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a b s t r a c t

This paper provides sufficient conditions for identification of a nonparametric regression
model with an unobserved continuous regressor subject to nonclassical measurement
error. The measurement error may be directly correlated with the latent regressor in
the model. Our identification strategy does not require the availability of additional data
information, such as a secondary measurement, an instrumental variable, or an auxiliary
sample. Our main assumptions for nonparametric identification include monotonicity of
the regression function, independence of the regression error, and completeness of the
measurement error distribution. We also propose a sieve maximum likelihood estimator
and investigate its finite sample property through Monte Carlo simulations.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the following nonparametric errors-in-variables regression model:

Y = m0(X∗) + η (1)
X = X∗

+ ε (2)

where m0 is an unknown, monotone function, Y is a dependent variable, η is the regression error, X∗ is an unobserved
continuous regressor, X is the observed counterpart of X∗, contaminated by a measurement error ε. The main goal is to
identify the nonlinear function m0 from the joint distribution of the observed data (Y , X) without a priori knowledge of
the distribution of the measurement error ε, while allowing a correlation between X∗ and ε, and without relying on the
availability of additional side information, such as repeated measurements or instruments.

The nonparametric version of the identification problem in Eqs. (1) and (2) without the monotonicity has only very
recently been solved in the case where ε, η and X∗ are mutually independent (Schennach and Hu, 2013). This paper seeks
to relax the independence assumption between ε and X∗ to allow for so-called non-classical measurement error, a topic
whose importance is beginning to gather significant attention due to realization that the classical (independent) error
may often be violated in applications (Bound et al., 2001; Hu and Schennach, 2008; Bollinger, 1998; Bound et al., 1994).
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The present paper provides a significant step towards generally handling nonclassical error, by allowing flexible
orrelation between the latent regressor X∗ and the nonclassical measurement error ε. We impose the same type of
estriction on the nonclassical measurement error as in Hu and Schennach (2008) such as completeness and a location
ondition of the measurement error distribution but avoid the use of an additional instrumental variable to achieve
onparametric identification. We also avoid the reliance on the information contained in other, correctly measured,
egressors (as in, e.g., Ben-Moshe et al. (2016)). Our model is superficially reminiscent of that in Chen et al. (2009a),
here the unobserved regressor X∗ and its measurement X share a finite discrete support. Whereas handling the discrete
isclassification case could be reduced to solving a finite system of equations, handling the continuous case entails
onsiderable technical challenges, such as requiring the use of advanced operator and Fourier techniques. In addition,
e are able to provide primitive conditions for our identification result that are far easier to interpret than those of Chen
t al. (2009a).1
We assume non-differential measurement error and that the regression error η is independent of the latent regressor

∗ and its measurement X , that the regression function m0 is monotonic over the support X ∗ of X∗, and that the
easurement error density fX |X∗ is complete (this can be regarded as a nonparametric rank condition, see, e.g., Mattner

1993) or Andrews (2017)). We show that the regression function m0 and the measurement error distribution fX |X∗ are
onparametrically identified by showing that the densities

(
fY |X∗ , fX |X∗ , fX∗

)
on the right hand side are uniquely determined

rom the observed joint density fY ,X on the left hand side of the following integral equation:

fY ,X (y, x) =

∫
X∗

fY |X∗ (y|x∗)fX |X∗ (x|x∗)fX∗ (x∗)dx∗, (3)

btained after assuming fY |X∗,X (y|x∗, x) = fY |X∗ (y|x∗).
Based on this result, we propose a sieve maximum likelihood estimator (MLE) for the (possibly infinite-dimensional)

arameter of interest α that incorporates the regression function m0 and other nonparametric elements fη , fX |X∗ , and
X∗ . Sieve estimators represent a powerful and rapidly growing class of estimators (see Ding and Nan (2011), Xue et al.
2010), Chen et al. (2009b), Ghosal and Van Der Vaart (2007) for recent examples). Under suitable regularity conditions,
ne can approximate the unknown functions m0, fη , fX |X∗ , and fX∗ by truncated sieve series such as polynomials, Fourier
eries, or splines and estimate the coefficients of these approximations by maximum likelihood (Chen, 2006). Using
echniques from Ai and Chen (2003), we show that the sieve MLE is consistent and, in semiparametric settings, root-n
symptotically normal and efficient, under suitable regularity conditions. We investigate finite sample properties of the
roposed sieve maximum likelihood estimator through Monte Carlo simulations.
Measurement error models have been gathering considerable interest in statistics (Chesher, 1991; Li and Vuong, 1998;
ang, 2004; Huang and Wang, 2001; Schennach, 2013; Carroll et al., 2007; Delaigle et al., 2008; Schennach, 2004, among
any others) and this topic has been the subject of several reviews (e.g., Carroll et al. (2006), Schennach (2016)). The
ore challenging problem of addressing measurement error when side information is unavailable has also been receiving
onsiderable attention, but existing methods have so far focussed on linear models (Geary, 1942; Reiersol, 1950; Chesher,
998; Pal, 1980; Cragg, 1997; Lewbel, 1997, 2012; Dagenais and Dagenais, 1997; Erickson and Whited, 2000, 2002;
rickson et al., 2014; Ben-Moshe, 2014, among others). Examples that combine a classical error on Y and a nonclassical
rror on X can be found in many fields, from the medical to the economic literatures. For instance, in the study of the effect
f a specific food intake (X∗) on cholesterol levels (Y ) (e.g., Griffin and Lichtenstein (2013)), it is plausible to maintain
classical error assumption on the laboratory measurement of cholesterol level (Glasziou et al., 2008) but food intake

s unlikely to be contaminated by a simple classical error if it is self-reported, a situation known to induce non-classical
rrors (Hyslop and Imbens, 2001; Bound et al., 2001). Another example would be the study of the relation between
ousehold income (X∗) and children health status (Y ), as measured by objective quantities (such a body mass index)
e.g., Jin and Jones-Smith (2015)). While the dependent variable is likely to conform to classical assumptions, household
ncome is widely recognized as exhibiting nonclassical error (Bollinger, 1998; Bound and Krueger, 1991).

The rest of the paper is organized as follows. Section 2 discusses assumptions for nonparametric identification. Section 3
escribes our estimator, and Section 4 presents Monte Carlo simulations. Section 5 concludes. All proofs and auxiliary
emmas are in the Appendix.

. Nonparametric identification

In this section, we introduce our key assumptions for nonparametric identification of the model and outline the main
rguments of the proof in order to give an intuition of the identification result. Let Y , X , and X ∗ denote the supports of the
istributions of the random variables Y , X , and X∗, respectively. We first assume a boundedness restriction on densities
nd place some restrictions on the regression error η.

ssumption 2.1 (Restrictions on Densities). The joint distribution of the random variable X and X∗ admits a density fX,X∗

ith respect to the Lebesgue measure and the conditional density of the measurement error fX |X∗ and marginal density
f the true regressor fX∗ are bounded by a constant.

1 Our assumptions are all imposed directly on the primitive objects such as m0 , fX |X∗ , etc. The identification condition in Assumption 2.3 of Chen
t al. (2009a) is rather technical and its connections to m , f ∗ , etc are not straightforward.
0 X |X
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ssumption 2.2 (Restrictions on Regression Error). We assume that
(i) (Independence) the regressor error η is independent of the latent true regressor X∗,
(ii) (Zero conditional mean) E[η|X∗

] = 0,
(iii) (Nonvanishing characteristic function) E[exp(iγ η)] ̸= 0 for all γ ∈ R.

Assumption 2.2(i) effectively imposes an additively separable structure on the regression error η. This assumption
implies that the conditional density fY |X∗ is completely determined by the distribution of the regressor error η and the
regression function as follows:

fY |X∗ (y|x∗) = fη(y − m0(X∗)).

Assumption 2.2(ii) is a standard centering restriction on the model’s disturbances.
Let L2(X) = {h :

∫
X

|h(x)|2dx < ∞}. The measurement error satisfies the following:

Assumption 2.3 (Restrictions on Measurement Error). Suppose that
(i) (Nondifferential error) the observed measurement X is independent of dependent variable Y conditional on the

unobserved regressor X∗, i.e., for ∀(y, x, x∗) ∈ Y × X × X ∗

fY |X∗,X (y|x∗, x) = fY |X∗ (y|x∗).

(ii) (Invertibility) For any function h ∈ L2(X ∗),
∫
fX |X∗ (x|x∗)h(x∗)dx∗

= 0 for all x ∈ X implies h(x∗) = 0 for almost any
∗

∈ X ∗. On the other hand, for any function h ∈ L2(X ),
∫
fX |X∗ (x|x∗)h(x)dx = 0 for all x∗

∈ X ∗ implies h(x) = 0 for almost
any x ∈ X .

(iii) (Normalization) There exists a known functional G such that G
[
fX |X∗ (·|x∗)

]
= x∗ for any x∗

∈ X ∗.

Assumption 2.3(i) implies that the measurement error is nondifferential, that is, X − X∗ does not affect the true model,
fY |X∗ , the distribution of the dependent variable Y conditional on the true value X∗. The observed measurement X thus does
not provide any more information about Y than the unobserved regressor X∗ already does. Such conditional independence
restrictions have been extensively used in the recent years.2 Note that we allow the measurement error X − X∗ to be
correlated with the true unobserved regressor X∗, which reflects the presence of potential nonclassical measurement
error.

Assumption 2.3(ii) implies that the conditional density fX |X∗ is complete in both X and X ∗. This condition is related
to the invertibility of the integral operator with kernel fX |X∗ . Intuitively, assuming completeness of fX |X∗ is weaker than
assuming independence between X∗ and X−X∗, in the same way the space of invertible matrices is much larger (in terms
of dimension) than the space of similarly sized matrices A of the special form Aij = v(j−i) for some vector v.3 Completeness
conditions have recently been employed in the nonparametric IV regression models and nonlinear measurement error
models and such conditions are often regarded as high level conditions. Canay et al. (2013) have shown that the
completeness condition is not testable in a nonparametric setting with continuous variables. However, Freyberger (2017)
provides a first test for the restricted completeness in a nonparametric instrumental variable model by linking the outcome
of the test to consistency of an estimator. Hu et al. (2017) rely on known results regarding the Volterra equation to provide
sufficient conditions for completeness conditions for densities with compact support with an accessible interpretation and
without specific functional form restrictions.4

Assumption 2.3(iii) is borrowed from Hu and Schennach (2008), because we also use a spectral decomposition, but with
less data information and more restrictions on the regression model. Examples of functional G from Assumption 2.3(iii)
include the mean, the mode, median, or the τ -th quantile. It implies that a location of the distribution fX |X∗ (·|x∗) reveals
the true value x∗. This condition also imposes restrictions on the support of x, x∗, and therefore, the measurement error.
Those include that zero is in the support of the measurement error and that the cardinality of the support of x cannot be
smaller than that of x∗. We refer to that paper for further discussion on these conditions.

