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a b s t r a c t

Injectivity of integral operators is related to completeness conditions of their corresponding kernel func-
tions. Completeness provides a useful way of obtaining nonparametric identification in various models
including nonparametric regressionmodels with instrumental variables, nonclassical measurement error
models, and auction models, etc. However, the condition is quite abstract for empirical work and lacks a
proper economic interpretation. We rely on known results regarding the Volterra equation to provide
sufficient conditions for completeness conditions for densities with compact support. Our conditions
include various smoothness assumptions and monotonously moving support assumptions on the kernel
function of the operator. We apply our results to establish nonparametric identification in nonparametric
IV regression models, nonclassical measurement error models, and auction models with an accessible
interpretation and without specific functional form restrictions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Rank conditions are widely used to identify linear and/or para-
metric economic models. However, nonparametric models have
been receiving considerable and increasing attention in recent
years, and the intuitive notion of ‘‘full rank’’ in that context must
be generalized to the more abstract notions of injectivity or com-
pleteness. The latter, unfortunately, do not admit simple, intuitive,
and general sufficient conditions. In this paper, we use known con-
ditions for the unique solution of the so-called Volterra equation
to provide simple sufficient conditions for injectivity of a class
of integral operators with compactly supported kernel functions.
Consider the following integral equation

h (y) =

∫
Xy

K (y, x) g (x) dx for any y ∈ Y, (1)

where h (y), K (y, x) are given functions and g (x) is an unknown
function to be determined. Here, the support ofK (y, x) for each y ∈

Y isXy. IfXy = [a, y], Eq. (1) is a linear Volterra integral equation of
the first kind. In this case, if the kernel function K (y, x) is nonzero
on the ‘‘diagonal’’, i.e., K (y, x) ̸= 0 for y = x, and if K (y, x)
and ∂

∂yK (y, x) are differentiable and square integrable, then there
exists a unique square-integrable solution of the Volterra equation.
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Define a L2 space L2(X ) = {h(·) :
∫
X |h(x)|2dx < ∞}, where X is a

closed interval in R. We can rewrite Eq. (1) as an integral operator
relationship through the following:

(TKg)(y) =

∫
Xy

K (y, x) g (x) dx = h (y) , (2)

where TK is an integral operator from L2(X ) to L2(Y) with the ker-
nel function K (y, x). The unique solution of the Volterra equation
implies that the corresponding integral operator is injective.

The injective property of an integral operator is related to the
concept of completeness of its corresponding kernel function. Let
X and Z be two random variables. Form(·) ∈ L2(X ),

E[m(X)|Z = z] =

∫
m(x)f (x|z)dx, (3)

where the probability measure of X conditional on Z is absolutely
continuous w.r.t. the Lebesgue measure. The conditional distri-
bution f (X |Z) of random elements X and Z is L2-complete w.r.t.
X if E[m(X)|Z] = 0 a.s. implies m(X) = 0 a.s. The complete-
ness equals the injectivity of the conditional expectation opera-
tor using the conditional distribution f (X |Z) as a kernel function.
Completeness has been used to obtain identification conditions
for various nonparametric and semiparametric econometric mod-
els, including nonparametric models with instrumental variables
(see Newey and Powell (2003); Ai and Chen (2003); Cher-
nozhukov and Hansen (2005); Hall and Horowitz (2005); Blun-
dell et al. (2007); Chernozhukov et al. (2007); Horowitz and
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Lee (2007); Darolles et al. (2011); Horowitz (2011)), measure-
ment error models (see Hu and Schennach (2008); An and Hu
(2012); Carroll et al. (2010); Chen and Hu (2006)), and dynamic
models (see Hu and Shum (2012); Shiu and Hu (2013)), etc.

The definition of completeness may not relate to any economic
meaning. Therefore, the condition is quite abstract for empirical
work and is treated as a high-level condition. A number of pa-
pers provided sufficient conditions for different versions of com-
pleteness. Newey and Powell (2003) give sufficient conditions
for completeness of distributions with discrete finite support and
exponential parametric families. Andrews (2011) considers L2-
completeness and provides nonparametric classes of L2-complete
distributions for bivariate density functions as for Fx × Fz through
orthonormal bases of L2 spaces of x and z. D’Haultfoeuille (2011)
considers different versions of completeness in three different
spaces including (1) L1 spaces, (2) P-completeness, where a func-
tion is bounded by a polynomial, and (3) bounded completeness
for any bounded function in nonparametric models. Hu and Shiu
(2016) use stability results in Banach or Hilbert spaces to provide
sufficient conditions to extend known complete distribution func-
tions to complete nonparametric families without imposing a spe-
cific functional form. D’Haultfoeuille and Février (2010) consider
the issue of identifying nonparametric mixture models where all
observed variables depend on a common and unobserved compo-
nent. They show that these models are identified nonparametri-
cally if support of the observed variables move with the true value
of the unobserved component.

This paper develops additional examples of sufficient con-
ditions for completeness conditions in a compact support by
applying the result of the Volterra equation. For nonparametric
regression models with a limited endogenous regressor, we con-
sider that the support X is bounded, e.g., equal to [0, 1]. We show
that if the conditional distribution f (x|z) satisfies some regularity
conditions and the support of the function f (·|z) ismovingwith the
variable z like [0, z] for z ∈ [0, 1] and the support is degenerate at
z = 0 then the density function is complete and the regression
function is identified. The conditions are particularly well suited to
empirical applications, because they are easily interpreted and im-
posing such conditions is not very restrictive. The moving support
condition is closely related to the condition in D’Haultfoeuille and
Février (2010), although the aims differ from those of the present
paper. They seek to identify the distribution of the conditioning
variable from repeated conditionally independent measurements
and propose a specific estimator that uses the moving support
condition to exploit extreme values of the observed variables to in-
fer the conditional distribution of the unobservable variables. Our
proposed approach ismore general in that it focuses on the concept
of injectivity and can be applied in any approach that relies on this
concept, independent of repeated measurement availability. The
methods of proof are also completely different, as our approach
does not rely on rare extreme events.

The use of our sufficient conditions for completeness in the
econometrics literature is potentially vast because a number of
econometric models can be written as an integral equation, such
as nonparametric regression models with instrumental variables,
nonclassical measurement error models, and auction models, etc.
Our results allow one to establish nonparametric identification
in these models with an accessible interpretation and without
specific functional form restrictions.

The plan of the paper is as follows. In Section 2, we describe
sufficient conditions for injectivity of integral operators with com-
pactly supported kernels. In Section 3, we apply the conditions
in Section 2 to several models and discuss identification includ-
ing nonparametric regression models with instrumental variables,
nonclassical measurement error models, and auction models. In
Section 4 we present our conclusions while in Appendix we pro-
vide proof.

2. Integral operators with compactly supported kernels

Consider the equation

h (y) =

∫ b(y)

b(y)
K (y, x) g (x) dx for any y ∈ Y (4)

where we let Y =
[
y, ȳ

]
and X ≡

[
infy∈Yb (y) , supy∈Y b̄ (y)

]
and

where b : Y ↦→ X , b̄ : Y ↦→ X , h : Y ↦→ R, g : X ↦→ R,
K : Y × X ↦→ R.

Let parenthesized superscripts denote the number of deriva-
tives for each argument of a function (e.g. K (1,2) (y, x) ≡

∂3K (y, x) /∂y∂x2). Suppose a is a boundary point of the set S and
denote int(S) as the interior of S. The derivative of a function f at
the point a is defined as follows:

f (1)(a) = lim
s→a

s∈int(S)

f (s) − f (a)
s − a

.

