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Summary In this paper, we present a semi-parametric identification and estimation method
for censored dynamic panel data models of short time periods and their average partial
effects with only two periods of data. The proposed method transforms the semi-parametric
specification of censored dynamic panel data models into a parametric family of distribution
functions of observables without specifying the distribution of the initial condition. Then
the censored dynamic panel data models are globally identified under a standard maximum
likelihood estimation framework. The identifying assumptions are related to the completeness
of the families of known parametric distribution functions corresponding to censored dynamic
panel data models. Dynamic tobit models and two-part dynamic regression models satisfy
the key assumptions. We propose a sieve maximum likelihood estimator and we investigate
the finite sample properties of these sieve-based estimators using Monte Carlo analysis. Our
empirical application using the Medical Expenditure Panel Survey shows that individuals
consume more health care when their incomes increase, after controlling for past health
expenditures.

Keywords: Dynamic tobit model, Initial condition, Nonlinear dynamic panel data model,
Two-part dynamic regression model, Unobserved covariate, Unobserved heterogeneity.

1. INTRODUCTION

The identification and estimation of dynamic panel data models is one of the main challenges
in econometrics. These models are appealing in applied research because they consider the
lagged value of the dependent variable as one of the explanatory variables, and they contain
observed and unobserved permanent (heterogeneous) or transitory (serially correlated) individual
effects. In this paper, we focus on the identification and estimation of semi-parametric censored
dynamic panel data models of short time periods and their average partial effects with two periods
of data. The observed distribution fYit,Xit,Yit−1,Xit−1 of {Yit, Xit, Yit−1, Xit−1} is associated with
a parametric distribution of the limited dependent variable Yit conditional on (Xit, Yit−1, Uit),
i.e. fYit|Xit,Yit−1,Uit ;θ0 , where Xit is an observed explanatory variable and Uit is a time-varying
unobservable with the unknown parameter of interest θ0, and a non-parametric distribution
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fXit,Yit−1,Xit−1,Uit as follows:

fYit,Xit,Yit−1,Xit−1 =
∫
fYit|Xit,Yit−1,Xit−1,Uit ;θ0fXit,Yit−1,Xit−1,Uitduit

=
∫
fYit|Xit,Yit−1,Uit ;θ0fXit,Yit−1,Xit−1,Uitduit.

Here, we have used fYit|Xit,Yit−1,Xit−1,Uit ;θ0 = fYit|Xit,Yit−1,Uit ;θ0 . The condition comes from the
parametric assumption on the conditional distribution of the dependent variable, which assumes
that (Xit, Yit−1, Uit) contains enough information on the dependent variable.

Relying on the parametric specification of the censored dynamic panel data model
fYit|Xit,Yit−1,Uit ;θ0 , we provide sufficient conditions under which both the finite-dimensional
parameter θ0 and the non-parametric density fXit,Yit−1,Xit−1,Uit are identified from the observed
distribution fYit,Xit,Yit−1,Xit−1 .

In dynamic linear panel data models, researchers have developed and compared several
instrumental variable (IV) estimators and generalized method of moment (GMM) estimators
in the literature; see, e.g. Anderson and Hsiao (1982), Arellano and Bond (1991), Arellano and
Bover (1995), Ahn and Schmidt (1995), Kiviet (1995), Blundell and Bond (1998), Hahn (1999)
and Hsiao et al. (2002). When the time dimension T is fixed in nonlinear panel data models, the
presence of the unobserved effect prevents the construction of a log-likelihood function that can
be used to estimate structural parameters consistently. This is the so-called incidental parameters
problem discussed by Neyman and Scott (1948). However, the dynamic nature of the models
leads to the initial conditions problem because integrating the individual unobserved effect out
of the distribution raises the issue of how to specify the distribution of the initial condition given
unobserved heterogeneity. Wooldridge (2005) proposed finding the distribution conditional on
the initial value and the observed history of strictly exogenous explanatory variables to solve the
initial conditions problem. Shiu and Hu (2013) adopted the correlated random effect approach for
nonlinear dynamic panel data models without specifying the distribution of the initial condition.
They used the identification results of the non-classical measurement error models of Hu and
Schennach (2008) to achieve non-parametric identification of nonlinear dynamic panel data
model with three periods of data. Honoré (1993), Hu (2002) and Honoré and Hu (2004) used
moment restrictions to identify and estimate the parameters of censored dynamic panel data
models. Their results were achieved without making distributions of unobserved heterogeneity
and the disturbance, but they failed to identify the average partial effects.

Other quantities of interest in nonlinear panel data applications include the partial effects on
the mean response, averaged across the population distribution of the unobserved heterogeneity.
Chernozhukov et al. (2013) derived bounds for average effects in non-separable panel data
models and showed that they can tighten considerably for semi-parametric discrete choice
models. Graham and Powell (2012) studied the average partial effect over the distribution of
unobserved heterogeneity, which represents the causal effect of a small change in an endogenous
regressor on a continuously valued outcome of interest. Hoderlein and White (2012) considered
identification of distributional effects and average effects in general non-separable models,
allowing for arbitrary dependence between the persistent unobservables and the regressors of
interest, even if there are only two time periods. However, their approach explicitly rules out
lagged dependent variables. Dynamic models focus on the effects of the lagged dependent
variables on the current dependent variable, whereas we want to account or control for the
influence of all other variables. The effect of lagged dependent variables reflects the persistence
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Semi-parametric identification and estimation method 57

of the dependent variables over time and the amount of this state dependence can be measured
by the average partial effect.

This study focuses on the identification and estimation of semi-parametric censored dynamic
panel data models of short time periods and their average partial effects with two periods of
data. Under a semi-parametric specification, the model includes the parametric distribution of
censored dependent variable Yit conditional on (Xit, Yit−1, Uit), i.e. fYit|Xit,Yit−1,Uit ;θ0 and the non-
parametric distribution fXit,Yit−1,Xit−1,Uit . We show that the identification of this semi-parametric
model can be reduced to the identification of parameter θ0 with a parametric density function
fXit,Yit−1,Xit−1;θ0 . The identification of θ0 in fYit|Xit,Yit−1,Uit ;θ0 can lead to that of the proposed
semi-parametric censored dynamic panel data models of short time periods. This identification
technique involves three steps of transformations associated with the completeness of known
probability density functions (PDFs). The first step is to apply the inverse of an integral operator
using fYit|Xit,Yit−1,Uit ;θ as a kernel. The second step is to integrate out the unobserved covariate.
The last step is to normalize the integrated semi-parametric density function created in the
second step. The true value of structural parameters can be uniquely determined by maximizing
the likelihood function of the transformed semi-parametric family of the PDFs of observables.
This process also identifies the average partial effect of the censored dynamic panel data
models. The transformation steps rely on the completeness of the families of known PDFs
fYit|Xit,Yit−1,Uit ;θ corresponding to censored dynamic panel data models and observed conditional
density functions of the dependent variable given the explanatory variables fYit|Xit,Yit−1,Xit−1 .
Although completeness is usually considered to be a high-level technical condition, we show
that the completeness assumptions hold in some popular censored dynamic panel data models,
such as dynamic tobit models and two-part dynamic regression models. D’Haultfoeuille (2011),
Andrews (2011), Hu and Shiu (2017), Hu et al. (2017) and Chen et al. (2014) provided sufficient
conditions for L2 completeness. If a bounded mixing density is assumed, then the condition for
identification becomes the bounded completeness conditions, which is much weaker than the L2

completeness. See Mattner (1993) and Chernozhukov and Hansen (2005) for uses of bounded
completeness.

A study close in spirit to our work is that of Schennach (2014), who introduces a
general method to convert a model defined by moment conditions involving both observed and
unobserved variables into equivalent moment conditions involving only observable variables.
Our approach shares the strategy by converting a conditional density function instead of moment
conditions.

These identification results suggest a semi-parametric sieve maximum likelihood estimator
(sieve MLE) for the proposed model. The consistency of the sieve MLE and the asymptotic
normality of its parametric components can be directly obtained from the standard treatment
in the sieve MLE literature. This study shows how to implement sieve MLEs for dynamic
tobit models and two-part dynamic regression models. Combining the estimated parametric
components with the nuisance parameter for the initial joint distribution makes it possible to
derive a consistent estimator for the average partial effect. An apparent advantage of the proposed
sieve MLE procedure is that we can estimate these nonlinear dynamic panel data models using
only two periods of data without specifying initial conditions. The proposed method also allows
for time dummies, flexible functional forms of state dependence Yit−1, such as quadratics or
interaction terms, and parametric heteroscedasticity.

The application of the sieve MLE is to investigate the effects that describe the dynamic
behaviour of annual individual health expenditures using the Medical Expenditure Panel Survey
(MEPS) Panel 4. The MEPS data record detailed information on health-care use, expenditures,
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58 Y. Hu and J. L. Shiu

sources of payment and insurance coverage for the US population from 1999 to 2000. There are
sizable fractions of the sample with zero medical expenditure in the data so the dynamic censored
model is applicable. The result of the semi-parametric dynamic censored specifications indicates
that individuals consume more health care when their incomes increase, after controlling for past
health expenditures.

The rest of the paper is organized as follows. In Section 2, we present the identification of
censored dynamic panel data models of short time periods through several transformations. In
Section 3, we show that the identification assumptions hold for dynamic tobit models and two-
part dynamic regression models. In Section 4, we present the proposed sieve MLE. In Section 5,
we show the application of the sieve MLE to a dynamic tobit model describing the dynamic
behaviours of annual individual health expenditures, using data from the MEPS. Finally, we
provide concluding remarks in Section 6. The appendices include proofs of each transformation
step and a discrete case.

2. IDENTIFICATION OF CENSORED DYNAMIC PANEL DATA MODELS

Suppose g1(·, ·; θ1), and g2(·, ·; θ2) are parametric functions known up to the parameter (θ1, θ2).
Consider the following censored dynamic panel data model:

Yit = g1(g2(Xit, Yit−1; θ20), Vi + εit; θ10), ∀i = 1, . . . , N ; t = 1, . . . , T . (2.1)

Here, Yit is the dependent variable, Xit is a vector of observed explanatory variables, εit is a
transitory error term, Vi is an unobservable individual-specific effect and (θ10, θ20) is the true
value of parameters to be estimated. The time series T is short, regardless of the number N of
cross-sectional units of the panel. The functions g1 and g2 can be specified by users, such as
g1(χ, ν; θ1) = max(0, χ + ν) and g2(Xit, Yit−1; θ2) = X′

itβ + γ Yit−1, etc. The specifications of
g2 can contain time trends, allowing nonlinear relationships such as quadratics or interactions
terms. One of the difficulties of identification is that the variables, (X′

it, Yit−1, Vi), and the
transitory error term, εit, are not independently distributed. We impose following restrictions
on the transitory error term εit in model (2.1).

ASSUMPTION 2.1. (EXOGENOUS SHOCKS) Let ηit be an unobserved serially correlated
component in the past such that ηit = ϕ({Xiτ , Yiτ−1, εiτ }τ=0,1,...,t−1) for some function ϕ. Assume
that a transitory random shock ξit is independent of {Xiτ , Yiτ−1, Vi, εiτ−1} for any τ ≤ t , and that
the transitory error term εit has the following decomposition:

εit = ηit + ξit. (2.2)

Plugging (2.2) in Assumption 2.1 into model (2.1) leads to

Yit = g1(g2(Xit, Yit−1; θ20), Vi + ηit + ξit; θ10)

≡ g1(g2(Xit, Yit−1; θ20), Uit + ξit; θ10), (2.3)

whereUit = Vi + ηit can be considered as an unobserved covariate. To describe every structure of
model (2.3) by a parameter, we assume that the distribution of ξit has a parametric representation.
This effectively reduces the identification problem to the identification of a set of parameters.
This framework leads to the following definitions.

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 59

DEFINITION 2.1. Let �3 be a parameter space and let dF(x; θ3) be a proper distribution
function. If dF(x; θ30) is the true distribution, then dF(x; θ3) is correctly specified at θ30. The
parameter point θ30 is globally identifiable if there exists no other θ3 ∈ �3 such that with
probability 1, dF(x; θ3) = dF(x; θ30), where the measure is taken with respect to θ30.

DEFINITION 2.2. The parameter point θ30 is locally identifiable if there exists an open
neighbourhood of θ30 containing no other θ3 such that with probability 1, dF(x; θ3) = dF(x; θ30),
where the measure is taken with respect to θ30.