Finally, we assume the regression function satisfies

Assumption 2.4 (Restrictions on Regression Function). Suppose that the regression function m0 is continuous, bounded, and
strictly monotonic over support X ∗.

The boundedness constraint can be somewhat restrictive and rules out linear functions when the support X ∗ is
unbounded. However, if the support of x∗ is a bounded interval, Assumption 2.4 is a rather mild condition and allows
for linear functions.

Our main results is as follows:

2 For example, Altonji and Matzkin (2005), Heckman and Vytlacil (2005), and Hoderlein and Mammen (2007).
3 This analogy exploits the fact that, in the case of discrete measurement error, the link between the observed distribution of X and the
nobserved distribution of X∗ can be represented by the multiplication of the vector of unobserved probabilities of the different values of X∗

y the misclassification matrix A.
4 More general discussions of completeness can be found in D’Haultfoeuille (2011), Chen et al. (2013), Andrews (2017), and Hu and Shiu

2017), Mattner (1993), Newey and Powell (2003) and Blundell et al. (2007).
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heorem 2.1. Under Assumptions 2.1, 2.3, 2.2, and 2.4, given the observed density fY ,X (y, x), the equation

fY ,X (y, x) =

∫
X∗

fη(y − m0(X∗))fX |X∗ (x|x∗)fX∗ (x∗)dx∗

ermits a unique solution (m0, fη, fX |X∗ , fX∗ ) ≡ α0. The solution characterizes the nonparametric regression model in Eq. (1).

The formal proof of this result, reported in the appendix, can be outlined as follows. If one knew the distribution of the
odel error η, one could recover the joint distribution of (m0(X∗), X) by a standard deconvolution argument, thanks to
ssumptions 2.2 and 2.3(i). From that distribution, one could then recover m0 and fX |X∗ from our assumed normalization
estriction (Assumption 2.3(iii)), after exploiting the monotonicity and continuity of m0 (Assumption 2.4).5 Of course, one
oes not know, a priori, the distribution of η, but one can, in principle, consider any possible trial distribution to get
arious possible trial values of m0 and fX |X∗ . The key realization is that, whenever the assumed density of η is incorrect,
his will be detectable by one of the following occurrences: (i) negative densities for the unobserved variables, (ii) violation
f Assumption 2.3(ii) (invertibility) or (iii) violation of the boundedness constraint of Assumption 2.4.
The Appendix provides another, completely independent, proof of Theorem 2.1, which delivers a rather different

nsight into the identification problem. This alternate proof employs operator techniques similar to those used in Hu
nd Schennach (2008) and can be summarized as follows. The idea is that the integral Theorem 2.1 can be cast as a
ystem of operator equivalence relations. Solving this system yields an equivalence between an operator entirely built
rom observable quantities and a product of unknown operators to be determined. We then show that this factorization
an be uniquely determined, because it takes the form of an operator diagonalization identity, i.e., the eigenvalues and
igenfunctions of a known operator yield the different pieces of the product. To ensure uniqueness of this decomposition,
e appeal to conditions such as the invertibility and normalization on fX |X∗ in Assumption 2.3(ii)&(iii) and the monotonic
estriction on m0 in Assumption 2.4.

Although the monotonicity is a strong restriction, the condition is applicable to many empirical settings. We provide
hree examples in different areas of economics where monotonicity is a reasonable assumption. The first example is the
stimation of the impact of education (X∗) on wages (Y ) in which there could be reporting errors in education level.
he higher education level the higher wage, which implies a monotonic regression function between the wage offer and
he true education level. The second empirical example is in estimating the effect of government subsidies (X∗) on firm
&D investment (Y ). The measures of government subsidies may suffer measurement errors because they may be hard to
ummarize when each firm may receive different types of subsidies. The fact that more government subsidies for firms
re likely to increase R&D investments indicates a monotonic relation between them. The third example is the relation
etween household income ( X∗, measured with error) and children health status (Y ). Since wealthier families have more
esource to promote children health, higher household income tends to be associated with better children health status.
n all these three examples, we can use the mode as the functional G in Assumption 2.3(iii) because people are more likely
o tell the truth for their education level, and household income, and firms are more likely to report the true government
ubsidies.
The point identification result of Theorem 2.1 is not only nonparametric, but also global. This is because we show

dentification by solving the integral equation directly, in the sense that our identification strategy does not rely on the
sual local identification condition that a true parameter value is only distinguishable from those parameters values close
o the true one.

Our result is applicable beyond regression settings. In general, we may also consider the observables (Y , X) as two
easurements or proxies of the latent variable X∗, an observation which is useful, for instance, in factor models. In many
mpirical applications, the latent variable may represent unobserved heterogeneity or an individual effect. Our result may
hen allow for flexible relationships between observables and unobservables to achieve nonparametric identification. In
ddition, our results can also be straightforwardly extended to the case where an additional error-free covariate vector
appears in the regression function, because our assumptions and results can all be restated as conditioned on W .
Our results prompt the question of whether it would be possible to further extend the identification proof to cover

he case where both the dependent variable and the regressor are contaminated by a nonclassical error. However, this
ould necessitate a one-to-one mapping between the space of bivariate density fYX (y, x) and the much ‘‘larger’’ space of
airs of bivariate functions (fX,X∗ (x, x∗), fY |X∗ (y|x∗)), which is a highly unlikely possibility.

. A sieve maximum likelihood estimator

The nonparametric identification result of Theorem 2.1 allows for a variety of possible parametrization of the model
n terms of the parameter α0 that incorporates all the unknown functions of the model. In this section, we assume that
he regression function contains a vector of finite dimensional unknown parameters θ of primary interest and possibly
n infinite dimensional unknown function h, namely, m0(x∗) = m0(x∗

; θ̃0) where θ̃0 = (θ0, h0).6 For instance, θ0 could

5 In the absence of monotonicity, the measurement error distributions along the X axis for different true values of X∗ would mix. As a result,
ne could not easily identify the measurement error distribution by looking at the distribution of X conditional on the value of m0(X∗).
6 While m is identified from Theorem 2.1, the joint identification of θ , h from m is assumed.
0 0
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e a finite-dimensional parameter that represents some average derivative (Härdle and Stoker, 1989) of m0 (x∗), while
0 would be an infinite-dimensional parameter vector allowing the shape of m0 (x∗) to be free of parametric restrictions.
lternatively, the regression function m0 could be parametrically specified as m0(x∗

; θ0) for a finite-dimensional parameter
0.7 Hence, practitioners are free to be as parametric or as nonparametric as they wish given the data available.
This approach’s underlying motivation is that practitioners often wish to test a specific hypothesis or report a single

ummary measure θ of the causal effect of some variable on another variable even when they are unwilling to make
arametric restrictions. In this context, the smoothing effect of semiparametric functionals, enables, under suitable
egularity conditions, convergence at the parametric rate and a limiting distribution that is normal centered at zero, thus
nabling testing in the most natural way and circumventing8 slow convergence due to the ill-posedness of the problem
f inverting integral equations (Schennach, 2004).
The identification of (θ0, fη, fX |X∗ , fX∗ , h0) in Theorem 2.1 makes use of completeness conditions on fX |X∗ and mono-

onicity of m0 and we show how to accomplish the nontrivial task of integrating these identification conditions into a
ractical estimation method. This section illustrates the sieve MLE of the nonparametric regression model (1) with the
dentification restrictions. This constructive estimation method is novel to the literature.

Set A = Θ×F1×F2×F3×F4, as the parametric space containing the true parameter α0 ≡ (θ0,
√
fη, fX |X∗ ,

√
fX∗ ,

√
h0),9

nd α ≡ (θ, f1s, f2, f3s, h4s), where the lower subscript s indicates the square roots. Note that employing an expansion based
n the square root of the densities provides a natural way to ensure that the densities themselves are positive. The true
arameter α0 ≡ (θ0,

√
fη, fX |X∗ ,

√
fX∗ ,

√
h0) is the solution of the following maximization problem:

sup
α∈A

E
[
ln

(∫
X∗

f1(y − m0(x∗
; θ̃ ))f2(x|x∗)f3(x∗)dx∗

)]
, (4)

where θ̃ = (θ, h4). An estimator can then be obtained by maximizing the sample analog of Eq. (4) based on the observed
sample {yi, xi}ni=1. Define

Q̂n(α) =
1
n

n∑
i=1

ln
(∫

X∗

f1(yi − m0(x∗
; θ̃ ))f2(xi|x∗)f3(x∗)dx∗

)
. (5)

To obtain a consistent estimator, it is necessary to regularize the optimization procedure by maximizing Q̂n(α) over
An

≡ Θ × Fn
1 × Fn

2 × Fn
3 × Fn

4 , a sequence of approximation spaces to A.

3.1. Identification restrictions on sieve spaces

In the sieve approximation, we consider each component of the finite-dimensional sieve An spanned by orthonormal
bases. Let {pi(x) : i = 1, 2, 3, . . .} and {pj(x∗) : j = 1, 2, 3, . . .} be orthonormal base for L2(X ) and L2(X ∗), respectively. A
bivariate basis function for L2(X × X ∗) can be generated by a tensor product construction using {pi(x) : i = 1, 2, 3, . . .}
and {pj(x∗) : j = 1, 2, 3, . . .}. We thus have a sieve expressions for f2 of the form

f2(x|x∗) =

k2,n∑
i=1

k2,n∑
j=1

β2ijpi(x)pj(x∗). (6)

With this expansion, the first completeness restriction in Assumption 2.3(ii), projected onto the finite dimensional space
of functions spanned by the pj, is equivalent to imposing that the square coefficient matrix

[
β2ij

]
k2,n×k2,n

is invertible. This
follows from the orthogonality of the pj, as shown in more detail in Lemma D.1 of the online appendix. We can similarly
find the restriction for the second completeness restrictions and the restriction also requires

[
β2ij

]
k2,n×k2,n

to be invertible.
Incorporating the two other restrictions on f2, namely, the density restriction and normalization in Assumption 2.3(iii),
yields the following sieve space:

Fn
2 ={f2(·|·) ∈ Λγ1,ω

c (X × X ∗) : ∃β2 ∈ Rk2,n×k2,n such that

(i) f2
(
x|x∗

)
=

k2,n∑
i,j=1

β2ijpi(x)pj(x∗),
[
β2ij

]
k2,n×k2,n

is invertible,

(ii) f2(·|·) ≥ 0,
∫
X
f2(x|x∗)dx = 1 for x∗

∈ X ∗, and

(iii) f2 satisfies Assumption 2.3(iii)}.