Denote N∗ as the set of all strictly positive integers and let the
following assumptions hold for some L ∈ N∗:

Assumption 2.1. h(L) (y) exists and is continuous for all y ∈ Y .

Assumption 2.2. (i) B ≤ b (y) ≤ b̄ (y) ≤ B̄ for all y ∈ Y for some
B, B̄ ∈ R and (ii) b

(
y
)

= b̄
(
y
)

= B.

Assumption 2.3. b(1) (y) and b̄(1) (y) exist and are continuous for
all y ∈ Y .

Assumption2.4. K (L,0) (y, x) exists and is continuous on∪y∈Y {y}×[
b (y) , b̄ (y)

]
.

Assumption 2.5. At each y ∈ Y , either (i) b(1) (y) = 0 or
(ii) K (ℓ,0)

(
y, b (y)

)
= 0 for ℓ = 0, . . . , L − 1.

Assumption 2.6. K (L,0)
(
y, b (y)

)
= 0 for all y ∈ Y .

Assumption 2.7. (i) b
(1)
(y) > 0 for all y ∈ Y , (ii) K (L−1,0)(

y, b (y)
)

̸= 0 for all y ∈ Y and (iii) if L > 1 , K (ℓ,0)
(
y, b (y)

)
= 0

for ℓ = 0, . . . , L − 2 and for all y ∈ Y .

Theorem2.1. Let Assumptions 2.1–2.7 hold and let h and K be given.
Then, Eq. (4) admits a unique solution g (x).

Proof. See Appendix.

The proof of Theorem2.1 is to treat Eq. (4) as a Volterra equation
of the first kind and then transform the equation into a Volterra
equation of the second kind, through iterated differentiations (to
handle our more general differentiability conditions) and suitable
changes of variables (to handle our more general integral bounds).

Assumptions 2.1 and 2.4 impose regularity conditions on h
and K . As we show in the proof of Theorem 2.1, these regularity
conditions allow us to differentiate Eq. (4) with respect to y and
then transform the differentiated equation into a Volterra equa-
tion of the second kind. Assumption 2.2 imposes uniform bound
conditions for b (·) and b̄ (·) and ensures that the two endpoints of
the support attain the lowest value B in the lowest value of y. This
implies we have a degenerate support at y, Xy = B and we can
refer to Assumption 2.2(ii) as a degenerate support condition. As-
sumption 2.3 imposes regularity conditions on the two endpoints
of the support. Assumptions 2.5 and 2.7(iii) are used to show some
boundary terms vanish and we can obtain a Volterra equation of
the second kind. This implies there is a constant lower endpoint
or we need to require that K (y, ·) has vanishing derivatives at the
lower endpoints for each y. Assumption 2.6 further assumesK (y, ·)
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Fig. 1. The two endpoints satisfy the assumptions.

has a vanishing higher order derivative at the lower endpoints.
Assumption 2.7(i) & (ii) ensures functions in the derived Volterra
equation of the second kind are well defined so we can apply
results on Volterra equation. We also consider the discrete case at
the end of this section. A number of remarks are in order.

Remark 2.1. Consider the baseline case

h (y) =

∫ y

y
K (y, x) g (x) dx for any y ∈ Y. (5)

In this case, the support of g (x) becomes ∪y∈Y
[
y, y

]
=

[
y, ȳ

]
so

x and y have to share the same support
[
y, ȳ

]
. That means g (·) is

only uniquely identified over this support.

Remark 2.2. When we allow the upper bound and lower bound
of the integral equation to change with y, the support of the
function g (·) is not over the interval

[
y, ȳ

]
instead is over

∪y∈Y
[
b (y) , b̄ (y)

]
.

Remark 2.3. The fact that the conditions on the derivatives are
slightly asymmetric on the two endpoints of the support is impor-
tant to obtain injectivity. It is more likely that the two endpoints
have different smoothness rather than exactly the same level of
smoothness, so the condition is not unnatural. The examples in
which the support

[
b (y) , b̄ (y)

]
for each y ∈ [0, 1] satisfy or fail our

assumptions are plotted in Figs. 1–2. In Fig. 1, the upper endpoints
of (a), (b), (c), and (d) are strictly increasing and then satisfy As-
sumption 2.7(i) and the starting points of b (·) and b̄ (·) both attain
the lowest value B, which satisfies Assumption 2.2(ii). Only Fig. 1(a)
has a constant lower endpoint and this satisfies Assumption 2.5(i).
As for Fig. 1(b),(c),(d), an additional derivative condition forK (y, x)
in Assumption 2.5(ii) is required. In Fig. 2, (a),(b), and (c) fails
Assumption 2.2(ii). In Fig. 2(d), the upper endpoint is not strictly
increasing and this implies Assumption 2.7(i) fails.

Remark 2.4. For a single endogenous regressor, including multi-
dimensional instruments is trivial because if injectivity is proven

for one instrument (or for one linear combination of many in-
struments), injectivity will automatically hold if additional in-
struments are included. An extension to multivariate endogenous
regressor is more challenging and would deserve a separate pa-
per. An appealing aspect of our present approach is that, as the
boundary of the support moves, the boundary terms that arise
when we differentiate our integral operator are functions of the
unknown function at a single point, which enables a fairly elegant
solution. In the multivariate case, the boundary terms would be
integrals themselves (over a lower dimensional manifold) and a
similar solution would not be as straightforward.

Remark 2.5. For random variables with compact support, it would
seem more likely that the support of one variable conditional
on another would change as the conditioning variable changes,
rather than remaining exactly the same. In fact, other researchers
have argued in favor of the plausibility of support variations (see,
e.g. D’Haultfoeuille and Février (2010)). If one firmly believes
that all variables must necessarily have infinite support, then,
indeed, our conditions would not hold. However, it would be hard
to argue that all empirically available quantities necessarily have
this extreme property. Most empirical researchers would certainly
agree that all measurable quantities have some finite (albeit large)
bound.

The results presented in Theorem 2.1 can be extended to the
following case:

h (y1, y2) =

∫ b(y1,y2)

b(y1,y2)
K (y1, y2, x) g (x, y1) dx (6)

where x and y2 are scalars, and y1 ∈ Y1 ⊂ Rd1 . For a fixed y1, Eq.
(6) has the same form as Eq. (4). Thus, for each y1 we can apply
Theorem 2.1 to h (y1, ·) and K (y1, ·, ·) to obtain a unique g (·, y1)
over the support ∪y2∈Y2 [b (y1, y2) , b (y1, y2)] where Y2 ≡

[
y
2
, ȳ2

]
is an interval containing y2. Let y ≡ (y1, y2) ∈ Y ≡ Y1×Y2 ⊂ Rd1+1

and the support of K (y1, y2, ·) for each y1 ∈ Y1 be Xy2;y1 .
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Fig. 2. The two endpoints fail the assumptions.

Assumption 2.8. h(0,L) (y1, y2) exists and is continuous for all
y ∈ Y .

Assumption 2.9. (i) B ≤ b (y) ≤ b̄ (y) ≤ B̄ for all y ∈ Y for some
B, B̄ ∈ R and (ii) b(y1, y2) = b̄(y1, y2) = B for each y1.

Assumption 2.10. b(0,1) (y1, y2) and b̄(0,1) (y1, y2) exist and are
continuous for all y ∈ Y .

