mathcal{X}} h(x) f(x \mid z) d x=\int_{\mathcal{X}} h(x) \frac{f(x \mid z)}{\omega(x)} \omega(x) d x=\left\langle h, \frac{f(\cdot \mid z)}{\omega(\cdot)}\right\rangle \quad$ for all $z \in \mathcal{O}$.
Therefore, we use the weighted function $\frac{f(x \mid z)}{\omega(x)}$ instead of $f(x \mid z)$ in the inner product of the Hilbert space $L^{2}(\mathcal{X}, \omega)$, when we consider a complete sequence in the Hilbert space in the appendix. The definition certainly imposes tail conditions on the conditional density function $f(x \mid z)$. On the other hand, because existing complete distribution functions used in this study are the exponential family and a translated density function with exponentially decaying tails, the definition is not very restrictive to the nonparametric extension of completeness from these existing complete distribution functions.

The completeness introduced in Definition 1 is close to L^{2} - completeness considered in Andrews (2012) with $\mathcal{H}=L^{2}\left(\mathcal{X}, f_{x}\right)$, where the density f_{x} may be considered as the weight function ω in $L^{2}(\mathcal{X}, \omega) .{ }^{5}$ Andrews (2012) provides broad (nonparametric) classes of L^{2}-complete distributions that can have
any marginal distributions and a wide range of strengths of dependence. The L^{2}-complete distributions are constructed by bivariate density functions with respect to $F_{x} \times F_{z}$ which are constructed through orthonormal bases of $L^{2}\left(F_{x}\right)$ and $L^{2}\left(F_{x}\right)$. Depending on which regularity conditions are imposed on the regression function $m(\cdot)$, a different version of completeness can be also considered. For example, D'Haultfoeuillle (2011) considers three different types of completeness including (1) "standard" completeness, where h satisfies $E(|h(X)|)<\infty$, (2) P-completeness, where h is bounded by a polynomial, and (3) bounded completeness for any bounded h in nonparametric models between the two variables with an additive separability and a large support condition. D'Haultfoeuillle (2011) defines completeness in terms of dependence condition between x and z such as $x=\mu(\nu(z)+\varepsilon)$, where μ and ν are mappings and z and ε are independent. The results are useful in nonparametric regression models with a limited endogenous regressor. Regardless of whether the support \mathcal{X} is bounded or unbounded, such as the unit interval $[0,1]$ or the real line \mathbb{R}, respectively, the completeness in $L^{2}(\mathcal{X}, \omega)$ is more informative for identification than the bounded completeness because a bounded function always belongs to the weighted L^{2} space $L^{2}(\mathcal{X}, \omega) .{ }^{6}$ Therefore, we consider L^{2}-completeness with a Hilbert space $\mathcal{H}=L^{2}(\mathcal{X}, \omega)$ in this paper.

In the extreme case where x and z are discrete, completeness is the same as a no-perfect-collinearity or a full rank condition on a finite number of distributions of x conditional on different values of $z .{ }^{7}$ Our results for continuous variables extend this interpretation. Suppose that the family of conditional distributions in $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ is complete in $L^{2}(\mathcal{X}, \omega)$. As shown in the Appendix, we can extract a subfamily $\left\{f\left(\cdot \mid z_{r_{k}}\right): k=1,2, \ldots\right\}$ as a basis in $L^{2}(\mathcal{X}, \omega)$. This basis interpretation implies that (1) there is no exact linear relationship among the family of the conditional distribution $\left\{f\left(\cdot \mid z_{r_{k}}\right): k=1,2, \ldots\right\}$ or a conditional distribution at each point z can not be expressed as a linear combination of others, and (2) every function in $L^{2}(\mathcal{X}, \omega)$ can be approximated by linear combinations of the conditional distributions in $\left\{f\left(\cdot \mid z_{r_{k}}\right): k=1,2, \ldots\right\}$. In this general continuous case, a function in $L^{2}(\mathcal{X}, \omega)$ may be expressed as an infinite sum of functions and the convergence of the infinite sum is under the norm $\|\cdot\|$.

The L^{2} completeness for the nonparametric regression model (1) implies that identification is achieved among functions whose difference with the true one is square integrable w.r.t. the weighted Lebesgue measure. As an illustration, suppose that $m(x)=\alpha+\beta x$. With completeness in $L^{2}(\mathbb{R}, \omega)$, the regression function m can be identified within the set of functions of the form $\{\alpha+\beta x+g(x): g \in$ $\left.L^{2}(\mathbb{R}, \omega)\right\}$. Therefore, under our framework the functional form of the regression function m may be very flexible. Notice that the function g cannot be linear over \mathbb{R} under bounded completeness, which implies that bounded completeness is not enough to distinguish the true linear regression function $m(x)=\alpha+\beta x$ from another linear function $\widetilde{m}(x)=\widetilde{\alpha}+\widetilde{\beta} x$.

The following two examples of complete $f(x \mid z)$ are from Newey and Powell (2003) (See their Theorems 2.2 and 2.3 for details. ${ }^{8}$):

Example 1

Suppose that the distribution of x conditional on z is $N\left(a+b z, \sigma^{2}\right)$ for $\sigma^{2}>0$ and the support of z contains an open set, then $E\left[h(x) \mid z=z_{1}\right]=0$ for any $z_{1} \in \mathcal{Z}$ implies $h(\cdot)=0$ almost surely in \mathcal{X}; equivalently, $\{f(\cdot \mid z): z \in \mathcal{Z}\}$ is complete. ${ }^{9}$

Another case where the family $\{f(x \mid z): z \in \mathcal{O}\}$ is complete in \mathcal{H} is that $f(x \mid z)$ belongs to an exponential family as follows:

Example 2

Let $f(x \mid z)=s(x) t(z) \exp [\mu(z) \tau(x)]$, where $s(x)>0$, the mapping from $x \rightarrow$ $\tau(x)$ is one-to-one in x, and support of $\mu(z), \mathcal{Z}$, contains an open set, then $E\left[h(x) \mid z=z_{1}\right]=0$ for any $z_{1} \in \mathcal{Z}$ implies $h(\cdot)=0$ almost surely in \mathcal{X}; equivalently, the family of conditional density functions $\{f(\cdot \mid z): z \in \mathcal{Z}\}$ is complete.

These two examples show the completeness of a family $\{f(x \mid z): z \in \mathcal{O}\}$, where \mathcal{O} is an open set. In order to extend the completeness to general density functions, we further reduce the set \mathcal{O} from an open set to a countable set with a limit point, i.e., a converging sequence in the support \mathcal{Z}.

This paper focuses on the sufficient conditions for completeness of a conditional density. These conditions can be used to obtain global or local identification in a variety of models including the nonparametric IV regression model (see Newey and Powell (2003), Darolles, Fan, Florens, and Renault (2011), Hall and Horowitz (2005), and Horowitz (2011)), semiparametric IV models (see Ai and Chen (2003) and Blundell, Chen, and Kristensen (2007)), nonparametric IV quantile models (see Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007), and Horowitz and Lee (2007)), measurement error models (see Hu and Schennach (2008), An and Hu (2012), Carroll, Chen, and Hu (2010), and Chen and Hu (2006)), random coefficient models (see Hoderlein, Nesheim, and Simoni (2012)), and dynamic models (see Hu and Shum (2012) and Shiu and Hu (2013)), etc. We refer to D'Haultfoeuille (2011) and Andrews (2012) for more complete literature reviews. On the other hand, Canay, Santos, and Shaikh (2013) consider hypothesis testing for completeness against very general alternatives and they show that the completeness condition is, without further restrictions, untestable.

There are cases where identification and consistent estimation are relatively straightforward and not related to completeness. In the nonstationary dependent case, identification can be achieved because of the nonstationary nature of the regressor, which can act as its own instrument (see Wang and Phillips (2009), Wang and Phillips (2016), and Wang and Phillips (2007)). In the microeconometric context, identification can also be achieved by infill and spatial shifting nonstationarity (see Phillips and Su (2011)). Finally, in threshold regression cases thresholding parameters are identifiable and consistently estimable in spite of endogeneity of the regressor (see Yu and Phillips (2017)).

In this paper, we provide sufficient conditions for the completeness of a general conditional density without imposing particular functional forms. We first show
the set \mathcal{O} of the family $\{f(\cdot \mid z): z \in \mathcal{O}\}$ in the definition of completeness can be as small as a converging sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ for some known complete families. This implies that the family $\left\{f_{x \mid z}\left(\cdot \mid z_{k}\right) / \omega(\cdot): k=1,2, \ldots\right\}$ can form a complete sequence in a Hilbert space with the weight function ω. We then use the stability properties of complete sequences in a Banach space and a Hilbert space (Sections 9 and 10 of Chapter 1 in Young (2001) and Gurarij and Meletidi (1970)) to show that (1) if the deviation of the conditional density $f\left(x \mid z_{k}\right)$ from a known complete sequence of functions is less than a sequence of values determined by the complete sequence in some distinct sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ converging to z_{0}, then $f(x \mid z)$ itself is complete, and (2) if the conditional density $f(x \mid z)$ can form a linearly independent sequence $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ for some distinct sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ converging to z_{0} and its relative deviation from a known complete sequence of functions under some norm is finite then $f(x \mid z)$ itself is complete.

Another observation is that this stability property of completeness is actually consistent with a result in Canay et al. (2013) that a distribution for which completeness fails can be arbitrarily close to distributions for which completeness holds. Notice that Canay et al. (2013) approach $f(X, Z)$ by a sequence of step functions (with a finite number of "steps"). The limit may be a complete function but each step function in the sequence cannot be complete. Each of the step functions in their sequence corresponds to a truncated sequence $\left\{f_{1}, f_{2}, \ldots, f_{K}\right\}$ with $f_{k}=f_{X \mid Z}\left(. \mid Z=z_{k}\right)$ for some finite K in our paper. The limit of this sequence $\left\{f_{1}, f_{2}, \ldots, f_{K}\right\}$ is $\left\{f_{k}\right\}_{k=1,2, \ldots}$, which may be complete. But the truncated sequence $\left\{f_{1}, f_{2}, \ldots, f_{K}\right\}$ is not complete with a continuous X. The key issue is approximation to $f(X, Z)$ from both dimensions of X and Z. If $f(X, Z)$ is only approximated by step functions of X, but not of Z, completeness may still hold because a sequence of step functions, such as the so-called Haar sequence, may still be complete.

We apply the general results to show the completeness in three scenarios. First, we extend Example 1 to a general setting. In particular, we show the completeness of $f(x \mid z)$ when x and z satisfy for some function $\mu(\cdot)$ and $\sigma(\cdot)$
$x=\mu(z)+\sigma(z) \varepsilon$ with $z \perp \varepsilon$.
Second, we consider a general control function
$x=h(z, \varepsilon)$ with $z \perp \varepsilon$,
and provide conditions for completeness of $f(x \mid z)$ in this case. Third, our results imply that the completeness of a multidimensional conditional density, e.g.,
$f\left(x_{1}, x_{2} \mid z_{1}, z_{2}\right)$,
may be reached by completeness of two conditional densities of lower dimension, i.e., $f\left(x_{1} \mid z_{1}\right)$ and $f\left(x_{2} \mid z_{2}\right)$.

This paper is organized as follows: Section 2 provides sufficient conditions for completeness; Section 3 applies the main results to the three cases with different
specifications of the relationship between the endogenous variable and the instrument; Section 4 concludes the paper and all the proofs are in the appendix.

2. SUFFICIENT CONDITIONS FOR COMPLETENESS

In this section, we show that (1) if the deviation of the conditional density $f\left(x \mid z_{k}\right)$ from a known complete sequence of functions is less than a sequence of values determined by the complete sequence in some distinct sequence $\left\{z_{k}: k=\right.$ $1,2,3, \ldots\}$ converging to z_{0}, then $f(x \mid z)$ itself is complete, and (2) if the conditional density $f(x \mid z)$ can form a linearly independent sequence $\left\{f\left(\cdot \mid z_{k}\right): k=\right.$ $1,2, \ldots\}$ for some distinct sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ converging to z_{0} and its relative deviation from a known complete sequence of functions under some norm is finite then $f(x \mid z)$ itself is complete. We start with the introduction of two wellknown complete families in Examples 1 and 2. Notice that these completeness results are established on an open set \mathcal{O} instead of a countable set with a limit point, i.e., a converging sequence. In order to extend the completeness to a new function $f(x \mid z)$, we first establish the completeness on a sequence of z_{k}.

As we will show below, the completeness of an existing sequence $\left\{g\left(\cdot \mid z_{k}\right)\right.$: $k=1,2, \ldots\}$ is essential to show the completeness for a new function $f(x \mid z)$. An important family of conditional distributions which admit completeness is the exponential family. Many distributions encountered in practice can be put into the form of exponential families, including Gaussian, Poisson, Binomial, and certain multivariate forms of these. Another family of conditional distributions which implies completeness is in the form of a translated density function, i.e., $g(x \mid z)=g(x-z) .{ }^{10}$

Based on the existing results, such as in Examples 1 and 2 in the introduction, we may generate complete sequences from the exponential family or a translated density function. We start with an introduction of a complete sequence in the exponential family. Example 2 shows the completeness of the family $\{g(\cdot \mid z): z \in \mathcal{O}\}$, where \mathcal{O} is an open set in \mathcal{Z}. In the next lemma, we reduce the set \mathcal{O} from an open set to a countable set with a limit point, i.e., a converging sequence in $\mathcal{Z} .{ }^{11}$

LEMMA 1. Suppose that \mathcal{X} is a connected set. Denote \mathcal{O} as an open set in $\mathcal{Z} \subset \mathbb{R}$. Let $\left\{z_{k}: k=1,2, \ldots\right\}$ be a sequence of distinct $z_{k} \in \mathcal{O}$ converging to z_{0} in the open set \mathcal{O}. Define
$g(x \mid z)=s(x) t(z) \exp [\mu(z) \tau(x)]$
on $\mathcal{X} \times \mathcal{Z}$ with $s(\cdot)>0$ and $t(\cdot)>0$ are continuous positive functions. Suppose that $g(\cdot \mid z) \in L^{1}(\mathcal{X})$ for $z \in \mathcal{O}$ and
i) $\mu(\cdot)$ is continuous differentiable with $\mu^{\prime}\left(z_{0}\right) \neq 0$;
ii) $\tau(\cdot)$ is C^{1}-diffeomorphism from \mathcal{X} to $\tau(\mathcal{X}) .{ }^{12}$

Then, the sequence $\left\{g\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ is complete in $L^{2}(\mathcal{X}, \omega)$, where the weight function $\omega(x)$ satisfies $\int_{\mathcal{X}} \frac{s(x)^{2} \exp \left[2\left(\mu\left(z_{0}\right) \tau(x)+\delta|\tau(x)|\right)\right]}{\omega(x)} d x<\infty$ for some $\delta>0$.

Proof. See the appendix.
The restrictions on the weight function are mild and there are many potential candidates. For example, suppose $\tau(\cdot)>0$, since \mathcal{O} is open and $\mu(\cdot)$ is continuous with $\mu^{\prime}\left(z_{0}\right) \neq 0$, there exists some $\tilde{z} \in \mathcal{O}$ and $\delta>0$ such that $\mu\left(z_{0}\right) \tau(x)+\delta|\tau(x)|<\mu(\tilde{z}) \tau(x)$. One particular choice of the weight function is $\omega(x)=s(x) \exp [\mu(\tilde{z}) \tau(x)]$.

Another case where the completeness of $g(x \mid z)$ is well studied is when $g(x \mid z)=f_{\varepsilon}(x-z)$, which is usually due to a translation between the endogenous variable x and instrument z as follows
$x=z+\varepsilon$ with $z \perp \varepsilon$.
Example 1 implies that the family $\{g(\cdot \mid z) \in \mathcal{H}: z \in \mathcal{O}\}$ is complete if \mathcal{O} is an open set in \mathcal{Z} and ε is normal. Again, we show the completeness still holds when the set \mathcal{O} is a converging sequence.

In order to allow the space of the regression functions m to contain linear functions and polynomials, we consider $\mathcal{X}=\mathbb{R}$ with some weight function (Lemma 2). We summarize the results as follows.

LEMMA 2. Let $\mathcal{X}=\mathbb{R}$. Denote \mathcal{O} as an open set in \mathcal{Z}. Let $\left\{z_{k}: k=1,2, \ldots\right\}$ be a sequence of distinct $z_{k} \in \mathcal{O}$ converging to z_{0} in the open set \mathcal{O}. Define
$g(x \mid z)=f_{\varepsilon}(x-z)$
on $\mathbb{R} \times \mathcal{Z}$. If the distribution of ε is normal, then the sequence $\left\{g\left(\cdot \mid z_{k}\right): k=\right.$ $1,2, \ldots\}$ is complete in $L^{2}(\mathbb{R}, \omega)$, where the weight function $\omega(x)$ satisfies $\omega(x)=$ $e^{-\delta^{\prime} x^{2}}$ for some $\delta^{\prime} \in\left(0, \delta_{3}\right)$ and δ_{3} is defined in equation (A.4).