If θ30 is globally identifiable, then it is locally identifiable.

ASSUMPTION 2.2. The distribution of the transitory random shock dF (ξit; θ3) is known and is
correctly specified at an unknown θ30. The parameter point θ30 is locally identifiable.

Under some specifications of functions, g1 and g2, according to Assumptions 2.1 and 2.2,
there is a unique conditional distribution associated with each structure in the censored dynamic
panel data model (2.3) and the identification of the censored dynamic panel data models (2.1)
is implied by that of the distribution of Yit conditional on (Xit, Yit−1, Uit) (i.e., fYit|Xit,Yit−1,Uit ;θ ).
Because the distribution of Uit remains unknown, the assumption gives a semi-parametric
representation. Given this representation, the identification problem is to find conditions such
that a true underlying parameter θ0 := (θ10, θ20, θ30)T can be distinguished on the basis of sample
observations. The conditional PDF fYit|Xit,Yit−1,Uit ;θ corresponding to FYit|Xit,Yit−1,Uit ;θ is called the
parametric censored density function in this paper. We introduce two examples to highlight this
important connection. Suppose F· and f· denote the CDF and the PDF of an independent random
shock, respectively.

EXAMPLE 2.1. (DYNAMIC TOBIT MODEL) Assume g1(χ, ν; θ1) = max(0, χ + ν)

Yit = max{0, g2(Xit, Yit−1; θ2) + Uit + ξit} with ∀i = 1, . . . , N ; t = 1, . . . , T .

The parametric censored density function is

fYit|Xit,Yit−1,Uit ;θ = Fξit ;θ3 (−g2(Xit, Yit−1; θ2) − Uit)
1(Yit=0)

×fξit ;θ3 (Yit − g2(Xit, Yit−1; θ2) − Uit)
1(Yit>0). (2.4)

EXAMPLE 2.2. (TWO-PART DYNAMIC REGRESSION MODEL) Define a binary indicator
variable dit = 1(g3(Xit, Yit−1; θ1) + ςit ≥ 0), where 1(·) is the 0–1 indicator function and ςit has
a known CDF Fςit . Suppose that Yit > 0 is observed for dit = 1 and Yit = 0 for dit = 0. When
Yit > 0,

log(Yit) = g2(Xit, Yit−1; θ2) + Uit + ξit with ∀i = 1, . . . , N ; t = 1, . . . , T .

The conditional distribution of interest is

fYit|Xit,Yit−1,Uit ;θ = Fςit (−g3(Xit, Yit−1; θ1))1(Yit=0)

{
(1 − Fςit (−g3(Xit, Yit−1; θ1)))

×fξit ;θ3 (log(Yit) − g2(Xit, Yit−1; θ2) − Uit)
1

Yit

}1(Yit>0)

. (2.5)

C© 2017 Royal Economic Society.
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60 Y. Hu and J. L. Shiu

The model of Example 2.1 is also considered in Shiu and Hu (2013) but the approach of the
paper requires one more period of the covariate. The model of Example 2.2 is closely related to
the set-up of Kyriazidou (2001) who allows the outcome and selection equations to have different
fixed effects. There exist a number of economic applications of these censored dynamic panel
data models, where the dependent variables Yit can represent the amount of insurance coverage
chosen by an individual, annual women’s labour supply, a firm’s expenditures on R&D or annual
individual health expenditures. In this paper, our models contain the lagged censored dependent
variables on the right-hand side. Because piles of the dependent variable at zero can be regarded
as optimal solutions of utility maximizing behaviour, these models can also be considered as
corner solution models with lagged censored dependent variables.

2.1. General identification

Consider the parametric censored density function:

fYit|Xit,Yit−1,Uit ;θ (yit|xit, yit−1, uit), (2.6)

where Yit is a limited dependent variable for an individual i, and the explanatory variables include
a lagged dependent variable, a set of possibly time-varying explanatory variables Xit and the
unobserved covariate Uit. We assume that θ0 ∈ � is local identifiable. In other words, θ0 is a
unique value of θ in an open neighbourhood of θ0, which specifies the exact structure of the
model. Consider panel data containing two periods, {Yit, Xit, Yit−1, Xit−1}i for i = 1, 2, . . . , N .
Assume that for each i, (Yit, Xit, Yit−1, Xit−1) is an independent random draw from a bounded
distribution fYit,Xit,Yit−1,Xit−1 . Applying the law of total probability leads to the following,

fYit,Xit,Yit−1,Xit−1 =
∫
fYit|Xit,Yit−1,Uit ;θ0fXit,Yit−1,Xit−1,Uitduit, (2.7)

where fXit,Yit−1,Xit−1,Uit is the joint density function of variables (xit, yit−1, xit−1, uit). Let Yit, Xit

and Uit be the support of random variables Yit, Xit and Uit, respectively. Set L2(Y) = {h(·) :∫
Y |h(y)|2dy < ∞} and L2(U , ω) = {h(·) :

∫
U |h(u)|2ω(u)du < ∞, and

∫
U ω(u)du < ∞}. Note

the weighted L2-space, L2(U , ω), contains a constant function (i.e. c(u) = c ∀u ∈ U). We
consider the identification issue over a proper subset of Yit. The first step is to construct
fXit,Yit−1,Xit−1,Uit ;θ and to avoid an unwanted restriction. Let Ỹit be a subset of Yit and denote Ỹit as
a random variable whose support is in Ỹit and Ỹit = Yit over Ỹit. Extending (2.7) to a parameter
θ ∈ � over the domain Ỹit × Xit × Yit−1 × Xit−1 yields

fỸit,Xit,Yit−1,Xit−1︸ ︷︷ ︸
observed from data

=
∫

fỸit|Xit,Yit−1,Uit ;θ︸ ︷︷ ︸
parametric specification

fXit,Yit−1,Xit−1,Uit ;θduit. (2.8)

Because the observable density function fỸit,Xit,Yit−1,Xit−1
on the left-hand side and the parametric

censored density function fỸit|Xit,Yit−1,Uit ;θ are known up to θ , it is possible to construct a parametric
joint density function fXit,Yit−1,Xit−1,Uit ;θ using (2.8). Given (xit, yit−1) and a parameter θ , define an
integral operator as follows:

LfỸit |Xit ,Yit−1 ,Uit
;θ : L2(Uit, ω) → L2(Ỹit) (2.9)

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 61

with

(LfỸit |Xit ,Yit−1 ,Uit
;θh)(̃yit) =

∫
fỸit|Xit,Yit−1,Uit ;θ (̃yit|xit, yit−1, uit)h(uit)duit.

If the integral operator LfỸit |Xit ,Yit−1 ,Uit
;θ is invertible for each θ , then (2.8) suggests that the joint

density function fXit,Yit−1,Xit−1,Uit can be obtained by

fXit,Yit−1,Xit−1,Uit ;θ ≡ L−1
fỸit |Xit ,Yit−1 ,Uit

;θ (fỸit,Xit,Yit−1,Xit−1
).

Plugging the true parameter θ0 into this equation results in

fXit,Yit−1,Xit−1,Uit ;θ0 ≡ L−1
fỸit |Xit ,Yit−1,Uit

;θ0
(fỸit,Xit,Yit−1,Xit−1

)

by (2.7). The joint density function fXit,Yit−1,Xit−1,Uit ;θ still achieves the true joint density function at
the population parameter θ0. The concept of completeness provides a sufficient condition for the
invertibility of the integral operator using the parametric censored density function as a kernel.
The following definition presents this completeness.

DEFINITION 2.3. A density function f (y|u) satisfies a completeness condition for L2(U , ω) if
for h(u) ∈ L2(U , ω) such that

∫
(f (y|u)2/ω(u))du < ∞ and∫
h(u)f (y|u)du = 0 for all y, (2.10)

then h(u) = 0 almost everywhere. In other words, there is no non-zero function in L2(U , ω)
with zero integration for each function in the family of the density functions {f (y|u) : y ∈ Y}.
By switching the roles of y and u and dropping ω, it is possible to define {f (y|u) : u ∈ U} as
complete in L2(Y), and this definition can be generalized to function forms such as f (y, u).

ASSUMPTION 2.3. (DEPENDENCE BETWEEN Yit AND Uit) For each θ ∈ � and fixed (xit, yit−1),
the family of the parametric censored density functions {fỸit|Xit,Yit−1,Uit;θ : ỹit ∈ Ỹit} is complete
over L2(Uit, ω).

Assumption 2.3 implies a cardinality restriction in that the cardinality of Uit is less than the
cardinality of Ỹit. Thus, if Uit is a finite discrete set, then the proposed method can apply to a
dynamic discrete choice model in which the dependent variable Yit takes more discrete values.
However, because of inaccessibility of units of measurement of the unobserved covariate Uit, to
some extent it is restrictive to assume Uit is discrete. Therefore, allowing the unobserved covariate
Uit to take continuous values is more appealing and this study focuses on censored dynamic panel
data models with continuous Uit.

Suppose that

(LfỸit |Xit ,Yit−1 ,Uit
;θh1)(̃yit) = (LfỸit |Xit ,Yit−1,Uit

;θh2)(̃yit) for all ỹit ∈ Ỹit.

Then, Assumption 2.3 guarantees that h1 = h2 almost everywhere. Hence, the operator
LfỸit |Xit ,Yit−1 ,Uit

;θ is invertible for each θ and (xit, yit−1). This assumption requires dependence
between Yit and Uit because the independence between Yit and Uit violates Assumption 2.3.
Although Assumption 2.3 ensures the existence of the joint density function, fXit,Yit−1,Xit−1,Uit ;θ ,
it might not be identifiable. The variation of the parameter θ in fXit,Yit−1,Xit−1,Uit ;θ might be
lost in the sense that for any open neighbourhood of θ0, there exists some θ1 �= θ0 such that
fXit,Yit−1,Xit−1,Uit ;θ1 = fXit,Yit−1,Xit−1,Uit ;θ0 . In other words, fXit,Yit−1,Xit−1,Uit ;θ is not locally identifiable.

C© 2017 Royal Economic Society.
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62 Y. Hu and J. L. Shiu

In this case, applying the inverse transformation is useless because the parameter of interest θ is
not distinguished in the new transformed joint density functions, preventing the identification of
the parameter. The assumption below prevents this loss.

ASSUMPTION 2.4. Given each (xit, yit−1), suppose fXit,Yit−1,Xit−1 > 0. Assume that: (a) for the
dependence between Yit andXit−1, the family of the observable conditional density functions over
Xit−1, {fỸit|Xit,Yit−1,Xit−1

: xit−1 ∈ Xit−1}, is complete over L2(Ỹit); (b) for the dependence between
Yit andUit, the family of the parametric censored density function over Uit, {fỸit|Xit,Yit−1,Uit;θ0

: uit ∈
Uit}, is complete over L2(Ỹit).

This assumption warrants several comments. First, the conditional density functions in
Assumption 2.4(a) contain only observables. Second, Assumption 2.4(a) suggests thatXit cannot
be constant over time. If Xit is constant across time, then Xit = Xit−1 and fỸit|Xit,Yit−1,Xit−1

=
fỸit|Xit,Yit−1

, which clearly violates the completeness in Assumption 2.4(a). Finally, similar to
Assumption 2.3, Assumption 2.4(b) requires that the cardinality of Ỹit is less than the cardinality
of Uit. Combining the cardinality restrictions in Assumptions 2.3 and 2.4(b) shows that Uit and Ỹit

must have the same cardinality. This restriction is compatible when both the dependent variable
Yit and the unobserved covariate Uit take continuous values.

LEMMA 2.1. (PARAMETRIC IDENTIFICATION OF fXit,Yit−1,Xit−1,Uit ;θ ) Under Assumptions 2.3 and
2.4, the parametric joint density fXit,Yit−1,Xit−1,Uit;θ is correctly specified at θ0 and the parameter θ0

is locally identifiable (i.e. there is an open neighbourhood of θ0 containing no other θ such that
fXit,Yit−1,Xit−1,Uit;θ = fXit,Yit−1,Xit−1,Uit;θ0 ).

