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 Econometrica, Vol. 76, No. 1 (January, 2008), 195-216

 INSTRUMENTAL VARIABLE TREATMENT OF NONCLASSICAL
 MEASUREMENT ERROR MODELS

 BY YINGYAO Hu AND SUSANNE M. SCHENNACH1

 While the literature on nonclassical measurement error traditionally relies on the
 availability of an auxiliary data set containing correctly measured observations, we es-
 tablish that the availability of instruments enables the identification of a large class
 of nonclassical nonlinear errors-in-variables models with continuously distributed vari-
 ables. Our main identifying assumption is that, conditional on the value of the true
 regressors, some "measure of location" of the distribution of the measurement error
 (e.g., its mean, mode, or median) is equal to zero. The proposed approach relies on the
 eigenvalue-eigenfunction decomposition of an integral operator associated with spe-
 cific joint probability densities. The main identifying assumption is used to "index" the
 eigenfunctions so that the decomposition is unique. We propose a convenient sieve-
 based estimator, derive its asymptotic properties, and investigate its finite-sample be-
 havior through Monte Carlo simulations.

 KEYWORDS: Nonclassical measurement error, nonlinear errors-in-variables model,
 instrumental variable, operator, semiparametric estimator, sieve maximum likelihood.

 1. INTRODUCTION

 IN RECENT YEARS, there has been considerable progress in the development
 of inference methods that account for the presence of measurement error
 in the explanatory variables in nonlinear models (see, for instance, Chesher
 (1991, 1998, 2001), Lewbel (1996, 1998), Hausman (2001), Chesher, Du-
 mangane, and Smith (2002), Hong and Tamer (2003), Carrasco and Florens
 (2005)). The case of classical measurement errors, in which the measurement
 error is either independent of the true value of the mismeasured variable or has
 zero mean conditional on it, has been thoroughly studied. In this context, ap-
 proaches that establish identifiability of the model, and provide estimators that
 are either consistent or root n consistent and asymptotically normal have been
 devised when either instruments (Hausman, Newey, Ichimura, and Powell
 (1991), Newey (2001), Schennach (2007)), repeated measurements (Hausman,
 Newey, Ichimura, and Powell (1991), Li (2002), Schennach (2004a, 2004b)), or
 validation data (Hu and Ridder (2004)) are available.

 However, there are a number of practical applications where the assumption
 of classical measurement error is not appropriate (Bound, Brown, and Math-
 iowetz (2001)). In the case of discretely distributed regressors, instrumental
 variable estimators that are robust to the presence of such "nonclassical" mea-
 surement error have been developed for binary regressors (Mahajan (2006),

 1S. M. Schennach acknowledges support from the National Science Foundation via Grant
 SES-0452089. The authors would like to thank Lars Hansen, James Heckman, Marine Carrasco,
 Maxwell Stinchcombe, and Xiaohong Chen, as well as seminar audiences at various universities,
 at the Cemmap/ESRC Econometric Study Group Workshop on Semiparametric Methods, and at
 the Econometric Society 2006 Winter Meetings for helpful comments.
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 196 Y. HU AND S. M. SCHENNACH

 Lewbel (2007)) and general discrete regressors (Hu (2007)). Unfortunately,
 these results cannot trivially be extended to continuously distributed variables,
 because the number of nuisance parameters needed to describe the measure-
 ment error distribution (conditional on given values of the observable vari-
 ables) becomes infinite. Identifying these parameters thus involves solving op-
 erator equations that exhibit potential ill-posed inverse problems (similar to
 those discussed in Carrasco, Florens, and Renault (2005), Darolles, Florens,
 and Renault (2002), and Newey and Powell (2003)).
 In the case of continuously distributed variables (in both linear or nonlin-

 ear models), the only approach capable of handling nonclassical measurement
 errors proposed so far has been the use of an auxiliary data set containing cor-
 rectly measured observations (Chen, Hong, and Tamer (2005), Chen, Hong,
 and Tarozzi (2008)). Unfortunately, the availability of such a clean data set
 is the exception rather than the rule. Our interest in instrumental variables
 is driven by the fact that instruments suitable for the proposed approach are
 conceptually similar to the ones used in conventional instrumental variable
 methods and researchers will have little difficulty identifying appropriate in-
 strumental variables in typical data sets.
 Our approach relies on the observation that, even though the measurement

 error may not have zero mean conditional on the true value of the regressor,
 perhaps some other measure of location, such as the median or the mode,
 could still be zero. This type of nonclassical measurement error has been ob-
 served, for instance, in the self-reported income found in the Current Popu-
 lation Survey (CPS).2 Thanks to the availability of validation data for one of
 the years of the survey, it was found that although measurement error is cor-
 related with true income, the median of misreported income conditional on
 true income is in fact equal to the true income (Bollinger (1998)). In another
 study on the same data set, it was found that the mode of misreported income
 conditional on true income is also equal to the true income (see Bound and
 Krueger (1991) and Figure 1 in Chen, Hong, and Tarozzi (2008)).
 There are numerous plausible settings where the conditional mode, median,

 or some other quantile of the error could be zero even though its conditional
 mean is not. First, if respondents are more likely to report values close to the
 truth than any particular value far from the truth, then the mode of the mea-
 surement error would be zero. This is a very plausible form of measurement
 error that even allows for systematic over- or underreporting. Intuitively, since
 there is only one way to report the truth, while there are an infinite number
 of alternative ways to misreport, respondents would literally have to collude
 on misreporting in a similar way to violate the mode assumption. In addition,
 data truncation usually preserves the mode, but not the mean, provided the
 truncation is not so severe that the mode itself is deleted.