Proof. See the appendix.

We need the exponentially decaying weight function to identify the possibly unbounded regression function, such as linear functions, over the whole real line in a L^{2} functional space. However, this may limit the distribution of ε to be normal. Theorem 2.4 of Mattner (1993) shows that the only L^{1} complete location family over a real line is the Gaussian one. ${ }^{13}$ One remedy is to impose more restrictions on the functional space, such as bounded functions over the whole real line. As Theorem 2.1 of Mattner (1993) shows, a location family is boundedly complete if and only if its characteristic function is not zero in the whole real line. This can allow ε to have various distributions. Unfortunately, this rules out linear functions over the whole real line.

With the complete sequences explicitly specified in Lemmas 1 and 2, we are ready to extend the completeness to a more general conditional density $f(x \mid z)$. We will apply three different types of the stability results in Hilbert spaces to obtain the completeness. The first two are only involved with a small perturbation of a complete sequence and the third one is linked to an added structure of a Hilbert space, an orthonormal basis. The existence of such stability is based on two facts: (1) completeness is preserved by an invertible operator and (2) a bounded linear operator T on a Hilbert space is invertible whenever
$\|I-T\|_{o p}<1$, where $\|\cdot\|_{o p}$ is an operator norm. Our first two sufficient conditions for completeness are summarized as follows:

THEOREM 1. Denote $\mathcal{H} \equiv L^{2}(\mathcal{X}, \omega)$. Suppose $f(\cdot \mid z)$ and $g(\cdot \mid z)$ are conditional densities. For every $z \in \mathcal{Z}$, let $f(\cdot \mid z)$ and $g(\cdot \mid z)$ be in the Hilbert space \mathcal{H} of functions defined on \mathcal{X} with norm $\|\cdot\|$. Set $\mathcal{N}\left(z_{0}\right)=\left\{z \in \mathcal{Z}:\left\|z-z_{0}\right\|<\varepsilon\right.$ for some small $\varepsilon>0\} \subseteq \mathcal{Z}$ as an open neighborhood for a point z_{0} such that
i) for every sequence $\left\{z_{k}: k=1,2, \ldots\right\}$ of distinct $z_{k} \in \mathcal{N}\left(z_{0}\right)$ converging to z_{0}, the corresponding sequence $\left\{g\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ is complete in a Hilbert space \mathcal{H};
ii) there exists a complete sequence $\left\{g\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ such that $f(\cdot \mid z)$ satisfies

$$
\sum_{k=1}^{n}\left\|c_{k}\left(g\left(\cdot \mid z_{k}\right) / \omega(\cdot)-f\left(\cdot \mid z_{k}\right) / \omega(\cdot)\right)\right\|<\lambda \sum_{k=1}^{n}\left\|c_{k} g\left(\cdot \mid z_{k}\right) / \omega(\cdot)\right\|
$$

for some constant $\lambda, 0 \leq \lambda<1$, and arbitrary scalars c_{1}, \ldots, c_{n} ($n=1,2,3, \ldots$).

Then, the family $\left\{f(\cdot \mid z): z \in \mathcal{N}\left(z_{0}\right)\right\}$ is complete in \mathcal{H}.
Proof. See the appendix.
THEOREM 2. Denote $\mathcal{H} \equiv L^{2}(\mathcal{X}, \omega)$. Suppose $f(\cdot \mid z)$ and $g(\cdot \mid z)$ are conditional densities. For every $z \in \mathcal{Z}$, let $f(\cdot \mid z)$ and $g(\cdot \mid z)$ be in the Hilbert space \mathcal{H} of functions defined on \mathcal{X} with norm $\|\cdot\|$. Set $\mathcal{N}\left(z_{0}\right)=\left\{z \in \mathcal{Z}:\left\|z-z_{0}\right\|<\varepsilon\right.$ for some small $\varepsilon>0\} \subseteq \mathcal{Z}$ as an open neighborhood for a point z_{0} such that
i) for every sequence $\left\{z_{k}: k=1,2, \ldots\right\}$ of distinct $z_{k} \in \mathcal{N}\left(z_{0}\right)$ converging to z_{0}, the corresponding sequence $\left\{g\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ is complete in a Hilbert space \mathcal{H};
ii) there exists a sequence of positive numbers $\left\{C_{k}: k=1,2, \ldots\right\}$ which depends on the normalized sequence $\left\{\frac{g\left(\cdot \mid z_{k}\right) / \omega(\cdot)}{\left\|g\left(\cdot \mid z_{k}\right) / \omega(\cdot)\right\|}: k=1,2, \ldots\right\}$ such that $\sum_{k=1}^{n} C_{k} \varepsilon_{k}<1$ for a sequence of positive numbers $\left\{\varepsilon_{k}: k=1,2, \ldots\right\}$ and $\left\|\frac{g\left(\cdot \mid z_{k}\right) / \omega(\cdot)}{\left\|g\left(\cdot \mid z_{k}\right) / \omega(\cdot)\right\|}-f\left(\cdot \mid z_{k}\right) / \omega(\cdot)\right\|<\varepsilon_{k}$.

Then, the family $\left\{f(\cdot \mid z): z \in \mathcal{N}\left(z_{0}\right)\right\}$ is complete in \mathcal{H}.
Proof. See the appendix.
Theorem 2 implies that a new complete sequence always exists, although its distance from the existing complete sequence is determined by that sequence. The second stability criteria related to an orthonormal basis is the following.

THEOREM 3. Denote $\mathcal{H} \equiv L^{2}(\mathcal{X}, \omega)$. For every $z \in \mathcal{Z}$, let $f(\cdot \mid z)$ and $g(\cdot \mid z)$ be conditional densities in the Hilbert space \mathcal{H} of functions defined on \mathcal{X} with norm $\|\cdot\|$. Set $\mathcal{N}\left(z_{0}\right)=\left\{z \in \mathcal{Z}:\left\|z-z_{0}\right\|<\varepsilon\right.$ for some small $\left.\varepsilon>0\right\} \subseteq \mathcal{Z}$ as an open neighborhood for a point z_{0} such that
i) for every sequence $\left\{z_{k}: k=1,2, \ldots\right\}$ of distinct $z_{k} \in \mathcal{N}\left(z_{0}\right)$ converging to z_{0}, the corresponding sequence $\left\{g\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ is complete in a Hilbert space \mathcal{H};
ii) there exists a complete sequence $\left\{g\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ such that the corresponding sequence $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ satisfies that

$$
\sum_{k=1}^{\infty} \frac{\left\|v_{k}^{g}-v_{k}^{f}\right\|^{2}}{\left\|v_{k}^{g}\right\|^{2}}<\infty
$$

where for $h \in\{g, f\}$, the sequence of functions v_{k}^{h} is defined as $v_{1}^{h}(\cdot)=$ $h\left(\cdot \mid z_{1}\right) / \omega(\cdot), \ldots, v_{k}^{h}(\cdot)=h\left(\cdot \mid z_{k}\right) / \omega(\cdot)-\sum_{j=1}^{k-1} \frac{\left\langle h\left(\cdot \mid z r_{k}\right) / \omega(\cdot), v_{j}^{h}(\cdot)\right\rangle}{\left\langle v_{j}^{h}(\cdot), v_{j}^{h}(\cdot)\right\rangle} v_{j}^{h}$, and that for any finite subsequence $\left\{z_{k_{i}}: i=1,2, \ldots, I\right\}\left\{f\left(\cdot \mid z_{k_{i}}\right): i=1,2, \ldots, I\right\}$ is linearly independent, i.e.,

$$
\sum_{i=1}^{I} c_{i} f\left(x \mid z_{k_{i}}\right)=0 \text { for all } x \in \mathcal{X} \text { implies } c_{i}=0
$$

Then, the family $\left\{f(\cdot \mid z): z \in \mathcal{N}\left(z_{0}\right)\right\}$ is complete in \mathcal{H}.
Proof. See the appendix.
This theorem utilizes the structure of an inner product that allows length and angle in a Hilbert space. We show that if the distance between the two corresponding orthogonal sequences is finite and the new sequence is linearly independent, then the new sequence is complete.

Condition i) provides complete sequences, which may be from Lemmas 1, and 2 . Condition ii) requires that the total sum of relative quadratic deviation from the orthogonal sequence $\left\{v_{k}^{g}: k=1,2, \ldots\right\}$ constructed by $\left\{g\left(\cdot \mid z_{r_{k}}\right) / \omega(\cdot)\right.$: $k=1,2, \ldots\}$ and an orthogonal sequence $\left\{v_{k}^{f}: k=1,2, \ldots\right\}$ constructed by $\left\{f\left(\cdot \mid z_{r_{k}}\right) / \omega(\cdot): k=1,2, \ldots\right\}$ is finite.

The linear independence in condition iii) imposed on $\left\{f\left(\cdot \mid z_{k}\right)\right\}$ implies that there are no redundant terms in the sequence in the sense that no term can be expressed as a linear combination of some other terms. Because a weight function is positive, the linear independence of $\left\{f\left(\cdot \mid z_{k}\right)\right\}$ is equivalent to the linear independence of $\left\{f\left(\cdot \mid z_{k}\right) / \omega(\cdot)\right\}$. For simplification, we use an ordered sequence z_{k}. When the support of $f\left(\cdot \mid z_{k}\right)$ is the whole real line for all z_{k}, a sufficient condition for the linear independence is that
$\lim _{x \rightarrow-\infty} \frac{f\left(x \mid z_{k+1}\right)}{f\left(x \mid z_{k}\right)}=0$ for all k,
which implies $\lim _{x \rightarrow-\infty} \frac{f\left(x \mid z_{k+m}\right)}{f\left(x \mid z_{k}\right)}=0$ for any $m \geq 1$ and for all x. If $\sum_{i=1}^{I} c_{i} f\left(x \mid z_{k_{i}}\right)=0$ for all $x \in(-\infty,+\infty)$, we may have
$-c_{1}=\sum_{i=2}^{I} c_{i} \frac{f\left(x \mid z_{k_{i}}\right)}{f\left(x \mid z_{k_{1}}\right)}$.
The limit of the right-hand side is zero as $x \rightarrow-\infty$ so that $c_{1}=0$. Similarly, we may show $c_{2}, c_{3}, \ldots, c_{I}=0$ for all i by induction. Notice that the exponential family satisfies equation (4) for appropriate choices of μ, τ, and a sequence. When the support \mathcal{X} is bounded, for example, $\mathcal{X}=[0,1]$, the condition (4) may become
$\lim _{x \rightarrow 0} \frac{f\left(x \mid z_{k+1}\right)}{f\left(x \mid z_{k}\right)}=0$ for all k.
For example, the Corollary (Müntz) on page 91 in Young (2001) implies that the family of function $\left\{x^{z_{1}}, x^{z_{2}}, x^{z_{3}}, \ldots\right\}$ is complete in $L^{2}([0,1])$ if $\sum_{k=1}^{\infty} \frac{1}{z_{k}}=\infty$. This family also satisfies the condition (5) for a strictly increasing $\left\{z_{k}\right\}$. For an existing function $g(x \mid z)>0$, we may always have $f(x \mid z)=\frac{f(x \mid z)}{g(x \mid z)} \times g(x \mid z)$. If the existing sequence $\left\{g\left(\cdot \mid z_{k}\right)\right\}$ satisfies equation (4), i.e., $\lim _{x \rightarrow-\infty} \frac{g\left(x \mid z_{k+1}\right)}{g\left(x \mid z_{k}\right)}=0$, then the condition $0<\left(\lim _{x \rightarrow-\infty} \frac{f\left(x \mid z_{k}\right)}{g\left(x \mid z_{k}\right)}\right)<\infty$ implies $\lim _{x \rightarrow-\infty} \frac{f\left(x \mid z_{k+1}\right)}{f\left(x \mid z_{k}\right)}=0$ or linear independence of $\left\{f\left(\cdot \mid z_{k}\right)\right\}$. Furthermore, when $f(x \mid z)=h(x \mid z) \times g(x \mid z)$, the condition (4) is implied by $\lim _{x \rightarrow-\infty} \frac{g\left(x \mid z_{k+1}\right)}{g\left(x \mid z_{k}\right)}=0$ and $\left(\lim _{x \rightarrow-\infty} \frac{h\left(x \mid z_{k+1}\right)}{h\left(x \mid z_{k}\right)}\right)<\infty$.

Suppose the function $f(x \mid z)$ is differentiable with respect to the variable x up to any finite order for all the z_{k} in the sequence. We may consider the so-called Wronskian determinant as follows:

$$
W(x)=\operatorname{det}\left(\begin{array}{cccc}
f\left(x \mid z_{k_{1}}\right) & f\left(x \mid z_{k_{2}}\right) & \ldots & f\left(x \mid z_{k_{I}}\right) \tag{6}\\
f^{\prime}\left(x \mid z_{k_{1}}\right) & f^{\prime}\left(x \mid z_{k_{2}}\right) & \ldots & f^{\prime}\left(x \mid z_{k_{I}}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\frac{d^{(I-1)}}{d x^{(I-1)}} f\left(x \mid z_{k_{1}}\right) & \frac{d^{(I-1)}}{d x^{(I-1)}} f\left(x \mid z_{k_{2}}\right) & \ldots & \frac{d^{(I-1)}}{d x^{(I-1)}} f\left(x \mid z_{k_{I}}\right)
\end{array}\right)
$$

If there exists an x_{0} such that the determinant $W\left(x_{0}\right) \neq 0$ for every $\left\{z_{k_{i}}: i=1,2, \ldots, I\right\}$, then $\left\{f\left(\cdot \mid z_{k}\right)\right\}$ is linear independent.

Another sufficient condition for the linear independence is that the so-called Gram determinant G_{f} is not equal to zero for every $\left\{z_{k_{i}}: i=1,2, \ldots, I\right\}$, where $G_{f}=\operatorname{det}\left(\left[\left\langle f\left(\cdot \mid z_{k_{i}}\right), f\left(\cdot \mid z_{k_{j}}\right)\right\rangle\right]_{i, j}\right)$. This condition does not require that the function has all derivatives. We summarize these results on the linear independence as follows:

LEMMA 3. The sequence $\left\{f\left(\cdot \mid z_{k}\right)\right\}$ corresponding to a sequence $\left\{z_{k}: k=1,2, \ldots\right\}$ of distinct $z_{k} \in \mathcal{N}\left(z_{0}\right)$ converging to z_{0} is linearly independent if one of the following conditions holds:

1) $\sum_{i=1}^{I} c_{i} f\left(x \mid z_{k_{i}}\right)=0$ for all $x \in \mathcal{X}$ implies $c_{i}=0$ for all I.
2) for all $k, \lim _{x \rightarrow-\infty} \frac{f\left(x \mid z_{k+1}\right)}{f\left(x \mid z_{k}\right)}=0$ or $\lim _{x \rightarrow x_{0}} \frac{f\left(x \mid z_{k+1}\right)}{f\left(x \mid z_{k}\right)}=0$ for some x_{0};
3) there exists an x_{0} such that the determinant $W\left(x_{0}\right) \neq 0$ for every $\left\{z_{k_{i}}: i=1,2, \ldots, I\right\}$. In particular, $\frac{d^{k}}{d x^{k}} F_{0}(0) \neq 0$ for $k=1,2, \ldots$ if $f(x \mid z)=\frac{d}{d x} F_{0}(\mu(z) \tau(x))$ with $\mu^{\prime}\left(z_{0}\right) \neq 0, \tau(0)=0$.
4) for every $\left\{z_{k_{i}}: i=1,2, \ldots, I\right\}$, $\operatorname{det}\left(\left[\left\langle f\left(\cdot \mid z_{k_{i}}\right), f\left(\cdot \mid z_{k_{j}}\right)\right\rangle\right]_{i, j}\right) \neq 0$.