7 More examples of a partition can be found in Shen (1997).
8 Of course, this statement is conditional on a number of regularity conditions that may not always hold, see Chen and Liao (2014) and Chen

and Pouzo (2015) for examples.
9 The detail descriptions of A are provided in Appendix B.
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ince implementation of some of the restrictions on sieve coefficients are dependent on the specific basis used, we will
iscuss all restrictions together for a particular orthonormal basis in the Monte Carlo section.
Next, we consider the strict monotonicity condition on m0(x∗

; θ̃ ). Without loss of generality, we assume m0(x∗
; θ̃ )

s strictly increasing. To impose the strictly increasing property, we need to know the semi-parametric structure of the
egression function. We divide the semi-parametric structure into three cases, pure parametric cases, pure nonparametric
ases, and semi-parametric cases. In the pure parametric case, we can consider m′(x∗

; θ ) > 0 for all x∗
∈ X ∗. As for the

pure nonparametric case m0(x∗
; θ̃ ) = m0(x∗), we can consider a sieve expression of a square root of m′ and use the

following sieve expression

m′(x∗) = β40 +

⎛⎝k4,n−2∑
k=1

β4kpk(x∗)

⎞⎠2

for some β40 > 0. (7)

Then, we can use an anti-derivative of the sieve expression in Eq. (7) as a sieve approximation for the regression
function,

m0(x∗) = µ0 + β40x∗
+

∫ x∗

a

⎛⎝k4,n−2∑
k=1

β4kpk(x∗)

⎞⎠2

dt. (8)

If m has both parametric (θ ) and nonparametric (h4) components, the sieve restriction from the monotonicity condition
may depend on the functional form of m0(x∗

; θ̃ ). For example, if m0(x∗
; θ̃ ) = H(θ + h4(x∗)), where H is a known function,

we may only implement the restriction as H ′ > 0, and h′

4 > 0, and we can obtain the sieve restriction for h′

4 > 0 in a
similar way as the pure nonparametric case. Therefore, we use the following sieve space for the strictly increasing function
m

Fn
4 ={

√
m′

4(·; θ̃ ) ∈ F4 : ∃ (β40, β4) ∈ R1+k4,n such that (9)√
m′

4(·; θ̃ ) = β40 + pk4,n (x∗)Tβ4β
T
4 p

k4,n (x∗), β40 > 0} (10)

Because f1, and f3 only have density restrictions, the sieve restrictions for them are easy to impose and their sieve
spaces are

Fn
1 = {

√
f1(·) ∈ F1 : ∃β1 ∈ Rk1,n such that

√
f1(η) = pk1,n (η)Tβ1}

Fn
3 = {

√
f3(x∗) ∈ F3 : ∃β3 ∈ Rk3,n such that

√
f3(x∗) = pk3,n (x∗)Tβ3}

here pk(·) = (p1(·), . . . , pk(·))T is a vector of known univariate basis function.
A consistent sieve MLE α̂n is given by

α̂n = arg max
α∈An

Q̂n(α).

his estimator is a direct application of the general semi-parametric sieve MLE presented by Shen (1997), Chen and Shen
1998), and Ai and Chen (2003) . Ai and Chen (2003) show that α̂n is a consistent estimator, and the parametric component
f α has an asymptotically normal distribution. We present all the standard assumptions for consistency of all unknown
arameters and root-n normality of the parametric part in the Online Appendix.

. Monte Carlo study

In this section, we examine the finite sample properties of the estimator via Monte Carlo experiments in a variety of
odels including parametric and nonparametric regression models.

.1. Parametric regression model

In the parametric setting, we focus on three parametric model specifications for two Data Generating Process (DGP)
esigns with two different types of nonclassical measurement errors. The three different specifications for the monotonic
egression function m0(x∗

; θ ) include a polynomial, an exponential function, and a rational fraction. In each experiment,
e perform 200 Monte Carlo replications with two sample sizes: 1000, and 2000. For each sample size, we calculate the
ean, the median, RMSE and AICc for the estimator across all 200 simulations.
Formal data-driven selection rules for choosing smoothing parameters in sieve maximum likelihood are available

n the literature (van der Laan et al., 2004; Schennach, 2013; Chen et al., 2009b). Here, following Chen et al. (2009b),
e determine the optimal number of terms based on small sample correction of AIC in Burnham and Anderson (2002)
ICc = −2Q̂n (̂αn(Kn)) + 2Kn/(n − Kn − 1), where Kn is the total number of sieve parameters, with the model with lowest
ICc preferred. We report the estimation result using different choices of the order of the sieve coefficients for f2(x|x∗),

= 3, 4, and 5 (larger values of k , not reported for conciseness, do not yield improvements in RMSE or AIC values).
2,n 2,n c
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The data for the Monte Carlo experiments are generated by the model:

yi = m0(x∗

i ; θ ) + ηi, for all i = 1, . . . ,N, (11)

here, X∗ is a standard normal random variable truncated to the interval [−1, 1], and η is generated independently by
η ∼ N(0, 1). Consider

DGP I: x = x∗
+ h(x∗)e, e ∼ N(0, 1) with h(x∗) = |x∗

|,

DGP II: x = x∗
+ h(x∗)e, e ∼ N(0, 1) with h(x∗) = 0.3exp(−x∗).

There are three specifications for the parametric regression function

Function 1: m0(x∗
; θ ) = θ1x∗

+ θ2x∗2
+ x∗3,

Function 2: m0(x∗
; θ ) = θ1x∗

+ θ2ex
∗

,

Function 3: m0(x∗
; θ ) = θ1x∗

+
θ2x∗

2 − x∗
.

We use the Hermite orthogonal series as our sieve basis functions for f1(η)1/2 and the Legendre polynomial series of
2([−1, 1]) = {h :

∫ 1
−1 |h(x)|2dx < ∞} as our sieve basis functions for f2(x|x∗), and f3(x∗)1/2 (the observed data is bounded

nd is trivially scaled to fit the [−1, 1] domain of these series). Denote the Hermite polynomials by H1(η) = 1,H2(η) = η,
3(η) = η2

− 1,H4(η) = η3
− 3η, . . . and observe that they form an orthogonal series after multiplication by a Gaussian:

∞

−∞
Hn(η)Hm(η)e−η2dη =

√
2πn!δnm, where δnm = 1 if n = m, and δnm = 0 otherwise. When k1,n = 4, f1(η) =∑4

k=1 β1kHk(η)
)2

. Those sieve coefficients satisfy the following density restriction,
√
2π (β2

11 + β2
12 + 2!β2

13 + 3!β2
14) = 1.

Denote the Legendre polynomials by g1(η) = 1, g2(η) = η, g3(η) = η2
−

1
3 , g4(η) = η3

−
3
5η, g5(η) = η4

−
6
7η

2
+

3
35 , . . .

nd observe that they form an orthogonal series:
∫ 1

−1 gl(η)gm(η)dη = clδlm, where δlm = 1 if l = m, and δlm = 0 otherwise.
Then, we can normalize the orthogonal series to obtain an orthonormal base {φi(η) : i = 1, 2, 3, . . .}, where φi(η) =

gi(η)√
ci
.10

e use the orthonormal base in the sieve approximation series in Eq. (6) for the measurement error probability f2(x|x∗),

f2(x|x∗) =

k2,n∑
i=1

k2,n∑
j=1

β2ijgi(x)gj(x∗). (12)

s discussed in Section 3.1, the completeness constraint on f2(x∗
|x) to impose on the sieve coefficients is that the square

matrix
[
β2ij

]
k2,n×k2,n

is non-singular. The non-singular property can be imposed by choosing the matrix
[
β2ij

]
k2,n×k2,n

as

a strictly diagonally dominant matrix.11 This sufficient condition for nonsingularity offers the advantage of allowing for
a very straightforward implementation. Alternatively, a standard nonzero determinant conditions could be used, at the
expense of a more complex implementation, due to the nonlinearity of the resulting constraint. The diagonal dominance
constraint proves convenient, at early stages of the optimization, for efficiently finding an approximate solution. If this
constraint turns out to become binding, one can refine the solution using the necessary and sufficient nonzero determinant
constraint, a task which is then less numerically challenging because the nonlinear constraint becomes nearly linear in a
neighborhood of the solution.

As we use the Legendre orthonormal polynomials as approximation series, the density restrictions
∫
X f2(x|x∗)dx = 1,

for all x∗ can be imposed through β211 = 1 and β21j = 0 for all j ̸= 1 and the normalization restrictions
∫
X xf2(x|x∗)dx = x∗

can be imposed through β222 = 1 and β22j = 0 for all j ̸= 2.12 We can then choose the following form of sieve coefficients
satisfying all three sieve restrictions,[

I2×2 0
0 D2

]
,

where D2 =
[
β2ij

]
3≤i,j≤k2,n

and D2 is strictly diagonally dominant. Thus, the sieve restrictions may be easily satisfied by
using the identity matrix for an initial value for

[
β2ij

]
k2,n×k2,n

. The sieve approximation f3(x∗)1/2 can be constructed in the
same manner as f1(η)1/2 by using the Legendre orthonormal polynomials.

Three other estimators serve as a basis for comparison. They include: (1) an infeasible estimator based on actually
observing X∗ (Infeasible with X∗), (2) a feasible but biased estimator that ignores the measurement error problem (Biased

10 The properties of the Legendre polynomials can be found in Weisstein (2020).
11 A square matrix is strictly diagonally dominant if the magnitude of the diagonal entry in each row of the matrix is larger than the sum of the
magnitudes of all off-diagonal entries in that row. Levy–Desplanques Theorem shows that a strictly diagonally dominant matrix is non-singular. The
result can be found as Corollary 5.6.17. in Horn and Johnson (1985). In our case, the condition is |β2ii| >

∑
j̸=i |β2ij| for all i.

12 The density and normalization restrictions stem from the conditions for the Legendre polynomials,
∫ 1

−1 gi(x)dx = 0 for i > 1 and
∫ 1

−1 xgi(x)dx = 0
or i ̸= 2. Because of the continuity of x∗ , these conditions are not just sufficient but also necessary.
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Table 1
Simulation results of the comparison estimators in Section 4.1 (n = 1000).