Because fXit,Yit−1,Xit−1,Uit ;θ contains the unobserved component Uit, we need to integrate it out
to acquire an observed density function. Consider

f̃Xit,Yit−1,Xit−1;θ (xit, yit−1, xit−1) ≡
∫
fXit,Yit−1,Xit−1,Uit ;θ (xit, yit−1, xit−1, uit)duit. (2.11)

To identify θ from the integrated parametric density function f̃Xit,Yit−1,Xit−1;θ , it is necessary
to examine whether f̃Xit,Yit−1,Xit−1;θ can be correctly specified at θ0 and the parameter θ0 is
locally identifiable after applying the integration. This integration step might impose too many
restrictions on the parameters and degenerate the variation of the function over its parameter
space. Thus, it is necessary to rule out these degenerated cases. The following condition
maintains the parametric representation of f̃Xit,Yit−1,Xit−1;θ .

ASSUMPTION 2.5. (VARIATION OF PARAMETERS AROUND θ0) The family of the derivative of
the parametric censored density functions with respect to θ , {(∂/∂θ)fỸit|Xit,Yit−1,Uit;θ0

: uit ∈ Uit}, is
complete over L2(Ỹit).

We summarize the results of the transformation of the parametric censored density function
after the integration.

LEMMA 2.2. (IDENTIFICATION OF θ0) Under Assumptions 2.3–2.5, the integrated parametric
joint density f̃Xit,Yit−1,Xit−1;θ is correctly specified at θ0 and the parameter θ0 is locally identifiable.

At this point in the process, the unobserved component of the parametric censored density
function in (2.6) has been transformed out and the parameter θ of the function becomes
the parameter of the observable parametric function f̃Xit,Yit−1,Xit−1;θ . However, if f̃Xit,Yit−1,Xit−1;θ

does not integrate to unity (with respect to the measure dxitdyit−1dxit−1), it is not a candidate

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 63

of the parametric family of PDFs for fXit,Yit−1,Xit−1 and the standard MLE cannot be applied
to f̃Xit,Yit−1,Xit−1;θ . To obtain a valid semi-parametric family of PDFs, perform the following
normalization step

fXit,Yit−1,Xit−1;θ ≡ f̃Xit,Yit−1,Xit−1;θ∫ ∫ ∫
f̃Xit,Yit−1,Xit−1;θdxitdyit−1dxit−1

. (2.12)

Similar to the previous discussion, it is necessary to show that the PDF of observables
fXit,Yit−1,Xit−1;θ is correctly specified at θ0 and the parameter θ0 is locally identifiable after this
normalization. The following assumption and lemma demonstrate the existence of a non-trivial
θ0 after normalization.

ASSUMPTION 2.6. (DEPENDENCE BETWEEN Yit AND Xit−1) Assume that the family of the
observable conditional density functions {(∂/∂xit−1)fỸit|Xit,Yit−1,Xit−1

: xit−1 ∈ Xit−1} is complete
over L2(Ỹit) for each xit, yit−1.

If Xit−1 is discrete, then the derivative can be replaced with the difference. Notice that both
Assumptions 2.4(a) and 2.6 are related to the observable conditional distribution fỸit|Xit,Yit−1,Xit−1

and Assumption 2.6 implies Assumption 2.4(a). Hence, the two assumptions are compatible
and it is only necessary to verify the completeness in Assumption 2.6. The assumption rules
out the possible separable cases, such as f (Ỹit|Xit, Yit−1, Xit−1) = h1(Ỹit, Xit, Yit−1)h2(Xit−1) or
f (Ỹit|Xit, Yit−1, Xit−1) = h1(Ỹit)h2(Xit, Yit−1, Xit−1).

LEMMA 2.3. (LOCAL IDENTIFICATION) Under Assumptions 2.3, 2.4(b), 2.5 and 2.6, the PDF
of observables after normalization, fXit,Yit−1,Xit−1;θ , is correctly specified at θ0 and the parameter
θ0 is locally identifiable.

The transformation includes applying the inverse of an integral operator using the function
fYit|Xit,Yit−1,Uit ;θ as a kernel, integrating out the unobserved covariate, and normalization. After
these three steps of transformation associated with the completeness of PDFs, the parametric
PDFs of observables {fXit,Yit−1,Xit−1;θ : θ ∈ �} is correctly specified at θ0 and the parameter θ0 is
locally identifiable under Assumptions 2.3–2.6. To distinguish the parameters of interest θ0 from
the parameter space� on the basis of sample information, use the Kullback–Leibler information
criterion

K(θ ) = E
[

log
(fXit,Yit−1,Xit−1;θ (xit, yit−1, xit−1)

fXit,Yit−1,Xit−1 (xit, yit−1, xit−1)

)]
,

where the expectation is taken with respect to fXit,Yit−1,Xit−1 . The fact that θ0 is globally identified
in � is related to the zero set of K(θ ). The following result is a direct application of the results
in Bowden (1973), which is the standard framework of the identifiability criterion of maximum
likelihood estimation; we omit its proof.

THEOREM 2.1. (GLOBAL IDENTIFICATION) Suppose thatK(θ ) = 0 has a unique solution at θ =
θ0 in �. Under Assumptions 2.3, 2.4(b), 2.5 and 2.6, the parametric censored density function
fYit|Xit,Yit−1,Uit;θ and the joint density function fXit,Yit−1,Xit−1,Uit can then be identified from the joint
distribution of two-period observations {Yit, Xit, Yit−1, Xit−1} for i = 1, 2, . . . , N .

In addition to the Kullback–Leibler information of classical statistics, the identification result
is based on the completeness of the families of known PDFs fYit|Xit,Yit−1,Uit ;θ corresponding to
censored dynamic panel data models of short time periods and observed conditional density

C© 2017 Royal Economic Society.
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64 Y. Hu and J. L. Shiu

functions of the dependent and explanatory variables fYit|Xit,Yit−1,Xit−1 . In the next section, we show
that the completeness condition holds for some popular censored dynamic panel data models.

Theorem 2.1 provides the identification of the parameter θ0. However, because Uit does not
have meaningful units of measurement, it is not apparent what values of Uit we should use.
In nonlinear models, estimating the average partial effects of explanatory variables is more
attractive than estimating parameters. Thus, this study introduces the average structure function
by averaging a scalar function of yit, ω(yit), across the distribution of Uit in the population. Let
(Xit, Yit−1) be a given value of the explanatory variables, whose average structure function is

μ(Xit, Yit−1) ≡ EUit [EYit [ω(Yit)|Xit, Yit−1, Uit]]

=
∫
Uit

( ∫
Yit

ω(Yit)fYit|Xit,Yit−1,Uitdyit

)
fUitduit. (2.13)

The marginal distribution of the unobserved covariate Uit is also identified by the integration of
the joint density function:

fUit =
∫
Xit

∫
Yit−1

∫
Xit−1

fXit,Yit−1,Xit−1,Uit dxitdyit−1dxit−1.

Combining the identification results of fYit|Xit,Yit−1,Uit and fUit provides the identification of the
average structure function μ(Xit, Yit−1). This indicates that the average partial effect is also
identified because the average partial effect can be defined by taking derivatives or differences
of the average structure function in (2.13) with respect to elements of (Xit, Yit−1). This yields the
identification of the average partial effect.

COROLLARY 2.1. Under Assumptions 2.3, 2.4(b), 2.5 and 2.6, the average partial effect defined
as derivatives or differences of (2.13) is identified from the joint distribution of two-period
observations, {Yit, Xit, Yit−1, Xit−1} for i = 1, 2, . . . , N .

In a parametric likelihood case, the local identifiability of unknown parameters is equivalent
to the non-singularity of the information matrix under weak regularity conditions. If the true
parameter θ0 is a critical point of K(θ0), then a sufficient condition of the uniqueness of θ0 is
K ′′(θ0) is negative semi-definite, where K ′′(θ0) = [Klm]l,m with

Klm = −E
[( (∂/∂θl)fXit,Yit−1,Xit−1;θ |θ=θ0 (∂/∂θm)fXit,Yit−1,Xit−1;θ |θ=θ0

f 2
Xit,Yit−1,Xit−1

)]
, (2.14)

where (∂/∂θl)fXit,Yit−1,Xit−1;θ |θ=θ0 is equal to the term in Appendix C after replacing with the
partial derivative ∂/∂θl . These results are sufficient conditions for the identification.

COROLLARY 2.2. Suppose that in an open neighbourhood of θ0 in �, the second derivative
of the Kullback–Leibler function K(θ ) with an element in (2.14) is negative definite. Under
Assumptions 2.3, 2.4(b), 2.5 and 2.6, the parametric censored density function fYit|Xit,Yit−1,Uit;θ

and the joint density function fXit,Yit−1,Xit−1,Uit can be identified from the joint distribution of two-
period observations {Yit, Xit, Yit−1, Xit−1} for i = 1, 2, . . . , N .

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 65

3. MOTIVATING EXAMPLES

Consider the two examples presented at the beginning of Section 2. Here, we show that the
completeness conditions in Section 2 hold in these cases. Assumptions 2.3, 2.4(b) and 2.5 are
related to the completeness of the variant forms of the parametric censored density function
fỸit|Xit,Yit−1,Uit ;θ . Equations (2.4) and (2.5) show that the completeness of the parametric censored
density functions over positive Yit in the two motivating examples are connected to the PDF of
the random shock ξit. Therefore, in this section, we focus on what types of parametric distribution
assumptions in ξit make the completeness assumptions hold. For simplicity, assume the domains
of ξit and Uit are the whole real line R.

Most of the interesting leading cases for models in (2.4) and (2.5) occur when the random
shock ξit is assumed to have an independent Gaussian white noise process. For simplicity, we
assume g2(Xit, Yit−1; θ2) = X′

itβ + γ Yit−1. In this case, the parametric censored density function
fYit|Xit,Yit−1,Uit is fully parameterized and correctly specified at θ0. The specifications of the models
under the normality assumption are as follows.

Semi-parametric dynamic tobit models. Assuming that ξit ∼ N (0, σ 2
ξ ), (2.4) leads to

fYit|Xit,Yit−1,Uit ;θ =
[
1 −�

(X′
itβ + γ Yit−1 + Uit

σξ

)]1(Yit=0)

×
[ 1

σξ
φ
(Yit −X′

itβ − γ Yit−1 − Uit

σξ

)]1(Yit>0)
, (3.1)

where θ = (β, γ, σ 2
ξ )T .

Semi-parametric two-part dynamic regression models. Let g3(Xit, Yit−1; θ1) = X′
itβd +

γdYit−1. Suppose that ςit ∼ N (0, 1) and ξit ∼ N (0, σ 2
ξ ). Equation (2.5) then becomes

fYit|Xit,Yit−1,Uit ;θ = (1 −�(X′
itβd + γdYit−1 + Uit))

1(Yit=0)
{
�(X′

itβd + γdYit−1 + Uit)

×φ
( log(Yit) −X′

itβ − γ Yit−1 − Uit

σξ

) 1

σξYit

}1(Yit>0)

, (3.2)

where θ = (βd, γd, β, γ, σξ )T .
The normality assumption makes it possible to verify the completeness of the parametric

censored density function fỸit|Xit,Yit−1,Uit ;θ in Assumptions 2.3, 2.4(b) and 2.5 directly. It is then
necessary to show that the parametric censored density functions (3.1) and (3.2) satisfy these
completeness assumptions. To do this, we introduce the completeness of normal distributions and
exponential families in L2 from Hu and Shiu (2017), which are variants of the results of Newey
and Powell (2003). Denote X , and Z as the support of random variables x and z, respectively.

LEMMA 3.1. Suppose that the distribution of x conditional on z is N (a + bz, σ 2) for σ 2 > 0
and the support of z contains an open set, then E[h(x)|z = z1] = 0 for any z1 ∈ Z and some
h ∈ L2(X ) implies h(·) = 0 almost everywhere in X ; equivalently, {f (·|z) : z ∈ Z} is complete
in L2(X ).

LEMMA 3.2. Let f (x|z) = s(x)t(z) exp(μ(z)τ (x)), where s(x) > 0, the mapping from x → τ (x)
is one-to-one in x, and support of μ(z) contains an open set, then E[h(x)|z = z1] = 0 for any
z1 ∈ Z and some h ∈ L2(X ) implies h(·) = 0 almost everywhere in X ; equivalently, the family
of conditional density functions {f (·|z) : z ∈ Z} is complete in L2(X ).

C© 2017 Royal Economic Society.
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66 Y. Hu and J. L. Shiu

Lemma 3.1 implies that for an open setOy ⊂ Y , {φ((u− (a + by))/σ ) : y ∈ Oy} is complete
in L2(U). This completeness can be extended to a weighted space L2(U , ω) for an appropriately
chosen weight function ω. Set ω(u) = e−(u2/2σ 2). Suppose that h ∈ L2(U , ω) such that for y ∈
Oy , ∫

h(u)φ
(u− (a + by)

σ

)
du = 0.