Assumption 2.11. K (0,L,0) (y1, y2, x) exists and is continuous on
∪y∈Y {y} ×

[
b (y) , b̄ (y)

]
.

Assumption 2.12. At each y ∈ Y , either (i) b(0,1) (y1, y2) = 0 or
(ii) K (0,ℓ,0)

(
y1, y2, b (y)

)
= 0 for ℓ = 0, . . . , L − 1.

Assumption 2.13. K (0,L,0)
(
y1, y2, b (y)

)
= 0 for all y ∈ Y .

Assumption 2.14. (i) b
(0,1)

(y1, y2) > 0 for all y ∈ Y , (ii) K (0,L−1,0)(
y1, y2, b (y)

)
̸= 0 for all y ∈ Y and (iii) if L > 1 , K (0,ℓ,0)(

y1, y2, b (y)
)

= 0 for ℓ = 0, . . . , L − 2 and for all y ∈ Y .

The following result is a direct application of Theorem 2.1;
hence, we omit its proof.

Corollary 2.1. Let Assumptions 2.8–2.14 hold and let h (y1, ·) and
K (y1, ·, ·) be given for each y1 ∈ Y1. Then, Eq. (6) admits a unique
solution g (·, y1) for each y1.

For a given function h (y1, ·) for each y1 satisfying Eq. (6) and
Assumption 2.8, Corollary 2.1 shows how to identify the function
g (·, y1) for each y1 under suitable assumptions. This suggests that
we can rewrite Eq. (6) as an integral operator relationship. Let CL(U)
stand for the space of a function f (·) whose L−th derivative is con-
tinuous over the support U with a sup norm, ∥f ∥ = supx∈U |f (x)| <

∞. For each y1, define an integral operator as follows:

TKy1 : C(Xy2;y1 × {y1}) → CL({y1} × Y2)

(TKy1 g)(y1, y2) =

∫ b(y)

b(y)
K (y1, y2, x) g(x, y1)dx,

where K (y1, y2, x) is the kernel function of the operator TKy1 . Using
the notation, Corollary 2.1 implies there exists a unique solution
g(·, y1) such that TKy1 g = h for a given h ∈ CL({y1} × Y2) for
each y1.

Corollary 2.2. Under Assumption2.8–2.14, the integral operator TKy1
is injective for each y1.

The injectivity of an integral operator is connected to the com-
pleteness of the family of functions related to its kernel function.

Definition 2.1. Set Xy2;y1 =
[
b (y1, y2) , b̄ (y1, y2)

]
and then X =

∪y∈YXy2;y1 . The family {K (y, ·) ∈ C(X ) : y ∈ Y} is said to be
complete in C(Xy2;y1 × {y1}) for each y1 if for each y1 and for any
g (·, y1) ∈ C(Xy2;y1 × {y1})∫

Xy2;y1

K (y1, y2, x) g(x, y1)dx = 0 for all y2 ∈ Y2

implies g(·, y1) = 0 almost surely in Xy2;y1 for each y1.

In this case, the support of the kernel function K (y, ·) is Xy2;y1 ,
which changes with y. The key assumption of Theorem 2.1 and
Corollary 2.1 is that the upper bound of the support increases
with y (by Assumption 2.7(i) and Assumption 2.14(i) respectively)
and the support is degenerated at y (by Assumption 2.2(ii) and
Assumption 2.9(ii), respectively). Therefore, under some regularity
conditions, the monotonously moving support with a degenerated
condition is a sufficient condition for completeness.We summarize
this as follows:

Corollary 2.3. Under Assumption 2.8–2.14, the family {K (y, ·) ∈

C(X ) : y ∈ Y} is complete in C(Xy2;y1 × {y1}) for each y1.
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In the rest of the section, we will present a discrete case to
illustrate some key aspects of the identification proof. The discrete
case refers to the supports Y and X being discrete sets:

y ∈ Y ≡ {y1, y1, . . . , yJ1} and x ∈ X ≡ {x1, x2, . . . , xJ2}.

In Eq. (4), the upper bound b̄ (y) is one-to-one and this implies that
the number of elements in Y should be greater than the number of
elements in X , i.e. J1 ≥ J2. We start with a simple case, J1 = J2 = J
and yj = xj for j = 1, . . . , J . Consider the following integral
equation

h (y) =

∫ y

y1

K (y, x) g (x) dx for any y ∈ Y. (7)

Because dx is a discrete measure concentrated on X , we can write
the above integral equation as follows:

h (y1) = K (y1, x1) g (x1)
h (y2) = K (y2, x1) g (x1)+ K (y2, x2) g (x2)
... =

...

h
(
yJ

)
= K

(
yJ , x1

)
g (x1)+ K

(
yJ , x2

)
g (x2)

+ · · · + K
(
yJ , xJ

)
g

(
xJ

)
.

This can be expressed in terms of matrices as

Mh
Given

= MK
Given

· Mg
Unknown

where

Mh =

⎡⎢⎣h (y1)
...

h
(
yJ

)
⎤⎥⎦

J×1

,Mg =

⎡⎢⎣g (y1)
...

g
(
yJ

)
⎤⎥⎦

J×1

,

and

MK =

⎡⎢⎢⎣
K (y1, x1) 0 · · · 0
K (y2, x1) K (y2, x2) · · · 0

...
... · · ·

...

K
(
yJ , x1

)
K

(
yJ , x2

)
· · · K

(
yJ , xJ

)
⎤⎥⎥⎦

J×J

.

When L = 1, Assumption 2.7(ii), suggests that K
(
yj, xj

)
̸= 0 for

j = 1, . . . , J , which implies the diagonal elements of the triangular
matrix MK are all nonzero and MK is invertible. The invertibility
permits the identification of the matrixMg = M−1

K Mh.
As for the case, J1 > J2, the matrixMK corresponding to K (y, x)

is not a square matrix. We can pick J2 distinct elements from Y and
relabel themas the first J2 distinct elements such thatK

(
yj, xj

)
̸= 0

for j = 1, . . . , J2. It is straightforward to see that we can write the
relationship in terms of matrix decomposition in Eq. (7) with J2
replacing J . Because K

(
yj, xj

)
̸= 0 for j = 1, . . . , J2, we also obtain

the identification of the matrixMg .
The discrete case is useful to illustrate the need for an operator

kernel that is, in some sense, ‘‘nonzero on thediagonal’’, as required
in Assumption 2.7(ii). However, the continuous case is more com-
plex, because smoothness constraints play an important role.

3. Identification of several models

In this section, we will apply Section 2’s results to provide
simple sufficient conditions for the injectivity that is used for iden-
tifying several models, including nonparametric regression mod-
els with instrumental variables, nonclassical measurement error
models, and auction models. Each of the models we consider is
connected to an integral equation or an integral operator relation-
ship relating observable functions to the unobservable functions
of interest. Injectivity of the integral operators can help us recover

unobservable functions of interest from observable functions. We
will give a separate description of each model because their struc-
tures differ.

3.1. Nonparametric regression models with instrumental variables

Consider a nonparametric regression model as follows:

y = m(x, z1) + ε, with E(ε|z) = 0, z = (z1, z2) (8)

where y is an observable scalar random variable, x is a one-
dimensional endogenous regressor and may be correlated with a
zero mean disturbance ε, and z1, z2 are d1-dimensional and one-
dimensional instrumental variables, respectively.