Infeasible with X∗ Biased Estimator Infeasible with η

θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5

DGP I: Function 1: m0(x∗
; θ ) = θ1x∗

+ θ2x∗2
+ x∗3

Mean 0.498 0.501 0.070 0.311 0.416 0.415
Median 0.498 0.505 0.069 0.311 0.405 0.416
RMSE 0.060 0.078 0.573 0.201 0.139 0.134

Function 2: m0(x∗
; θ ) = θ1x∗

+ θ2ex
∗

Mean 0.497 0.501 0.164 0.483 0.419 0.385
Median 0.498 0.501 0.162 0.482 0.415 0.388
RMSE 0.065 0.027 0.342 0.033 0.134 0.148

Function 3: m0(x∗
; θ ) = θ1x∗

+
θ2x∗

2−x∗
Mean 0.497 0.501 0.364 0.276 0.407 0.417
Median 0.497 0.501 0.365 0.274 0.407 0.413
RMSE 0.154 0.250 0.188 0.298 0.132 0.135

DGP II: Function 1: m0(x∗
; θ ) = θ1x∗

+ θ2x∗2
+ x∗3

Mean 0.498 0.501 0.181 0.539 0.354 0.417
Median 0.498 0.505 0.181 0.539 0.319 0.416
RMSE 0.060 0.078 0.324 0.081 0.183 0.125

Function 2: m0(x∗
; θ ) = θ1x∗

+ θ2ex
∗

Mean 0.497 0.501 0.304 0.472 0.432 0.367
Median 0.498 0.501 0.303 0.472 0.431 0.329
RMSE 0.065 0.027 0.206 0.039 0.110 0.167

Function 3: m0(x∗
; θ ) = θ1x∗

+
θ2x∗

2−x∗
Mean 0.497 0.501 0.310 0.516 0.368 0.415
Median 0.497 0.501 0.306 0.519 0.359 0.417
RMSE 0.154 0.250 0.233 0.222 0.151 0.130

Note: The mean, the median and the Root Mean Square Error (RMSE) of the parameters are computed
by the estimates over 1000 replications. DGP I and DGP II are referred to the DGPs for the measurement
error process in Section 4.1. The orders of f2 and f3 in the estimator, Infeasible with η, are k2,n = 4 and
k3,n = 4, respectively.

Estimator), (3) infeasible estimator presented in Eq. (5) using the error-contaminated sample but using knowledge of the
distribution of η, i.e. f1 is assumed to the standard normal density (Infeasible with η) and f2 and f3 are approximated by
the Legendre polynomials. While Tables 1, 3 present the simulation results of the mean, median, and RMSE of the three
comparison estimators, Tables 2, 4 report the results for the mean, median, RMSE and AICc of the sieve ML estimator. The
simulation design contains the three different specifications of the monotonic regression function with two types of DGPs.
The Monte Carlo results show that the sieve MLE with different orders of k2,n generally had smaller RMSEs than the Biased
Estimator ignoring measurement error. In general, the proposed sieve MLE achieves higher standard deviations than the
Infeasible with η because the sieve MLE has to estimate the additional unknown function f1. The estimation results of the
parameters in all DGPs show small RMSEs and AICcs for k2,n = 5, of N = 2000. The RMSEs and AICcs decrease with the
sample size. The means and medians of the estimated parameters are only slightly different in the proposed sieve ML
estimator, indicating little skewness in their respective distributions.

4.2. Nonparametric regression model

The DGPs for X∗ and X are the same as the ones in the parametric regression models, but the estimation procedure
in this section does not rely on the knowledge of the functional form of the regression function. There are two types of
DGPs for the measurement error process which are the same as Section 4.1 and the three regression functions used are:

Function 4: m0(x∗) = ln(1.2 + x∗
+ 0.5x∗2)

Function 5: m0(x∗) =

{
0.8x∗ if x∗ < 0,
1.5x∗ otherwise.

Function 6: m0(x∗) =

{
0.01x∗

+ 0.01 if x∗ < 0,
x∗

+ 0.01 otherwise.

Function 4 is infinitely continuously differentiable, Function 5 has a limited degree of smoothness, and Function 6 is
strictly monotone but very close to constant on the interval [−1, 0].

The sieve approximations for f1(η)1/2, f2(x|x∗), and f3(x∗)1/2 are the same as the approximations in the parametric
regression models. The identifying restrictions in fX |X∗ are imposed through β222 = 1 and β22j = 0 for all j ̸= 2 for
the normalization and the strictly diagonally dominant matrix D =

[
β

]
for completeness. As for the sieve
2 2ij 3≤i,j≤k2,n
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Table 2
Simulation Results of the Sieve MLE in Section 4.1 (n = 1000).

k2,n = 3 k2,n = 4 k2,n = 5

θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5

DGP I: Function 1: m0(x∗
; θ ) = θ1x∗

+ θ2x∗2
+ x∗3

Mean 0.395 0.423 0.425 0.418 0.379 0.418
Median 0.387 0.427 0.425 0.416 0.381 0.423
RMSE 0.164 0.146 0.122 0.124 0.189 0.166

AICc 0.230 0.299 0.146

Function 2: m0(x∗
; θ ) = θ1x∗

+ θ2ex
∗

Mean 0.391 0.402 0.432 0.423 0.433 0.451
Median 0.395 0.414 0.429 0.419 0.438 0.462
RMSE 0.155 0.148 0.119 0.124 0.156 0.142

AICc 0.127 0.135 0.135

Function 3: m0(x∗
; θ ) = θ1x∗

+
θ2x∗

2−x∗
Mean 0.403 0.412 0.411 0.421 0.432 0.396
Median 0.406 0.402 0.415 0.422 0.447 0.396
RMSE 0.156 0.159 0.139 0.133 0.164 0.186

AICc 0.166 0.128 0.136

DGP II: Function 1: m0(x∗
; θ ) = θ1x∗

+ θ2x∗2
+ x∗3

Mean 0.409 0.436 0.438 0.458 0.402 0.421
Median 0.404 0.444 0.417 0.428 0.401 0.424
RMSE 0.152 0.123 0.146 0.148 0.166 0.147

AICc 0.218 0.268 0.194

Function 2: m0(x∗
; θ ) = θ1x∗

+ θ2ex
∗

Mean 0.417 0.408 0.422 0.402 0.429 0.456
Median 0.414 0.423 0.424 0.405 0.432 0.467
RMSE 0.146 0.145 0.131 0.137 0.148 0.124

AICc 0.165 0.193 0.205

Function 3: m0(x∗
; θ ) = θ1x∗

+
θ2x∗

2−x∗
Mean 0.396 0.407 0.407 0.421 0.428 0.422
Median 0.385 0.400 0.409 0.420 0.441 0.416
RMSE 0.160 0.153 0.137 0.132 0.153 0.165

AICc 0.268 0.220 0.194

Note: The mean, the median and the Root Mean Square Error (RMSE) of the parameters are computed
by the estimates over 1000 replications. DGP I and DGP II are referred to the DGPs for the measurement
error process in Section 4.1. The orders of the sieve approximations in the sieve MLE are k1,n = 4,
k3,n = 4, and k4,n = 4.

pproximations for the regression function, we also use the Legendre orthonormal polynomials and adopt the series form
n Eq. (8) with k4,n = 4. The series form in Eq. (8) is an anti-derivative of the sieve expression in Eq. (7) which takes
ositive values. Thus, this estimation procedure by sampling embeds the monotonicity constraints on m0. The estimator
or m0(x∗) is constructed by sampling the function at the 201 points ranging from −1 to 1 with a 0.01 increment.

Tables 5–7 report the integrated mean squared errors (IMSE) and AICcs as a function of k2,n for our sieve MLE estimatorˆ(x∗) for Functions 4, 5, and 6. The results of Table 5 indicate that IMSEs are smaller in DGPs I and II with k2,n = 4, and
maller AICc for DGP I with k2,n = 3 and DGP II with k2,n = 4. Table 6 shows that IMSEs are smaller for DGP I with
2,n = 5 and DGP II with k2,n = 4 but AICc are smaller for DGP I with k2,n = 4 and DGP II with k2,n = 5. Table 7 shows
hat IMSEs and AICc values point to an optimal choice of k2,n = 4 for all DGPs. The estimation results of the sieve MLE for
unctions 4, 5, and 6 with k2,n = 3, k2,n = 4, and 5 are plotted in Figs. 1–3, Figs. 4–6, and Figs. 7–9, respectively. These
lots show that the shapes of the estimates (cyan solid lines and black dashed line) are close to the true functions (red
ashed line). The black dashed lines represent confidence bands constructed from the 10th and 90th percentiles of 1000
urves estimated by sieve MLE. The closeness of the mean plot and the true regression plot in Figs. 2, 5, and 8, reflecting
mall IMSEs. The mean plot and the true regression plot in the Figures are almost inside the black dashed confidence
ands.

. Conclusion

This paper investigates identification and estimation of a class of measurement error models without any side
nformation, in which the measurement error may be nonclassical, i.e., correlated with the continuous latent true values.
he global nonparametric point identification of the model is proven through two different routes, one exploiting a deep
onnection between convolutions and completeness for compactly supported densities and the other relying on a spectral
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t

Fig. 1. The Estimated Function 4 in Section 4.2 Using k2,n = 3 for f2(x|x∗).

decomposition of an integral operator associated with the distribution of observable variables. The main identifying
assumptions include restrictions on the range of the regression function and the completeness of the measurement error
distribution. Our result allows for a rather flexible structure of regression function and measurement error distribution
and thus provides a useful alternative to the existing literature. We also develop a sieve ML estimator for the parameters
of interest based on the identification result. We present the asymptotic properties of the sieve MLE and investigate its
finite sample properties through a Monte Carlo study and find that it performs satisfactorily.

Appendix A. Proofs

Lemma A.1. For any given probability measure dA supported on a compact interval
[
a, a

]
with a > a, the mapping

M : L1
([
b − a, b − a

])
↦→ L1

([
b, b

])
with −∞ < b < b < ∞ defined by:

[Mf ] (x) =

∫ a

a
f (x − u) dA (u) for x ∈

[
b, b

]
is not injective (even if the characteristic function of A is nonvanishing on the real line). The same conclusion holds for any
compactly supported measure dA whose Fourier transform has a zero somewhere in the complex plane.

Proof. Without loss of generality, we consider A supported on [−l, l] with l > 0, since the problem can always be reduced
o this case by eliminating a trivial translation by

(
a + a

)
/2 from the mappingM . For the same reason, we can also assume
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Table 3
Simulation Results of the Comparison Estimators in Section 4.1 (n = 2000).