The equation can be rewritten as∫
(h(u)e−(u2/4σ 2))

(φ((u− (a + by))/σ )

e−(u2/4σ 2)

)
du = 0.

Multiplying the equation by e−(1/2σ 2)(a+by)2
results in∫

(h(u)e−(u2/4σ 2))
(φ((u− (a + by))/σ )

e−(u2/4σ 2)
e−(1/2σ 2)(a+by)2

)
du = 0.

It follows that ∫
(h(u)ω(u)1/2)φ

(u− 2(a + by)√
2σ

)
du = 0

for y ∈ Oy .1 Note h(u)ω(u)1/2 ∈ L2(U) because h ∈ L2(U , ω). Lemma 3.1 also implies
that {φ((u− 2(a + by))/

√
2σ ) : y ∈ Oy} is complete L2(U). Applying this result to the

equation suggests that h(u) = 0 almost everywhere. Therefore, {φ((u− (a + by))/σ ) : y ∈ Oy}
is complete in L2(U , ω).

The following lemma provides the completeness of the families of variant of the normal PDF
φ, which is related to the two motivating examples.

LEMMA 3.3. Suppose the domain U contains an open set. For a constant c, the families of
functions {(y − c − u)φ((y − c − u)/σξ ) : u ∈ U} and {(σ 2

ξ − (y − c − u)2)φ((y − c − u)/σξ ) :
u ∈ U} are complete in L2(Ỹ).

Based on the information about the completeness of normal distributions, it is possible to
investigate the completeness condition of models in (3.1) and (3.2). Set Ỹit = R

+. Given θ ∈ �,
and (xit, yit−1), the proposed parametric censored density functions over Ỹit in the motivating
examples can be written as the following.

Semi-parametric dynamic tobit models.

fỸit|Xit,Yit−1,Uit ;θ = 1

σξ
φ
( Ỹit −X′

itβ − γ Yit−1 − Uit

σξ

)
. (3.3)

Semi-parametric two-part dynamic regression models.

fỸit|Xit,Yit−1,Uit ;θ = �(X′
itβd + γdYit−1 + Uit)

×φ
( log(Ỹit) −X′

itβ − γ Yit−1 − Uit

σξ

) 1

σξ Ỹit
. (3.4)

1 We have used the equation φ((u− (a + by))/σ ) = eu
2/4σ 2

φ((u− 2(a + by))/
√

2σ )e(1/2σ 2)(a+by)2
.

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 67

The completeness conditions in Assumptions 2.3, 2.4(b) and 2.5 are associated with the
dependent variables Ỹit and the unobserved covariate Uit. Therefore, it is necessary to investigate
which functional forms connect these two variables. In these models, the dependent variables Ỹit

and the unobserved covariate Uit are both inside the standard normal PDF φ. We can directly
apply the result of Lemma 3.1 to (3.3) to show that semi-parametric dynamic tobit models
satisfies Assumptions 2.3 and 2.4(b). Because the standard normal CDF � is positive, the semi-
parametric two-part dynamic regression models also fulfil Assumptions 2.3 and 2.4(b) using
Lemma 3.1 and a change of variable.

Assumption 2.5 requires that the partial derivatives of the parametric censor density function
with respect to all components of the parameter θ be complete. According to the functional
forms in (3.3) and (3.4) and the use of a change of variable, two types of the partial derivatives
of fỸit|Xit,Yit−1,Uit ;θ0

should be considered: the first is the partial derivative with respect to the
components of β and γ , and the second is σξ . The partial derivatives in the dynamic tobit models
are

∂fỸit|Xit,Yit−1,Uit ;θ

∂β
= Xit

σ 2
ξ

( Ỹit −X′
itβ − γ Yit−1 − Uit

σξ

)
×φ

( Ỹit −X′
itβ − γ Yit−1 − Uit

σξ

)
,

∂fỸit|Xit,Yit−1,Uit ;θ

∂γ
= Yit−1

σ 2
ξ

( Ỹit −X′
itβ − γ Yit−1 − Uit

σξ

)
×φ

( Ỹit −X′
itβ − γ Yit−1 − Uit

σξ

)
,

and

∂fỸit|Xit,Yit−1,Uit ;θ

∂σξ
= −(σ 2

ξ − (Ỹit −X′
itβ − γ Yit−1 − Uit)2)

σ 4
ξ

×φ
( Ỹit −X′

itβ − γ Yit−1 − Uit

σξ

)
.

This implies that the completeness of the first type of the partial derivatives can be reduced
to the completeness of the family of {(y − c − u)φ(y − c − u/σξ ) : u ∈ U} in L2(Ỹ) for some
constant c. Similarly, the completeness of the second type of the partial derivatives depends
on the family of {(σ 2

ξ − (y − c − u)2)φ(y − c − u/σξ ) : u ∈ U} in L2(Ỹ) for some constant c.
By the completeness results in Lemma 3.3, the semi-parametric dynamic tobit models satisfies
Assumption 2.5. The semi-parametric two-part dynamic regression models can be handled in a
similar manner and the results are summarized as follows.

PROPOSITION 3.1. The two motivating models, the semi-parametric dynamic tobit models and
the semi-parametric two-part dynamic regression models in (3.1) and (3.2), satisfy Assumptions
2.3, 2.4(b) and 2.5.

This discussion also applies to models with heteroscedasticity, which allow a more general
functional form in corner solution models. If ξit has a heteroscedastic normal distribution such

C© 2017 Royal Economic Society.
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68 Y. Hu and J. L. Shiu

that ξit ∼ N (0, h(Xit, Yit−1; σξ )), then the parametric censored density functions in (3.1) and (3.2)
become, respectively,

fYit|Xit,Yit−1,Uit ;θ =
(

1 −�
(X′

itβ + γ Yit−1 + Uit

h(Xit, Yit−1; σξ )

))1(Yit=0)

×
( 1

h(Xit, Yit−1; σξ )
φ
(Yit −X′

itβ − γ Yit−1 − Uit

h(Xit, Yit−1; σξ )

))1(Yit>0)
(3.5)

and

fYit|Xit,Yit−1,Uit ;θ = (1 −�(X′
itβd + γdYit−1 + Uit))

1(Yit=0)

×
(
�(X′

itβd + γdYit−1 + Uit)φ
( log(Yit) −X′

itβ − γ Yit−1 − Uit

h(Xit, Yit−1; σξ )

)
× 1

h(Xit, Yit−1; σξ )Yit

)1(Yit>0)

. (3.6)

Adding the heterogeneous structure does not affect the functional form, which dominates
the relationship between the dependent variables Ỹit and the unobserved covariate Uit. The
derivations in homoscedastic cases can be extended to heteroscedastic cases in a similar
fashion.

The assumptions that are not related to the parametric censored density functions
include Assumptions 2.4(a) and 2.6. Recall that Assumption 2.6 implies Assumption 2.4(a).
These assumptions require functional form restrictions on the conditional density function
fỸit|Xit,Yit−1,Xit−1

of observables. With the well-known completeness from the normal distributions
in Lemma 3.1, we can construct fỸit|Xit,Yit−1,Xit−1

satisfying Assumptions 2.4(a) and 2.6 for the
dynamic tobit models and two-part dynamic regression models.

Consider the conditional version of (2.8),

fỸit|Xit,Yit−1,Xit−1
=

∫
fỸit|Xit,Yit−1,Uit ;θfUit|Xit,Yit−1,Xit−1;θduit. (3.7)

In the dynamic tobit models, for fỸit|Xit,Yit−1,Uit ;θ in (3.3), we use a parametric normal assumption
for

fUit|Xit,Yit−1,Xit−1;θ = 1

σξ
φ
(Uit −X′

itβ − γ Yit−1 + ψ1(Xit, Yit−1; θ1) + βψ2(Xit−1)

σξ

)
.

Then, given a fixed (Xit, Yit−1), and Xit−1 containing an open set, we obtain2

fỸit|Xit,Yit−1,Xit−1
= 1√

2σξ
φ
( Ỹit − ψ1(Xit, Yit−1; θ1) − βψ2(Xit−1)√

2σξ

)
. (3.8)

2 Set A = Ỹit −X′
itβ − γ Yit−1, B = Ỹit − ψ1(Xit, Yit−1; θ1) − βψ2(Xit−1) and M = B − A. The result follows

directly from e
−((A−Uit)2/2σ 2

ξ )
e
−((Uit+M)2/2σ 2

ξ ) = e
−((Uit−(A−M)/2)2/σ 2

ξ )
e
−((A+M)2/4σ 2

ξ ).
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Semi-parametric identification and estimation method 69

This implies

∂

∂Xit−1
fỸit|Xit,Yit−1,Xit−1

= 1

2σ 2
ξ

βψ ′
2(Xit−1)(Ỹit − ψ1(Xit, Yit−1; θ1) − βψ2(Xit−1))

×φ
( Ỹit − ψ1(Xit, Yit−1; θ1) − βψ2(Xit−1)√

2σξ

)
.

A sufficient condition to satisfy Assumption 2.6 for this specification of fỸit|Xit,Yit−1,Xit−1
is

βψ ′
2(Xit−1) �= 0 and the range of ψ2 contains an open set, according to Lemma 3.3. As for the

two-part dynamic regression models, we can use the similar parametric normal assumption as

fUit|Xit,Yit−1,Xit−1;θ = c(Xit, Yit−1, Xit−1)�(X′
itβd + γdYit−1 + Uit)

1

σξ

×φ
(Uit −X′

itβ − γ Yit−1 + ψ1(Xit, Yit−1; θ1) + βψ2(Xit−1)

σξ

)
,

where c(·) is a density normalization coefficient. This conditional density function also fulfils
Assumption 2.6.

For a model with a larger number of observed covariates, suppose Xit−1 = (Xi1t−1, Xi2t−1),
where Xi1t−1 and Xi2t−1 are k1 × 1 and k2 × 1 vectors of explanatory variables and Xi2t−1 takes
continuous values. Consider

fỸit|Xit,Yit−1,Xit−1
= 1

σξ

×φ
( Ỹit − ψ3(Xit, Yit−1, Xi1t−1; θ1) − ψ4(Xit, Yit−1, Xi1t−1;β)Xi2t−1

σξ

)
. (3.9)

In this case, we only use the dependence between Ỹit and Xi2t−1 and the completeness in
Assumption 2.6 becomes that the family{ ∂

∂xit−1
fỸit|Xit,Yit−1,Xit−1

: xi2t−1 ∈ Xi2t−1

}
is complete over L2(Ỹit) for each xit, yit−1, xi1t−1, where Xi2t−1 is the support of xi2t−1.
A sufficient condition for Assumption 2.6 is Pr(rank[ψ4(Xit, Yit−1, Xi1t−1;β)] = 1) = 1 and
Xi2t−1 contains an open set.

The examples in this section rely on the normality of the random shock ξit and it is possible
to relax the normality assumption. However, in limited dependent variable models, the key issue
is comparing estimated average partial effects across different models rather than parameter
estimates. These models are likely to do an appropriate job of providing average partial effects
under more general settings because these models require observing two periods of data without
the initial condition for the dependent variable.

4. SEMI-PARAMETRIC ESTIMATION

The parameter in (2.6) is identified in Theorem 2.1 and it can be determined using (2.8).
Optimizing certain empirical criteria in general parameter spaces produces a sieve MLE. The
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70 Y. Hu and J. L. Shiu

integral (2.8) suggests a corresponding sieve MLE:

(θ̂ , f̂1)T = arg max
(θ,f1)T ∈An

1

N

N∑
i=1

ln
∫
fYit|Xit,Yit−1,Uit ;θ (yit|xit, yit−1, uit)

×f1(xit, yit−1, xit−1, uit; θ )duit, (4.1)

using a two-period independent and identically distributed (i.i.d.) sample {yit, xit, yit−1, xit−1}Ni=1.
A general review of the semi-parametric sieve MLE appears in Shen (1997), Chen and
Shen (1998) and Ai and Chen (2003). The space An is a sequence of approximating sieve
spaces containing sieve approximations of the parameter because maximization over the whole
parameter space A is undesirable. In addition, θ is a finite-dimensional parameter of interest
and f1 is a potentially infinite-dimensional nuisance parameter or non-parametric component
that varies with θ . The following subsection provides a detailed implementation of sieve
approximations of the non-parametric component f1.