The conditional expectation of Eq. (8) yields the integral equa-
tion

E[y|z] =

∫
m(x, z1)f (x|z1, z2)dx for all z ∈ Z, (9)

where Z = Z1 × Z2 ⊂ Rd1+1 is the support of z. We can
consider the conditional density function f (·|z) in Eq. (9) over a
support moving with the instrument variable z2. Define Xz2;z1 ≡[
b (z) , b̄ (z)

]
for each z ∈ Z , where b : Z ↦→ X , b̄ : Z ↦→ X , and

X = ∪z∈ZXz2;z1 . For each z1 ∈ Z1, define an operator as follows:

TX |Z2;z1 : C(Xz2;z1 × {z1}) → CL({z1} × Z2)

(TX |Z2;z1g)(z) =

∫
Xz2;z1

g(x, z2)f (x|z1, z2)dx.

From Eq. (9), the observed conditional expectation E[y|z] is in
the range of the above integral operator. Injectivity of the operator
TX |Z2;z1 implies that the regression function can be identified as

m(x, z1) = T−1
X |Z2;z1

(E[y|z]) for each z1.

We can use the conditions in Corollary 2.1 to provide a sufficient
condition for the operator’s injectivity TX |Z2;z1 for each z1.

Let L be a positive integer:

Assumption 3.1.1. The Lth derivative of the conditional mean
function ∂LE[y|z1,z2]

∂z2
exists for each z1 and is continuous for all z ∈ Z .

Assumption 3.1.2. (i) Uniform bound ofXz2;z1 , B ≤ b (z) ≤ b̄ (z) ≤

B̄ for all z ∈ Z for some B, B̄ ∈ R and (ii) b
(
z1, z2

)
= b̄

(
z1, z2

)
= B

for each z1 where z2 is the lower endpoint of Z2.

Assumption 3.1.3. b(0,1) (z1, z2) and b̄(0,1) (z1, z2) exist and are
continuous for all z ∈ Z .

Assumption 3.1.4. The Lth derivative of the conditional den-
sity ∂Lf (x|z1,z2)

∂z2
exists for each z1 and is continuous on ∪z∈Z[

b (z) , b̄ (z)
]
× {z}.

Assumption 3.1.5. At each z ∈ Z , either (i) b(0,1) (z1, z2) = 0 or
(ii) ∂

ℓf (x|z1,z2)
∂z2

⏐⏐⏐
x=b(z)

= 0 for ℓ = 0, . . . , L − 1.

Assumption 3.1.6. ∂Lf (x|z1,z2)
∂z2

⏐⏐⏐
x=b(z)

= 0 for all z ∈ Z .

Assumption 3.1.7. (i) b
(0,1)

(z1, z2) > 0 for all z ∈ Z ,
(ii) ∂L−1f (x|z1,z2)

∂z2

⏐⏐⏐
x=b(z)

̸= 0 for all z ∈ Z and (iii) if L > 1,

∂ℓf (x|z1,z2)
∂z2

⏐⏐⏐
x=b(z)

= 0 for ℓ = 0, . . . , L − 2 and for all z ∈ Z .
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Theorem 3.1.1. If Assumption 3.1.1–3.1.7 hold. Then, the integral
operator TX |Z2;z1 is injective for each z1 and then the regression func-
tion m(·, z1) is identified for each z1.

The above result is a direct application of Corollary 2.1; hence,
we omit its proof. This result should be contrasted with other pop-
ular sufficient conditions for injectivity, namely, (i) the complete-
ness property of the exponential families and normal distributions
Newey and Powell (2003) and (ii) the injectivity of convolution
operations under assumptions regarding the characteristic func-
tion Mattner (1993) or under compact support assumptions (Hu
and Ridder, 2010). Our result holds for a nonparametric family
of distributions (unlike Newey and Powell (2003)) and holds for
operators that aremore general than convolutions (unlikeMattner
(1993)). Interestingly, our result can be see as a generalization
of Hu and Ridder (2010) that also exploits boundary conditions on
a compact support to establish injectivity but in a context far more
general than merely convolutions. Going beyond convolutions is
essential to credibly cover nonparametric instrumental variables
(whereas convolutions may be sufficient in many measurement
error problems).

Providing novel assumptions that guarantee injectivity, as we
do here, is a different problem than showing the impossibility of
testing for injectivity against very general alternatives (as in Canay
et al. (2013)). The two findings can easily be seen to be compatible:
If one took one joint density that satisfies our assumptions (and,
thus, has a jump in some derivative at a boundary point),1 one
can simply smear that function with infinitely many times differ-
entiable function whose support has an arbitrarily small width, to
obtain a function that violates our assumptions but that can be
made arbitrarily close to the original function.

Assumption 3.1.1–3.1.7 can be divided into three parts, proper-
ties of the conditional expectation of y given z, the conditional c.d.f.
of x given z, and the two endpoints, b (·) and b̄ (·). Assumption 3.1.1
imposes regularity conditions on the conditional expectation of
y given z. By constraining the derivatives of E(y|z) in Eq. (9) this
assumption implicitly imposes some continuity restrictions on
the regression function m(·). Assumptions 3.1.4 and 3.1.5(ii), 3.1.6
and 3.1.7(ii) &(iii) assume regularity conditions on f (x|z1, z2) and
vanishing partial derivatives of f (x|z1, z2) at the lower endpoints.
Assumptions 3.1.2, 3.1.3 and 3.1.5(i), and 3.1.7(i) impose restric-
tions on the endpoints of the support and some discussion has
been provided in Remark 2.3. Here, we provide a bit of intuition for
the support condition in practice. If there is a positive correlation
between x and z2 and the variance of x increases with z2, we
would expect the distribution of x to accumulate over z2 and the
support of x would be a function of z2. Thus, the moving support
condition is consistent with a requirement of an instrumental
variable, a nonzero correlation between an endogenous variable
and an instrumental variable.

The support conditions should be plausible in several empirical
applications. In an application to determine the effect of alcohol
consumption on the wage rate, we can use the negative value of
the local market price of alcohol z2 as an instrumental variable for
individual’s alcohol consumption x if there is a negative correlation
between alcohol consumption and the local alcohol price, and
the variance of individual’s alcohol consumption decreases with
the local alcohol price. The degeneracy support condition holds,

1 The condition that a jump in a derivative at a boundary point can happen at
the lowest endpoint b

(
y
)

= b̄
(
y
)

= B (Assumption 2.2. (ii)). This implies that
b(1)

(
y
)
> 0. Because b (y) ≤ b̄ (y) for all y ∈ Y , we have b(1)

(
y
)

≤ b̄(1)
(
y
)
.

Combining these observations yields 0 < b(1)
(
y
)

≤ b̄(1)
(
y
)
. Thus, the curve

describing the two endpoints of the support has a ‘‘kink’’ at the boundary point y.
The curves in Fig. 1 provide some illustration of the situation. Thus, our conditions
require a jump in some derivative at the boundary point y.

in this case, because there would be no alcohol consumption for
extremely high alcohol prices.

The monotonously moving support with a degenerated con-
dition, along with some regularity conditions on the conditional
mean function and the conditional density, secures the identifica-
tion of nonparametric regression models and allows for fairly gen-
eral functional forms of the regression function in the investigation
of the returns to schooling.