Infeasible with X∗ Biased Estimator Infeasible with η

θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5

DGP I: Function 1: m0(x∗
; θ ) = θ1x∗

+ θ2x∗2
+ x∗3

Mean 0.502 0.499 0.067 0.310 0.461 0.484
Median 0.503 0.502 0.064 0.310 0.461 0.485
RMSE 0.042 0.055 0.569 0.197 0.101 0.099

Function 2: m0(x∗
; θ ) = θ1x∗

+ θ2ex
∗

Mean 0.502 0.500 0.169 0.482 0.477 0.463
Median 0.503 0.499 0.170 0.481 0.478 0.467
RMSE 0.047 0.019 0.335 0.027 0.101 0.092

Function 3: m0(x∗
; θ ) = θ1x∗

+
θ2x∗

2−x∗
Mean 0.505 0.495 0.169 0.482 0.468 0.490
Median 0.504 0.502 0.170 0.481 0.469 0.487
RMSE 0.115 0.180 0.335 0.027 0.098 0.101

DGP II: Function 1: m0(x∗
; θ ) = θ1x∗

+ θ2x∗2
+ x∗3

Mean 0.502 0.499 0.183 0.538 0.444 0.473
Median 0.503 0.502 0.184 0.537 0.442 0.473
RMSE 0.042 0.055 0.320 0.062 0.105 0.093

Function 2: m0(x∗
; θ ) = θ1x∗

+ θ2ex
∗

Mean 0.502 0.500 0.307 0.471 0.461 0.450
Median 0.503 0.499 0.308 0.471 0.461 0.448
RMSE 0.047 0.019 0.198 0.035 0.096 0.097

Function 3: m0(x∗
; θ ) = θ1x∗

+
θ2x∗

2−x∗
Mean 0.505 0.495 0.313 0.516 0.448 0.470
Median 0.504 0.502 0.315 0.512 0.448 0.472
RMSE 0.115 0.180 0.212 0.156 0.097 0.096

Note: The mean, the median and the Root Mean Square Error (RMSE) of the parameters are computed
by the estimates over 1000 replications. DGP I and DGP II are referred to the DGPs for the measurement
error process in Section 4.1. The orders of f2 and f3 in the estimator, Infeasible with η, is k2,n = 4 and
k3,n = 4, respectively.

that b < 0 < b̄. Since A has compact support, by Theorem 7.2.3 and Remark 4 in Lukacs (1970), its characteristic function
α (ξ) has infinitely many zeros in the complex plane. (If the characteristic function of A is nonvanishing on the real line,
these zeros lie elsewhere in the complex plane.) Let ω + iρ denote one of these zeros. Then, consider the function

f (x) = exp (ρx) cos (ωx) 1
(
x ∈

[
b − l, b + l

])
and observe that, for x ∈

[
b, b

]
[Mf ] (x) =

∫ l

−l
exp (−ρ (x − u)) cos (−ω (x − u)) 1

(
x ∈

[
b − l, b + l

])
dA (u)

= Re
{∫ l

−l
exp (− (ρ + iω) (x − u)) 1

(
x ∈

[
b − l, b + l

])
dA (u)

}
= Re

{∫ l

−l
exp (− (ρ + iω) (x − u)) dA (u)

}
= Re

{
exp (− (ρ + iω) x)

∫ l

−l
exp ((ρ + iω) u) dA (u)

}
= Re

{
exp (− (ρ + iω) x)

∫
∞

−∞

exp ((ρ + iω) u) dA (u)
}

= Re {exp (− (ρ + iω) x) α (ω + iρ)} = 0

ence we have found a nonzero function supported on
[
b − l, b + l

]
that is mapped onto the zero function on

[
b, b

]
and

the mapping M is thus not injective. The same construction obviously holds for any measure whose Fourier transform
vanishes at some point ω + iρ in the complex plane. □

Proof of Theorem 2.1. For a given random variable V , we let φV (ν) ≡ E[eiνV ] denote its characteristic function and
iven another random variable W assumed to have a density f (w), we also define the ‘‘partial’’ characteristic function
W
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Table 4
Simulation Results of the Sieve MLE in Section 4.1 (n = 2000).

k2,n = 3 k2,n = 4 k2,n = 5

θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5

DGP I: Function 1: m0(x∗
; θ ) = θ1x∗

+ θ2x∗2
+ x∗3

Mean 0.388 0.434 0.430 0.422 0.481 0.505
Median 0.382 0.442 0.431 0.414 0.483 0.508
RMSE 0.164 0.142 0.114 0.120 0.098 0.094

AICc 0.197 0.314 0.062

Function 2: m0(x∗
; θ ) = θ1x∗

+ θ2ex
∗

Mean 0.387 0.410 0.428 0.424 0.488 0.499
Median 0.392 0.417 0.428 0.421 0.487 0.516
RMSE 0.150 0.137 0.121 0.117 0.100 0.109

AICc 0.087 0.051 0.034

Function 3: m0(x∗
; θ ) = θ1x∗

+
θ2x∗

2−x∗
Mean 0.399 0.417 0.413 0.419 0.490 0.518
Median 0.407 0.413 0.425 0.426 0.483 0.514
RMSE 0.157 0.163 0.136 0.137 0.101 0.111

AICc 0.199 0.042 0.036

DGP II: Function 1: m0(x∗
; θ ) = θ1x∗

+ θ2x∗2
+ x∗3

Mean 0.404 0.447 0.440 0.468 0.476 0.511
Median 0.386 0.457 0.414 0.422 0.474 0.515
RMSE 0.154 0.113 0.149 0.154 0.095 0.098

AICc 0.191 0.267 0.048

Function 2: m0(x∗
; θ ) = θ1x∗

+ θ2ex
∗

Mean 0.418 0.421 0.423 0.405 0.488 0.500
Median 0.424 0.437 0.421 0.409 0.490 0.502
RMSE 0.138 0.136 0.125 0.129 0.099 0.096

AICc 0.196 0.176 0.040

Function 3: m0(x∗
; θ ) = θ1x∗

+
θ2x∗

2−x∗
Mean 0.380 0.411 0.402 0.419 0.492 0.503
Median 0.359 0.403 0.402 0.419 0.486 0.502
RMSE 0.169 0.150 0.135 0.130 0.102 0.111

AICc 0.341 0.210 0.024

Note: The mean, the median and the Root Mean Square Error (RMSE) of the parameters are computed by the estimates
over 1000 replications. DGP I and DGP II are referred to the DGPs for the measurement error process in Section 4.1.
The orders of the sieve approximations in the sieve MLE are k1,n = 4, k3,n = 4, and k4,n = 4.

Table 5
The IMSEs in the Estimation of Function 4 in Section 4.2.

k2,n = 3 k2,n = 4 k2,n = 5

DGP I DGP II DGP I DGP II DGP I DGP II

N = 1000: 0.531 0.273 0.218 0.203 0.336 0.476
AICc 0.289 0.538 0.019 0.573 0.448 0.655
N = 2000: 0.581 0.259 0.242 0.202 0.321 0.559
AICc 0.337 0.513 0.014 0.887 0.395 0.650

Note: The IMSEs are defined by
∫
[m(x∗) − m0(x∗)]2dx∗ . DGP I and DGP II are referred to the DGPs for

the measurement error process in Section 4.1.

V ;W (ν; w) ≡ E[eiνV |W = w]fW (w). We then have,

φY ;X (γ ; x) ≡ E
[
eiγ Y

|X = x
]
fX (x) = E

[
E

[
eiγ Y

|X∗, X = x
]
|X = x

]
fX (x)

= E
[
E

[
eiγ Y

|X∗
]
|X = x

]
fX (x) = E

[
E

[
eiγ (m(X∗)+η)|X∗

]
|X = x

]
fX (x)

= E
[
eiγm(X∗)E

[
eiγ η

|X∗
]
|X = x

]
fX (x) = E

[
eiγm(X∗)E

[
eiγ η

]
|X = x

]
fX (x)

= E
[
eiγ η

]
E

[
eiγm(X∗)|X = x

]
fX (x) = E

[
eiγ η

]
E

[
eiγ Y∗

|X = x
]
fX (x)

≡ φη (γ ) φY∗;X (γ ; x) (13)
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Table 6
The IMSEs in the Estimation of Function 5 in Section 4.2.

k2,n = 3 k2,n = 4 k2,n = 5

DGP I DGP II DGP I DGP II DGP I DGP II

N = 1000: 0.606 0.366 0.242 0.209 0.201 0.258
AICc 0.182 0.175 0.008 0.259 0.187 0.016
N = 2000: 0.588 0.316 0.287 0.183 0.199 0.245
AICc 0.158 0.207 0.014 0.326 0.126 0.045

Note: The IMSEs are defined by
∫
[m(x∗) − m0(x∗)]2dx∗ . DGP I and DGP II are referred to the DGPs for

the measurement error process in Section 4.1.

Table 7
The IMSEs in the Estimation of Function 6 in Section 4.2.

k2,n = 3 k2,n = 4 k2,n = 5

DGP I DGP II DGP I DGP II DGP I DGP II

N = 1000: 0.409 0.307 0.263 0.196 0.546 0.482
AICc 0.218 0.474 0.011 0.293 0.667 0.806
N = 2000: 0.437 0.377 0.249 0.213 0.527 0.503
AICc 0.166 0.502 0.009 0.330 0.626 0.889

Note: The IMSEs are defined by
∫
[m(x∗) − m0(x∗)]2dx∗ . DGP I and DGP II are referred to the DGPs for

the measurement error process in Section 4.1.

here we have used, in turn, the definition of φY ;X (γ ; x), iterated expectations, Assumption 2.3(i), the definition of Y ,
ssumption 2.2(i), the definition Y ∗

≡ m (X∗) and the definition of φY∗;X (γ ; x). Observe that Eq. (13) states, in Fourier
space, that the joint density of Y and X is the convolution of the density of η and the probability density of (X, Y ∗).
Hence, if one knew the distribution of η, one could determine the joint distribution of Y ∗ and X from the observed joint
distribution of Y and X through the relation φY∗;X (γ ; x) = φY ;X (γ ; x) /φη (γ ).