4.1. Restrictions on sieve coefficients

As for a non-parametric series estimator of fXit,Yit−1,Xit−1,Uit ;θ , constructing a sieve approximating
series that varies with the model parameter θ is an essential issue for the proposed sieve MLE.
Denote δ1 as a vector of sieve coefficients and fXit,Yit−1,Xit−1,Uit ;δ1 as the sieve approximation
function. The function fXit,Yit−1,Xit−1,Uit ;δ1 in dynamic censored models with a lagged dependent
variable consists of two different parts, Yit−1 = 0 and Yit−1 > 0, and these parts can be built
according to their numerical structures. Set fYit−1=0 = Prob(Yit−1 = 0). A way to split these two
parts is

fXit,Yit−1,Xit−1,Uit ;θ,δ1 =
{
fXit,Xit−1,Uit|Yit−1=0fYit−1=0 if y = 0,

fXit,Yit−1>0,Xit−1,Uit if y > 0.

The corresponding density restrictions are∫
fXit,Xit−1,Uit|Yit−1=0dxitdxit−1duit = 1

and

fYit−1=0 +
∫
fXit,Yit−1>0,Xit−1,Uitdyit−1dxitdxit−1duit = 1.

Set

z1,σξ ≡ x ′
itβ − x ′

it−1β − uit

σξ
and z2,σξ ≡ x ′

itβ − uit

σξ
.

For the Yit−1 = 0 part, consider

(fXit,Xit−1,Uit|Yit−1=0)1/2 =
in∑
i=0

jn∑
j=0

kn∑
k=0

âijkqi(z1,σξ )qj (z2,σξ )qk
(uit

σξ

)
.

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 71

where q ′
i , q

′
j and q ′

k represent the orthonormal Fourier series:

q0(z1) = 1√
l1

and qi(z1) = 1√
l1

sin
( iπ
l1
z1

)
or qi(z1) = 1√

l1
cos

( iπ
l1
z1

)
,

q0(z2) = 1√
l2

and qj (z2) = 1√
l2

sin
(jπ
l2
z2

)
or qj (z2) = 1√

l2
cos

(jπ
l2
z2

)
,

q0(uit) = 1√
l3
, qk(uit) =

√
2

l3
cos

(kπ
l3
uit

)
.

However, suppose that yit−1 ∈ (0, l4]. Write

(fXit,Yit−1>0,Xit−1,Uit )
1/2 =

in∑
i=0

jn∑
j=0

kn∑
k=0

ln∑
l=0

ãijklq̃i(z
′
1,σξ )q̃j (z

′
2,σξ )q̃k

(uit

σξ

)
q̃l

(yit−1

l4

)
,

where

z′1,σξ ≡ x ′
itβ − γyit−1 − x ′

it−1β − uit

σξ
,

z′2,σξ ≡ x ′
itβ − γyit−1 − uit

σξ

q0(z4) = 1√
l4

ql(z4) =
√

2

l4
cos

( lπ
l4
z4

)
.

The density restrictions for these sieve coefficients are

in∑
i=0

jn∑
j=0

kn∑
k=0

(âijk)
2 = 1 and fYit−1=0 +

in∑
i=0

jn∑
j=0

kn∑
k=0

ln∑
l=0

(ãijkl)
2 = 1. (4.2)

4.2. Estimating average partial effects

Denote fXit,Yit−1,Xit−1,Uit ;θ̂ ,δ1
as the sieve MLE of the joint distribution fXit,Yit−1,Xit−1,Uit in the

dynamic censored model, where θ̂ is the estimated finite dimensional parameter of the proposed
sieve MLE. This parameter can be used to obtain the sieve approximations of the marginal
distribution of the unobserved covariate Uit:

f̂Uit =
∫
Xit

∫
Yit−1

∫
Xit−1

fXit,Yit−1,Xit−1,Uit ;θ̂ ,δ1
dxitdyit−1dxit−1. (4.3)

Therefore, under the assumptions made in Theorem 2.1, it is possible to consistently estimate
average partial effects at interesting values of the explanatory variables. For example, the average

C© 2017 Royal Economic Society.
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72 Y. Hu and J. L. Shiu

structural functions in the dynamic tobit models are based on

μ̂(Xit, Yit−1) ≡
∫
Uit

( ∫
Yit

max(0, Yit)fYit|Xit,Yit−1,Uit ;θ̂ dYit

)
f̂1,UitdUit

=
∫
Uit

(
�

(X′
itβ̂ + γ̂ Yit−1 + Uit

σ̂ξ

)
(X′

itβ̂ + γ̂ Yit−1 + Uit)

+ σ̂ξφ
(X′

itβ̂ + γ̂ Yit−1 + Uit

σ̂ξ

))
f̂1,UitdUit. (4.4)

The magnitude of state dependence or average partial effect from Y0 = 0 to Y1 at interesting
values of the explanatory variable Xit can be measured by the difference

μ̂(Xit, Y1) − μ̂(Xit, Y0 = 0). (4.5)

However, the average partial effect of a continuous explanatory variable can be defined using
derivatives of the average structural functions in (4.4).

5. EMPIRICAL APPLICATION

In this study, we report on the application of the proposed sieve MLE to a censored dynamic
tobit model describing the annual health expenditures of individuals, given their past health
expenditures and other covariates. In this case, the dependent variables represent the log
values of annual individual medical expenditures plus one. To accommodate the piles of the
corner outcomes, this dynamic censored model is a natural fit for this health expenditure
topic. Identification results show that the proposed model has some advantages: (a) arbitrary
correlation between unobserved time invariant factors, such as individual inherent health and
other explanatory variables; (b) allowing the absence of initial observations of individual health
expenditures. In addition, the proposed sieve MLE only requires two periods of data and provides
average partial effects.

The empirical analysis in this study is based on the MEPS Panel 4. The MEPS data provide
nationally representative information on health-care use, expenditures, sources of payment and
insurance coverage for the US population from 1999 to 2000. The MEPS, which contains detailed
data on annual total health-care expenditure, demographic characteristics, health conditions,
health status, use of medical care services and income, is appropriate for our empirical
application. Table 1 presents summary statistics of health insurance variables, socio-economic
variables and health status regressors for the first and second years of the data. We have two
periods of data with 7,669 cross-sectional observations. There are sizable fractions of the sample
with zero medical expenditure: 18.646% (1,430/7,669) and 20.576% (1,578/7,669) in periods 1
and 2, respectively.

The estimated equation of dynamic health expenditures is

Yit = max{0, X′
itβ + γ Yit−1 + Vi + ηit + ξit︸ ︷︷ ︸

εit

} ∀i = 1, . . . , N ; t = 1, 2,

= max{0, X′
itβ + γ Yit−1 + Uit + ξit}. (5.1)

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 73

Table 1. Sample statistics.

Variable Definition Periodit Periodt+1

Lnexp log(medical expenditures + 1) 5.292 5.307
(2.903) (3.038)

Lninc ln(family income + 1) 9.056 9.217
(2.821) (2.695)

Lnfam ln(family size) 1.036 1.034
(0.538) (0.542)

Age Age 39.427 40.429
(12.498) (12.500)

Male = 1 if person is male; 0 otherwise 0.469 0.469
(0.499) (0.499)

Black = 1 if race of household head is black; 0.148 0.148
0 otherwise (0.355) (0.355)

Education Education of the household head 12.599 12.599
(3.087) (3.087)

Physical = 1 if the person has a physical limitation; 0.057 0.059
0 otherwise (0.231) (0.235)

Ndental Number of dental care visits 0.938 0.857
(1.746) (1.617)

Good = 1 if self-rated health is good; 0 otherwise 0.266 0.276
(0.442) (0.447)

Fair = 1 if self-rated health is fair; 0 otherwise 0.086 0.081
(0.280) (0.274)

Poor = 1 if self-rated health is poor; 0 otherwise 0.026 0.027
(0.158) (0.162)

Deduction = 1 if the person has non-zero itemized 0.057 0.054
deductions; 0 otherwise (0.232) (0.227)

Medicare = 1 if the person is covered by Medicare; 0.025 0.034
0 otherwise (0.156) (0.182)

Medicaid = 1 if the person is covered by Medicaid; 0.070 0.068
0 otherwise (0.255) (0.253)

Sample size 7,669 7,669

Note: The variables in Periodit and Periodt+1 refer to the first-year and second-year values of each participation,
respectively. There are 1,430 and 1,578 individuals with zero medical expenditures in Periodit and Periodt+1, respectively.
Standard deviations are in parentheses.

The dependent variable Yit = Lnexpit is the natural logarithm of medical expenditure
plus one. The vector of covariates Xit = (Lnincit,Lnfamit,Ageit,Maleit,Blackit,
Educationit,Physicalit,Ndentalit,Goodit,Fairit,Poorit, . . . ,Time dummies). The unobserved
heterogeneity Vi represents time-invariant individual heterogeneity factors, such as inherent
ability or personal regimen to resist negative health shock. Assume that Assumptions
2.1 and 2.2 split the transitory error term εit into ηit and ξit, and that ξit is normally
distributed. This normality assumption guarantees that Assumptions 2.3, 2.4(b), 2.5 are
fulfilled, as Section 3 shows. Assumptions 2.4(a) and 2.5 demand the completeness conditions
related to the family of conditional distribution of positive health expenditure ỹit over xit−1,
{fỸit|Xit,Yit−1,Xit−1

: xit−1 ∈ Xit−1}. These assumptions, along with the mild regularity condition

C© 2017 Royal Economic Society.
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74 Y. Hu and J. L. Shiu

Table 2. Panel censored estimates for health expenditure.

Linear fixed
effects

RE tobit Semi-parametric
dynamic tobit

Coefficient Coefficient APE Coefficient APE
(1) (2) (3) (4) (5)

Lnexpit−1 – – – 1.052*** 1.448***
– – – (0.001) (0.006)

Lninc 0.031*** 0.042*** 0.039*** 0.041*** 0.056***
(0.008) (0.011) (0.001) (0.001) (0.001)

Lnfam −0.252*** −0.299*** −0.276*** −0.301*** −0.414***
(0.045) (0.056) (0.003) (0.001) (0.002)

Age 0.040*** 0.048*** 0.044*** 0.050*** 0.068***
(0.002) (0.003) (0.001) (0.001) (0.001)

Male −1.130*** −1.399*** −1.294*** −1.399*** −1.927***
(0.049) (0.062) (0.032) (0.001) (0.008)

Black −0.581*** −0.717*** −0.653*** −0.717*** −0.987***
(0.069) (0.086) (0.012) (0.001) (0.004)

Education 0.145*** 0.184*** 0.170*** 0.181*** 0.250***
(0.008) (0.011) (0.002) (0.001) (0.001)

Physical 0.806*** 0.854*** 0.788*** 0.855*** 1.177***
(0.098) (0.119) (0.007) (0.001) (0.005)

Ndental 0.442*** 0.496*** 0.458*** 0.502*** 0.691***
(0.012) (0.015) (0.004) (0.001) (0.003)

Good 0.342*** 0.391*** 0.362*** 0.392*** 0.539***
(0.047) (0.059) (0.008) (0.001) (0.002)

Fair 1.037*** 1.180*** 1.111*** 1.178*** 1.621***
(0.080) (0.098) (0.031) (0.001) (0.007)

Poor 1.777*** 1.956*** 1.865*** 1.957*** 2.694***
(0.142) (0.173) (0.054) (0.001) (0.011)

Deduction 0.384*** 0.432*** 0.402*** 0.429*** 0.590***
(0.089) (0.108) (0.010) (0.001) (0.003)

Medicare 0.900*** 0.995*** 0.936*** 0.995*** 1.370***
(0.143) (0.175) (0.035) (0.001) (0.006)

Medicaid 1.138*** 1.346*** 1.270*** 1.343*** 1.849***
(0.092) (0.114) (0.001) (0.001) (0.008)

Note: Bootstrap (simulation) standard errors are reported in parentheses, using 100 bootstrap replications. Average partial
effects (APEs) are reported by taking derivatives or differences of the average structure function at the sample mean of
(xit, yit−1).

stated in Theorem 2.1, provide the identification of model (5.1) and the sieve MLE developed in
Section 4 is applicable.