Proof. See the appendix.
In order to illustrate the relationship between the complete sequence $\left\{g\left(\cdot \mid z_{k}\right)\right\}$ and the sequence $\left\{f\left(\cdot \mid z_{k}\right)\right\}$, we present numerical examples of these two functions as follows. Theorem 4 in Gurarij and Meletidi (1970) also shows that if a sequence $\left\{f_{n}: n=1,2,3, \ldots\right\}$ satisfies $\left\|f_{n}-x^{n}\right\|<\epsilon_{n}$ for any ϵ_{n} such that $\lim \epsilon_{n} a^{n}=0$ for every positive a then the sequence is also complete. Thus, we may consider $g(x \mid z)=x^{z}$ and $f(x \mid z)=x^{z}+z^{-z} x^{2}$ and then $\{f(\cdot \mid z): z \in \mathcal{Z}\}$ is complete for $\mathcal{Z}=\mathbb{R}$. Figure 1 presents a 3D graph of $g(x \mid z)$ and $f(x \mid z)$ for (x, z) in $[0,1] \times$ $[1,4]$ to illustrate the relationship between the complete sequence $\left\{g\left(\cdot \mid z_{k}\right)\right\}$ and the sequence $\left\{f\left(\cdot \mid z_{k}\right)\right\}$.

Figure 1. An example of $g(x \mid z)$ and $f(x \mid z)$ in Theorem 2.

3. APPLICATIONS

We consider three applications of our main results: first, we show the sufficient conditions for the completeness of $f(x \mid z)$ when $x=\mu(z)+\sigma(z) \varepsilon$ with $z \perp \varepsilon$; second, we consider the completeness with a general control function $x=h(z, \varepsilon)$; finally, we show how to use our results to transform a multivariate completeness problem to a single variable one.

3.1. Extension of the Convolution Case

Lemma 2 provides a complete sequence when $x=z+\varepsilon$. Using Theorems 1,2 and 3, we may provide sufficient conditions for the completeness of $f(x \mid z)$ when the endogenous variable x and the instrument z satisfy a general heterogeneous structure as follows:
$x=\mu(z)+\sigma(z) \varepsilon$ with $z \perp \varepsilon$.
Without loss of generality, we set
$\mu(z)=z$.
We summarize the result as follows:
LEMMA 4. For every $z \in \mathcal{Z} \subset \mathbb{R}$, let $f(\cdot \mid z)$ be in $L^{1}(\mathbb{R})$. Suppose that there exists a point z_{0} with its open neighborhood $\mathcal{N}\left(z_{0}\right) \subseteq \mathcal{Z}$ such that
i) set $f_{\varepsilon}(\cdot)=f\left(\cdot \mid z_{0}\right)$ and the function f_{ε} is normally distributed as in Lemma 2;
ii) there exists $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ such that one of the following conditions holds:

1) $\sigma(z)=1$ for $\left\|z-z_{0}\right\|<\varepsilon$ for some small $\varepsilon>0$;
2) $\sigma(z)$ satisfies

$$
\begin{aligned}
\sum_{k=1}^{n} \| & c_{k}\left(f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)-\frac{1}{\sigma\left(z_{k}\right)} f_{\varepsilon}\left(\frac{\cdot-z_{k}}{\sigma\left(z_{k}\right)}\right) / \omega(\cdot)\right) \| \\
& <\lambda \sum_{k=1}^{n}\left\|c_{k} f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)\right\|
\end{aligned}
$$

for some constant $\lambda, 0 \leq \lambda<1$, and arbitrary scalars c_{1}, \ldots, c_{n} ($n=1,2,3, \ldots$);
3) there exists a sequence $\left\{C_{k}: k=1,2, \ldots\right\}$ which depends on the normalized sequence $\left\{\frac{f_{\varepsilon}\left(-z_{k}\right) / \omega(\cdot)}{\left\|f_{\varepsilon}\left(-z_{k}\right) / \omega(\cdot)\right\|}: k=1,2, \ldots\right\}$ such that $\sum_{k=1}^{n} C_{k} \varepsilon_{k}<1$ for a sequence of positive numbers $\left\{\varepsilon_{k}: k=1,2, \ldots\right\}$ and $\left\|\frac{f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)}{\left\|f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)\right\|}-\frac{1}{\sigma\left(z_{k}\right)} f_{\varepsilon}\left(\frac{\cdot-z_{k}}{\sigma\left(z_{k}\right)}\right) / \omega(\cdot)\right\|<\varepsilon_{k}$,
4) $\sigma(z)$ satisfies

$$
\sum_{k=1}^{\infty} \frac{\left\|v_{k}^{f}-v_{k}^{f_{\sigma}}\right\|^{2}}{\left\|v_{k}^{f}\right\|^{2}}<\infty
$$

where v_{k}^{f} and $v_{k}^{f_{\sigma}}$ are defined as in Theorem 3 with $f(x)=$ $f_{\varepsilon}(x-z) / \omega(\cdot)$ and $f_{\sigma}(x)=\frac{1}{\sigma(z)} f_{\varepsilon}\left(\frac{x-z}{\sigma(z)}\right) / \omega(\cdot)$, and that for any finite subsequence $\left\{z_{k_{i}}: i=1,2, \ldots, I\right\}$, the family of functions $\left\{\frac{1}{\sigma\left(z_{k_{i}}\right)} f_{\varepsilon}\left(\frac{-z k_{i}}{\sigma\left(z_{k_{i}}\right)}\right): i=1,2, \ldots, I\right\}$ is linearly independent.
Then, the family $\{f(\cdot \mid z): z \in \mathcal{Z}\}$ is complete in $L^{2}(\mathbb{R}, \omega)$, where the weight function $\omega(x)$ satisfies $\omega(x)=e^{-\delta^{\prime} x^{2}}$ for some $\delta^{\prime} \in\left(0, \delta_{3}\right)$.

The first part of Lemma 4 implies that one may always make a convolution sequence coincide with a complete sequence in Lemma 2 at an open neighborhood of a limit point and thereby provide more complete families. The rest of Lemma 4 is to provide sufficient conditions for the completeness under a small perturbation of the deviations defined in Theorems 1, 2, and 3. The first case immediately provides the completeness of the normal distribution with heteroskedasticity which is more flexible than the normal distribution with homoskedasticity. Suppose $\varepsilon \sim N(0,1)$ and ϕ is a standard normal PDF. Then, by Lemma 4 we have the family $\left\{f(x \mid z)=\frac{1}{\sigma(z)} \phi\left(\frac{x-z}{\sigma(z)}\right): z \in \mathcal{N}\left(z_{0}\right)\right\}$ is complete in $L^{2}(\mathbb{R}, \omega)$ if $\sigma(z)=1$ for $\left\|z-z_{0}\right\|<\varepsilon$ for some small $\varepsilon>0$. This result is new to the literature and provides the identification for models with heteroskedasticity. Therefore, our results have shown many complete DGPs that are not previously known. Notice that a family of functions that deviate from a location family may not be in the location family anymore. To be specific, $x=z+\sigma(z) \varepsilon$ leads to $f(x \mid z)=\frac{1}{\sigma(z)} \phi\left(\frac{x-z}{\sigma(z)}\right)$ not in a location family. Therefore, the completeness of $f(x \mid z)$ does not conflict with Theorem 2.4 of Mattner (1993) after assuming that ε has a normal distribution. ${ }^{14}$

Another point to emphasize is that we only need the restrictions of Lemmas 2 and 3 to hold for $f_{\varepsilon}(\cdot)=f\left(\cdot \mid z_{0}\right)$ at an open neighborhood of the limit point z_{0} not over all z. Any distribution containing a normal factor, say a convolution of normal and another distribution, satisfies this tail restriction.

We may then consider the nonparametric identification of a regression model
$y=\alpha+\beta x+u, \quad \mathrm{E}[u \mid z]=0$,
with $x=z+\sigma(z) \varepsilon$ and $\varepsilon \sim N(0,1)$. Here the true regression function $m(x)$ is linear, which is unknown to researchers. We have shown that the family
$\left\{f(x \mid z)=\frac{1}{\sigma(z)} \phi\left(\frac{x-z}{\sigma(z)}\right): z \in \mathcal{N}\left(z_{0}\right)\right\}$ is complete in $L^{2}(\mathbb{R}, \omega)$ if $\sigma(z)=1$ for $\left\|z-z_{0}\right\|<\varepsilon$ for some small $\varepsilon>0$, which implies the above linear model is uniquely identified among all the functions in $L^{2}(\mathbb{R}, \omega)$. Notice that the bounded completeness is not enough for such an identification.

3.2. Completeness with a Control Function

We then consider a general expression of the relationship between the endogenous variable x and the instrument z. Let a control function describe the relationship between an endogenous variable x and an instrument z as follows: ${ }^{15}$
$x=h(z, \varepsilon)$, with $z \perp \varepsilon$.
We consider the case where x and ε have the support \mathbb{R}. Denote CDF of ε as $F(\varepsilon)$. It is well known that the function h is related to the CDF $F_{x \mid z}$ as $h(z, \varepsilon) \equiv F_{x \mid z}^{-1}(F(\varepsilon) \mid z)$ when the inverse of $F_{x \mid z}$ exists and h is strictly increasing in ε. Given the function h, we are interested in what restrictions on h are sufficient for the completeness of the conditional density $f(x \mid z)$ implied by equation (8).

LEMMA 5. Let $\mathcal{N}\left(z_{0}\right) \subseteq \mathcal{Z} \subset \mathbb{R}$ be an open neighborhood of some $z_{0} \in \mathcal{Z}$ and equation (8) hold with $h\left(z_{0}, \varepsilon\right)=\varepsilon$, where the distribution function of $\varepsilon, f_{\varepsilon}$, satisfies $\int_{\mathbb{R}}\left|f_{\varepsilon}(\varepsilon)\right|^{2} d \varepsilon<\infty$, and the conditions in Lemma 2 with a weight function ω. Suppose that
i) for $z \in \mathcal{N}\left(z_{0}\right)$, the function $h(z, \varepsilon)$ is strictly increasing in ε and twice differentiable in z and ε;
ii) there exists $\left\{f\left(\cdot \mid z_{k}\right) \equiv \frac{\partial}{\partial x} F_{\varepsilon}\left(h^{-1}(z, x)\right)=\left|\frac{\partial}{\partial x} h^{-1}\left(z_{k}, \cdot\right)\right| f_{\varepsilon}\left(h^{-1}\left(z_{k}, \cdot\right)\right)\right.$: $k=1,2, \ldots\}$ satisfies one of the following conditions:

1) $h(z, \varepsilon)=c z+\varepsilon$, for a constant $c \neq 0$ and z satisfying $\left\|z-z_{0}\right\|<\varepsilon$ for some small $\varepsilon>0$;
2) $f\left(\cdot \mid z_{k}\right)$ satisfies

$$
\sum_{k=1}^{n}\left\|c_{k}\left(f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)-f\left(\cdot \mid z_{k}\right) / \omega(\cdot)\right)\right\|<\lambda \sum_{k=1}^{n}\left\|c_{k} f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)\right\|
$$

for some constant $\lambda, 0 \leq \lambda<1$, and arbitrary scalars c_{1}, \ldots, c_{n} ($n=1,2,3, \ldots$);
3) there exists a sequence $\left\{C_{k}: k=1,2, \ldots\right\}$ which depends on the normalized sequence $\left\{\frac{f_{\varepsilon}\left(-z_{k}\right) / \omega(\cdot)}{\left\|f_{\varepsilon}\left(-z_{k}\right) / \omega(\cdot)\right\|}: k=1,2, \ldots\right\}$ such that $\sum_{k=1}^{n} C_{k} \varepsilon_{k}<1$ for a sequence of positive numbers $\left\{\varepsilon_{k}: k=1,2, \ldots\right\}$ and

$$
\left\|\frac{f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)}{\left\|f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)\right\|}-f\left(\cdot \mid z_{k}\right) / \omega(\cdot)\right\|<\varepsilon_{k},
$$

4) $f\left(\cdot \mid z_{k}\right)$ satisfies

$$
\sum_{k=1}^{\infty} \frac{\left\|v_{k}^{f}-v_{k}^{f_{z}}\right\|^{2}}{\left\|v_{k}^{f}\right\|^{2}}<\infty
$$

where v_{k}^{f} and $v_{k}^{f_{z}}$ are defined as in Theorem 3 with $f(\cdot)=$ $f_{\varepsilon}(\cdot-z) / \omega(\cdot)$ and $f_{z}(\cdot)=f(\cdot \mid z) / \omega(\cdot)$, and that for any finite subsequence $\left\{z_{k_{i}}: i=1,2, \ldots, I\right\},\left\{f\left(\cdot \mid z_{k_{i}}\right): i=1,2, \ldots, I\right\}$ is linearly independent.
Then, the family $\left\{f(\cdot \mid z): z \in \mathcal{N}\left(z_{0}\right)\right\}$ is complete in $L^{2}(\mathbb{R}, \omega)$.
Proof. See the appendix.
Condition i) guarantees that the conditional density $f(x \mid z)$ is continuous in both x and z. The condition $h\left(z_{0}, \varepsilon\right)=\varepsilon$ is not restrictive because one may always redefine ε. Therefore, $f(x \mid z)$ satisfies $f\left(x \mid z_{0}\right)=f_{\varepsilon}(x)$. The first part of Lemma 5 implies that key sufficient assumptions for the completeness of $f(x \mid z)$ using the control function in equation (8) is that the control function h is locally linear in a neighborhood of a limit point in the support of z. Our results may provide sufficient conditions for completeness with a general h. For example, suppose $c \neq 0$, and small $\varepsilon>0$, we may have
$h(z, \varepsilon)= \begin{cases}c z+\varepsilon & \text { if } z \in\left(z_{0}-\epsilon, z_{0}+\epsilon\right), \\ z+e^{z-z_{0}} \varepsilon+\sum_{j=0}^{J}\left(z-z_{0}\right)^{2 j} h_{j}(\varepsilon) & \text { else, }\end{cases}$
where $h_{j}(\cdot)$ are increasing functions. The function h may also have a nonseparable form such as
$h(z, \varepsilon)= \begin{cases}c z+\varepsilon & \text { if } z \in\left(z_{0}-\epsilon, z_{0}+\epsilon\right), \\ z+\ln \left[\left(z-z_{0}\right)^{2}+\exp (\varepsilon)\right] & \text { else. }\end{cases}$

3.3. Multivariate Completeness

When the endogenous variable x and the instrument z are both vectors, our main results in Theorems 1 and 3 still apply. In other words, our results can be extended to the multivariate case straightforwardly. In this section, we show that one can use Theorems 1, 2, and 3 to reduce a multivariate completeness problem to a single variate one. Without loss of generality, we consider $x=\left(x_{1}, x_{2}\right)$, $z=\left(z_{1}, z_{2}\right), \mathcal{X}=\mathcal{X}_{1} \times \mathcal{X}_{2}$, and $\mathcal{Z}=\mathcal{Z}_{1} \times \mathcal{Z}_{2}$. One may show that the completeness of $f\left(x_{1} \mid z_{1}\right)$ and $f\left(x_{2} \mid z_{2}\right)$ implies that of $f\left(x_{1} \mid z_{1}\right) \times f\left(x_{2} \mid z_{2}\right)$. Theorems 1, 2, and 3 then imply that if conditional density $f\left(x_{1}, x_{2} \mid z_{1}, z_{2}\right)$ has a small deviation from $f\left(x_{1} \mid z_{1}\right) \times f\left(x_{2} \mid z_{2}\right)$ at some converging sequence in \mathcal{Z} under the deviations defined in Theorems 1, 2, and 3 then $f\left(x_{1}, x_{2} \mid z_{1}, z_{2}\right)$ is complete. We summarize the results as follows:

LEMMA 6. Denote $\mathcal{H}=L^{2}(\mathcal{X}, \omega)$ as a Hilbert space. For every $z \in \mathcal{Z}=\mathcal{Z}_{1} \times$ \mathcal{Z}_{2}, let $f_{x \mid z}(\cdot \mid z)$ be in the Hilbert space \mathcal{H} of functions defined on $\mathcal{X}=\mathcal{X}_{1} \times \mathcal{X}_{2}$ with norm $\|\cdot\|$. The weight function is a multiplicative product of weight functions of Hilbert spaces defined on X_{1} and X_{2}, i.e., $\omega\left(x_{1}, x_{2}\right)=\omega\left(x_{1}\right) \omega\left(x_{2}\right) .{ }^{16}$ Suppose that there exists a point $z_{0}=\left(z_{10}, z_{20}\right)$ with its open neighborhood $\mathcal{N}\left(z_{0}\right) \subseteq \mathcal{Z}$ such that
i) for every sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ of distinct $z_{k} \in \mathcal{N}\left(z_{0}\right)$ converging to z_{0}, the corresponding sequence $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right): k=1,2,3, \ldots\right\}$ and $\left\{f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right): k=1,2,3, \ldots\right\}$ are complete in Hilbert spaces \mathcal{H} offunctions defined on \mathcal{X}_{1} and \mathcal{X}_{2};
ii) there exists $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ for which one of the following conditions holds:

1) $f_{x \mid z}\left(\cdot, \cdot \mid z_{1}, z_{2}\right)=f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1}\right) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2}\right)$ for $\left\|z_{1}-z_{10}\right\|<\epsilon_{1}$ and $\left\|z_{2}-z_{20}\right\|<\epsilon_{2}$ for small $\epsilon_{1}, \epsilon_{2}>0$;
2) $f_{x \mid z}\left(\cdot \mid z_{k}\right)$ satisfies

$$
\begin{aligned}
& \sum_{k=1}^{n}\left\|c_{k}\left(f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{k 1}\right) / \omega(\cdot) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{k 2}\right) / \omega(\cdot)-f_{x \mid z}\left(\cdot, \cdot \mid z_{k 1}, z_{k 2}\right) / \omega(\cdot, \cdot)\right)\right\| \\
& \quad<\lambda \sum_{k=1}^{n}\left\|c_{k} f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{k 1}\right) / \omega(\cdot) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{k 2}\right) / \omega(\cdot)\right\|
\end{aligned}
$$

for some constant $\lambda, 0 \leq \lambda<1$, and arbitrary scalars c_{1}, \ldots, c_{n} ($n=1,2,3, \ldots$);
3) there exists a sequence $\left\{C_{k}: k=1,2, \ldots\right\}$ which depends on the normalized sequence $\left\{\frac{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{k 1}\right) / \omega(\cdot) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{k 2}\right) / \omega(\cdot)}{\left\|f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{k 1}\right) / \omega(\cdot) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{k 2}\right) / \omega(\cdot)\right\|}: k=1,2, \ldots\right\}$ such that $\sum_{k=1}^{n} C_{k} \varepsilon_{k}<1$ for a sequence of positive numbers $\left\{\varepsilon_{k}: k=\right.$ $1,2, \ldots\}$ and $\left\|\frac{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{k 1}\right) / \omega(\cdot) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{k 2}\right) / \omega(\cdot)}{\left\|f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{k 1}\right) / \omega(\cdot) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{k 2}\right) / \omega(\cdot)\right\|}-f_{x \mid z}\left(\cdot, \cdot \mid z_{k 1}, z_{k 2}\right) / \omega(\cdot, \cdot)\right\|<\varepsilon_{k}$,
4) $f_{x \mid z}\left(\cdot \mid z_{k}\right)$ satisfies
$\sum_{k=1}^{\infty} \frac{\left\|v_{k}^{f_{z_{1} z_{2}}}-v_{k}^{f_{z}}\right\|^{2}}{\left\|v_{k}^{f}\right\|^{2}}<\infty$,
where $v_{k}^{f_{z_{1} z_{2}}}$ and $v_{k}^{f_{z}}$ are defined as in Theorem 3 with $f_{z_{1} z_{2}}(\cdot)=$ $f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{k 1}\right) / \omega(\cdot) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{k 2}\right) / \omega(\cdot)$ and $f_{z}(\cdot)=f_{x \mid z}(\cdot \mid z) / \omega(\cdot, \cdot)$, and that $\left\{f\left(\cdot \mid z_{k_{i}}\right): i=1,2, \ldots, I\right\}$ is linearly independent for any finite subsequence $\left\{z_{k_{i}}: i=1,2, \ldots, I\right\}$.

Then, the sequence $\left\{f_{x \mid z}\left(\cdot, \cdot \mid z_{1}, z_{2}\right): z \in \mathcal{Z}\right\}$ is complete in the Hilbert space \mathcal{H} of functions defined on $\mathcal{X}_{1} \times \mathcal{X}_{2}$.

Proof. See the appendix.
In many applications, it is difficult to show the completeness for a multivariate conditional density. The results above use Theorems 1, 2, and 3 to extend the completeness for the one-dimensional sequences $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right)\right.$: $k=1,2,3, \ldots\}$ and $\left\{f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right): k=1,2,3, \ldots\right\}$ to the multiple dimensional sequence $\left\{f_{x \mid z}\left(\cdot, \cdot \mid z_{1 k}, z_{2 k}\right): k=1,2,3, \ldots\right\}$. The key assumption is that the endogenous variables are conditionally independent of each other for some value of the instruments, i.e.,
$f_{x \mid z}\left(\cdot, \cdot \mid z_{10}, z_{20}\right)=f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{10}\right) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{20}\right)$.
We may then use the completeness of one-dimensional conditional densities $f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right)$ and $f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right)$ to show the completeness of a multi-dimensional density $f_{x \mid z}\left(\cdot, \cdot \mid z_{1 k}, z_{2 k}\right)$. Therefore, Lemma 6 may reduce the dimension as well as the difficulty of the problem.

What we need for the multivariate case (Lemma 6) in equation (9) includes two steps: first, we need the independence between x_{1} and x_{2} only at $z=z_{0}$, i.e.,
$x_{1} \perp x_{2} \mid z=z_{0} ;$
The second step requires with $z_{0}=\left(z_{10}, z_{20}\right)$
$f_{x_{1} \mid z}\left(\cdot \mid z_{0}\right)=f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{10}\right)$ and $f_{x_{2} \mid z}\left(\cdot \mid z_{0}\right)=f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{20}\right)$.
This step is for simplicity and convenience because $f_{x_{1} \mid z}\left(\cdot \mid z_{10}, z_{20}\right)$ and $f_{x_{2} \mid z}\left(\cdot \mid z_{10}, z_{20}\right)$ are already one-dimensional densities and we may re-define the two sequences in condition i) in Lemma 6 corresponding to $f_{x_{1} \mid z}\left(\cdot \mid z_{0}\right)$ and $f_{x_{2} \mid z}\left(\cdot \mid z_{0}\right)$. Such simplification is particularly useful when one can find an instrument corresponding to each endogenous variable.

The completeness of a conditional density function $f(x \mid z)$ implies there exists a sequence of conditional density function $\left\{f\left(x \mid z_{k}\right): k=1,2,3, \ldots\right\}$ as a complete sequence. At these points $z_{k}=\left(z_{1 k}, z_{2 k}\right)$, an intuitive idea of Lemma 6 is the fact that the tensor product of univariate complete sequences forms a multivariate complete sequence. With the completeness of the sequence of product function $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right): k=1,2,3, \ldots\right\}$, we can utilize the main perturbation results, Theorems 1,2 , and 3 , to extend the result to other sequences of functions close to the sequence of the product function. At these "small" perturbation sequences, $\left\{f_{x \mid z}\left(\cdot, \cdot \mid z_{1 k}, z_{2 k}\right): k=1,2,3, \ldots\right\}$ can be nonseparable and satisfies the condition (10). For example, set $f_{x_{1} \mid z_{1}}\left(x_{1} \mid z_{1}\right)=\frac{1}{z_{1}} e^{-x_{1} z_{1}}$ and $f_{x_{2} \mid z_{2}}\left(x_{2} \mid z_{2}\right)=$ $\frac{1}{z_{2}} e^{-x_{2} z_{2}}$, where $z_{1}, z_{2}>0$ and $x_{1}, x_{2} \in\{0\} \cup \mathbb{R}^{+}$. Applying the results of Lemma 1 (a generalized version of Example 2) to these two density functions, we can obtain the completeness of the two families $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right): k=1,2,3, \ldots\right\}$ and
$\left\{f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right): k=1,2,3, \ldots\right\}$, where $z_{1 k}$ and $z_{2 k}$ are distinct sequences converging to 1 .

The family of the product function $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right): k=1,2,3, \ldots\right\}$, where $f_{x_{1} \mid z_{1}}\left(x_{1} \mid z_{1}\right)=\frac{1}{z_{1}} e^{-x_{1} z_{1}}$ and $f_{x_{2} \mid z_{2}}\left(x_{2} \mid z_{2}\right)=\frac{1}{z_{2}} e^{-x_{2} z_{2}}$, is complete in $\{0\} \cup \mathbb{R}^{+2}$ because the family contains a subfamily as a basis in $\{0\} \cup \mathbb{R}^{+2}$. Then, by Theorems 1,2 , and 3 the family of multivariate density $\left\{f_{x \mid z}\left(\cdot, \cdot \mid z_{1 k}, z_{2 k}\right): k=\right.$ $1,2,3, \ldots\}$ may be complete when the family is sufficiently close to the family of product functions under the deviations defined in Theorems 1, 2, and 3. On the other hand, we can use condition ii) 1) to provide more complete families. For small $\epsilon_{1}, \epsilon_{2}>0$, set $\mathcal{O}_{z}=\left(z_{10}-\epsilon_{1}, z_{10}+\epsilon_{1}\right) \times\left(z_{20}-\epsilon_{2}, z_{10}+\epsilon_{1}\right)$. Consider the multivariate density
$f_{x \mid z}\left(\cdot, \cdot \mid z_{1}, z_{2}\right)= \begin{cases}f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1}\right) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2}\right) & \text { if }\left(z_{1}, z_{2}\right) \in \mathcal{O}_{z}, \\ \frac{c_{z k}}{z_{1 k} z_{2 k}} e^{-\left(x_{1} z_{1 k}+x_{2} z_{2 k}+\left(z_{1 k}-1\right)^{2}\left(z_{2 k}-1\right)^{2} x_{1} x_{2}\right)} & \text { else, }\end{cases}$
where $c_{z k}$ is a normalized coefficient, $z_{1}, z_{2}>0$, and $x_{1}, x_{2} \in\{0\} \cup \mathbb{R}^{+}$. The family has an exponential decay tail over \mathbb{R}^{+2} and is therefore integrable. The family at \mathcal{O}_{z} is the same as the family of product function $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right)\right.$: $k=1,2,3, \ldots\}$, where $f_{x_{1} \mid z_{1}}\left(x_{1} \mid z_{1}\right)=\frac{1}{z_{1}} e^{-x_{1} z_{1}}$ and $f_{x_{2} \mid z_{2}}\left(x_{2} \mid z_{2}\right)=\frac{1}{z_{2}} e^{-x_{2} z_{2}}$. Lemma 6 implies the sequence $\left\{f_{x \mid z}\left(\cdot, \cdot \mid z_{1}, z_{2}\right): z \in \mathcal{Z}\right\}$ is complete.

4. CONCLUSION

We provide sufficient conditions for the nonparametric identification of the regression function in a regression model with an endogenous regressor x and an instrumental variable z. The identification of the regression function from the conditional expectation of the dependent variable is implied by the completeness of the distribution of the endogenous regressor conditional on the instrument, i.e., $f(x \mid z)$. Sufficient conditions are then provided for the completeness of $f(x \mid z)$ without imposing a specific functional form, such as the exponential family. We use the results in the stability of complete sequences in Hilbert spaces to show that (1) if the deviation of the conditional density $f\left(x \mid z_{k}\right)$ from a known complete sequence of functions is less than a sequence of values determined by the complete sequence in some distinct sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ converging to z_{0}, then $f(x \mid z)$ itself is complete, and (2) if the conditional density $f(x \mid z)$ can form a linearly independent sequence $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ for some distinct sequence $\left\{z_{k}: k=1,2,3, \ldots\right\}$ converging to z_{0} and its relative deviation from a known complete sequence of functions under some norm is finite then $f(x \mid z)$ itself is complete. Therefore, the regression function is nonparametrically identified.

NOTES

1. In this paper, we need to consider $E[Y \mid Z=z]$, i.e., conditional expectation of Y on the random variable Z taking value z in its support \mathcal{Z}. In other words, we need this conditional expectation to be well-defined even for the zero-probability event $\{Z=z\}$. To avoid any confusion, we assume the conditional expectation $E[Y \mid Z=z]$ is a continuous function of z over the support \mathcal{Z}. We are not the first
study to use the conditional expectation in this way for completeness. For example, Newey and Powell (2003) show that for exponential families and normal distribution, the conditional expectations in the definition of completeness can be reduced to be defined over an open subset of \mathcal{Z}. We follow their definition of completeness to require that conditional expectations are defined for some set $\mathcal{O} \subseteq \mathcal{Z}$ and this paper shows that \mathcal{O} can be a distinct converging sequence in \mathcal{Z}.
2. We consider the quotient space $\in L^{2}(\mathbb{R}, \omega)$ where the equivalent relation \sim is that $f \sim g$ if the set $\{x: f(x) \neq g(x)\}$ is a set of measure zero. If the set of elements for which a property does not hold is a set of measure zero for a probability measure, we use almost surely to indicate the property.
3. The integral in the formula makes sense because $\int_{\mathcal{X}}|h(x) f(x \mid z)| d x=$ $\int_{\mathcal{X}}|h(x)| \omega(x)^{1 / 2} \frac{f(x \mid z)}{\omega(x)^{1 / 2}} d x \leq\left(\int_{\mathcal{X}}|h(x)|^{2} \omega(x) d x\right)^{1 / 2}\left(\int_{\mathcal{X}} \frac{f(x \mid z)^{2}}{\omega(x)} d x\right)^{1 / 2}<\infty$.
4. The conditional density function $f(x \mid z)$ has a two dimensional variation from x and z and we treat it as a special class of the function form $f(x, z)$ which can have a support like $\mathcal{X} \times \mathcal{Z}$.
5. This is under the assumption that the density function f_{x} exists. Closely related definitions of L^{2}-completeness can also be found in Florens, Mouchart, and Rolin (1990), Mattner (1996), and San Martin and Mouchart (2007).
6. In a bounded domain, bounded completeness may also be less informative than L^{2} completeness. For instance, consider a function $h(x)=x^{-1 / 4}$ over $(0,1)$. Bounded completeness can not distinguish the case that the difference of two regression functions is $h(x)$, i.e., $h(x)=$ $m(x)-\tilde{m}(x)$, where m and \tilde{m} are regression functions such that $y=m(x)+u$ or $y=\tilde{m}(x)+u$.
7. When $x, z \in\{0,1\}$, the conditional expectation $E[y \mid z]=\int_{\mathcal{X}} m(x) f(x \mid z) d x$ is equivalent to $\left[\begin{array}{l}E[y \mid z=0] \\ E[y \mid z=1]\end{array}\right]^{T}=\left[\begin{array}{c}m(0) \\ m(1)\end{array}\right]^{T}\left[\begin{array}{ll}f_{x \mid z}(0 \mid 0) & f_{x \mid z}(0 \mid 1) \\ f_{x \mid z}(1 \mid 0) & f_{x \mid z}(1 \mid 1)\end{array}\right]$. In this binary case, the regression $m(\cdot)$ may be uniquely determined from observed $E[y \mid z]$, and $f(x \mid z)$ if the last matrix is invertible, i.e., two vectors $f_{x \mid z}(\cdot \mid 0)$ and $f_{x \mid z}(\cdot \mid 1)$ are linearly independent
$f_{x \mid z}(\cdot \mid 0):=\left[\begin{array}{l}f_{x \mid z}(0 \mid 0) \\ f_{x \mid z}(1 \mid 0)\end{array}\right]$ and $f_{x \mid z}(\cdot \mid 1):=\left[\begin{array}{l}f_{x \mid z}(0 \mid 1) \\ f_{x \mid z}(1 \mid 1)\end{array}\right]$.
Therefore, completeness is equivalent to no-perfect collinearity among $\left\{f_{x \mid z}(\cdot \mid i): i=1,2\right\}$ or the rank condition on the matrix $\left[\begin{array}{ll}f_{x \mid z}(0 \mid 0) & f_{x \mid z}(0 \mid 1) \\ f_{x \mid z}(1 \mid 0) & f_{x \mid z}(1 \mid 1)\end{array}\right]$.
8. Theorems 2.2 and 2.3 in Newey and Powell (2003) do not specify the function space in which completeness is discussed. The definition of the completeness on page 141 of Lehmann (1986) also does not specify the function space. However, he starts to specify the property of completeness for all bounded functions and call it boundedly complete on page 144.
9. In this paper, we would use a low subscript such as z_{0} to denote a point.
10. The term used here accords with the definition on page 182 of Rudin (1987), where the translate of f is defined as $f(x-z)$ for all x and a given z.
11. It is important to show the completeness of a family defined on a countable set because all the statistical asymptotics are based on an infinitely countable number of observations, i.e., the sample size approaching infinity, instead of a continuum of observations, for example, all the possible values in an open set.
12. Given two open connected sets X and Y, a map f from X to Y is called a C^{1}-diffeomorphism if f is a bijection and both $f: X \rightarrow Y$ and its inverse $f^{-1}: Y \rightarrow X$ are continuously differentiable.
13. The family $\{p(\cdot-z): z \in \mathcal{Z}\}$ is L^{1} complete if, for all measurable real functions h such that $\mathrm{E}[|h(X)|]<\infty$,
$\int_{\mathcal{X}} h(x) p(x-z) d x=0 \quad$ for all $z \in \mathcal{Z}$
implies $h(\cdot)=0$ almost surely in \mathcal{X}. We thank a referee for pointing out the result.
14. In general, we can apply the stability results to the sequence in Lemma 2. Let us take a complete sequence in Lemma 2, i.e., $\left\{f_{\varepsilon}\left(\cdot-z_{1}\right), f_{\varepsilon}\left(\cdot-z_{2}\right), f_{\varepsilon}\left(\cdot-z_{3}\right), f_{\varepsilon}\left(\cdot-z_{4}\right) \ldots\right\}$. In order to
generate a new complete sequence, we only change the first function $f_{\varepsilon}\left(\cdot-z_{1}\right)$ with a very small deviation to $\widetilde{f}\left(\cdot-z_{1}\right)$. The stability result in Theorem 2 implies the new sequence $\left\{\widetilde{f}\left(\cdot-z_{1}\right)\right.$, $\left.f_{\varepsilon}\left(\cdot-z_{2}\right), f_{\varepsilon}\left(\cdot-z_{3}\right), f_{\varepsilon}\left(\cdot-z_{4}\right) \ldots\right\}$ is also a complete sequence. (Note that this argument also applies to a sequence of basis functions.) The important observation is that the completeness of the new sequence does not conflict with Mattner's results because the new sequence is no longer in a location family.
15. Here we call h the control function without assuming that the IV z is independent of (u, ε) as in the usual control function approach.
16. A simple example of this type of weight function is $\omega\left(x_{1}, x_{2}\right)=e^{-\left(a_{1} x_{1}^{2}+a_{2} x_{2}^{2}\right)}=$ $e^{-a_{1} x_{1}^{2}} e^{-a_{2} x_{2}^{2}}=\omega\left(x_{1}\right) \omega\left(x_{2}\right)$, where $a_{1}, a_{2}>0$.