3.2. Nonclassical measurement error models with instrumental vari-
able

Consider nonclassical measurement error models with the fol-
lowing conditional density:

fY |X∗W (y|x∗, w)

where y is the endogenous variables, x∗ is the one-dimensional
unobserved error-free explanatory variable, and w is an addi-
tional d1-dimensional vector of observed error-free covariates.
Suppose that, in addition to the mismeasured observed variable
x, we have access to a one-dimensional instrumental variable z
satisfying (1) fY |XX∗WZ (y|x, x∗, w, z) = fY |X∗W (y|x∗, w), and (2)
fX |X∗WZ (x|x∗, w, z) = fX |X∗W (x|x∗, w).2 Using the law of the total
probability and these assumptions, following the derivation in Hu
and Schennach (2008), we can write the observed conditional
density fYX |WZ (y, x|w, z) as:

fYX |WZ (y, x|z, w)

=

∫
fY |X∗W (y|x∗, w)fX |X∗W (x|x∗, w)fX∗|WZ (x∗

|w, z)dx∗.

Identifying this measurement error model then consists in
showing that this integral equation has a unique solution
(fY |X∗W , fX |X∗W , fX∗|WZ ) for a given observable conditional density
fYX |WZ (y, x|w, z). To this effect, for each w, define the following
integral operators:

TX |X∗;w : C(X ∗

x;w × {w}) → CL(X × {w})

(TX |X∗;wg)(x) =

∫
g(x∗, w)fX |X∗W (x|x∗, w)dx∗,

TZ |X;w : C(Xz;w × {w}) → CL({w} × Z)

(TZ |X;wg)(z) =

∫
g(x, w)fZ |XW (z|x, w)dx.

Hu and Schennach (2008) assume injectivity of the above
operators, TX |X∗;w and TZ |X;w along with other location assump-
tions to obtain uniqueness of eigenvalue–eigenfunction decom-
position of an integral operator and provide the identification of
(fY |X∗W , fX |X∗W , fX∗|WZ ).3 Denote the changing supports as X ∗

x;w =[
b1 (x, w) , b̄1 (x, w)

]
and Xz;w =

[
b2 (w, z) , b̄2 (w, z)

]
, where b1

and b̄1 are fromX ×{w} intoX ∗ for eachw, and b2 and b̄2 are from
{w}×Z into X for eachw. It follows that X ∗

= ∪(x,w)∈X×WX ∗

x;w =

∪(x,w)∈X×W
[
b1 (x, w) , b̄1 (x, w)

]
and X = ∪(w,z)∈W×ZXz;w =

∪(w,z)∈W×Z
[
b2 (w, z) , b̄2 (w, z)

]
.

For an operator T maps C(X) into CL(Y), where X andY denote
subsets of R, the range of T is denoted by Range(T ):

Range(T ) = {f ∈ CL(Y) : Tg = f for some g ∈ C(X)}.

Let L be a positive integer:

2 The assumption is Assumption 2 in Hu and Schennach (2008). This indicates
that the latent true value x∗ has already provided enough information for y and x
than other observable variables.
3 As discussed in Hu and Schennach (2008) the injectivity assumptions can

also be imposed on the operators TX |X∗;w and TZ |X∗;w , where (TZ |X∗;wg)(z) =∫
g(x∗, w)fZ |X∗W (z|x∗, w)dx∗ .



54 Y. Hu et al. / Journal of Econometrics 200 (2017) 48–58

Assumption 3.2.1. For each w, the ranges of the operators TX |X∗;w

and TZ |X;w contain functions other than the zero function. In other
words, Range(TX |X∗;w) ̸= {0} and Range(TZ |X;w) ̸= {0} for each w.

Assumption 3.2.2. (i) Uniform bounds of X ∗

x;w and Xz;w , for some
Bi, B̄i ∈ R, we have Bi ≤ bi (·, ·) ≤ b̄i (·, ·) ≤ B̄i for all points in
the domains of bi and b̄i for i = 1, 2, and (ii) Suppose that for each
w, b1

(
x, w

)
= b̄1

(
x, w

)
= B1. b2

(
w, z

)
= b̄2

(
w, z

)
= B2, where

x = infx∈X x and z = infz∈Zz.

Assumption 3.2.3. For each w, b(1,0)1 (x, w), b̄(1,0)1 (x, w) and
b(0,1)2 (w, z) and b̄(0,1)2 (w, z) exist and are continuous in its domain.

Assumption 3.2.4. The Lth derivatives of the conditional den-
sities

∂LfX |X∗W (x|x∗,w)
∂x and ∂LfZ |XW (z|x,w)

∂z exist and are continuous on
the domains ∪(x,w)∈X×W {x} ×

[
b1 (x, w) , b̄1 (x, w)

]
× {w} and

∪(w,z)∈W×Z {z} ×
[
b2 (w, z) , b̄2 (w, z)

]
× {w} , respectively.

Assumption 3.2.5. For each w, either (i) b(1,0)1 (x, w) = 0 at each
x ∈ X , and b(0,1)2 (w, z) = 0 at each z ∈ Z or

(ii)
∂ℓfX |X∗W (x|x∗,w)

∂x

⏐⏐⏐
x∗=b1(x,w)

= 0 at each x ∈ X and

∂ℓfZ |XW (z|x,w)
∂z

⏐⏐⏐
x=b2(w,z)

= 0 at each z ∈ Z for ℓ = 0, . . . , L − 1.

Assumption 3.2.6. For each w, the Lth derivatives
∂LfX |X∗W (x|x∗,w)

∂x

⏐⏐⏐
x∗=b1(x,w)

= 0 for all x ∈ X and ∂LfZ |XW (z|x,w)
∂z

⏐⏐⏐
x=b2(w,z)

= 0 for all z ∈ Z .

Assumption 3.2.7. For eachw, (i) b
(1,0)
1 (x, w) > 0 for all x ∈ X and

b
(0,1)
2 (w, z) > 0 for all z ∈ Z , (ii)

∂L−1fX |X∗W (x|x∗,w)
∂x

⏐⏐⏐
x∗=b1(x,w)

̸= 0

for all x ∈ X and ∂L−1fZ |XW (z|x,w)
∂z

⏐⏐⏐
x=b2(w,z)

̸= 0 for all z ∈ Z and

(iii) if L > 1,
∂ℓfX |X∗W (x|x∗,w)

∂x

⏐⏐⏐
x∗=b1(x,w)

= 0 for all x ∈ X and
∂ℓfZ |XW (z|x,w)

∂z

⏐⏐⏐
x=b2(w,z)

= 0 for all z ∈ Z for ℓ = 0, . . . , L − 2.

Theorem 3.2.1. If Assumption 3.2.1–3.2.7 hold. Then, the integral
operators TX |X∗;w and TZ |X;w are injective for each w.

The proof of Theorem 3.2.1 is to apply Corollary 2.1 to each
operator of TX |X∗;w and TZ |X;w; this is involved but straightforward
and we, thus, omit its proof. Assumption 3.2.1 essentially imposes
smoothness conditions on functions in the ranges of the opera-
tors. Assumptions 3.2.4 and 3.2.5(ii), 3.2.6 and 3.2.7(ii) &(iii) are
smoothness and boundary conditions imposed for the densities
fX |X∗W and fZ |XW . Assumptions 3.2.2, 3.2.3 and 3.2.5(i), and 3.2.7(i)
are conditions for the endpoints of the supports, b1 (x, w), b̄1 (x, w),
b2 (w, z) , and b̄2 (w, z) for each w. Assumption 3.2.7(i) requires
for each w the upper endpoints of the supports of the densities
fX |X∗W (x|·, w) and fZ |XW (z|·, w) to increase with x and z, respec-
tively.