Table 2 shows the results of the estimation of panel data model (5.1) using three
specifications, including a static linear fixed effect model (column 1), a static tobit model with
random effect (RE; columns 2 and 3) and a semi-parametric dynamic tobit model (columns 4
and 5). The three sets of estimates present similar results in terms of directions of effects and
estimated coefficients. As expected, there are differences in the magnitudes of the estimated
average partial effects in the RE tobit and semi-parametric dynamic tobit specifications. The

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 75

average partial effects of the semi-parametric dynamic tobit specification have greater effects
after controlling for the dynamic effect of health expenditures. The coefficient estimate of state
dependence effect of health expenditures is up to 1.052. As a result, the effect of previous health
expenditures on the future health expenditures is estimated to be, in the average partial effect,
1.448. The estimated coefficient shows that the previous health expenditures have persistent
effects or there is large first-order state dependence of health expenditures. One of the variables
of interest is Lnincit, the natural logarithm of the family income plus one. The coefficient of
Lnincit in regression on Lnexpit represents the income elasticity of demand for health care. The
result of the semi-parametric tobit specification indicates that individuals consume more health
care when their incomes increase, after controlling for past health expenditures.

6. CONCLUSION

We have presented identification results for the semi-parametric censored dynamic panel
data models of short time periods and their corresponding average partial effects. The main
assumptions of the proposed method include the existence of an independent random shock,
a semi-parametric specification of the random shock and the completeness of families of
known PDFs corresponding to censored dynamic panel data models and observed conditional
density functions of the dependent variable given the explanatory variables. The completeness
of the families of PDFs is equivalent to the invertibility of operators using these PDFs as
kernel functions. Invertibility permits the non-trivial transformation of semi-parametric censored
dynamic panel data models into a valid semi-parametric family of PDFs of observables. Then,
the model is locally identified and the global identification can be achieved under the MLE
framework. The dynamic tobit models and two-part dynamic regression models with normal
types of DGPs satisfy these completeness conditions. This identification leads to the proposed
sieve MLE, which is consistent and asymptotically normal. The advantage of the proposed
approach is that it does not rely on the availability of initial period data, it provides average partial
effects and it requires only two-period data. In addition, this semi-parametric method allows for
time dummies, nonlinear functions of state dependence Yit−1, such as quadratics or interaction
terms, and parametric heteroscedasticity. These features make the sieve MLE desirable in semi-
parametric censored dynamic panel data models of short time periods for micro-econometric
applications.

ACKNOWLEDGEMENTS

We thank the participants of the 2013 Annual Meeting of American Economic Association, and
the 2013 China Meeting of the Econometric Society for various suggestions regarding this paper.
The usual disclaimer applies.

REFERENCES

Ahn, S. and P. Schmidt (1995). Efficient estimation of models for dynamic panel data. Journal of
Econometrics 68, 5–28.

Ai, C. and X. Chen (2003). Efficient estimation of models with conditional moment restrictions containing
unknown functions. Econometrica 71, 1795–843.

C© 2017 Royal Economic Society.

 1368423x, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ectj.12086 by Johns H

opkins U
niversity, W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



76 Y. Hu and J. L. Shiu

Anderson, T. and C. Hsiao (1982). Formulation and estimation of dynamic models using panel data. Journal
of Econometrics 18, 47–82.

Andrews, D. W. K. (2011). Examples of L2-complete and boundedly-complete distributions. Cowles
Foundation Discussion Paper 1801, Yale University.

Arellano, M. and S. Bond (1991). Some tests of specification for panel data: Monte Carlo evidence and an
application to employment equations. Review of Economic Studies 58, 277–97.

Arellano, M. and O. Bover (1995). Another look at the instrumental variable estimation of error component
models. Journal of Econometrics 68, 29–51.

Blundell, R. and S. Bond (1998). Initial conditions and moment restrictions in dynamic panel data models.
Journal of Econometrics 87, 115–43.

Bowden, R. (1973). The theory of parametric identification. Econometrica 41, 1069–74.
Chen, X. and X. Shen (1998). Sieve extremum estimates for weakly dependent data. Econometrica 66,

289–314.
Chen, X., V. Chernozhukov, S. Lee and W. K. Newey (2014). Local identification of nonparametric and

semiparametric models. Econometrica 82, 785–809.
Chernozhukov, V. and C. Hansen (2005). An IV model of quantile treatment effects. Econometrica 73,

245–61.
Chernozhukov, V., I. Fernández-Val, J. Hahn and W. Newey (2013). Average and quantile effects in

nonseparable panel models. Econometrica 81, 535–80.
D’Haultfoeuille, X. (2011). On the completeness condition in nonparametric instrumental problems.

Econometric Theory 27, 1–12.
Graham, B. and J. Powell (2012). Identification and estimation of average partial effects in “irregular”

correlated random coefficient panel data models. Econometrica 80, 2105–52.
Hahn, J. (1999). How informative is the initial condition in the dynamic panel model with fixed effects?

Journal of Econometrics 93, 309–26.
Hoderlein, S. and H. White (2012). Nonparametric identification in nonseparable panel data models with

generalized fixed effects. Journal of Econometrics 168, 300–14.
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APPENDIX A: PROOFS OF RESULTS

Proof of Lemma 2.1: First, we have shown fXit,Yit−1,Xit−1,Uit ;θ0 = fXit,Yit−1,Xit−1,Uit . Next, given (xit, yit−1),
define integral operators

LfỸit ,Xit ,Yit−1 ,Xit−1
: L2(Ỹit) → L2(Xit−1), (A.1)

with

(LfỸit ,Xit ,Yit−1 ,Xit−1
h)(xit−1) =

∫
fỸit,Xit,Yit−1,Xit−1

(̃yit, xit, yit−1, xit−1)h(̃yit)dỹit,

L̃fỸit |Xit ,Yit−1 ,Uit ;θ0
: L2(Ỹit) → L2(Uit, ω) (A.2)

with

(L̃fỸit |Xit ,Yit−1 ,Uit ;θ0
h)(uit) =

∫
fỸit |Xit,Yit−1,Uit ;θ0

(̃yit|xit, yit−1, uit)h(̃yit)dỹit,

and

LfXit ,Yit−1 ,Xit−1 ,Uit ;θ0
: L2(Uit, ω) → L2(Xit−1) (A.3)

with

(LfXit ,Yit−1 ,Xit−1,Uit ;θ0
h)(xit−1) =

∫
fXit,Yit−1,Xit−1,Uit ;θ0h(uit)duit.

For each h ∈ L2(Ỹit).

(LfỸit ,Xit ,Yit−1 ,Xit−1
)(h)(xit−1) =

∫
Ỹit

fỸit,Xit,Yit−1,Xit−1
h(̃yit)dỹit

=
∫
Ỹit

( ∫
Uit

fỸit |Xit,Yit−1,Uit ;θ0
fXit,Yit−1,Xit−1,Uit ;θ0 duit

)
h(̃yit)dỹit

=
∫
Uit

fXit,Yit−1,Xit−1,Uit ;θ0

( ∫
Ỹit

fỸit |Xit,Yit−1,Uit ;θ0
h(̃yit)dỹit

)
duit

= (LfXit ,Yit−1,Xit−1 ,Uit ;θ0
L̃fỸit |Xit ,Yit−1 ,Uit ;θ0

)(h)(xit−1),

C© 2017 Royal Economic Society.
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78 Y. Hu and J. L. Shiu

based on (2.8). Because this derivation holds for arbitrary h, this amounts to the operator relationship

LfỸit ,Xit ,Yit−1 ,Xit−1︸ ︷︷ ︸
Assumption 2.4(a)

= LfXit ,Yit−1 ,Xit−1 ,Uit ;θ0
L̃fỸit |Xit ,Yit−1 ,Uit ;θ0︸ ︷︷ ︸

Assumption 2.4(b)

.

Combining the condition fXit,Yit−1,Xit−1 > 0 and Assumption 2.4(a) results in

{fỸit,Xit,Yit−1,Xit−1
: xit−1 ∈ Xit−1}

being complete over L2(Ỹit) and then LfỸit ,Xit ,Yit−1 ,Xit−1
is invertible. In addition, because Assumption

2.4(b) ensures that the operator L̃fỸit |Xit ,Yit−1 ,Uit ;θ0
is invertible, the operator relationship implies that the

invertibility of the operator LfXit ,Yit−1 ,Xit−1,Uit ;θ0
, i.e. {fXit,Yit−1,Xit−1,Uit ;θ0 : xit−1 ∈ Xit−1} is complete over

L2(Uit, ω). Suppose that the parameter θ0 is not locally identifiable. Then, there exists θk �= θ0 and
θk �→ θ0 such that fXit,Yit−1,Xit−1,Uit ;θ0 = fXit,Yit−1,Xit−1,Uit ;θk . Using the definition of fXit,Yit−1,Xit−1,Uit ;θ0 and
fXit,Yit−1,Xit−1,Uit ;θk ,

fỸit,Xit,Yit−1,Xit−1
=

∫
fỸit |Xit,Yit−1,Uit ;θ0

fXit,Yit−1,Xit−1,Uit ;θ0 duit, (A.4)

fỸit,Xit,Yit−1,Xit−1
=

∫
fỸit |Xit,Yit−1,Uit ;θk fXit,Yit−1,Xit−1,Uit ;θkduit. (A.5)

By subtracting (A.5) from (A.4), it follows that

0 =
∫
fỸit |Xit,Yit−1,Uit ;θk fXit,Yit−1,Xit−1,Uit ;θk

−fỸit |Xit,Yit−1,Uit ;θ0
fXit,Yit−1,Xit−1,Uit ;θ0 duit,

=
∫
fỸit |Xit,Yit−1,Uit ;θk fXit,Yit−1,Xit−1,Uit ;θk

−fỸit |Xit,Yit−1,Uit ;θk fXit,Yit−1,Xit−1,Uit ;θ0 duit

+
∫
fỸit |Xit,Yit−1,Uit ;θk fXit,Yit−1,Xit−1,Uit ;θ0

−fỸit |Xit,Yit−1,Uit ;θ0
fXit,Yit−1,Xit−1,Uit ;θ0 duit,

=
∫
fỸit |Xit,Yit−1,Uit ;θk︸ ︷︷ ︸

Assumption 2.3

(fXit,Yit−1,Xit−1,Uit ;θk − fXit,Yit−1,Xit−1,Uit ;θ0 )duit

+
∫

(fỸit |Xit,Yit−1,Uit ;θk − fỸit |Xit,Yit−1,Uit ;θ0
) fXit,Yit−1,Xit−1,Uit ;θ0︸ ︷︷ ︸

Assumptions 2.4(a) and (b)

duit. (A.6)

Plugging the relation fXit,Yit−1,Xit−1,Uit ;θ0 = fXit,Yit−1,Xit−1,Uit ;θk into the above equation yields

0 =
∫

(fỸit |Xit,Yit−1,Uit ;θk − fỸit |Xit,Yit−1,Uit ;θ0
)fXit,Yit−1,Xit−1,Uit ;θ0duit,

for all xit−1 in Xit−1. Because Assumptions 2.4(a) and (b) imply that {fXit,Yit−1,Xit−1,Uit ;θ0 : xit−1 ∈ Xit−1} is
complete over L2(Uit, ω), we obtain fỸit |Xit,Yit−1,Uit ;θk = fỸit |Xit,Yit−1,Uit ;θ0

for θk �= θ0 and θk approaches θ0 as
k approaches ∞. This contradicts the local identifiability of θ0 in fỸit |Xit,Yit−1,Uit ;θ , proving the lemma. �

Proof of Lemma 2.2: Because fXit,Yit−1,Xit−1,Uit ;θ is correctly specified at θ0 by Lemma 2.1, f̃Xit,Yit−1,Xit−1;θ

is also correctly specified at θ0 after integrating out. However, denote two integral kernels as

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 79

KA;θ0 (xit, yit−1, xit−1, uit) ≡ (∂/∂θ )fXit,Yit−1,Xit−1,Uit ;θ0 and KB;θ0 (̃yit, xit, yit−1, uit) ≡ (∂/∂θ )fỸit |Xit,Yit−1,Uit ;θ0
.

Divide (A.6) by θ − θ0 �= 0 and rewrite it as follows:

0 =
∫
fỸit |Xit,Yit−1,Uit ;θ

fXit,Yit−1,Xit−1,Uit ;θ − fXit,Yit−1,Xit−1,Uit ;θ0

θ − θ0
duit

+
∫
fỸit |Xit,Yit−1,Uit ;θ − fỸit |Xit,Yit−1,Uit ;θ0

θ − θ0
fXit,Yit−1,Xit−1,Uit ;θ0 duit.