REFERENCES

Ai, C. \& X. Chen (2003) Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica 71(6), 1795-1843.
An, Y. \& Y. Hu (2012) Well-posedness of measurement error models for self-reported data. Journal of Econometrics 168(2), 259-269.
Andrews, D. (2012) Examples of L^{2}-complete and boundedly-complete distributions. Cowles Foundation for Research in Economics.
Blundell, R., X. Chen, \& D. Kristensen (2007) Semi-nonparametric IV estimation of shape-invariant engel curves. Econometrica 75(6), 1613.
Canay, I., A. Santos, \& A. Shaikh (2013) On the testability of identification in some nonparametric models with endogeneity. Econometrica 81(6), 2535-2559.
Carroll, R., X. Chen, \& Y. Hu (2010) Identification and estimation of nonlinear models using two samples with nonclassical measurement errors. Journal of Nonparametric Satistics 22(4), 379-399.
Chen, X. \& Y. Hu (2006) Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors. Cowles Foundation Discussion paper no. 1590.
Chernozhukov, V. \& C. Hansen (2005) An IV model of quantile treatment effects. Econometrica 73(1), 245-261.
Chernozhukov, V., G. Imbens, \& W. Newey (2007) Instrumental variable estimation of nonseparable models. Journal of Econometrics 139(1), 4-14.
Darolles, S., Y. Fan, J. Florens, \& E. Renault (2011) Nonparametric instrumental regression. Econometrica 79(5), 1541-1565.
D'Haultfoeuille, X. (2011) On the completeness condition in nonparametric instrumental problems. Econometric Theory 27(3), 1-12.
Dostanić, M. (1990) On the completeness of the system of functions $\left\{e^{-\alpha \lambda_{n} x} \sin \lambda_{n} x\right\}_{n=1}^{\infty}$. Journal of Mathematical Analysis and Applications 150(2), 519-527.
Erdös, P. \& E. Straus (1953) On linear independence of sequences in a banach space. Pacific Journal of Mathematics 3(4), 689-694.
Florens, J., M. Mouchart, \& J. Rolin (1990) Elements of Bayesian Statistics. Marcel Dekker.
Gurarij, V. \& M. Meletidi (1970) The stability of the completeness of sequences in banach spaces. Bulletin de l'Academie Polonaise des Sciences, Serie des Sciences, Mathematiques, Astronomiques et Physiques 18(9), 533-536.
Hall, P. \& J. Horowitz (2005) Nonparametric methods for inference in the presence of instrumental variables. The Annals of Statistics 33(6), 2904-2929.
Hoderlein, S., L. Nesheim, \& A. Simoni (2012) Semiparametric Estimation of Random Coefficients in Structural Economic Models. Cemmap Working papers.
Horowitz, J. (2011) Applied nonparametric instrumental variables estimation. Econometrica 79(2), 347-394.
Horowitz, J. \& S. Lee (2007) Nonparametric instrumental variables estimation of a quantile regression model. Econometrica 75(4), 1191-1208.

Hu, Y. \& S. Schennach (2008) Instrumental variable treatment of nonclassical measurement error models. Econometrica 76(1), 195-216.
$\mathrm{Hu}, \mathrm{Y} . \& \mathrm{M}$. Shum (2012) Nonparametric identification of dynamic models with unobserved state variables. Journal of Econometrics 171(1), 32-44.
Lehmann, E. (1986) Testing Statistical Hypotheses, 2nd ed. Wiley.
Mattner, L. (1993) Some incomplete but boundedly complete location families. The Annals of Statistics 21(4), 2158-2162.
Mattner, L. (1996) Complete incomplete but boundedly complete location families. The Annals of Statistics 24(3), 1265-1282.
Newey, W. \& J. Powell (2003) Instrumental variable estimation of nonparametric models. Econometrica 71(5), 1565-1578.
Phillips, P.C.B. \& L. Su (2011) Nonparametric regression under location shifts. Econometrics Journal 14(3), 457-486.
Rudin, W. (1987) Real and Complex Analysis. McGraw-Hill.
San Martin, E. \& M. Mouchart (2007) On joint completeness: Sampling and bayesian versions, and their connections. The Indian Journal of Statistics 69(4), 780-807.
Shiu, J. \& Y. Hu (2013) Identification and estimation of nonlinear dynamic panel data models with unobserved covariates. Journal of Econometrics 175(2), 116-131.
Wang, Q. \& P.C.B. Phillips (2007) Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econometric Theory 25(3), 710-738.
Wang, Q. \& P.C.B. Phillips (2009) Structural nonparametric cointegrating regression. Econometrica 77(6), 1901-1948.
Wang, Q. \& P.C.B. Phillips (2016) Nonparametric cointegrating regression with endogeneity and long memory. Econometric Theory 32(2), 359-401.
Young, R. (2001) An Introduction to Nonharmonic Fourier Series. Academic Press.
Yu, P. \& P.C.B. Phillips (2017) Threshold regression with endogeneity. Journal of Econometrics, forthcoming.
Zimmer, R. (1990) Essential Results of Functional Analysis. University of Chicago Press.

APPENDIX A: Proofs

A.1. Preliminaries

This paper considers a weighted L^{2} space $L^{2}(\mathcal{X}, \omega)=\left\{h(\cdot): \int_{\mathcal{X}}|h(x)|^{2} \omega(x) d x<\infty\right\}$ with the inner product $\langle f, g\rangle \equiv \int_{\mathcal{X}} f(x) g(x) \omega(x) d x$. We define the corresponding norm as: $\|f\|^{2}=\langle f, f\rangle$. The completion of $L^{2}(\mathcal{X}, \omega)$ under the norm $\|\cdot\|$ is a Hilbert space, which may be denoted as \mathcal{H}. The conditional density of interest $f(x \mid z)$ is defined over $\mathcal{X} \times \mathcal{Z}$. Let ω be a weight function. If z only takes values from a countable set in \mathcal{Z} then the conditional density $f(x \mid z)$ can be used to extend as a sequence of functions $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ in \mathcal{H} with
$f_{k}(\cdot) \equiv \frac{f\left(\cdot \mid z_{k}\right)}{\omega(\cdot)}$,
where $\left\{z_{k}: k=1,2,3, \ldots\right\}$ is a sequence in \mathcal{Z}. The property of the sequence $\left\{f_{k}\right\}$ determines the identification of the regression function in (2).

We then introduce the definition of a basis in \mathcal{H}.
DEFINITION A.1. A sequence of functions $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ in \mathcal{H} is said to be a basis if for any $h \in \mathcal{H}$ there corresponds a unique sequence of scalars $\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$ such that
$h=\sum_{k=1}^{\infty} c_{k} f_{k}$.
In our proofs, we limit our attention to linearly independent sequences when providing sufficient conditions for completeness. The linear independence of an infinite sequence is considered as follows.

DEFINITION A.2. A sequence of functions $\left\{f_{n}(\cdot)\right\}$ of \mathcal{H} is said to be ω-independent if the equality
$\sum_{n=1}^{\infty} c_{n} f_{n}(x)=0$ for all $x \in \mathcal{X}$
is possible only for $c_{n}=0,(n=1,2,3, \ldots)$.
It is obvious that the ω-independence implies linear independence. But the converse argument does not hold. A complete sequence may not be ω-independent, but it contains a basis, and therefore, contains an ω-independent subsequence.
The identification of a regression function in equation (2) actually only requires a sequence $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ containing a basis, instead of a basis itself. Therefore, we consider a complete sequence of functions $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ which satisfies that $\left\langle g, f_{k}\right\rangle=0$ for $k=1,2,3 \ldots$ implies $g=0$.

In fact, one can show that a basis is complete. Since every element in \mathcal{H} has a unique representation in terms of a basis, there is redundancy in a complete sequence. Given a complete sequence in \mathcal{H}, we can construct a basis from the complete sequence. One of the important properties of a complete sequence for \mathcal{H} is that every element can be approximated arbitrarily close by finite combinations of the elements. We summarize these results as follows.

LEMMA A.1. (1) A basis in \mathcal{H} is also a complete sequence.
(2) Let W be a closed linear subspace of \mathcal{H}. Set $W^{\perp}=\{h \in \mathcal{H}:\langle h, g\rangle=0$ for all $g \in W\}$. Then W^{\perp} is a closed linear subspace such that, $W \oplus W^{\perp}=\mathcal{H}$.
(3) Given a complete sequence of functions $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ in \mathcal{H}, we can construct an orthonormal basis $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ from the complete sequence for \mathcal{H}.

Proof of Lemma A.1(1). Given a basis $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ in \mathcal{H}, applying the GramSchmidt process to the basis yields an orthonormal sequence $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ and $\operatorname{span}\left(\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}\right)=\operatorname{span}\left(\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}\right)$. This implies that $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ is also a basis of the Hilbert space \mathcal{H} and $f=\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle g_{k}$ for any $f \in \mathcal{H}$. Suppose that $\int f_{k}(x) h(x) \omega(x) d x=0$ for all k. It follows that $\left\langle h, g_{k}\right\rangle=0$ for all k. Thus, $h=$ $\sum_{k=1}^{\infty}\left\langle h, g_{k}\right\rangle g_{k}=0 .\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ is a complete sequence.

The proof of Lemma A.1(2) can be found as a corollary on page 7 in Zimmer (1990).
Proof of Lemma A.1(3). We will construct g_{k} using the Gram-Schmidt procedure. First, let $r_{1}=f_{1}$ and $g_{1}=\frac{r_{1}}{\left\|r_{1}\right\|}$. Then $r_{2}=f_{s_{2}}$ where s_{2} is the smallest index among
$\{2,3,4, \ldots\}$ such that $\tilde{g}_{2} \equiv f_{s_{2}}-\left\langle f_{s_{2}}, g_{1}\right\rangle g_{1} \neq 0$. Denote $g_{2}=\frac{\tilde{g}_{2}}{\left\|\tilde{g}_{2}\right\|}$. Keep the selection process going, in the k-th step, we have $r_{k}=f_{s_{k}}$ where s_{k} is the smallest index among $\left\{s_{k-1}+1, s_{k-1}+2, s_{k-1}+3, \ldots\right\}$ such that $\tilde{g}_{k} \equiv f_{s_{k}}-\sum_{i=1}^{k-1}\left\langle f_{s_{k}}, g_{i}\right\rangle g_{i} \neq 0$ and $g_{k}=\frac{\tilde{g}_{k}}{\left\|\tilde{g}_{k}\right\|}$. This selection procedure produces two sequences with the same span space, i.e., $\operatorname{span}\left(\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}\right)=\operatorname{span}\left(\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}\right)$. In addition, $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ is an orthonormal sequence. To prove $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ is a basis, it is sufficient to show (i) the completion of $\operatorname{span}\left(\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}\right)=\mathcal{H}$, and (ii) $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ is ω-independent. Let W be the completion of the subspace $\operatorname{span}\left(\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}\right)$ under the norm $\|\cdot\|$. Let $W^{\perp}=\{h \in \mathcal{H}:\langle h, g\rangle=0$ for all $g \in W\}$. By Lemma A. 1 (ii), $W \bigoplus W^{\perp}=\mathcal{H}$. Since the sequence $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ is complete and $\operatorname{span}\left(\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}\right)=\operatorname{span}\left(\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}\right)$ then $W^{\perp}=\{0\}$ and $W=\mathcal{H}$. On the other hand, suppose that $\sum_{k=1}^{\infty} c_{k} g_{k}=0$ for some scalars $c_{1}, c_{2}, c_{3}, \ldots$ Because $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ is an orthonormal sequence, $0=\left\langle\sum_{k=1}^{\infty} c_{k} g_{k}, g_{i}\right\rangle=c_{i}$ for $i=1,2,3, \ldots$. This implies that $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ is ω-independent. Therefore, the sequence $\left\{g_{1}, g_{2}, g_{3}, \ldots\right\}$ is a basis.

Our proofs also need a uniqueness theorem of complex differentiable functions stated in the corollary on page 209 in Rudin (1987).

A.2. Proofs of Completeness of Existing Sequences

Proof of Lemma 1. Set $t(z)=1$ for simplicity. In order to use the above uniqueness result of complex differentiable functions, we consider a converging sequence $\left\{z_{k}: k=\right.$ $1,2, \ldots\}$ in \mathcal{Z} as the set with a limit point. Since $\mu(\cdot)$ is continuous with $\mu^{\prime}\left(z_{0}\right) \neq 0$ for some limit point $z_{0} \in \mathcal{Z}$, there exists $\delta>0$ and a subsequence $\left\{z_{k_{i}}: i=1,2, \ldots\right\}$ converging to z_{0} such that $\left\{\mu\left(z_{k_{i}}\right): i=1,2, \ldots\right\} \in\left(\mu\left(z_{0}\right)-\delta, \mu\left(z_{0}\right)+\delta\right) \subset \mu\left(\mathcal{N}\left(z_{0}\right)\right)$ be a sequence of distinct numbers converging to an interior point $\mu\left(z_{0}\right) \in \mu\left(\mathcal{N}\left(z_{0}\right)\right)$ and $\mu\left(z_{k_{i}}\right) \tau(x)<$ $\mu\left(z_{0}\right) \tau(x)+\delta|\tau(x)|$ for $i=1,2, \ldots$. In addition, since $g(\cdot \mid z) \in L^{1}(\mathcal{X})$ for $z \in \mathcal{O}$, $\int_{\mathcal{X}} s(x) \exp \left[\mu\left(z_{0}\right) \tau(x)+\delta|\tau(x)|\right] d x<\infty$.
Choose a weight function $\omega(x)$ satisfying $\int_{\mathcal{X}} \frac{s(x)^{2} \exp \left[2\left(\mu\left(z_{0}\right) \tau(x)+\delta|\tau(x)|\right)\right]}{\omega(x)} d x<\infty$ and it follows that $\int_{\mathcal{X}} g(x \mid z)^{2} / \omega(x) d x<\infty$ for $z \in \mathcal{O}$. Given $h_{0} \in L^{2}(\mathcal{X}, \omega)$ and pick a positive constant δ_{1} such that $0<\delta_{1}<\delta$. Let $w=a+i b$, where a, b are real numbers. Then, check the integrability of the function $s(x) e^{w \tau(x)} h_{0}(x)$ over $x \in \mathcal{X}$ for $a \in\left(\mu\left(z_{0}\right)-\delta_{1}\right.$, $\left.\mu\left(z_{0}\right)+\delta_{1}\right)$. Use Cauchy-Schwartz inequality to the function,

$$
\begin{align*}
& \left|\int_{\mathcal{X}} s(x) e^{\omega \tau(x)} h_{0}(x) d x\right|^{2} \tag{A.1}\\
& \quad \leq\left(\int_{\mathcal{X}} \frac{s(x) e^{a \tau(x)}}{\omega(x)^{1 / 2}}\left|h_{0}(x)\right| \omega(x)^{1 / 2} d x\right)^{2} \\
& \quad \leq\left(\int_{\mathcal{X}} \frac{s(x) e^{\mu\left(z_{0}\right) \tau(x)+\delta_{1}|\tau(x)|}}{\omega(x)^{1 / 2}}\left|h_{0}(x)\right| \omega(x)^{1 / 2} d x\right)^{2}
\end{align*}
$$

$$
\begin{aligned}
& \leq\left(\int_{\mathcal{X}} \frac{s(x) e^{\mu\left(z_{0}\right) \tau(x)+\delta|\tau(x)|}}{\omega(x)^{1 / 2}}\left|h_{0}(x)\right| \omega(x)^{1 / 2} d x\right)^{2} \\
& \leq\left(\int_{\mathcal{X}} \frac{s(x)^{2} \exp \left[2\left(\mu\left(z_{0}\right) \tau(x)+\delta|\tau(x)|\right)\right]}{\omega(x)} d x\right)\left(\int_{\mathcal{X}}\left|h_{0}(x)\right|^{2} \omega(x) d x\right)<\infty .
\end{aligned}
$$