As discussed in Hu and Schennach (2008), when fX |X∗W (x|·, w)
and fZ |XW (z|·, w) can be written in the forms fX |X∗W (x|x∗, w) =

fε1,w(x − x∗) and fZ |XW (z|x, w) = fε2,w(z − x) respectively for
each w, then fX |X∗W (x|·, w) and fZ |XW (z|·, w) are injective if and
only if the Fourier transform of fε2,w and fε2,w are everywhere
nonvanishing.4

The moving support conditions for injectivity of the operator
TZ |X;w for eachw are consistent with themoving support condition
in nonparametric regression models with instrumental variables

4 The result is an application of Theorem 2.1 in Mattner (1993).

in Section 3.1, where we need injectivity of the operator TX |Z2;z1
for each z1. While the support in the nonparametric regression
models is Xz2;z1 =

[
b (z1, z2) , b̄ (z1, z2)

]
for each z1, the support

in the measurement error models is Xz;w =
[
b2 (w, z) , b̄2 (w, z)

]
for each w. In discussing the moving support conditions for the
nonparametric regression models in Section 3.1, we can provide
sufficient conditions to ensure injectivity of the operator TZ |X;w for
each w. However, the situation is more complicated in the mea-
surement errormodels because the assumptions ensure injectivity
of two operators not just one.

Similar to the discussion in Section 3.1, if (1) there exists a
positive correlation between x and z and the variance of x increases
with z and (2) the measurement error is correlated with the true
regressor and its variance increases with the true regressor then
the moving support conditions in the assumptions are more likely
to hold and the integral operators TX |X∗;w and TZ |X;w are injective
for each w.

In applying the measurement error model to determine the ef-
fect of alcohol consumption on the wage rate, the moving support
conditions in the assumptions are more likely to hold if (1) there is
a negative correlation between alcohol consumption and the local
alcohol price, the variance of individual’s alcohol consumption
decreases with the local alcohol price, and (2) the measurement
error between individual’s observed alcohol consumption and true
alcohol consumption is correlated with the true alcohol consump-
tion and the variance of the measurement error increases with the
true alcohol consumption. The degenerate support conditions in
this case are that there is no alcohol consumption for extremely
high alcohol prices andwhen the true alcohol consumption is zero,
the observed alcohol consumption is also zero.

3.3. Auction models with unobserved heterogeneity

Suppose w is a d1-dimensional vector of observed state vari-
ablewhich captures auction characteristics. Consider the following
simple auction model with unobserved heterogeneity satisfying

g (b, w) =

∫
gB|VW (b|v,w) f (v,w) dv for any b ∈ B

where b stands for bids, with observed density g (b, w), v is the
unobserved heterogeneity (such as a common value) with unob-
served density f (v,w), and gB|VW (b|v,w) is the bid distribution
conditional on the unobserved heterogeneity. The model is closely
related to the models in An et al. (2010); Hu et al. (2013). Let
D = D(B) be the discretized bid for some discretization D(·). A key
assumption for the identification of gB|VW and f is the injectivity of
the linear operator TB|V ;w for each w, where

(TB|V ;wf )(b, w) =

∫
gB|VW (b|v,w) f (v,w) dv

where the unobserved heterogeneity V is discrete, we can choose
some discretization D(·) such that the linear operator TB|V ;w is
expressed in terms of a square matrix as TB|V ;w = [gB|VW (b|v,w)]
for each w and our changing support assumption implies that
the matrix TB|V ;w is a lower or upper triangular form for each w.
When the probability on the upper (or lower) boundary of the
support is nonzero, i.e., the diagonal elements of the triangular
matrix are nonzero, the moving support assumption implies the
completeness condition.

In the continuous case where the unobserved heterogeneity is
continuous, the result remains with matrices replaced by integral
operators. In this case, a triangularmatrix is extended to an integral
operator on a function space, e.g.,

(TB|V ;wf )(b) =

∫
Vb;w

gB|VW (b|v,w) f (v,w) dv,

where Vb;w =
[
b (b, w) , b̄ (b, w)

]
.
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Corollary 2.2 shows such integral operator is injective in a
continuous space if for each w, the kernel function gB|VW (b|v,w)
is nonzero on the ‘‘diagonal’’, and the changing support Vb;w sat-
isfies some regularity conditions. Therefore, the changing support
assumption can be used to imply that the operator corresponding
to the conditional bid distribution gB|VW is injective and the distri-
bution of the unobserved heterogeneity is identified. We will state
the conditions in Corollary 2.2 for these models.

Let L be some positive integer:

Assumption 3.3.1. The Lth derivative of the density of bids ∂
Lg(b,w)
∂b

exists and is continuous for all b ∈ B.

Assumption 3.3.2. (i) Uniform bound of Vb;w , B ≤ b (b, w) ≤

b̄ (b, w) ≤ B̄ for all b ∈ B for some B, B̄ ∈ R and (ii) for each w
b
(
bl, w

)
= b̄

(
bl, w

)
= B, where bl is the lower endpoint of B.

Assumption 3.3.3. b(1,0) (b, w) and b̄(1,0) (b, w) exist and are con-
tinuous for all (b, w) ∈ B × W .

Assumption 3.3.4. The Lth derivative of the conditional den-
sity ∂LgB|VW (b|v,w)

∂b exists and is continuous on ∪(b,w)∈B×W {b} ×[
b (b, w) , b̄ (b, w)

]
× {w}.

Assumption 3.3.5. At each (b, w) ∈ B×W , either (i) b(1,0) (b, w) =

0 or (ii) the derivatives ∂ℓgB|VW (b|v,w)
∂b

⏐⏐⏐
v=b(b,w)

= 0 for ℓ = 0, . . . , L

− 1.

Assumption 3.3.6. ∂
LgB|VW (b|v,w)

∂b

⏐⏐⏐
v=b(b,w)

= 0 for all (b, w) ∈ B×W .

Assumption 3.3.7. (i) b
(1,0)

(b, w) > 0 for all (b, w) ∈ B × W ,
(ii) ∂L−1gB|VW (b|v,w)

∂b

⏐⏐⏐
v=b(b,w)

̸= 0 for all (b, w) ∈ B × W and (iii) if

L > 1, ∂
ℓgB|VW (b|v,w)

∂b

⏐⏐⏐
v=b(b,w)

= 0 for ℓ = 0, . . . , L − 2 and for all
(b, w) ∈ B × W .

Theorem 3.3.1. Assume the conditional bid distribution gB|VW exists.
If Assumption 3.3.1– 3.3.7 hold, the integral operator TB|V ;w is injec-
tive for each w and the distribution of the unobserved heterogeneity
f (v,w) is identified for each w.5

In this model, the moving support conditions of Theorem 3.3.1
require that the support of valuations changes with the bids. The
moving support assumption has a strong and natural economic
basis in this example, as it asserts that well-trained bidders can
effectively rule out an exceptionally large or small deviation of
individual-specific valuations from a common value. This should
be contrastedwith Fourier-based approaches (e.g., Li et al. (2000)),
where injectivity is established based on the condition non-
vanishing characteristic functions, which has no clear connection
to the economic model.