If θ �→ θ0, then the above equation implies

0 =
∫
fỸit |Xit,Yit−1,Uit ;θ0

KA;θ0 (xit, yit−1, xit−1, uit)duit

+
∫
KB;θ0 (̃yit, xit, yit−1, uit)fXit,Yit−1,Xit−1,Uit ;θ0 duit. (A.7)

This equation can be used to establish an operator relationship. For each given (xit, yit−1), define integral
operators as follows

LKA;θ0
: L2(Uit, ω) → L2(Xit−1) (A.8)

with

(LKA;θ0
h)(xit−1) =

∫
∂

∂θ
fXit,Yit−1,Xit−1,Uit ;θ0 (xit, yit−1, xit−1, uit)h(uit)duit,

and

LKB;θ0
: L2(Ỹit) → L2(Uit, ω) (A.9)

with

(LKB;θ0
h)(uit) =

∫
∂

∂θ
fỸit |Xit,Yit−1,Uit ;θ0

(̃yit|xit, yit−1, uit)h(̃yit)dỹit.

Set h ∈ L2(Xit−1). Given each (xit, yit−1),

(LKA;θ0
L̃fỸit |Xit ,Yit−1 ,Uit ;θ0

)(h)(xit−1)

=
∫
Uit

KA;θ0 (xit, yit−1, xit−1, uit)
( ∫

Yit

fỸit |Xit,Yit−1,Uit ;θ0
h(̃yit)dỹit

)
duit

=
∫
Yit

( ∫
Uit

fỸit |Xit,Yit−1,Uit ;θ0
KA;θ0 (xit, yit−1, xit−1, uit)duit

)
h(̃yit)dỹit

= −
∫
Yit

( ∫
Uit

KB;θ0 (̃yit, xit, yit−1, uit)fXit,Yit−1,Xit−1,Uit ;θ0duit

)
h(̃yit)dỹit

= −
∫
Uit

fXit,Yit−1,Xit−1,Uit ;θ0

( ∫
Yit

KB;θ0 (̃yit, xit, yit−1, uit)h(̃yit)dỹit

)
duit

= −(LfXit ,Yit−1 ,Xit−1,Uit ;θ0
LKB;θ0

)(h)(xit−1),

where we have used the following: an interchange of the order of integration (justified by Fubini’s theorem);
(A.7); the definitions of these operators in (A.2), (A.3), (A.8) and (A.9). This derivation yields the following
operator relationship

LKA;θ0
L̃fỸit |Xit ,Yit−1 ,Uit ;θ0︸ ︷︷ ︸

Assumption 2.4(b)

+LfXit ,Yit−1,Xit−1 ,Uit ;θ0︸ ︷︷ ︸
Lemma 2.1

LKB;θ0︸ ︷︷ ︸
Assumption 2.5

= 0. (A.10)

C© 2017 Royal Economic Society.
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80 Y. Hu and J. L. Shiu

Whereas Assumptions 2.4(a) and (b) imply that L̃fỸit |Xit ,Yit−1 ,Uit ;θ0
and LfXit ,Yit−1 ,Xit−1,Uit ;θ0

are invertible,

Assumption 2.5 guarantees that LKB;θ0
is invertible. Because the operators other than LKA;θ0

in (A.10) are
all invertible, the integral operator LKA;θ0

is also invertible. This implies that the family of its corresponding
kernel functions {(∂/∂θ)fXit,Yit−1,Xit−1,Uit ;θ0 : xit−1 ∈ Xit−1} is complete over L2(Uit, ω).

Suppose θ0 is not locally identifiable in f̃Xit,Yit−1,Xit−1;θ . This implies that there exists θk �= θ0 and θk �→
θ0 such that

f̃Xit,Yit−1,Xit−1;θk (xit, yit−1, xit−1) = f̃Xit,Yit−1,Xit−1;θ0 (xit, yit−1, xit−1).

This implies that
∫
fXit,Yit−1,Xit−1,Uit ;θk duit = ∫

fXit,Yit−1,Xit−1,Uit ;θ0 duit for each θk . It follows that for each θk∫ (fXit,Yit−1,Xit−1,Uit ;θk − fXit,Yit−1,Xit−1,Uit ;θ0

θk − θ0

)
duit = 0 for all xit−1.

If θk �→ θ0, the equation becomes∫ ( ∂
∂θ
fXit,Yit−1,Xit−1,Uit ;θ0

)
duit = 0 for all xit−1. (A.11)

Because L2(Uit, ω) contains the constant function, (A.11) is in contradiction with the completeness
of {(∂/∂θ)fXit,Yit−1,Xit−1,Uit ;θ0 : xit−1 ∈ Xit−1} over L2(Uit, ω). Therefore, under Assumptions 2.3–2.5, θ0 is
locally identifiable. �

Before proving Lemma 2.3, consider the following result as the cornerstone of the proof of Lemma 2.3.

LEMMA A.1. Under Assumptions 2.3–2.6, the family of functions {(∂/∂xit−1)fUit|Xit,Yit−1,Xit−1 : xit−1 ∈ Xit−1}
is complete over L2(Uit, ω).

Proof: In a similar manner to (2.8), write the conditional version of (2.8) for θ = θ0,

fỸit |Xit,Yit−1,Xit−1
=

∫
fỸit |Xit,Yit−1,Uit

fUit |Xit,Yit−1,Xit−1duit. (A.12)

Taking the derivative with respect to Xit−1 results in

∂

∂xit−1
fỸit |Xit,Yit−1,Xit−1

=
∫
fỸit |Xit,Yit−1,Uit

∂

∂xit−1
fUit |Xit,Yit−1,Xit−1 duit. (A.13)

Set κ1 = (∂/∂xit−1)fỸit |Xit,Yit−1,Xit−1
and φ = (∂/∂xit−1)fUit |Xit,Yit−1,Xit−1 . For each (xit, yit−1), define operators

Lκ1 : L2(Ỹit) → L2(Xit−1)

with

(Lκ1h)(xit−1) =
∫
κ1(̃yit, xit, yit−1, xit−1)h(̃yit)dỹit,

and

Lφ : Lp(Uit, ω) → L2(Xit−1)

with

(Lφh)(xit−1) =
∫
φ(uit, xit, yit−1, xit−1)h(uit)duit.

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 81

For h ∈ L2(Ỹit).

(Lκ1 )(h)(xit−1) =
∫
Ỹit

κ1(̃yit, xit, yit−1, xit−1)h(̃yit)dỹit

=
∫
Ỹit

( ∫
Uit

fỸit |Xit,Yit−1,Uit
φ(uit, xit, yit−1, xit−1)duit

)
h(̃yit )̃yit

=
∫
Uit

φ(uit, xit, yit−1, xit−1)
( ∫

Yit

fỸit |Xit,Yit−1,Uit
h(yit)dyit

)
duit

= (LφL̃fỸit |Xit ,Yit−1 ,Uit ;θ0
)(h)(xit−1),

where (A.2) defines the operator L̃fỸit |Xit ,Yit−1 ,Uit ;θ0
. With the definitions of the operators, this equation can be

rewritten as an operator relationship

Lκ1 = LφL̃fỸit |Xit ,Yit−1 ,Uit ;θ0
. (A.14)

Assumptions 2.4(b) and 2.6 guarantee the invertibility of the operators L̃fỸit |Xit ,Yit−1 ,Uit ;θ0
and Lκ1 ,

respectively. Applying this invertibility to (A.14) results in the invertibility of Lφ . Thus, the family
{φ(uit, xit, yit−1, xit−1) : xit−1 ∈ Xit−1} is complete over L2(Uit, ω) for each xit, yit−1. �

Proof of Lemma 2.3: First, fXit,Yit−1,Xit−1;θ is correctly specified at θ0 because by Lemma 2.2, f̃Xit,Yit−1,Xit−1;θ

is correctly specified at θ0. Suppose that θ0 is not locally identifiable in the observable joint density function
fXit,Yit−1,Xit−1;θ . There exists θk �= θ0 and θk �→ θ0 such that, fXit,Yit−1,Xit−1;θk = fXit,Yit−1,Xit−1;θ0 . This implies
that

f̃Xit,Yit−1,Xit−1;θk∫ ∫ ∫
f̃Xit,Yit−1,Xit−1;θkdxitdyit−1dxit−1

= f̃Xit,Yit−1,Xit−1;θ0

1
= fXit,Yit−1,Xit−1 . (A.15)

This equation can be expressed as∫
fXit,Yit−1,Xit−1,Uit ;θkduit

fXit,Yit−1,Xit−1

=
∫ ∫ ∫

f̃Xit,Yit−1,Xit−1;θkdxitdyit−1dxit−1. (A.16)

The multiple integral on the right-hand side of (A.16) only depends on the parameter θk , and is independent
of xit−1. This suggests that given x1t−1 �= x2t−1,∫

fXit,Yit−1,X1t−1,Uit ;θk

fXit,Yit−1,X1t−1

duit =
∫
fXit,Yit−1,X2t−1,Uit ;θk

fXit,Yit−1,X2t−1

duit.

If θk �→ θ0, this yields

0 =
∫

(fUit |Xit,Yit−1,X1t−1 − fUit |Xit,Yit−1,X2t−1 )duit.

Divide the equation by X1t−1 −X2t−1 and let X1t−1 −X2t−1 �→ 0. This equation then changes into

0 =
∫

∂

∂xit−1
fUit |Xit,Yit−1,X1t−1 duit

=
∫

∂

∂xit−1
fUit |Xit,Yit−1,X1t−1 duit,

which contradicts the completeness in Lemma A.1. Therefore, the parameter θ0 is locally identifiable in the
observable joint density function fXit,Yit−1,Xit−1;θ . �

C© 2017 Royal Economic Society.

 1368423x, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ectj.12086 by Johns H

opkins U
niversity, W

iley O
nline L

ibrary on [14/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



82 Y. Hu and J. L. Shiu

Proof of Lemma 3.3: First, suppose Ỹ is a domain such that Ỹ ⊂ R. Let the family {f (y|u) : u ∈ U} be
complete in L2(R). For each h ∈ L2(Ỹ) such that

∫
Ỹ h(y)f (y|u)dy = 0 for all u. Extend h to a function in

L2(R) by

h̃(x) =
{
h(x) if x ∈ Ỹ,
0 otherwise.

It follows that
∫
R h̃(y)f (y|u)dy = 0 for all u. By the completeness of f (y|u) over L2(R), h̃ = 0 almost

everywhere. Thus, h = 0 almost everywhere and f (y|u) is complete over L2(R). Thus, the completeness
of a function over a smaller domain is implied by the completeness of the function over a larger domain,
and sufficient conditions for the completeness of these two families can be reduced to the completeness in
L2(R).

The family of functions {(y − c − u)φ((y − c − u)/σξ ) : u ∈ U} is complete in L2(R). Let h(y) ∈
L2(R) and

∫
h(y)(y − c − u)φ((y − c − u)/σξ )dy = 0 for all u ∈ U . Because (∂/∂y)φ((y − c − u)/σξ ) =

−((y − c − u)/σξ )φ((y − c − u)/σξ ), it follows that
∫
h(y) (∂/∂y)φ((y − c − u)/σξ )dy = 0 for all u ∈ U .

Using the integration by part for each u leads to∫
h(y)

∂

∂y
φ
(y − c − u

σξ

)
dy = h(y)φ

(y − c − u

σξ

)∣∣∣∞
−∞

−
∫

∂

∂y
h(y)φ

(y − c − u

σξ

)
dy

= −
∫

∂

∂y
h(y)φ

(y − c − u

σξ

)
dy.

Applying the completeness of {φ((y − c − u)/σξ ) : u ∈ U} to this equation yields (∂/∂y)h(y) = 0, which
implies that h(y) is a constant function. The condition h(y) ∈ L2(R) makes h(y) = 0 almost everywhere,
proving the first completeness. As for the second completeness, suppose h(y) ∈ L2(R) such that∫
h(y)(σ 2

ξ − (y − c − u)2)φ((y − c − u)/σξ )dy = 0 for all u ∈ U . Using (∂2/∂2y)φ((y − c − u)/σξ ) =
−(1/σ 3

ξ )(σ 2
ξ − (y − c − u)2)φ((y − c − u)/σξ ) and the integration by part, rewrite the equation as

0 =
∫
h(y)

∂2

∂2y
φ
(y − c − u

σξ

)
dy

= h(y)
∂

∂y
φ
(y − c − u

σξ

)∣∣∣∞
−∞

−
∫

∂

∂y
h(y)

∂

∂y
φ
(y − c − u

σξ

)
dy

= − ∂

∂y
h(y)φ

(y − c − u

σξ

)∣∣∣∞
−∞

+
∫

∂2

∂2y
h(y)φ

(y − c − u

σξ

)
dy

=
∫

∂2

∂2y
h(y)φ

(y − c − u

σξ

)
dy.