This implies that a complex function defined as an integral of the function exists and is finite. Consider the complex function with the following form
$f(w)=\int_{\mathcal{X}} s(x) e^{w \tau(x)} h_{0}(x) d x$,
where the complex variable w is in the vertical strip $R \equiv\left\{w: \mu\left(z_{0}\right)-\delta_{1}<\operatorname{Re}(w)<\right.$ $\left.\mu\left(z_{0}\right)+\delta_{1}\right\}$. (A holomorphic (or analytic) function defined with a similar function form in a strip is also discussed in the proof of Theorem 1 in Section 4.3 of Lehmann (1986). The proof provided here is close to the proof of Theorem 9 in Section 2.7 of Lehmann (1986).) Suppose $\eta \in \mathbb{C}$ such that $|\eta| \leq \delta_{2}$ and $\delta_{1}+\delta_{2}<\delta$. Given $w \in R$. Consider the difference quotient of the integrand in equation (A.2), we have

$$
\begin{aligned}
|Q(x, \eta)| & \equiv\left|\frac{s(x) e^{(w+\eta) \tau(x)} h_{0}(x)-s(x) e^{w \tau(x)} h_{0}(x)}{\eta}\right| \\
& =\left|s(x) \frac{e^{w \tau(x)}\left(e^{\eta \tau(x)}-1\right)}{\eta} h_{0}(x)\right| \\
& \leq s(x)\left|\frac{e^{w \tau(x)+\delta_{2}|\tau(x)|}}{\delta_{2}}\right|\left|h_{0}(x)\right| \\
& \leq s(x)\left|\frac{e^{\left(w+\delta_{2}\right) \tau(x)}+e^{\left(w-\delta_{2}\right) \tau(x)}}{\delta_{2}}\right|\left|h_{0}(x)\right| \\
& \leq 2 s(x) \frac{e^{\mu\left(z_{0}\right) \tau(x)+\left(\delta_{1}+\delta_{2}\right)|\tau(x)|}}{\delta_{2}}\left|h_{0}(x)\right|
\end{aligned}
$$

where we have used (1) apply the inequality $\left|\frac{e^{a z}-1}{z}\right| \leq \frac{e^{\delta_{3}|a|}}{\delta_{3}}$ for $|z| \leq \delta_{3}$ to the factor $\frac{\left(e^{\eta \tau(x)}-1\right)}{\eta}$, (The inequality can be found on page 60 of Lehmann (1986).) and (2) $w \in R$. The right-hand side is integrable when $\delta_{1}+\delta_{2}<\delta$ by a similar derivation in equation (A.1). It follows from the Lebesgue dominated convergence theorem that

$$
\lim _{\eta \rightarrow 0} \int_{\mathcal{X}} Q(x, \eta) d x=\int_{\mathcal{X}} \lim _{\eta \rightarrow 0} Q(x, \eta) d x=\int_{\mathcal{X}} s(x) \tau(x) e^{w \tau(x)} h_{0}(x) d x
$$

Therefore, $f^{\prime}(w)$ exists and the function f defined through the integral is holomorphic.
The condition $\int_{\mathcal{X}} s(x) e^{\mu\left(z_{k_{i}}\right) \tau(x)} h_{0}(x) d x=0$ is equivalent to $f\left(\mu\left(z_{k_{i}}\right)\right)=0$ by equation (A.2). This implies that the complex differentiable function f is equal to zeros in the sequence $\left\{\mu\left(z_{k_{1}}\right), \mu\left(z_{k_{2}}\right), \mu\left(z_{k_{3}}\right), \ldots\right\}$ which has a limit point $\mu\left(z_{0}\right)$. Applying the uniqueness theorem quoted above to f results in $f(w)=0$ on $\left\{w: \mu\left(z_{0}\right)-\delta_{1}<\operatorname{Re}(w)<\right.$ $\left.\mu\left(z_{0}\right)+\delta_{1}\right\}$. If \mathcal{X} is a bounded domain, we extend h_{0} to a function in $L^{2}(\mathbb{R}, \omega)$ by
$\tilde{h}_{0}(x)= \begin{cases}h_{0}(x) & \text { if } x \in \mathcal{X}, \\ 0 & \text { otherwise } .\end{cases}$

We also extend $s(x)$ and $\tau(x)$ to functions in $\mathbb{R}, \tilde{s}(x)$ and $\tilde{\tau}(x)$ respectively with the following properties, $\tilde{s}(x)>0$ and $\tilde{\tau}^{\prime}(x) \neq 0$ for every x. In particular, set $w=\mu(\tilde{z})+i t$ for any real t and some $\tilde{z} \in \mathcal{O}$ such that $\mu(\tilde{z}) \in\left(\mu\left(z_{0}\right)-\delta_{1}, \mu\left(z_{0}\right)+\delta_{1}\right)$, we have

$$
\begin{aligned}
f(w) & =\int_{\mathcal{X}} s(x) e^{\mu(\tilde{z}) \tau(x)} e^{i t \tau(x)} h_{0}(x) d x=0 \\
& =\int_{-\infty}^{\infty} \tilde{s}\left(\tau^{-1}(x)\right) e^{\mu(\tilde{z}) x} e^{i t x} \tilde{h}_{0}\left(\tilde{\tau}^{-1}(x)\right) \frac{1}{\tilde{\tau}^{\prime}(x)} d x \\
& \equiv \int_{-\infty}^{\infty} e^{i t x} \hat{h}_{0}(x) d x .
\end{aligned}
$$

The last step implies that the Fourier transform of $\hat{h}_{0}(x)$ is zero on the whole real line. In particular, equation (A.1) implies $\hat{h}_{0} \in L^{1}(\mathbb{R})$. (Recall that $\mu(\tilde{z}) \in\left(\mu\left(z_{0}\right)-\delta_{1}, \mu\left(z_{0}\right)+\delta_{1}\right)$, and $\hat{h}_{0}(x) \equiv \tilde{s}\left(\tau^{-1}(x)\right) e^{\mu(\tilde{z}) x} \tilde{h}_{0}\left(\tilde{\tau}^{-1}(x)\right) \frac{1}{\tilde{\tau}^{\prime}(x)}$. Consider

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|\hat{h}_{0}(x)\right| d x & \leq \int_{-\infty}^{\infty}\left|\tilde{s}\left(\tau^{-1}(x)\right) e^{\mu(\tilde{z}) x} \tilde{h}_{0}\left(\tilde{\tau}^{-1}(x)\right) \frac{1}{\tilde{\tau}^{\prime}(x)}\right| d x \\
& \leq \int_{\mathcal{X}} s(x) e^{\mu(\tilde{z}) \tau(x)}\left|h_{0}(x)\right| d x \\
& \leq \int_{\mathcal{X}} \frac{s(x) e^{\mu\left(z_{0}\right) \tau(x)+\delta_{1}|\tau(x)|}}{\omega(x)^{1 / 2}}\left|h_{0}(x)\right| \omega(x)^{1 / 2} d x \\
& \leq \int_{\mathcal{X}} \frac{s(x) e^{\mu\left(z_{0}\right) \tau(x)+\delta|\tau(x)|}}{\omega(x)^{1 / 2}}\left|h_{0}(x)\right| \omega(x)^{1 / 2} d x \\
& \leq\left(\int_{\mathcal{X}} \frac{s(x)^{2} \exp \left[2\left(\mu\left(z_{0}\right) \tau(x)+\delta|\tau(x)|\right)\right]}{\omega(x)} d x\right)^{1 / 2}\left(\int_{\mathcal{X}}\left|h_{0}(x)\right|^{2} \omega(x) d x\right)^{1 / 2}<\infty .
\end{aligned}
$$

This shows that $\hat{h}_{0} \in L^{1}(\mathbb{R})$.) By the uniqueness theorem, for $\hat{h}_{0} \in L^{1}(\mathbb{R})$ we have $\hat{h}_{0}=0$ and therefore the function $h_{0}=0$. This shows that the sequence $\left\{g\left(\cdot \mid z_{k}\right)=\right.$ $\left.s(\cdot) t\left(z_{k}\right) e^{\mu\left(z_{k}\right) \tau(\cdot)}: k=1,2, \ldots\right\}$ is complete in $L^{2}(\mathcal{X}, \omega)$.

Proof of Lemma 2. We start with the following two inequalities. Set some positive constants c_{i} for $i=1,2,3$, and $\delta_{i}>0$ for $i=1,2,3,4,5$. Suppose that
$\left|f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}}\right|<c_{1} e^{-\delta_{2}\left(x-c_{2} z\right)^{2}} e^{-\delta_{3} x^{2}}$
and
$0<\left|\int_{-\infty}^{\infty} e^{i t z} f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}} d z\right|<c_{3} e^{-\delta_{4} t^{2}} e^{-\delta_{3} x^{2}}$
for all $t \in \mathbb{R}$. We will show Gaussian distributions satisfy equations (A.3) and (A.4) and then use these two equations to show the property of completeness. Assume $f_{\varepsilon}(\varepsilon)=$ $c_{\varepsilon} e^{-\frac{\varepsilon^{2}}{2 \sigma^{2}}}$ for some $\sigma^{2}<1$, and write $e^{-\frac{(x-z)^{2}}{2 \sigma^{2}}}=e^{-\left(\frac{1}{\sigma^{2}}-1\right) \frac{x^{2}}{2}} e^{-\frac{\left(x-\frac{z}{\sigma^{2}}\right)^{2}}{2}} e^{\frac{\left(1-\sigma^{2}\right) z^{2}}{2 \sigma^{4}}}$. Set $\delta_{1}=\frac{\left(1-\sigma^{2}\right)}{2 \sigma^{4}}$. It follows that
$f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}}=c_{\varepsilon} e^{\frac{-(x-z)^{2}}{2 \sigma^{2}}} e^{-\delta_{1} z^{2}}=c_{\varepsilon} e^{-\left(\frac{1}{\sigma^{2}}-1\right) \frac{x^{2}}{2}} e^{-\frac{\left(x-\frac{z}{\sigma^{2}}\right)^{2}}{2}}$.

Let $\tilde{z}=x-\frac{z}{\sigma^{2}}$ and $\delta_{p}=\frac{1}{4}\left(\frac{1}{\sigma^{2}}-1\right)$. Then
$f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}}=c_{\varepsilon} e^{-2 \delta_{p} x^{2}} e^{-\tilde{z}^{2} / 2}$,
and this implies that $\left|f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}}\right| \leq c_{\varepsilon} e^{-\delta_{p} x^{2}} e^{-\tilde{z}^{2} / 4}$. Hence, the condition (A.3) is satisfied with $\delta_{1}=\frac{\left(1-\sigma^{2}\right)}{2 \sigma^{4}}, c_{1}=c_{\varepsilon}, \delta_{2}=\frac{1}{4}, c_{2}=\frac{1}{\sigma^{2}}$, and $\delta_{3}=\delta_{p}$.

As for equation (A.4), consider the corresponding Fourier transform in the condition (A.4):

$$
\begin{aligned}
& \left|\int_{-\infty}^{\infty} e^{i t z} f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}} d z\right| \\
& \quad=\left|\int_{-\infty}^{\infty} e^{i t\left(\sigma^{2} x-\sigma^{2} \tilde{z}\right)} c_{\varepsilon} e^{-2 \delta_{p} x^{2}} e^{-\tilde{z}^{2} / 2}\left(\sigma^{2}\right) d \tilde{z}\right| \\
& \quad=c_{\varepsilon} \sigma^{2}\left|e^{i \sigma^{2} t x} \int_{-\infty}^{\infty} e^{i\left(-\sigma^{2} t\right) \tilde{z}} e^{-2 \delta_{p} x^{2}} \cdot e^{-\tilde{z}^{2} / 2} d \tilde{z}\right| \\
& \quad=c_{\varepsilon} \sigma^{2} \cdot e^{-2 \delta_{p} x^{2}}\left|\int_{-\infty}^{\infty} e^{i\left(-\sigma^{2} t\right) \tilde{z}} \cdot e^{-\tilde{z}^{2} / 2} d \tilde{z}\right| \\
& \quad=c_{\varepsilon} \sigma^{2} e^{-2 \delta_{p} x^{2}}\left|F\left\{e^{-\tilde{z}^{2} / 2}\right\}\left(-\sigma^{2} t\right)\right| \\
& \quad \leq c_{\varepsilon} \sigma^{2} e^{-2 \delta_{p} x^{2}} e^{-\frac{\sigma^{4} t^{2}}{2}} \\
& \quad \leq c_{\varepsilon} \sigma^{2} e^{-\delta_{p} x^{2}} e^{-\frac{\sigma^{4} t^{2}}{4}},
\end{aligned}
$$

where we have used the fact that $e^{-\tilde{z}^{2} / 2}$ is an eigenfunction of the Fourier transform, $F\left\{e^{-\tilde{z}^{2} / 2}\right\}(t)=\sqrt{2 \pi} e^{-t^{2} / 2}$. This implies that the Gaussian distributions satisfy the condition (A.4).

Next, choose a sequence of distinct numbers $\left\{z_{k}\right\}$ in the support \mathcal{Z} converging to $z_{0} \in \mathcal{Z}$. The inequality
$\frac{g\left(x \mid z_{k}\right)^{2}}{\omega(x)}=\frac{f_{\varepsilon}\left(x-z_{k}\right)^{2}}{\omega(x)}<c_{1}^{2} e^{-2 \delta_{2}\left(x-c_{2} z_{k}\right)^{2}} e^{-\left(2 \delta_{3}-\delta^{\prime}\right) x^{2}} e^{2 \delta_{1} z_{k}^{2}}$
with $\delta_{2}>0$ and $2 \delta_{3}>\delta^{\prime}$ implies that $\int_{\mathbb{R}} \frac{g\left(x \mid z_{k}\right)^{2}}{\omega(x)} d x<\infty$ for all k. Suppose that for some $h_{0} \in L^{2}(\mathbb{R}, \omega), \int_{-\infty}^{\infty} h_{0}(x) f_{\varepsilon}\left(x-z_{k}\right) d x=0$. Divide it by $e^{\delta_{1} z_{k}^{2}}$ and rewrite the equation as $\int_{-\infty}^{\infty} h_{0}(x) \omega(x) \frac{f_{\varepsilon}\left(x-z_{k}\right) e^{-\delta_{1} z_{k}^{2}}}{\omega(x)} d x=0$ for all k.

Consider
$g(z) \equiv \int_{-\infty}^{\infty} h_{0}(x) \omega(x) \frac{f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}}}{\omega(x)} d x$,
which is similar to a convolution and $g\left(z_{k}\right)=0$ for all k. Because $h_{0} \in L^{2}(\mathbb{R}, \omega), h_{0} \omega \in$ $L^{1}(\mathbb{R})$. (Suppose $h_{0} \in L^{2}(\mathbb{R}, \omega)$. Apply Cauchy-Schwartz inequality, $\int_{\mathbb{R}}\left|h_{0}(x) \omega(x)\right| d x=$ $\int_{\mathbb{R}}\left|h_{0}(x)\right| \omega(x)^{1 / 2} \omega(x)^{1 / 2} d x \leq\left(\int_{\mathbb{R}} h_{0}(x)^{2} \omega(x) d x\right)^{1 / 2}\left(\int_{\mathbb{R}} \omega(x) d x\right)^{1 / 2}<\infty$.