Assumption 3.3.1 imposes smoothness conditions on the dis-
tribution of bids. Assumptions 3.3.4 and 3.3.5(ii), 3.3.6 and 3.3.7(ii)
&(iii) collect all the regularity conditions for the bid distribution
conditional on the unobserved heterogeneity. Assumptions 3.3.2,
3.3.3 and 3.3.5(i), and 3.3.7(i) are the moving support conditions.
D’Haultfoeuille and Février (2010) use at least three repeated
conditionally independent measurements and some moving sup-
port assumptions to identify an auction model with unobserved
heterogeneity nonparametrically. Themoving support assumption

5 An et al. (2010), and Hu et al. (2013) have shown the identification of the
conditional bid distribution gB|VW from observable information.

requires that the upper endpoints of the supports increasewith the
true value of the unobserved variable, which is close to Assump-
tion 3.3.7(i). Because no bidder would rationally bid higher than
their own valuation, the values of the bids should be lower than the
valuation and this implies that a zero valuation induces a zero value
of the bids. The degenerate support condition is, thus, plausible in
an auction model.

4. Conclusion

This paper presents sufficient conditions for injectivity of inte-
gral operators with compactly supported kernels. The injectivity
is related to completeness, which is used increasingly in various
nonparametric models to obtain identification including nonpara-
metric regressionmodelswith instrumental variables, nonclassical
measurement error models, and auction models, etc. Our results
show that if compactly supported kernels satisfy certain regularity
conditions, monotonously moving support assumptions and de-
generacy of the support assumptions then its corresponding inte-
gral operator is injective or, equivalently, its kernels are complete.

Two possible extensions are left for future research. First, one
may wonder whether the similar assumption can be made for ker-
nels with infinite support because a compact support assumption
may not hold in some applications. Second, the random variables
in this paper are restricted to be scalars. An extension to vectors is
natural but more involved.

Appendix. Proofs

A.1. Existing results on Volterra equations

For easy reference, we first summarize existing results on
Volterra equations from Bôcher (1909). We define a function u(x)
on

I = [a, b]

and a function of two variables K (x, ξ ) on the triangle

T = {(x, ξ ) : a ≤ ξ ≤ x ≤ b} .

The Volterra equations of the first kind and of the second kind
are respectively defined as

f (x) =

∫ x

a
K (x, ξ )u (ξ) dξ (10)

u (x) = f (x) +

∫ x

a
K (x, ξ )u (ξ) dξ (11)

where f (x) and K (x, ξ ) are known and u (x) is usually the function
of interest.

Definition A.1.1. The discontinuities of a function of (x, ξ ) are said
to be regularly distributed if they all lie on a finite number of curves
with continuously turning tangents no one of which is met by a
line parallel to the axis of x or of ξ in more than a finite number of
points.

The uniqueness of the solution of Eq. (11) is summarized in
Theorem 1 on p. 16 of Bôcher (1909) as follows:

Theorem A.1.1. If K (x, ξ ) is uniformly bounded on T and its dis-
continuities, if it has any, are regularly distributed, a necessary and
sufficient condition that Eq. (11)has a solution continuous throughout
I is that f (x) be continuous throughout I, and if this condition is
fulfilled, Eq. (11) has only one continuous solution, which is given by
the absolutely and uniformly convergent series in Eq. (13).
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Proof. First, we provide a proof of the sufficient condition. Succes-
sively substituting for u (·) in Eq. (11) yields that

u (x) = f (x) +

∫ x

a
K (x, ξ )f (ξ )dξ

+

∫ x

a
K (x, ξ )

∫ ξ

a
K (ξ, ξ1)u (ξ1) dξ1dξ

= · · ·

= Sn(x) + Rn(x) (12)

where

Sn(x) = f (x) +

∫ x

a
K (x, ξ )f (ξ )dξ

+

∫ x

a
K (x, ξ )

∫ ξ

a
K (ξ, ξ1)f (ξ1) dξ1dξ

+ · · · +

∫ x

a
K (x, ξ )

∫ ξ

a
K (ξ, ξ1) · · ·

×

∫ ξn−1

a
K (ξn−1, ξn)f (ξn) dξn · · · dξ1dξ,

Rn(x) =

∫ x

a
K (x, ξ )

∫ ξ

a
K (ξ, ξ1) · · ·

×

∫ ξn−1

a
K (ξn−1, ξn)u (ξn) dξn · · · dξ1dξ .

Because K (x, ξ ) is uniformly bounded on T and f (x) is continuous
throughout I, we have

|K (x, ξ )| ≤ M and |f (x)| ≤ N.

Define

Fn(x) =

∫ x

a
K (x, ξ )

∫ ξ

a
K (ξ, ξ1) · · ·

×

∫ ξn−1

a
K (ξn−1, ξn)f (ξn) dξn · · · dξ1dξ .

Then, we have Sn(x) = Sn−1(x) + Fn(x), and

|Fn(x)| ≤ NMn+1
∫ x

a

∫ ξ

a
· · ·

∫ ξn−1

a
dξn · · · dξ1dξ

= NMn+1 (x − a)n

(n + 1) !
≤ NMn+1 (b − a)n

(n + 1) !
.

This implies that Sn(x) converges absolutely and uniformly over I .
The continuity of u (x) over I implies that |u (x)| ≤ N ′ < ∞. We
then have

|Rn(x)| ≤ N ′Mn+1 (x − a)n

(n + 1) !
≤ N ′Mn+1 (b − a)n

(n + 1) !

and therefore,Rn(x) converges absolutely anduniformly over Iwith

lim
n→∞

Rn(x) = 0.

Thus, we have an infinite series which converges absolutely and
uniformly over I and

s (x) ≡ lim
n→∞

Sn(x)

= f (x) +

∫ x

a
K (x, ξ )f (ξ )dξ

+

∫ x

a
K (x, ξ )

∫ ξ

a
K (ξ, ξ1)f (ξ1) dξ1dξ + · · · . (13)

It is straightforward to check that s (·) is a solution of Eq. (11) by∫ x

a
K (x, ξ )s (ξ) dξ =

∫ x

a
K (x, ξ )f (ξ )dξ

+

∫ x

a
K (x, ξ )

∫ ξ

a
K (ξ, ξ1)f (ξ1) dξ1dξ + · · ·

= s (x)− f (x).

Because the finite series Sn(x) is continuous and Sn(x) converges to
S(x) absolutely and uniformly over I , S(x) is continuous throughout
I.6 On the other hand, any continuous solution of Eq. (11) must
satisfy u (x) = Sn(x) + Rn(x) in Eq. (12). This implies that there
exists only one continuous solution given by

u (x) = lim
n→∞

Sn(x) = s (x) .

As for a proof for the necessary condition, define H(x) =∫ x
a K (x, ξ )u (ξ) dξ . Because the discontinuities of K (x, ξ ) are regu-

larly distributed and u(·) is continuous, the function H(x) is contin-
uous throughout I.7 Then, by the continuity of u(·) and H(·), given
ε > 0, there exists δ > 0 such that |x − x′

| < δ and⏐⏐f (x) − f (x′)
⏐⏐ ≤

⏐⏐u(x) − u(x′)
⏐⏐

+

⏐⏐⏐⏐⏐
∫ x

a
K (x, ξ )u (ξ) dξ −

∫ x′

a
K (x′, ξ )u (ξ) dξ

⏐⏐⏐⏐⏐
=

⏐⏐u(x) − u(x′)
⏐⏐ +

⏐⏐H (x)− H
(
x′
)⏐⏐ < ε.

This shows that f (x) must be continuous throughout I. □

Wemay go through the same steps again to get

Fn(x) ≡

∫ x

A(x)
K (x, ξ )

∫ ξ

A(ξ )
K (ξ, ξ1) · · ·

×

∫ ξn−1

A(ξn−1)
K (ξn−1, ξn)f (ξn) dξn · · · dξ1dξ .