As one does not know, a priori, the distribution of η, we consider some trial zero-mean density of η denoted f̃η (η).
(The zero-mean constraint is needed to meet the requirement of Assumption 2.2(ii).) To this f̃η (η) corresponds a trial
value of all other unobservable quantities (also denoted with tildes). In particular, the trial value of fY∗,X (y∗, x), denoted
f̃Y∗,X (y∗, x) can be obtained, thanks to Assumptions 2.2 and 2.3(i), through a standard deconvolution procedure:

φ̃Y∗;X (γ ; x) =
φY ;X (γ ; x)

φ̃η (γ )
(14)

o this trial value of fY∗,X also corresponds a trial regression function m̃0 (x∗) that can be identified as follows. Note that
any valid trial m̃0 (x∗) must be strictly monotonic and continuous by Assumption 2.4, hence m̃−1

0 (y∗) exists. Furthermore,
conditioning on x∗ or y∗

≡ m̃0 (x∗) is equivalent. We can then use the centering restriction (Assumption 2.3(iii))
G

[
fX |X∗ (·|x∗)

]
= x∗ to write

m̃−1
0

(
y∗

)
= G

[
f̃X |Y∗

(
·|y∗

)]
(15)

where f̃X |Y∗ (·|y∗) = f̃Y∗X (y∗, x) /
∫
f̃Y∗X (y∗, x) dx, since G

[
f̃X |Y∗ (·|y∗)

]
= G

[
f̃X |Y∗

(
·|m̃ (x∗)

)]
= G

[
f̃X |X∗ (·|x∗)

]
= x∗

=

m̃−1
0 (y∗).
In principle, once can compute (14) for any trial density f̃η (η), however, if f̃η (η) is not the true density of η, this will

be detectable in one of the following ways:

1. If f̃η (η) is not a factor13 of fY |X (y|x) for some x, then φY∗;X (γ ; x) /φ̃η (γ ) will not be a valid characteristic function
for some x (i.e. the inverse Fourier Transform of φY ;X (γ ; x) /φ̃η (γ ) is either taking on negative values or is diverging
in such a way that the result is not a probability measure).

2. If f̃η (η) is a factor of fY |X (y|x) for all x, but yields a f̃Y∗X (y∗, x) with a support that is not compact along y∗

(sup
{
|y∗| : (y∗, x) ∈ suppfY∗,X

}
= ∞), then the resulting m̃0 (x∗) (from Eq. (15)) will not be bounded, contrary

to Assumption 2.4.
3. Next, consider the case where f̃η (η) is a factor of fY |X (y|x) for all x and yields a f̃Y∗X (y∗, x) with a compact support

along y∗. However, f̃η (η) is not the true fη (η) but a factor of it. In this case, f̃Y∗,X can then be written as the
convolution, along y∗, of the true fY∗,X with a compactly supported probability measure a (y∗), whose characteristic

13 A probability measure µA is said to be a factor of another probability measure µB if there exists a third probability measure µC such that µB
is equal to the convolution of µA and µC (Lukacs, 1970). This definition specializes to the case where µA and µB can be represented by densities
and for conditional measures.
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Fig. 2. The Estimated Function 4 in Section 4.2 using k2,n = 4 for f2(x|x∗).

function is equal to α (γ ) ≡ φη (γ ) /φ̃η (γ ), since we must have

φY ;X (γ ; x) = φ̃Y∗;X (γ ; x) φ̃η (γ ) = φY∗;X (γ ; x) φη (γ )

or

φ̃Y∗;X (γ ; x) = φY∗;X (γ ; x)
φη (γ )

φ̃η (γ )
= φY∗;X (γ ; x) α (γ ) . (16)

Eq. (16) states, in Fourier representation, that f̃Y∗X (y∗, x) is the convolution of fY∗X (y∗, x) (for fixed x) with the
probability measure a(y∗). The measure a(y∗) must be compactly supported, because f̃Y∗X (y∗, x) is (for a given x).
But then, the integral operator associated with f̃Y∗X (y∗, x) can be written as the composition of two operators: the
integral operator associated with fY∗X (y∗, x) and a convolution with a(y∗). But by Lemma A.1, the latter operator
is not injective because a(y∗) has compact support. It follows that the operator associated with f̃Y∗X (y∗, x) cannot
be injective either. The same conclusion carries over to the operator associated with f̃XX∗ (x, x∗)), since x∗ and y∗
are simply related by a one-to-one mapping, due to the assumed monotonicity of any valid trial m̃. This lack of
injectivity contradicts Assumption 2.3 (ii).

4. Finally, consider the case where f̃η (η) is a factor fY |X (y|x) for all x and yields a f̃Y∗X (y∗, x) with a compact support
along y∗, and f̃η (η) is neither the true fη (η) nor a factor of it. We show by contradiction that this is not possible.
Consider the function α γ = φ γ /φ̃ γ (whose inverse Fourier transform is necessarily not a valid probability
( ) η ( ) η ( )
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Fig. 3. The Estimated Function 4 in Section 4.2 using k2,n = 5 for f2(x|x∗).

measure). By construction, as in case 3, we have the equality φ̃Y∗;X (γ ; x) = φY∗;X (γ ; x) α (γ ) or

α (γ ) =
φ̃Y∗;X (γ ; x)
φY∗;X (γ ; x)

wherever the denominator is not vanishing. Since φ̃Y∗;X (γ ; x) for a given x is the characteristic function of a
compactly supported probability measure, by Theorem 7.2.3 and Remark 4 in Lukacs (1970), φ̃Y∗;X (γ ; x) has
infinitely many zeros in the complex plane. Next, we make use of a number well-known results in the theory of
entire functions (see Boas (1954)). Compact support of Y ∗ implies that φ̃Y∗;X (γ ; x) is entire. The same conclusion
applies to φY∗;X (γ ; x) since fY∗X (y∗, x) has compact support along y∗. There are three cases to consider. (a) At
least one zero of φ̃Y∗;X (γ ; x) does not coincide with a zero of φY∗;X (γ ; x), or at least one zero does coincide but
its multiplicity in φ̃Y∗;X (γ ; x) is higher than that of φY∗;X (γ ; x). In this case α (γ ) has a zero somewhere in the
complex plane and thus, by the second conclusion of Lemma A.1, the operator associated with f̃Y∗X (y∗, x) would
not be injective, leading to a violation of Assumption 2.3(ii), as in case 3. (b) The case described in (a) holds with the
roles of φ̃Y∗;X (γ ; x) and φY∗;X (γ ; x) reversed, leading to a similar conclusion. (c) Each zero of φ̃Y∗;X (γ ; x) coincides
with a zero of φY∗;X (γ ; x) and these zeros have the same multiplicity. In that case the function α (γ ) has no zero
anywhere in the complex plane and the function 1/α (γ ) has thus no singularity anywhere in the complex plane.
We can eliminate the case of zeros ‘‘at infinity’’ by permuting the role of the two alternative models if necessary.
Thus 1/α (γ ) has no singularity in the extended complex plane and is bounded. Yet, α (γ ) is meromorphic because
it is the ratio of two entire functions (see Lang (2003), Chapter XIII). This, combined with its lack of singularities,
283
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Fig. 4. The Estimated Function 5 in Section 4.2 using k2,n = 3 for f2(x|x∗).

implies that α (γ ) is also entire.14 By Liouville’s Theorem (e.g., Theorem 7.5 in Lang (2003)), 1/α (γ ) must then be
constant. That constant must be 1, since α (γ ) is the ratio φη (γ ) /φ̃η (γ ) of two characteristic functions (that are
necessarily such that φη (0) = φη̃ (0) = 1). This, in turn, implies that φη (γ ) /φ̃η (γ ) = 1 or φ̃η (γ ) = φη (γ ) and
thus f̃η (η) would in fact be the true distribution of η. □

ppendix B. Alternative Proof of Theorem 2.1

We provide an alternative proof of the main nonparametric identification result in Theorem 2.1.
We first derive the basic integral equation that needs to be solved. Combining Assumption 2.2(i) and 2.3(i), we can

btain the relationship between the observed density and the unobserved ones:

fY ,X (y, x) =

∫
X∗

fY |X∗ (y|x∗)fX,X∗ (x, x∗)dx∗

=

∫
X∗

fη(y − m0(x∗))fX |X∗ (x|x∗)fX∗ (x∗)dx∗.

14 This can be shown by noting that a meromorphic function satisfies the Cauchy–Riemann equations (Lang, 2003, Section I.6) everywhere, except
perhaps at isolated singularities. But if there are no singularities in the extended complex plane, those conditions are everywhere satisfied and the
function is thus entire.
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Fig. 5. The Estimated Function 5 in Section 4.2 using k2,n = 4 for f2(x|x∗).

Since a characteristic function of any random variable completely determines its probability distribution, the above
quation is equivalent to

φfY ,X=x (t) ≡

∫
Y
eityfY ,X (y, x)dy (17)

= φη(t)
∫
X∗

eitm0(x∗)fX |X∗ (x|x∗)fX∗ (x∗)dx∗,

= |φη(t)|
∫
X∗

ei(tm0(x∗)+e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗,

or all real-valued t , where φη(t) =
∫

η
eitηfη(η)dη and we define e(t) such that the following holds φη(t) ≡ |φη(t)|eie(t) and

(t) is the phase of the function. Then Eq. (17) can expressed in terms of two real equations:

ReφfY ,X=x (t) = |φη(t)|
∫
X∗

cos(tm0(x∗) + e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗, (18)

ImφfY ,X=x (t) = |φη(t)|
∫
X∗

sin(tm0(x∗) + e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗. (19)

Without loss of generality, we can make the following assumption:
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Fig. 6. The Estimated Function 5 in Section 4.2 using k2,n = 5 for f2(x|x∗).

ssumption B.1 (Locally Symmetric Range). The range of the regression function {m0(x∗) : x∗
∈ X ∗

} has an open subset
ontaining zero.

Assumption B.1 is not restrictive because one may always shift the mean of the dependent variable Y and redefine the
regression function accordingly. Also, the range of the regression is never reduced to a point, by the strict monotonicity
imposed by Assumption 2.4.

Using Assumptions B.1 and 2.4 we can rescale the range of the regression function such that the range is equal to the
interval [−c, d] for positive constants c, d and c+d < π . Because |φη(t)| is continuous at 0 (a property of any characteristic
function) and |φ(0)| = 1, we can find a t̄ ≤ π such that 0 < |φη(t)| < b1 for all t in [0, t̄] and a constant b1. Denote the
variance of the regression error as σ 2

η . Choose a constant tu such that

0 < tu < min

{
t̄,

√
2
σ 2

η

}
.

Use Eq. (18) to derive an operator equivalence relationship as following: for an arbitrary h ∈ L2([0, tu])

(LReφfY ,X
h)(x) =

∫
ReφfY ,X=x (t)h(t)dt, (20)

=

∫
|φη(t)|

∫
cos(tm0(X∗) + e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗h(t)dt
X∗
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Fig. 7. The Estimated Function 6 in Section 4.2 using k2,n = 3 for f2(x|x∗).