This implies $h_{0} \omega \in L^{1}(\mathbb{R})$.) Then, the condition $\delta^{\prime}<\delta_{3}$ implies the function g is integrable because

$$
\begin{aligned}
\int_{-\infty}^{\infty}|g(z)| d z & \leq \int_{-\infty}^{\infty} \int_{\mathbb{R}}\left|h_{0}(x)\right| \omega(x) \frac{f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}}}{\omega(x)} d x d z \\
& =\int_{\mathbb{R}}\left|h_{0}(x)\right| \omega(x)\left(\int_{-\infty}^{\infty} \frac{f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}}}{\omega(x)} d z\right) d x \\
& \leq \int_{\mathbb{R}}\left|h_{0}(x)\right| \omega(x) c_{1} e^{-\left(\delta_{3}-\delta^{\prime}\right) x^{2}}\left(\int_{-\infty}^{\infty} e^{-\delta_{2}\left(x-c_{2} z\right)^{2}} d z\right) d x \\
& \leq c \int_{\mathbb{R}}\left|h_{0}(x)\right| \omega(x) d x\left(\int_{-\infty}^{\infty} e^{-\delta_{2} z^{2}} d z\right)<\infty, \text { for some } c .
\end{aligned}
$$

Let $\phi_{g}(t)=\int_{-\infty}^{\infty} e^{i t z} g(z) d z$ be the Fourier transform of g. We can derive a bound for $\phi_{g}(t)$ as follows:

$$
\begin{align*}
\left|\phi_{g}(t)\right| & =\left|\int_{-\infty}^{\infty} e^{i t z} g(z) d z\right| \\
& =\left|\int_{-\infty}^{\infty} e^{i t z} \int_{\mathbb{R}} h_{0}(x) \omega(x) \frac{f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}}}{\omega(x)} d x d z\right| \\
& \leq \int_{\mathbb{R}}\left|h_{0}(x)\right| \omega(x)\left|\int_{-\infty}^{\infty} e^{i t z} \frac{f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}}}{\omega(x)} d z\right| d x \\
& \leq c_{3}\left(\int_{\mathbb{R}}\left|h_{0}(x)\right| \omega(x) e^{-\left(\delta_{3}-\delta^{\prime}\right) x^{2}} d x\right) e^{-\delta_{4} t^{2}} \\
& \leq c_{3}\left(\int_{\mathbb{R}}\left|h_{0}(x)\right| \omega(x) d x\right) e^{-\delta_{4} t^{2}} \\
& \leq c_{4} e^{-\delta_{4}|t|}, \tag{A.7}
\end{align*}
$$

where we have used (i) an interchange of the order of integration (justified by applying Fubini's theorem to the integrable g), (ii) the inequality (A.4), and (iii) $\delta^{\prime}<\delta_{3}$. Since $h_{0} \omega$ is integrable, $\phi_{g}(t)$ is also integrable. Both g and $\phi_{g}(t)$ are integrable, applying the inversion theorem to g yields that $g(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t z} \phi_{g}(t) d t$. Extend the function g from \mathbb{R} to \mathbb{C} and define
$f(w)=\int_{-\infty}^{\infty} e^{-i t w} \phi_{g}(t) d t$,
with
$w=z+i b$ for $z, b \in \mathbb{R}$ with $|b|<r<\delta_{4}$.
The function $f(w)$ is bounded by using equation (A.7) through
$|f(w)|=\left|\int_{-\infty}^{\infty} e^{-i t w} \phi_{g}(t) d t\right| \leq \int_{-\infty}^{\infty} e^{|b||t|}\left|\phi_{g}(t)\right| d t \leq c_{4} \int_{-\infty}^{\infty} e^{-\left(\delta_{4}-|b|\right)|t|}<\infty$.
Since the right-hand side is finite, then $f(w)$ exists and is finite in $R=\{z+i b:|b|<r\}$. To prove f is analytic (complex differentiable) in R, we consider the difference quotient
at a point $w_{0}=z_{0}+i b_{0}$ in R. For $|\eta|<r_{1}<r-\left|b_{0}\right|$,

$$
\begin{aligned}
|Q(t, \eta)| & \equiv\left|\frac{e^{-i t\left(w_{0}+\eta\right)} \phi_{g}(t)-e^{-i t w_{0}} \phi_{g}(t)}{\eta}\right| \\
& =\left|\frac{e^{-i t w_{0}}\left(e^{-i t \eta}-1\right)}{\eta} \phi_{g}(t)\right| \\
& \leq \frac{\left|e^{-i t w_{0}}\right| e^{r_{1}|t|}}{r_{1}}\left|\phi_{g}(t)\right| \\
& \leq \frac{e^{b_{0} t} e^{r_{1}|t|}}{r_{1}}\left|\phi_{g}(t)\right| \\
& \leq c_{4} \frac{e^{-\left(\delta_{4}-\left|b_{0}\right|-r_{1}\right)|t|}}{r_{1}}
\end{aligned}
$$

where we have used the inequality $\left|\frac{e^{\sigma_{\zeta}}-1}{\zeta}\right| \leq \frac{e^{r_{1}|c|}}{r_{1}}$ for $|\zeta| \leq r_{1}$ and equation (A.7). The condition $\left|b_{0}\right|+r_{1}<r<\delta_{4}$ makes the right-hand side integrable. Since the quotient is bounded above by an integrable function, the Lebesgue dominated convergence theorem implies
$f^{\prime}\left(w_{0}\right)=\lim _{\eta \rightarrow 0} \int_{-\infty}^{\infty} Q(t, \eta) d t=\int_{-\infty}^{\infty} \lim _{\eta \rightarrow 0} Q(t, \eta) d t=-i t \int_{-\infty}^{\infty} e^{-i t w_{0}} \phi_{g}(t) d t$.
Because w_{0} is arbitrary in $R, w \rightarrow f(w)$ is analytic (complex differentiable) in $R=$ $\{z+i b:|b|<r\}$. Consequently, the fact that $f(z)=g(z)$ equals zero for a sequence $\left\{z_{1}, z_{2}, z_{3}, \ldots\right\}$ converging to z_{0} in equation (A.5) implies that f is equal to zero in R by the uniqueness theorem cited in the proof of Lemma 1 . This implies that $f(w)$ is equal to zero for all $w=z$ on the real line, i.e., $\int_{-\infty}^{\infty} e^{-i t z} \phi_{g}(t) d t=0$ for all $z \in \mathbb{R}$. Because the function $\phi_{g}(\cdot)$ is integrable, this yields $\phi_{g}(t)=0$ for all t. (See Theorem 9.12 on page 185 in Rudin (1987).) That is $0=\int_{\mathbb{R}} e^{i t x} h_{0}(x)\left(\int_{-\infty}^{\infty} e^{i t(z-x)} f_{\varepsilon}(x-z) e^{-\delta_{1} z^{2}} d z\right) d x$ which implies $h_{0}(\cdot)\left(\int_{-\infty}^{\infty} e^{i t(z-\cdot)} f_{\varepsilon}(\cdot-z) e^{-\delta_{1} z^{2}} d z\right)=0$ a.e. By equation (A.4), we obtain $h_{0}=0$ a.e. The family $\left\{g(\cdot \mid z)=f_{\varepsilon}\left(\cdot-z_{k}\right): k=1,2, \ldots\right\}$ is complete in $L^{2}(\mathbb{R}, \omega)$.

A.3. Proof of Theorem 1

The prototype of the stability result in Theorem 1 comes from Problem 2 on page 41 of Young (2001) which implies the following sufficient condition for the stability of completeness in Hilbert spaces.

LEMMA A.2. Suppose $\left\{g_{k}\right\}$ is a complete sequence for a Hilbert space \mathcal{H}. If $\left\{f_{k}\right\}$ is a sequence in \mathcal{H} such that
$\sum_{k=1}^{n}\left\|c_{k}\left(g_{k}-f_{k}\right)\right\| \leq \lambda \sum_{k=1}^{n}\left\|c_{k} g_{k}\right\|$,
for some constant $\lambda, 0 \leq \lambda<1$, and arbitrary scalars $c_{1}, \ldots, c_{n}(n=1,2,3, \ldots)$.
Then $\left\{f_{k}\right\}$ is also complete in \mathcal{H}.
Applying Lemma A. 2 to the complete sequence in condition ii) in Theorem 1, we obtain $\left\{f\left(\cdot \mid z_{k}\right) / \omega(\cdot): k=1,2, \ldots\right\}$ is also a complete sequence. Because the weight function is positive, we have shown the family $\left\{f(\cdot \mid z): z \in \mathcal{N}\left(z_{0}\right)\right\}$ is complete in \mathcal{H}.

A.4. Proof of Theorem 2

The stability result used for Theorem 2 comes from Theorem 1 of Dostanić (1990) which adopted the results from Gurarij and Meletidi (1970) for Banach spaces. We summarize the stability results for completeness in Hilbert spaces.

LEMMA A.3. Let $\left\{e_{k}: k=1,2, \ldots\right\}$ be a complete normalized sequence in a Hilbert space \mathcal{H} with $\left\|e_{k}\right\|=1$. Then there is a sequence $\left\{C_{k}: k=1,2, \ldots\right\}\left(C_{k}>0\right)$ which depends on $\left\{e_{k}: k=1,2, \ldots\right\}$, with the following property: for every $\varepsilon>0$ and $e \in \mathcal{H}$, $\|e\|=1$, there is a finite linear combination such that
$\left\|e-\sum_{k=1}^{N} b_{k} e_{k}\right\|<\varepsilon$,
and $\left|b_{k}\right| \leq C_{k}$ for $k=1,2, \ldots, N$.
Gurarij and Meletidi (1970) used the above lemma to prove the following stability results for completeness:

LEMMA A.4. Let $\left\{e_{k}: k=1,2, \ldots\right\}$ be a complete, normalized sequence in a Hilbert space \mathcal{H}. If $\left\{\varepsilon_{k}: k=1,2, \ldots\right\}$ is a sequence of positive numbers such that $\sum_{k=1}^{\infty} C_{k} \varepsilon_{k}<1$ (sequence C_{k} depends on e_{k} and is given by Lemma 12) and for a sequence $\left\{f_{k}: k=1,2, \ldots\right\}$ satisfies
$\left\|f_{k}-e_{k}\right\|<\varepsilon_{k}$,
then the sequence $\left\{f_{k}: k=1,2, \ldots\right\}$ is complete in the Hilbert space \mathcal{H}.
First, apply Lemma A. 3 to the normalized complete sequence $\left\{\frac{g\left(\cdot \mid z_{k}\right) / \omega(\cdot)}{\left\|g\left(\cdot \mid z_{k}\right) / \omega(\cdot)\right\|}: k=\right.$ $1,2, \ldots\}$ to ensure the existence of the sequence $\left\{C_{k}: k=1,2, \ldots\right\}$ in condition ii) of Theorem 2. Then, by Lemma A.4, the sequence $\left\{f\left(\cdot \mid z_{k}\right) / \omega(\cdot): k=1,2, \ldots\right\}$ is a complete sequence. Because the weight function is positive, we have shown the family $\left\{f(\cdot \mid z): z \in \mathcal{N}\left(z_{0}\right)\right\}$ is also complete in \mathcal{H}.

A.5. Proof of Theorem 3

We prove Theorem 3 in three steps:

1. The quadratic deviation from an orthonormal sequence $\left\{\frac{v_{k}^{g}}{\left\|v_{k}^{g}\right\|}: k=1,2, \ldots\right\}$ to the corresponding sequence $\left\{\frac{v_{k}^{f}}{\left\|v_{k}^{g}\right\|}: k=1,2, \ldots\right\}$ is defined as
$\sum_{k=1}^{\infty} \frac{\left\|v_{k}^{g}-v_{k}^{f}\right\|^{2}}{\left\|v_{k}^{g}\right\|^{2}}$.
We show that if the quadratic deviation from an orthonormal basis to an ω independent sequence is finite, then the latter sequence is also a basis. This result is summarized in Lemma A. 5 which is Theorem 15 in Young (2001).
2. Condition ii) implies that the quadratic deviation in equation (A.8) is finite for an orthonormal sequence $\left\{\frac{v_{k}^{g}}{\left\|v_{k}^{g}\right\|}: k=1,2, \ldots\right\}$ constructed by $\left\{g\left(\cdot \mid z_{r_{k}}\right) / \omega(\cdot)\right.$: $k=1,2, \ldots\}$ and an orthogonal sequence $\left\{\frac{v_{k}^{f}}{\left\|v_{k}^{g}\right\|}: k=1,2, \ldots\right\}$ constructed by $\left\{f\left(\cdot \mid z_{r_{k}}\right) / \omega(\cdot): k=1,2, \ldots\right\}$.
3. A linearly independent sequence $\left\{f\left(\cdot \mid z_{r_{k}}\right)\right\}$ in a Hilbert space implies linear independence of the orthogonal sequence $\left\{\frac{v_{k}^{f}}{\left\|v_{k}^{g}\right\|}: k=1,2, \ldots\right\}$. The linearly independent sequence $\left\{\frac{v_{k}^{f}}{\left\|v_{k}^{g}\right\|}: k=1,2, \ldots\right\}$ contains an ω-independent subsequence $\left\{\frac{v_{k_{l}}^{f}}{\left\|v_{k_{l}}^{g}\right\|}: l=1,2, \ldots\right\}$. Finally, for an orthonormal sequence constructed by a complete sequence $\left\{g\left(\cdot \mid z_{r_{l}}\right) / \omega(\cdot)\right\}$ in a Hilbert space and the ω-independent sequence $\left\{\frac{v_{k_{l}}^{f}}{\left\|v_{k_{l}}^{g}\right\|}: l=1,2, \ldots\right\}$, equation (A.8) and Lemma A. 5 imply that the sequence

Step 1. We prove that if the quadratic deviation from an orthonormal basis to an $\omega-$ independent sequence is finite, then the latter sequence is also a basis. This result is Theorem 15 in Young (2001) and summarized in the following lemma.

LEMMA A.5. Suppose that
i) the sequence $\left\{e_{n}(\cdot): n=1,2, \ldots\right\}$ is an orthonormal basis in a Hilbert space \mathcal{H};
ii) the sequence $\left\{f_{n}(\cdot): n=1,2, \ldots\right\}$ in \mathcal{H} is ω-independent;
iii) $\sum_{n=1}^{\infty}\left\|f_{n}(\cdot)-e_{n}(\cdot)\right\|^{2}<\infty$.

Then, the sequence $\left\{f_{n}(\cdot): n=1,2, \ldots\right\}$ is a basis in \mathcal{H}.
Step 2. First, by Lemma A.1(3), we can extract a convergence subsequence $\left\{r_{1}, r_{2}, r_{3}, \ldots\right\}$ such that the orthogonal basis constructed by the basis $\left\{g\left(\cdot \mid z_{r_{k}}\right) / \omega(\cdot): k=\right.$ $1,2, \ldots\}$ is given by
$v_{1}^{g}(\cdot)=g\left(\cdot \mid z_{r_{1}}\right) / \omega(\cdot)$,
$v_{2}^{g}(\cdot)=g\left(\cdot \mid z_{r_{2}}\right) / \omega(\cdot)-\frac{\left\langle g\left(\cdot \mid z_{r_{2}}\right) / \omega(\cdot), v_{1}(\cdot)\right\rangle}{\left\langle v_{1}(\cdot), v_{1}(\cdot)\right\rangle} v_{1}^{g}(\cdot)$,
$v_{k}^{g}(\cdot)=g\left(\cdot \mid z_{r_{k}}\right) / \omega(\cdot)-\sum_{j=1}^{k-1} \frac{\left\langle g\left(\cdot \mid z_{r_{j}}\right) / \omega(\cdot), v_{j}(\cdot)\right\rangle}{\left\langle v_{j}(\cdot), v_{j}(\cdot)\right\rangle} v_{j}^{g}(\cdot)$,
\therefore

We can normalize the orthogonal basis to obtain an orthonormal basis as $\left\{v_{k}^{g}(\cdot) /\left\|v_{k}^{g}(\cdot)\right\|\right.$: $k=1,2, \ldots\}$. The orthogonal basis constructed by the basis $\left\{f\left(\cdot \mid z_{r_{k}}\right) / \omega(\cdot): k=1,2, \ldots\right\}$ is the following sequence
$v_{1}^{f}(\cdot)=f\left(\cdot \mid z_{r_{1}}\right) / \omega(\cdot)$,
$v_{2}^{f}(\cdot)=f\left(\cdot \mid z_{r_{2}}\right) / \omega(\cdot)-\frac{\left\langle g\left(\cdot \mid z_{r_{2}}\right) / \omega(\cdot), v_{1}(\cdot)\right\rangle}{\left\langle v_{1}(\cdot), v_{1}(\cdot)\right\rangle} v_{1}^{f}(\cdot)$,
\vdots
$v_{k}^{f}(\cdot)=f\left(\cdot \mid z_{r_{k}}\right) / \omega(\cdot)-\sum_{j=1}^{k-1} \frac{\left\langle g\left(\cdot \mid z_{r_{j}}\right) / \omega(\cdot), v_{j}(\cdot)\right\rangle}{\left\langle v_{j}(\cdot), v_{j}(\cdot)\right\rangle} v_{j}^{f}(\cdot)$,
\vdots.
This implies $\sum_{k=1}^{\infty}\left\|\frac{v_{k}^{g}(\cdot)}{\left\|v_{k}^{g}(\cdot)\right\|}-\frac{v_{k}^{f}(\cdot)}{\left\|v_{k}^{g}(\cdot)\right\|}\right\|^{2}<\sum_{k=1}^{\infty} \frac{\left\|v_{k}^{g}-v_{k}^{f}\right\|^{2}}{\left\|v_{k}^{g}\right\|^{2}}<\infty$ by Condition ii). This implies the sequence $\left\{\frac{v_{k}^{f}(\cdot)}{\left\|v_{k}^{g}(\cdot)\right\|}: k=1,2, \ldots\right\}$ is quadratically close to the orthonormal basis $\left\{\frac{v_{k}^{g}(\cdot)}{\left\|v_{k}^{g}(\cdot)\right\|}: k=1,2, \ldots\right\}$.