This term is also bounded by

|Fn(x)| ≤ NMn+1
∫ x

A(x)

∫ ξ

A(ξ )
· · ·

∫ ξn−1

A(ξn−1)
dξn · · · dξ1dξ

≤ NMn+1
∫ x

a

∫ ξ

a
· · ·

∫ ξn−1

a
dξn · · · dξ1dξ

= NMn+1 (x − a)n

(n + 1) !
.

In the similarmanner as the proof of TheoremA.1.1, the unique so-
lution exists and is given by an absolutely and uniform convergent
series.

Eq. (10) leads to the formof Eq. (11) by taking the first derivative
as follows:

f (1) (x) = K (x, x)u(x) +

∫ x

a
K (1,0)(x, ξ )u (ξ) dξ . (14)

Therefore, the results for Eq. (11) also apply. Bôcher (1909)
further shows, in his Theorem 1*, the following result.

6 Because the discontinuities of K (x, ξ ) are regularly distributed and f (·) is
continuous, the function Fn(x) is continuous throughout I for each n. The result is in
a corollary on p. 3 of Bôcher (1909) and the statement is the following: If φ(x, y)
and ψ(x, y) are finite in T and their discontinuities, if they have any, are regularly
distributed, the function

H (x, y) =

∫ x

y
φ(x, ξ )ψ (ξ, y) dξ

is continuous throughout T.
7 The result adopted here is the same as the previous footnote and is in a corollary

on p. 3 of Bôcher (1909).
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Theorem A.1.2. If K (x, ξ ) is continuous in T and has a derivative
K (1,0)(x, ξ ) finite in T and whose discontinuities are regularly dis-
tributed, and if K (x, x) does not vanish at any point of I, a necessary
and sufficient condition that Eq. (10) has a continuous solution is that
f (x) and its derivative f ′(x) be continuous in I and f (a) = 0. If these
conditions are fulfilled, Eq. (10) has only one continuous solution,
namely the continuous solution of Eq. ((14)).

This proof implies that we may allow both boundaries to vary
as long as they are bounded. Consider a varying lower bound as

u (x) = f (x) +

∫ x

A(x)
K (x, ξ )u (ξ) dξ,

where the key is

a ≤ A(x) < x.

This condition guarantees there is a triangular operator. For ex-
ample, a lower triangular matrix can have zero near the lower left
corner, which does not affect the invertibility.

A.2. Proof of Theorem 2.1

The proof proceeds by first differentiating (4) until it can be cast
into the form of Volterra Equation of the second kind for which
Theorem A.1.1 applies.

Step 1: Differentiating (4) with respect to y using the Leibniz
integral rule yields:

h(1) (y) = b
(1)
(y) K

(
y, b (y)

)
g

(
b (y)

)
− b(1) (y) K

(
y, b (y)

)
g

(
b (y)

)
+

∫ b(y)

b(y)
K (1,0) (y, x) g (x) dx (15)

= b
(1)
(y) K

(
y, b (y)

)
g

(
b (y)

)
+

∫ b(y)

b(y)
K (1,0) (y, x) g (x) dx

where the second term in (15) vanishes by Assumption 2.5(i) or
(ii). For the L = 1 case, we stop at this stage and go to step 2 below.

If L > 1, the first term of (15) also vanishes by Assump-
tion 2.7(iii) and we obtain

h(1) (y) =

∫ b(y)

b(y)
K (1,0) (y, x) g (x) dx.

Repeating the differentiation process yields:

h(2) (y) = b
(1)
(y) K (1,0)

(
y, b (y)

)
g

(
b (y)

)
− b(1) (y) K (1,0)

(
y, b (y)

)
g

(
b (y)

)
+

∫ b(y)

b(y)
K (2,0) (y, x) g (x) dx

= b
(1)
(y) K (1,0)

(
y, b (y)

)
g

(
b (y)

)
+

∫ b(y)

b(y)
K (2,0) (y, x) g (x) dx

where the second term again vanishes by Assumption 2.5(i) or (ii).
Step 2: In general, repeating the differentiation process L times

(for L ≥ 1) thus yields:

h(L) (y) = b
(1)
(y) K (L−1,0) (y, b (y)) g (

b (y)
)

+

∫ b(y)

b(y)
K (L,0) (y, x) g (x) dx.

Step 3: Making the change of variable x = b (u) in the integral
yields:

h(L) (y) = b
(1)
(y) K (L−1,0) (y, b (y)) g (

b (y)
)

+

∫ y

b̄−1(b(y))
K (L,0)

(
y, b (u)

)
g

(
b (u)

)
b
(1)
(u) du

= b
(1)
(y) K (L−1,0) (y, b (y)) g̃ (y)

+

∫ y

b̄−1(b(y))
K (L,0)

(
y, b (u)

)
b
(1)
(u) g̃ (u) du

where the inverse of b̄ exists and is one-to-one by Assumptions 2.3
and 2.7(i) and where we have introduced the function g̃ (u) ≡

g
(
b (u)

)
. Rearranging the equation yields:

g̃ (y) = h̃ (y)−

∫ y

y
K̃ (y, u) g̃ (u) du (16)

where

h̃ (y) =
h(L) (y)

b
(1)
(y) K (L−1,0)

(
y, b (y)

)
K̃ (y, u) =

⎧⎪⎨⎪⎩
K (L,0)

(
y, b (u)

)
b
(1)
(u)

b
(1)
(y) K (L−1,0)

(
y, b (y)

) if u ≥ b̄−1 (
b (y)

)
0 if u ∈

[
y, b̄−1 (

b (y)
)).

The constant lower integration bound in (16) has been obtained
by replacing b̄−1

(
b (y)

)
by its minimum value (over y ∈ Y)

and by padding K̃ (y, u) with zeros accordingly. This minimum is
found through b̄−1

(
b (y)

)
≥ b̄−1

(
b
(
y
))

= b̄−1
(
b̄
(
y
))

= y,
where we have used the monotonicity of b̄ (·) (and thus b̄−1 (·))
by Assumption 2.7(i), the fact that b (y) ≥ B = b

(
y
)

and that
b
(
y
)

= b̄
(
y
)
by Assumption 2.2.

Step 4: Eq. (16) has the form of a Volterra Integral Equa-
tion of the second kind. Moreover, h̃ (y) is continuous because
so are h(L) (y), b

(1)
(y) and K (L−1,0)

(
y, b (y)

)
and since b

(1)
(y) and

K (L−1,0)
(
y, b (y)

)
are nonvanishing by Assumption 2.7. Similarly,

K̃ (y, u) is continuous because so are K (L,0)
(
y, b (u)

)
, b

(1)
(·) and

K (L−1,0)
(
y, b (y)

)
(with b

(1)
(·) and K (L−1,0)

(
y, b (y)

)
nonvanishing)

and because, at the junction point u = b̄−1
(
b (y)

)
, we have

K (L,0)
(
y, b̄ (u)

)
= K (L,0)

(
y, b̄

(
b̄−1

(
b (y)

)))
= K (L,0)

(
y, b (y)

)
= 0

by Assumption 2.6.
It follows by Theorem A.1.1 that the solution g̃ (u) to Eq.

(16) is unique. The solution g (x) can then be recovered from
g (x) = g̃

(
b̄−1 (x)

)
, since b̄ (y) is one-to-one by Assumptions 2.3

and 2.7(i). □
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