=

∫
X∗

fX |X∗ (x|x∗)fX∗ (x∗)
(∫

cos(tm0(x∗) + e(t))|φη(t)|h(t)dt
)
dx∗

=

∫
X∗

fX |X∗ (x|x∗)fX∗ (x∗)
(∫

cos(tm0(x∗) + e(t))(∆|φη |h)(t)dt
)
dx∗

=

∫
X∗

fX |X∗ (x|x∗)fX∗ (x∗)
(
Lcosm0,e∆|φη |h(x∗)

)
dx∗

=

(
LfX |X∗ ∆fX∗ Lcosm0,e∆|φη |h

)
(x),

here we have used (i) Eq. (18), (ii) an interchange of the order of integration (justified by Fubini’s theorem), (iii) the
efinition of ∆|φη |, (iv) the definition of Lcosm0,e operating on the function ∆|φη |h, and (v) the definition of LfX |X∗ ∆fX∗

perating on the function Lcosm0,e∆|φη |h. Thus, we obtain

LReφfY ,X
= LfX |X∗ ∆fX∗ Lcosm0,e∆|φη | ≡ LfX |X∗ ∆fX∗ LReφfY |X∗

, (21)

e can also express Eq. (19) as the following operator equivalence relationships:

LImφfY ,X
= LfX |X∗ ∆fX∗ Lsinm0,e∆|φη | ≡ LfX |X∗ ∆fX∗ LImφfY |X∗

. (22)

oth LReφfY |X∗
and LImφfY |X∗

are bounded linear operators from L2([0, tu]) to L2(X ∗) because operators in the right hand

ide are all bounded by Assumption 2.1 and continuity of characteristic functions.
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Fig. 8. The Estimated Function 6 in Section 4.2 using k2,n = 4 for f2(x|x∗).

Our identification technique is to derive a spectral decomposition of an observed integral operator and show the
niqueness of the decomposition under our assumptions. We can derive some primitive conditions for the invertibility
f the operators LReφfY ,X

, and LImφfY ,X
which are related to the invertibility of the operator LfX |X∗ and the invertibility of the

perators LReφfY |X∗
and LImφfY |X∗

.

emma B.1. Assumptions 2.1 and 2.3(ii), L−1
fX |X∗

exist and is densely defined over L2(X ).

See the Online Appendix for the proof. This result shows LfX |X∗ is onto and the injectivity of the operators LfX |X∗ is
irectly assumed from the first part of Assumption 2.3(ii). Therefore, L−1

fX |X∗
exists and L−1

fX |X∗
LfX |X∗ = LfX |X∗ L−1

fX |X∗
= I where

is the identity map from L2(X ∗) to itself. The discussion hereafter focuses on the conditions for the completeness of
cosm0,e , and Lsinm0,e . Define ns(t) = 1− cos(e(t)) =

|φη |−Re(φη)
|φη |

as a measure of degree of non-symmetry. If the distribution
of the error term η is symmetric then φη(t) is real-valued and ns(t) = 0 for t ∈ [0, tu]. Continuity of characteristic
functions and Assumption B.1 are sufficient conditions for the invertibility of the operators Lcosm0,e , and Lsinm0,e . We have

emma B.2. If Assumption B.1 holds, then each of systems, {cos(tm0(x∗) + e(t))|φη(t)| : x∗
∈ X ∗

} and {sin(tm0(x∗) +

(t))|φη(t)| : x∗
∈ X ∗

}, is complete over L2([0, tu]). This implies the operators LReφfY |X∗
and LImφfY |X∗

are both injective from
L2([0, t ]) to L2(X ∗).
u
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Fig. 9. The Estimated Function 6 in Section 4.2 using k2,n = 5 for f2(x|x∗).

The injectivity implies the inverses of LReφfY |X∗
and LImφfY |X∗

exist and can be defined over the range of the operators.
To show this primitive conditions for the invertibility, we utilize results from Fourier analysis. We provide the following
result of the trigonometric system.15

Lemma B.3. If 1 < p < ∞ and λk is a sequence of distinct real or complex numbers for which |λk| ≤ k+
1
2p , k = 1, 2, 3, . . . ,

then the sequence {eitλk}∞k=1 is complete in Lp([−π, π]).

We can directly use this neat result to establish the following completeness.

Lemma B.4. If the range of the regression function {m0(x∗) : x∗
∈ X ∗

} contains a sequence of distinct numbers {λ1, λ2, λ3, . . .}

uch that |λk| ≤ k +
1
4 , k = 1, 2, 3, . . . , then the family of the functions {eitm0(x∗) : x∗

∈ X ∗
} is complete in L2([−π, π]).

Next, we establish the completeness of the two systems: {cos(tm0(x∗)) : x∗
∈ X ∗

} and {sin(tm0(x∗)) : x∗
∈ X ∗

} over
L2([0, tu]).

Lemma B.5. If the range of the regression function {m0(x∗) : x∗
∈ X ∗

} contains a sequence of distinct numbers {λ1, λ2, λ3, . . .}

uch that |λk| ≤ k+ 1
4 , k = 1, 2, 3, . . . , then the families of the functions {cos(tm0(x∗)) : x∗

∈ X ∗
} and {sin(tm0(x∗)) : x∗

∈ X ∗
}

re complete in L2([0, tu]) for any tu ≤ π .

15 See Theorem 4 of page 119 in Young (1980).
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See the Online Appendix for the proof. This result gives the invertibility of the operators Lcosm0,e , and Lsinm0,e under
he symmetric distribution of the regression error η, i.e., e(t) = 0 ∀t . Next, we try to generalize the invertibility or
ompleteness of the symmetric case to a non-symmetric case. Comparing the function in the symmetric case cos(tm0(x∗))
ith the function in the non-symmetric case cos(tm0(x∗) + e(t)) suggests that we can look into a situation where e(t) is
nder ‘‘small’’ perturbations around zero (symmetry; e(t) = 0 ∀t) and investigate what restrictions on the range of e(t)
ead to invertibility of operators. In this way, questions about ‘‘small’’ perturbations can be regarded as questions about the
tability of completeness because we have already provided a sufficient condition for the symmetric case in Lemma B.5.
e will adopt a stability criterion to study completeness. The following result can be found in Young (1980).16

emma B.6. Let {bk} be a complete sequence for a Hilbert space (H, ∥ · ∥), and suppose that {fk} is sequence of elements of
such that

∥

n∑
k=1

ck(bk − fk)∥ ≤ λ∥

n∑
k=1

ckbk∥

or some constant 0 ≤ λ < 1, and all choices of the scalar {c1, c2, c3, . . . , cn}, Then {fk} is complete for H.

Lemma B.6 is based on the fact that a bounded linear operator T on a Banach space is invertible whenever ∥I −T∥ < 1
ecause the inverse operator of T can exist by the formula T−1

=
∑

∞

k=0(I−T )k.17 Define ns(t) = 1−cos(e(t)) =
|φη |−Re(φη)

|φη |

as a measure of degree of non-symmetry. If the distribution of the error term η is symmetric then φη(t) is real-valued
and ns(t) = 0. The following result provides an upper bound on the absolute values of ns(t) and it will be used to prove
Lemma B.2.

Lemma B.7. For t ∈ [0, tu], ns(t) is nonnegative and its maximum is less than 1 .

See the Online Appendix for the proof. Applying the stability criterion and Lemma B.7 to Lemma B.5 under
Assumptions B.1 and 2.4, we can prove Lemma B.2. See the Online Appendix for details.

In order to provide the onto property of the operators LReφfY |X∗
and LImφfY |X∗

, we need a variant of the stability result as
in Lemma B.6. We introduce the following notations and statements. Any function f in a Hilbert space can be expressed
as a linear combination of the basis function with a unique sequence of scalars {c1, c2, c3, . . .}. Therefore, we can consider
cn as a function of f . In fact, cn (·) is the so-called coefficient functional.18

Definition B.1. If {f1, f2, f3, . . .} is a basis in a Hilbert spaceH, then every function f inH has a unique series {c1, c2, c3, . . .}
such that f =

∑
∞

n=1 cn(f )fn. Each cn is a function of f . The functionals cn (n = 1, 2, 3, . . .) are called the coefficient
functionals associated with the basis {f1, f2, f3, . . .}. Because cn is a coefficient functional from H to R, we define its norm
by ∥cn∥ = sup {|cn(f )| : f ∈ H, ∥f ∥ ≤ 1} .

The following results regarding the coefficient functionals are from Theorem 3 in section 6 in Young (1980).

Lemma B.8. If {f1, f2, f3, . . .} is a basis in a Hilbert space H. Define cn as coefficient functionals associated with the basis.
Then, there exists a constant M such that 1 ≤ ∥fn∥ · ∥cn∥ ≤ M, for all n.

Based on this result, we show, in the Online Appendix, that

Lemma B.9. Denote H as a Hilbert space. Suppose that
(i) the sequence {ek (·) : k = 1, 2, . . .} is a basis in a Hilbert space H;
(ii) the sequence {fk (·) : k = 1, 2, . . .} in H is ω-independent;
(iii)

∑
∞

n=1
∥fk(·)−ek(·)∥

∥ek(·)∥
< ∞.

Then, the sequence {fk(·) : k = 1, 2, . . .} is a basis in H.

Applying this stability result, we have

Lemma B.10. If Assumptions B.1 and 2.4 hold, then each of systems, {cos(tm0(x∗)+e(t)) : t ∈ [0, tu]} and {sin(tm0(x∗)+e(t)) :

∈ [0, tu]}, is complete over L2(X ∗). This implies that the inverse operators L−1
ReφfY |X∗

and L−1
ImφfY |X∗

exist and are densely defined

ver L2(X ∗).

See the Online Appendix for the proof.

16 See Problem 2 in page 41. The result is stated for a Banach space and the dense property. Here we adopt Hilbert space version by an important
consequence of the Hahn–Banach theorem and the Riesz representation theorem that the dense property is equivalent to the completeness in a
Hilbert space.
17 The result is like ordinary numbers: if |1 − t| < 1, then t−1 exists. More discussions can be found in Young (1980).
18 The introduction of coefficient functional can be found in the page 22 of Young (1980).
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The completeness results in Lemma B.2 imply the injectivity of LReφfY |X∗
and LImφfY |X∗

while Lemma B.10 gives the

nto property of these operators. Therefore, the operators invertible with L−1
ReφfY |X∗

LReφfY |X∗
= LReφfY |X∗

L−1
ReφfY |X∗

= I and

L−1
ImφfY |X∗

LImφfY |X∗
= LImφfY |X∗

L−1
ImφfY |X∗

= I , where I is the identity map from L2([0, tu]) to itself.
Define LK1 as

LK1 = L−1
ReφfY |X∗

LImφfY |X∗

by the existence of L−1
ReφfY |X∗

over L2(X ∗) by Lemma B.10. We can elicit simpler representations of the operator LK1 under
Assumption B.1. Furthermore, this simpler representation of LK1 implies the angle function e(t) is identified.

emma B.11. If Assumption B.1 holds, then LK1 is a multiplier operator such that (LK1h)(t) = tan(e(t))h(t) or (LK1h)(t) =
Imφη(t)
Reφη(t)

h(t) for t ∈ [0, tu].