Step 3. By the construction of $\left\{\frac{v_{k}^{f}}{\left\|v_{k}^{g}\right\|}: k=1,2, \ldots\right\}$ and linear independence of $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ in Condition iii), $\left\{\frac{v_{k}^{f}}{\left\|v_{k}^{g}\right\|}: k=1,2, \ldots\right\}$ is also linearly independent. According to the second Theorem in Erdös and Straus (1953), any linearly independent sequence in a normed space contains an ω-independent subsequence. We obtain an ω-independent subsequence $\left\{\frac{v_{k_{l}}^{f}}{\left\|v_{k_{l}}^{g}\right\|}: l=1,2, \ldots\right\}$.

We then show that the ω-independent subsequence $\left\{\frac{v_{k_{l}}^{f}}{\left\|v_{k_{l}}^{g}\right\|}: l=1,2, \ldots\right\}$ is complete in the Hilbert space \mathcal{H}. Since the sequence $\left\{z_{r_{k_{l}}}\right\}$ corresponding to $\left\{\tilde{f}\left(\cdot \mid z_{r_{k_{l}}}\right)\right\}$ is a subsequence of $\left\{z_{k}\right\}$ and also converges to z_{0}, condition i) implies that the corresponding sequence $\left\{g\left(\cdot \mid z_{r_{l}}\right) / w(\cdot)\right\}$ is complete in the Hilbert space defined on \mathcal{X}. This implies the orthonormal sequence constructed by a complete sequence $\left\{g\left(\cdot \mid z_{r_{k}}\right) / \omega(\cdot)\right\}$ and $\left\{\frac{v_{k_{l}}^{f}}{\left\|v_{k_{l}}^{g}\right\|}: l=1,2, \ldots\right\}$ also satisfies equation (A.8). Lemma A. 5 implies that $\left\{\frac{v_{k_{l}}^{f}}{\left\|v_{k_{l}}^{g}\right\|}: l=1,2, \ldots\right\}$ is a basis and thus $\left\{\frac{v_{k_{k}}^{f}}{\left\|v_{k_{l}}^{g}\right\|}: l=1,2, \ldots\right\}$ is complete. By the construction of $\left\{\frac{v_{k_{l}}^{f}}{\left\|v_{k_{l}}^{g}\right\|}: l=1,2, \ldots\right\}$, the completeness of $\left\{\frac{v_{k_{l}}^{f}}{\left\|v_{k_{l}}^{g}\right\|}: l=1,2, \ldots\right\}$ implies that the family $\left\{f(\cdot \mid z): z \in \mathcal{N}\left(z_{0}\right)\right\}$ is also complete.

A.6. Proof of the Linear Independence

Proof of Lemma 3(3). We have for $z>0$ and $0 \in \mathcal{X}$
$f(x \mid z)=\frac{d}{d x} F_{0}(z \times x)$
with

$$
W(0)=\Pi_{i=1}^{I}\left(z_{k_{i}} \frac{d^{(i)} F_{0}(0)}{d x^{(i)}}\right) \times \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
z_{k_{1}} & z_{k_{2}} & \ldots & z_{k_{I}} \\
\ldots & \ldots & \ldots & \ldots \\
\left(z_{k_{1}}\right)^{I-1} & \left(z_{k_{2}}\right)^{I-1} & \ldots & \left(z_{k_{I}}\right)^{I-1}
\end{array}\right) .
$$

According to the property of the Vandermonde matrix, the determinant $W(x)$ in equation (6) is not equal to zero when $F_{0}(x)$ has all the nonzero derivatives at $x=0$ and z_{k} are nonzero and distinctive. We may also generalize the above argument to show $\left\{f\left(\cdot \mid z_{k}\right)\right\}$ is linear independent with
$f(x \mid z)=\frac{d}{d x} F_{0}(\mu(z) \tau(x))$
where $\mu^{\prime}(z) \neq 0$ and $\tau(\cdot)$ is monotonic with $\tau(0) \equiv 0$. While the restriction $\mu^{\prime}(z) \neq 0$ guarantees that the $\mu\left(z_{k}\right)$ are different for a distinct sequence $\left\{z_{k}\right\}$ around z_{0}, the condition that $\tau(\cdot)$ is monotonic ensures that the linear independence for any x is the same as that for any $\tau(x)$. If $\sum_{i=1}^{I} c_{i} f\left(\cdot \mid z_{k_{i}}\right)=0$, then it is equivalent to $\sum_{i=1}^{I} c_{i} \frac{d}{d x} F_{0}\left(\mu\left(z_{k_{i}}\right) \tau(\cdot)\right)=0$. This implies $\sum_{i=1}^{I} c_{i} \frac{d}{d x} F_{0}\left(\mu\left(z_{k_{i}}\right) \tau\right)=0$ for all $\tau \in \tau(\mathcal{X})$. Thus, we may show the determinant of $W(x)$ of the function $f(x \mid z)$ is nonzero at $x=0$.

A.7. Proof of Completeness in Applications

Proof of Lemma 4. Since f_{ε} is normally distributed, by Lemma 2 we may generate a complete sequence $\left\{g\left(x \mid z_{k}\right)=f\left(x-z_{k} \mid z_{0}\right)=f_{\varepsilon}\left(x-z_{k}\right): k=1,2, \ldots\right\}$ satisfying condition i) in Theorems 1,2 , and 3 . Condition ii) 2), condition ii) 3), and condition ii) 4), respectively, are condition ii) of Theorems 1,2 , and 3 . Thus, condition i) and condition ii) 2), condition i) and condition ii) 3), and condition i) and condition ii) 4), respectively, satisfy conditions of Theorems 1,2 , and 3 and those theorems imply $\{f(\cdot \mid z): z \in \mathcal{Z}\}$ is complete in $L^{2}(\mathbb{R}, \omega)$.

As for the condition ii) 1), pick a distinct sequence $\left\{z_{k}: k=1,2, \ldots\right\}$ such that z_{k} converging to z_{0} and $\left\|z_{k}-z_{0}\right\|<\varepsilon$. Then, we have (1) $\left\{f_{\varepsilon}\left(--z_{k}\right): k=1,2, \ldots\right\}$ satisfies condition i) of Theorem 2 by condition i), and (2) condition ii) of Theorem 2 is also satisfies by

$$
\left\|\frac{f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)}{\left\|f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)\right\|}-\frac{1}{\left\|f_{\varepsilon}\left(\cdot-z_{k}\right) / \omega(\cdot)\right\|} \frac{1}{\sigma\left(z_{k}\right)} f_{\varepsilon}\left(\frac{\cdot-z_{k}}{\sigma\left(z_{k}\right)}\right) / \omega(\cdot)\right\|=0
$$

because $\sigma\left(z_{k}\right)=1$ for $k=1,2, \ldots$. Theorem 2 implies that $\left\{f_{\varepsilon}\left(\frac{-z_{k}}{\sigma\left(z_{k}\right)}\right): z \in \mathcal{Z}\right\}$ is complete in $L^{2}(\mathcal{X}, \omega)$.

Proof of Lemma 5. We take distinct $z_{k} \rightarrow z_{0}$ such that $\left|z_{k}-z_{0}\right|<\epsilon$. Consider the sequence $\left\{g\left(x \mid z_{k}\right)=f_{\varepsilon}\left(x-z_{k}\right): k=1,2, \ldots\right\}$. This implies that $g\left(x \mid z_{0}\right)=f_{\varepsilon}(x)=$ $f\left(x \mid z_{0}\right)$ because $h\left(z_{0}, \varepsilon\right)=\varepsilon$. In addition, the assumptions of ε imply $\left\{g\left(\cdot \mid z_{k}\right): k=\right.$ $1,2, \ldots\}$ is complete in $L^{2}(\mathbb{R}, \omega)$ for the weight function ω by Lemma 2. Then the complete sequence $\left\{g\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ satisfies the condition i) in Theorems 1,2 , and 3.

We may check that the family $\left\{f\left(x \mid z_{k}\right)=\left|\frac{\partial}{\partial x} h^{-1}\left(z_{k}, x\right)\right| f_{\varepsilon}\left(h^{-1}\left(z_{k}, x\right)\right): k=1,2, \ldots\right\}$ is in $L^{2}(\mathbb{R}, \omega)$. Consider for some constant c_{1} and $z \in \mathcal{N}\left(z_{0}\right)$

$$
\begin{aligned}
\int_{\mathbb{R}}|f(x \mid z)|^{2} d x & =\int_{\mathbb{R}}\left|\frac{\partial h^{-1}(z, x)}{\partial x} f_{\varepsilon}\left(h^{-1}(z, x)\right)\right|^{2} d x \\
& =\int_{\mathbb{R}}\left|\left(\frac{\partial h(z, \varepsilon)}{\partial \varepsilon}\right)^{-1} f_{\varepsilon}(\varepsilon)\right|^{2} \frac{\partial h(z, \varepsilon)}{\partial \varepsilon} d \varepsilon \\
& =\int_{\mathbb{R}}\left|\frac{\partial h(z, \varepsilon)}{\partial \varepsilon}\right|^{-1}\left|f_{\varepsilon}(\varepsilon)\right|^{2} d \varepsilon \\
& \leq c_{1} \int_{\mathbb{R}}\left|\frac{\partial h\left(z_{0}, \varepsilon\right)}{\partial \varepsilon}\right|^{-1}\left|f_{\varepsilon}(\varepsilon)\right|^{2} d \varepsilon \\
& =\frac{c_{1}}{C} \int_{\mathbb{R}}\left|f_{\varepsilon}(\varepsilon)\right|^{2} d \varepsilon<\infty
\end{aligned}
$$

The last step holds because condition i) and the assumption of ε imply $\left|\frac{\partial h\left(z_{0}, \varepsilon\right)}{\partial \varepsilon}\right|>C>0$ and $\int_{\mathbb{R}}\left|f_{\varepsilon}(\varepsilon)\right|^{2} d \varepsilon<\infty$. That means $f(x \mid z) \in L^{2}(\mathbb{R})$ for $z \in \mathcal{N}\left(z_{0}\right)$. Since the weight function is bounded, $f(x \mid z) \in L^{2}(\mathbb{R}, \omega)$ for $z \in \mathcal{N}\left(z_{0}\right)$.

Similar to the proof of Lemma 4, the results in condition ii) 2), condition ii) 3), and condition ii) 4) are direct applications of Theorems 1,2 , and 3, and these results imply that completeness of $\left\{f(\cdot \mid z): z \in \mathcal{N}\left(z_{0}\right)\right\}$ in $L^{2}(\mathbb{R}, \omega)$. As for the results in condition ii) 1), for z such that $\left\|z-z_{0}\right\|<\varepsilon, f(\cdot \mid z)=\left|\frac{\partial}{\partial x} h^{-1}(z, \cdot)\right| f_{\varepsilon}\left(h^{-1}(z, \cdot)\right)=f_{\varepsilon}(\cdot-c z)$. Because $c \neq 0, c z_{k}$ is also a converging sequence. Then, the assumptions of ε also imply $\left\{f\left(\cdot \mid z_{k}\right): k=1,2, \ldots\right\}$ is complete in $L^{2}(\mathbb{R}, \omega)$ by Lemma 2 . We have the completeness of $\left\{f(\cdot \mid z): z \in \mathcal{N}\left(z_{0}\right)\right\}$.

Proof of Lemma 6. Without loss of generality, we consider $x=\left(x_{1}, x_{2}\right), z=\left(z_{1}, z_{2}\right)$, $\mathcal{X}=\mathcal{X}_{1} \times \mathcal{X}_{2}$, and $\mathcal{Z}=\mathcal{Z}_{1} \times \mathcal{Z}_{2}$. Condition i) implies that $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right): k=1,2,3, \ldots\right\}$ and $\left\{f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right): k=1,2,3, \ldots\right\}$ are complete in their corresponding Hilbert spaces.

We then show the sequence $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right): k=1,2,3, \ldots\right\}$ is complete because $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right): k=1,2,3, \ldots\right\}$ and $\left\{f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right): k=1,2,3, \ldots\right\}$ are complete in corresponding Hilbert spaces. Using the property of the weight function, we obtain

$$
\begin{aligned}
& \iint h\left(x_{1}, x_{2}\right) f\left(x_{1} \mid z_{1}\right) f\left(x_{2} \mid z_{2}\right) d x_{1} d x_{2} \\
& \quad=\iint h\left(x_{1}, x_{2}\right) \frac{f\left(x_{1} \mid z_{1}\right) f\left(x_{2} \mid z_{2}\right)}{\omega\left(x_{1}, x_{2}\right)} \omega\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& \quad=\int\left(\int h\left(x_{1}, x_{2}\right) \frac{f\left(x_{1} \mid z_{1}\right)}{\omega\left(x_{1}\right)} \omega\left(x_{1}\right) d x_{1}\right) \frac{f\left(x_{2} \mid z_{2}\right)}{\omega\left(x_{2}\right)} \omega\left(x_{2}\right) d x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\int\left(\int h\left(x_{1}, x_{2}\right) f\left(x_{1} \mid z_{1}\right) d x_{1}\right) f\left(x_{2} \mid z_{2}\right) d x_{2} \\
& \equiv \int h^{\prime}\left(x_{2}, z_{1}\right) f\left(x_{2} \mid z_{2}\right) d x_{2} .
\end{aligned}
$$

If the LHS is equal to zero for any $\left(z_{1}, z_{2}\right) \in \mathcal{Z}_{1} \times \mathcal{Z}_{2}$, then for any given z_{1} $\int h^{\prime}\left(x_{2}, z_{1}\right) f\left(x_{2} \mid z_{2}\right) d x_{2}$ equals to zero for any z_{2}. Since $f\left(x_{2} \mid z_{2}\right)$ is complete, we have $h^{\prime}\left(x_{2}, z_{1}\right)=0$ for almost sure $x_{2} \in \mathcal{X}_{2}$ and any given $z_{1} \in \mathcal{Z}_{1}$. Furthermore, for any given $x_{2} \in \mathcal{X}_{2}, h^{\prime}\left(x_{2}, z_{1}\right)=0$ for any $z_{1} \in \mathcal{Z}_{1}$ implies $h\left(x_{1}, x_{2}\right)=0$ for almost sure $x_{1} \in \mathcal{X}_{1}$. Therefore, the sequence $\left\{f_{x_{1} \mid z_{1}}\left(\cdot \mid z_{1 k}\right) f_{x_{2} \mid z_{2}}\left(\cdot \mid z_{2 k}\right): k=1,2,3, \ldots\right\}$ is complete. Thus, we have a family of functions satisfying the condition i) in Theorems 1,2 , and 3. Because its corresponding condition in the condition ii) in Theorems 1, 2, and 3 are assumed directly in condition ii) 2), condition ii) 3), and condition ii) 4), respectively, the sequence $\left\{f_{x_{1}, x_{2} \mid z_{1}, z_{2}}\left(\cdot, \cdot \mid z_{1 k}, z_{2 k}\right): k=1,2,3, \ldots\right\}$ is complete in these conditions. As for the first part, we can regard it as a special case of the third part with zero deviation in a converging sequence. We have reached our claim.

[^0]: We thank Peter C.B. Phillips, two associate editors, and two anonymous referees for their time and helpful comments. We also thank the participants at the International Economic Association 16th World Congress, Beijing, China, and the 2013 Annual Meeting of American Economic Association, San Diego, USA, for various suggestions regarding this paper. The usual disclaimer applies. Address correspondence to Yingyao Hu, Department of Economics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; e-mail: yhu@jhu.edu.