The completeness of {φ((y − c − u)/σξ ) : u ∈ U} implies that h satisfies the second-order differential
equation, (∂2/∂2y)h(y) = 0. The characteristic equation of the differential equation is r2 = 0. This suggests
that the general solution of the differential equation is h(y) = c1 + c2y, where c1 and c2 are constants. The
condition h(y) ∈ L2(R) indicates h(y) = 0 almost everywhere, reaching the second completeness.

APPENDIX B: IDENTIFICATION IN THE DISCRETE CASE

In this appendix, we present a simple case in which the observed variables Yit, Xit, Yit−1, Xit−1 and the
unobserved covariate Uit are all discrete. We show how to use the identification techniques in Theorem 2.1
for this discrete case. For simplicity, assume that the variables Ỹit, Xit−1 and Uit have the same size J (i.e.
Ỹit, Xit−1, Uit ∈ {1, 2, . . . , J }). For this setting, the integral operators used previously can be represented by

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 83

J -by-J matrices. The idea of using the identification strategy in the discrete case for ease of exposition
comes from the fact that a complete integral operator is associated with an invertible matrix.3

Equation (2.8) in the discrete case is

fỸit,Xit,Yit−1,Xit−1
=

J∑
Uit=1

fỸit |Xit,Yit−1,Uit ;θfXit,Yit−1,Xit−1,Uit ;θ . (B.1)

Given (xit, yit−1), define J -by-J matrices

MfỸit ,xit ,yit−1 ,Xit−1
= (fỸit,Xit,Yit−1,Xit−1

(Ỹit, xit, yit−1, Xit−1))ỹit,xit−1

LfỸit |xit ,yit−1 ,Uit ;θ
= (fỸit |Xit,Yit−1,Uit ;θ (Ỹit, xit, yit−1, Uit))ỹit,uit

Mfxit ,yit−1 ,Xit−1 ,Uit ;θ = (fXit,Yit−1,Xit−1,Uit ;θ (xit, yit−1, Xit−1, Uit))uit,xit−1 .

Rewrite the equality (B.1) in terms of these matrices as follows:

MfỸit ,xit ,yit−1,Xit−1︸ ︷︷ ︸
observed from data

= LfỸit |xit ,yit−1 ,Uit ;θ︸ ︷︷ ︸
model specification

Mfxit ,yit−1 ,Xit−1 ,Uit ;θ . (B.2)

Assumption 2.3 implies that the square matrix LfỸit |xit ,yit−1,Uit ;θ
is invertible, leading to

Mfxit ,yit−1,Xit−1 ,Uit ;θ = (LfỸit |xit ,yit−1 ,Uit ;θ
)−1MfỸit ,xit ,yit−1 ,Xit−1

. (B.3)

As discussed earlier, it is necessary to ensure that Mfxit ,yit−1 ,Xit−1 ,Uit ;θ is identifiable at θ0. According to the
proof of Lemma 2.1, there are two steps for identifiability. First, given (xit, yit−1), define

LfỸit ,xit ,yit−1 ,Xit−1
= (fỸit,Xit,Yit−1,Xit−1

(Ỹit, xit, yit−1, Xit−1))xit−1 ,̃yit

L̃fỸit |xit ,yit−1 ,Uit ;θ
= (fỸit |Xit,Yit−1,Uit ;θ (Ỹit, xit, yit−1, Uit))uit ,̃yit

Lfxit ,yit−1 ,Xit−1 ,Uit ;θ = (fXit,Yit−1,Xit−1,Uit ;θ (xit, yit−1, xit−1, Uit))xit−1,uit .

Equality (B.1) can then be expressed by these matrices as follows:

LfỸit ,xit ,yit−1 ,Xit−1︸ ︷︷ ︸
Assumption 2.4(a)

= Lfxit ,yit−1 ,Xit−1 ,Uit ;θ0
L̃fỸit |xit ,yit−1 ,Uit ;θ0︸ ︷︷ ︸

Assumption 2.4(b)

. (B.4)

Notice that in this simple case,

LfỸit ,xit ,yit−1 ,Xit−1
= MT

fỸit ,xit ,yit−1 ,Xit−1
,

L̃fỸit |xit ,yit−1 ,Uit ;θ
= LTfỸit |xit ,yit−1 ,Uit ;θ

,

Lfxit ,yit−1,Xit−1 ,Uit ;θ = MT
fxit ,yit−1,Xit−1 ,Uit ;θ

,

which we might not have for a general continuous case. The matrix notations used here are based on
integral operators in the proofs of the lemmata. Assumption 2.4 makes Lfxit ,yit−1 ,Xit−1 ,Uit ;θ0

invertible. Hence,

3 If y, u ∈ {1, 2} and
∫
U h(u)f (y|u)du = 0, then the condition is equivalent to[

fy|u(1|1) fy|u(1|2)
fy|u(2|1) fy|u(2|2)

] [
h(1)
h(2)

]
=

[
0
0

]
.

The function h can be uniquely determined as h = 0 iff the first matrix representing fy|u is invertible.

C© 2017 Royal Economic Society.
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84 Y. Hu and J. L. Shiu

its transpose Mfxit ,yit−1 ,Xit−1 ,Uit ;θ0
is also invertible. Then, suppose that there exists θk �= θ0 and θk �→ θ0 such

that

Mfxit ,yit−1 ,Xit−1 ,Uit ;θk
= Mfxit ,yit−1 ,Xit−1 ,Uit ;θ0

. (B.5)

Following the derivation in (A.6), we have a matrix expression

0 = LfỸit |xit ,yit−1 ,Uit ;θk
(Mfxit ,yit−1 ,Xit−1 ,Uit ;θk

−Mfxit ,yit−1 ,Xit−1 ,Uit ;θ0
)

+ (LfỸit |xit ,yit−1 ,Uit ;θk
− LfỸit |xit ,yit−1,Uit ;θ0

)Mfxit ,yit−1 ,Xit−1 ,Uit ;θ0
.

The invertibility of Mfxit ,yit−1 ,Xit−1 ,Uit ;θ0
and (B.5) implies that LfỸit |xit ,yit−1 ,Uit ;θ

is not identifiable at θ0, which is

a contradiction.
Set J × 1-vector J1 = (1, 1, . . . , 1)T . Integrating out the unobserved covariate in the discrete case

leads to JT1Mfxit ,yit−1 ,Xit−1 ,Uit ;θ . Suppose that there exists θk �= θ0 and θk �→ θ0 such that JT1Mfxit ,yit−1,Xit−1 ,Uit ;θk
=

JT1Mfxit ,yit−1 ,Xit−1,Uit ;θ0
. It then follows that

0 = JT1
(Mfxit ,yit−1 ,Xit−1 ,Uit ;θk

−Mfxit ,yit−1 ,Xit−1 ,Uit ;θ0
θk−θ0

)
. (B.6)

If θ �→ θ0, the above equation implies 0 = JT1M(∂/∂θ )fxit ,yit−1,Xit−1 ,Uit ;θ0
, where

M(∂/∂θ )fxit ,yit−1 ,Xit−1,Uit ;θ =
( ∂
∂θ
fXit,Yit−1,Xit−1,Uit ;θ (xit, yit−1, Xit−1, Uit)

)
uit,xit−1

.

Rewrite (A.7) in the discrete case as

0 =
J∑

Uit=1

fỸit |Xit,Yit−1,Uit ;θ0

∂

∂θ
fXit,Yit−1,Xit−1,Uit ;θ0

+
J∑

Uit=1

∂

∂θ
fỸit |Xit,Yit−1,Uit ;θ0

fXit,Yit−1,Xit−1,Uit ;θ0 . (B.7)

This leads to the following matrix expression

M(∂/∂θ )fxit ,yit−1 ,Xit−1 ,Uit ;θ0
L̃fỸit |xit ,yit−1 ,Uit ;θ0︸ ︷︷ ︸

Assumption 2.4(b)

+Lfxit ,yit−1,Xit−1 ,Uit ;θ0︸ ︷︷ ︸
Lemma 2.1

M(∂/∂θ )fỸit |xit ,yit−1,Uit ;θ0︸ ︷︷ ︸
Assumption 2.5

= 0, (B.8)

where

M(∂/∂θ )fỸit |xit ,yit−1 ,Uit ;θ0
=

( ∂
∂θ
fỸit |xit,yit−1,Uit ;θ0

)
uit ,̃yit

.

Applying assumptions to (B.8) shows that M(∂/∂θ )fxit ,yit−1 ,Xit−1,Uit ;θ0
is invertible, which contradicts 0 =

JT1M(∂/∂θ )fxit ,yit−1 ,Xit−1 ,Uit ;θ0
.

Finally, the normalization in the discrete case is equivalent to

Vfxit ,yit−1 ,Xit−1;θ ≡
JT1Mfxit ,yit−1 ,Xit−1,Uit ;θ∑Jxit

xit=1

∑Jyit−1
yit−1=1(JT1Mfxit ,yit−1 ,Xit−1,Uit ;θ J)

, (B.9)

where Jxit and Jyit−1 represent the sizes of the discrete variables xit and yit−1, respectively. Suppose the
normalization step does not lead to local identifiability at θ0. This implies that there exists θk �= θ0 and

C© 2017 Royal Economic Society.
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Semi-parametric identification and estimation method 85

θk �→ θ0 such that

JT1Mfxit ,yit−1 ,Xit−1 ,Uit ;θk∑Jxit
xit=1

∑Jyit−1
yit−1=1(JT1Mfxit ,yit−1 ,Xit−1 ,Uit ;θk

J)
=

JT1Mfxit ,yit−1,Xit−1 ,Uit ;θ0

1

= Vfxit ,yit−1 ,Xit−1;θ0
. (B.10)

Rearrange the term

(JT1Mfxit ,yit−1 ,Xit−1 ,Uit ;θk
)./Vfxit ,yit−1 ,Xit−1;θ0

=
( Jxit∑
xit=1

Jyit−1∑
yit−1=1

(JT1Mfxit ,yit−1 ,Xit−1,Uit ;θk
J)

)
J1,

where the notation ./divides two 1 × J -vectors element-wise. The right-hand side of this equation is
constant in xit−1. Hence, if x1t−1 �= x2t−1, we have

(JT1Mfxit ,yit−1 ,X1t−1,Uit ;θk
)./Vfxit ,yit−1 ,X1t−1;θ0

= (JT1Mfxit ,yit−1,X2t−1 ,Uit ;θk
)./Vfxit ,yit−1 ,X2t−1;θ0

.

Using (B.3), rewrite this equation as

0 = JT1 (LfỸit |xit ,yit−1 ,Uit ;θk
)−1(MfỸit ,xit ,yit−1 ,X1t−1

−MfỸit ,xit ,yit−1 ,X2t−1
)./Vfxit ,yit−1 ,X2t−1;θ0

.

Denote MfỸit |xit ,yit−1 ,�Xit−1
as a matrix of the difference of fỸit |Xit,Yit−1,Xit−1

with respect to Xit−1. If θk �→ θ0,

then

0 = JT1 (LfỸit |xit ,yit−1 ,Uit ;θ0
)−1(MfỸit |xit ,yit−1,X1t−1

−MfỸit |xit ,yit−1,X2t−1
)

≡ JT1 (LfỸit |xit ,yit−1 ,Uit ;θ0
)−1︸ ︷︷ ︸

Assumption 2.3

MfỸit |xit ,yit−1 ,�Xit−1︸ ︷︷ ︸
Assumption 2.6

,

where MfỸit |xit ,yit−1 ,Xit−1
≡ (fỸit |Xit,Yit−1,Xit−1

(Ỹit|xit, yit−1, Xit−1))ỹit,xit−1 . This contradicts the invertibility under

Assumptions 2.3 and 2.6, showing that the density function is still locally identifiable at θ0.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the
publisher’s web site:

Replication files
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