See the Online Appendix for the proof. We now are ready to prove the main theorem.

lternate Proof of Theorem 2.1. We start with the operator equivalence relationships in Eqs. (21) and (22):

LReφfY ,X
= LfX |X∗ ∆fX∗ Lcosm0,e∆|φη | ≡ LfX |X∗ ∆fX∗ LReφfY |X∗

,

LImφfY ,X
= LfX |X∗ ∆fX∗ Lsinm0,e∆|φη | ≡ LfX |X∗ ∆fX∗ LImφfY |X∗

,

Those operator equivalence relationships may not provide enough information to derive the spectral decomposition of
he operator of interest. In order to solicit more useful operator equivalence relationships, we take derivative with respect
o t in Eq. (17). It gives that

∂

∂t
φfY ,X=x (t) =

(
∂

∂t
|φη(t)|

)∫
X∗

ei(tm0(x∗)+e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗ (23)

+ i
(

∂

∂t
e(t)

)
|φη(t)|

∫
X∗

ei(tm0(x∗)+e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗

+ i|φη(t)|
∫
X∗

ei(tm0(x∗)+e(t))m0(x∗)fX |X∗ (x|x∗)fX∗ (x∗)dx∗.

We split Eq. (23) into a real part and an imaginary part:

Re
∂

∂t
φfY ,X=x (t) =

(
∂

∂t
|φη(t)|

)∫
X∗

cos(tm0(x∗) + e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗ (24)

−

(
∂

∂t
e(t)

)
|φη(t)|

∫
X∗

sin(tm0(x∗) + e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗

− |φη(t)|
∫
X∗

sin(tm0(x∗) + e(t))m0(x∗)fX |X∗ (x|x∗)fX∗ (x∗)dx∗,

Im
∂

∂t
φfY ,X=x (t) =

(
∂

∂t
|φη(t)|

)∫
X∗

sin(tm0(x∗) + e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗ (25)

+

(
∂

∂t
e(t)

)
|φη(t)|

∫
X∗

cos(tm0(x∗) + e(t))fX |X∗ (x|x∗)fX∗ (x∗)dx∗

+ |φη(t)|
∫
X∗

cos(tm0(x∗) + e(t))m0(x∗)fX |X∗ (x|x∗)fX∗ (x∗)dx∗.

e define operators as follows:

LRe ∂
∂t φfY ,X

: L2([0, tu]) → L2(X ) with (LRe ∂
∂t φfY ,X

h)(x) =

∫
Re

∂

∂t
φfY ,X=x (t)h(t)dt, (26)

LIm ∂
∂t φfY ,X

: L2([0, tu]) → L2(X ) with (LIm ∂
∂t φfY ,X

h)(x) =

∫
Im

∂

∂t
φfY ,X=x (t)h(t)dt, (27)

∆∂|φη | : L2([0, tu]) → L2([0, tu]) with (∆∂|φη |h)(t) =

(
∂

∂t
|φη(t)|

)
h(t), (28)

∆∂e : L2([0, tu]) → L2([0, tu]) with (∆∂eh)(t) =

(
∂

∂t
e(t)

)
h(t), (29)

∆m0 : L2(X ∗) → L2(X ∗) with (∆m0h)(x
∗) = m0(x∗)h(x∗). (30)
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imilarly to the derivation in Eq. (18), we can obtain operator equivalence relationships to Eqs. (24) and (25) as the
ollowing:

LRe ∂
∂t φfY ,X

= LfX |X∗ ∆fX∗ Lcosm0,e∆∂|φη | − LfX |X∗ ∆fX∗ Lsinm0,e∆|φη |∆∂e (31)

− LfX |X∗ ∆fX∗ ∆m0Lsinm0,e∆|φη |,

LIm ∂
∂t φfY ,X

= LfX |X∗ ∆fX∗ Lsinm0,e∆∂|φη | + LfX |X∗ ∆fX∗ Lcosm0,e∆|φη |∆∂e (32)

+ LfX |X∗ ∆fX∗ ∆m0Lcosm0,e∆|φη |.

Define ∆∂ ln |φη | : L2([0, tu]) → L2([0, tu]) with (∆∂ ln |φη |h)(t) =

(
∂
∂t |φη(t)|
|φη(t)|

)
h(t). The following derivation is dedicated

o the identification of

LA = L−1
ReφfY |X∗

∆m0LReφfY |X∗
,

here L−1
ReφfY |X∗

exists and is densely defined over L2(X ) by Lemma B.10. We will show LA is identified and use it
o construct a spectral decomposition. Note that the invertibility of the operators LReφfY ,X

and LImφfY ,X
is equivalent to

he invertibility of operators, LfX |X∗ , LReφfY |X∗
, and LImφfY |X∗

and the boundedness of fX∗ . While Assumption 2.3(ii) and
emma B.1.1 permit the invertibility of LfX |X∗ , Lemma B.2, and Lemma B.10 guarantee the invertibility of LReφfY |X∗

, and

ImφfY |X∗
. The boundedness is ensured by Assumption 2.1. Post-multiplying L−1

ReφfY |X∗
to Eq. (21) yields

LReφfY ,X
L−1
ReφfY |X∗

= LfX |X∗ ∆fX∗ ,

hich is justified by Lemma B.10. Use this relation to rewrite Eq. (31) as

LRe ∂
∂t φfY ,X

= LfX |X∗ ∆fX∗ Lcosm0,e∆∂|φη | − LfX |X∗ ∆fX∗ Lsinm0,e∆|φη |∆∂e

− LfX |X∗ ∆fX∗ ∆m0Lsinm0,e∆|φη |,

= LReφfY ,X

[
L−1
ReφfY |X∗

Lcosm0,e∆∂|φη | − L−1
ReφfY |X∗

Lsinm0,e∆|φη |∆∂e

− L−1
ReφfY |X∗

∆m0Lsinm0,e∆|φη |

]
ecause LReφfY ,X

is injective by the injectivity of operators, LfX |X∗ , LReφfY |X∗
, and fX∗ , L−1

ReφfY ,X
LReφfY ,X

= I . This implies

LB1 ≡ L−1
ReφfY ,X

LRe ∂
∂t φfY ,X

(33)

=

(
Lcosm0,e∆|φη |

)−1
Lcosm0,e∆∂|φη | −

(
L−1
ReφfY |X∗

Lsinm0,e∆|φη |

)
∆∂e

−

(
L−1
ReφfY |X∗

∆m0LReφfY |X∗

)(
L−1
ReφfY |X∗

Lsinm0,e∆|φη |

)
= ∆∂ ln |φη | − LK1∆∂e − LALK1 ,

here we have used LReφfY |X∗
L−1
ReφfY |X∗

= I . Similarly, using Eqs. (22) and (32), we obtain

LB2 ≡ L−1
ImφfY ,X

LIm ∂
∂t φfY ,X

(34)

= ∆∂ ln |φη | + L−1
K1

∆∂e + L−1
K1

LA.

We eliminate the operator LA in Eqs. (33) and (34) by applying LK1 to the left and right sides of Eq. (34) and then adding
ith Eq. (33):

LC = LB1 + LK1LB2LK1
= ∆∂ ln |φη | − LK1∆∂e + LK1∆∂ ln |φη |LK1 + ∆∂eLK1

= ∆∂ ln |φη | + LK1∆∂ ln |φη |LK1 , (35)

here we have used LK1∆∂e = ∆∂eLK1 which is justified by Lemma B.11. Note that LHS is observable and ∆∂ ln |φη | is
he unobservable operator in RHS. Applying the observed operator L in Eq. (35) to the constant function 1 and using
C
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emma B.11 yields

(LC1)(t) =

∂
∂t |φη(t)|
|φη(t)|

+ tan(e(t))2
∂
∂t |φη(t)|
|φη(t)|

(36)

= (1 + tan(e(t))2)
∂
∂t |φη(t)|
|φη(t)|

.

Because LK1 , and therefore e(t), are identified, this implies that
∂
∂t |φη(t)|
|φη(t)|

is identified. It follows that LA is identified from
q. (34) as follows:

LA = LK1
(
LB2 − ∆∂ ln |φη |

)
− ∆∂e.

Pre-multiplying the operator LfX |X∗ ∆fX∗ to the both sides of the equation LReφfY |X∗
LA = ∆m0LReφfY |X∗

, we have

LReφfY ,X
LA = LfX |X∗ ∆fX∗ ∆m0LReφfY |X∗

. (37)

ost-multiplying the operator L−1
ReφfY |X∗

to the both sides of Eq. (37) (justified by Lemma B.10) yields

LReφfY ,X
LAL−1

ReφfY |X∗
= LfX |X∗ ∆fX∗ ∆m0 . (38)

Because ∆−1
fX∗

and L−1
fX |X∗

both defined over a dense subset of their domain spaces (Assumption 2.1 and Lemma B.1.1),
e post-multiply these operators to Eq. (38) to obtain

LReφfY ,X
LAL−1

ReφfY ,X  
Identified

=

(
LReφfY ,X

LAL−1
ReφfY |X∗

)
∆−1

fX∗
L−1
fX |X∗

= LfX |X∗ ∆fX∗ ∆m0∆
−1
fX∗

L−1
fX |X∗

(39)

= LfX |X∗ ∆m0L
−1
fX |X∗

.

The above operator to be diagonalized is defined in terms of observable operators, while the resulting eigenvalues
0(x∗) and eigenfunctions fX |X∗ (·|x∗) (both indexed by x∗) provide the unobserved function of interest including the
egression function and the joint distribution of the unobserved regressor x∗ and the observed regressor x. Assump-
ions 2.3(iii) and 2.4 ensure the uniqueness of the spectral decomposition of the observed operator Eq. (37). Similarly,
e have fY ,X (y, x) =

∫
X∗ fY ,X∗ (y, x∗)fX |X∗ (x|x∗)dx∗ and it implies that for any y ∈ Y , (LfX |X∗ fY ,X∗ )(x) = fY ,X (y, x). Thus the

dentification of fX |X∗ induces the identification of fY ,X∗ as follows, for any y ∈ Y ,

fY ,X∗ (y, x∗) = (L−1
fX |X∗

fY ,X )(x∗),

here the inverse is justified by the first part of 2.3(ii). Therefore, the densities fY |X∗ and fX∗ are identified and so is the
regression error distribution fη . We have reached our main result. QED. □

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.09.014.
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