 2Bureau of Labor Statistics and Bureau of Census, http://www.bls.census.gov/cps/cpsmain.htm.

This content downloaded from 
������������76.21.153.87 on Wed, 14 Feb 2024 23:05:59 +00:00������������ 

All use subject to https://about.jstor.org/terms



 NONCLASSICAL MEASUREMENT ERROR 197

 Second, if respondents are equally likely to over- or underreport, but not by
 the same amounts on average, then the median of the measurement error is
 zero. This could occur perhaps because the observed regressor is a nonlinear
 monotonic function (e.g., a logarithm) of some underlying mismeasured vari-
 able with symmetric errors. Such a nonlinear function would preserve the zero
 median, but not the zero mean of the error. Another important case is data
 censoring, which also preserves the median, as long as the upper censoring
 point is above the median and the lower censoring point is below the median.
 Third, in some cases, a quantile other than the median might be appropri-

 ate. For instance, tobacco consumption is likely to be either truthfully reported
 or underreported and, in that case, the topmost quantile of the observed con-
 sumption conditional on the truth would plausibly equal true consumption.
 To encompass practically relevant cases such as these, which so far could

 only have been analyzed in the presence of auxiliary correctly measured data,
 our approach relies on the general assumption that some given "measure of
 location" (e.g., the mean, the mode, the median, or some other quantile) that
 characterizes the distribution of the observed regressor conditional on the true
 regressor is left unaffected by the presence of measurement error. This frame-
 work is also sufficiently general to include measurement error models in which
 the true regressor and the errors enter the model in a nonseparable fashion.
 The paper is organized as follows. We first provide a general proof of iden-

 tification before introducing a semiparametric sieve estimator that is shown
 to be root n consistent and asymptotically normal. Our identification is fully
 nonparametric and therefore establishes identification in the presence of mea-
 surement error of any model that would be identified in the absence of mea-
 surement error. Our estimation framework encompasses models which, when
 expressed in terms of the measurement error-free variables, take the form of
 either parametric likelihoods or (conditional or unconditional) moment re-
 strictions, and automatically provides a corresponding measurement error-
 robust semiparametric instrumental variable estimator. This framework there-
 fore addresses nonclassical measurement error issues in most of the widely
 used models, including probit, logit, tobit, and duration models, in addition
 to conditional mean and quantile regressions, as well as nonseparable mod-
 els (thanks to their relationship with quantile restrictions). The finite-sample
 properties of the estimator are investigated via Monte Carlo simulations.

 2. IDENTIFICATION

 The "true" model is defined by the joint distribution of the dependent vari-
 able y and the true regressor x*. However, x* is not observed, only its error-
 contaminated counterpart, x, is observed. In this section, we rely on the avail-
 ability of an instrument (or a repeated measurement) z to show that the joint
 distribution of x* and y is identified from knowledge of the distribution of
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 198 Y. HU AND S. M. SCHENNACH

 all observed variables. Our treatment can be straightforwardly extended to al-
 low for the presence of a vector w of additional correctly measured regressors
 merely by conditioning all densities on w.
 Let Y, X, X*, and Z denote the supports of the distributions of the random

 variables y, x, x*, and z, respectively. We consider x, x*, and z to be jointly
 continuously distributed (X, X* c Rnx and Z c Rnz with nz > nx), while y can
 be either continuous or discrete. Accordingly, we assume the following.

 ASSUMPTION 1: The joint density of y and x, x*, z admits a bounded density

 with respect to the product measure of some dominating measure At (defined on Y)
 and the Lebesgue measure on X x X* x Z.All marginal and conditional densities
 are also bounded.

 We use the notation fa(a) and falb(alb) to denote the density of variable a
 and the density of a conditional on b, respectively. Implicitly, these densities
 are relative to the relevant dominating measure, as described above. For sim-
 plicity, our notation does not distinguish between a random variable and a
 specific value it may take. The joint support of all the variables need not be
 rectangular, since we allow for vanishing densities.

 To state our identification result, we start by making natural assumptions
 regarding the conditional densities of all the variables of the model.

 ASSUMPTION 2: (i) fylxx*z(ylx, x*, z) = fylx*(ylx*) for all (y, x, x*, z) e y x
 X x X* x Z and (ii) fxlx*z(XIX*, z) = fxlx* (xx*) for all (x, x*, z) e X x X* x Z.

 Assumption 2(i) indicates that x and z do not provide any more information
 about y than x* already provides, while Assumption 2(ii) specifies that z does
 not provide any more information about x than x* already provides. These
 assumptions can be interpreted as standard exclusion restrictions. Conditional
 independence restrictions have been widely used in the recent econometrics
 literature (e.g., Hoderlein and Mammen (2007), Heckman and Vytlacil (2005),
 Altonji and Matzkin (2005)).

 REMARK: Our assumptions regarding the instrument z are sufficiently gen-
 eral to encompass both the repeated measurement and the instrumental vari-
 able cases in a single framework. In the repeated measurement case, having
 the measurement error on the two measurements z and x be mutually inde-
 pendent conditional on x* will be sufficient to satisfy Assumption 2. Note that
 while we will refer to y as the dependent variable, it should be clear that it
 could also contain another error-contaminated measurement of x* or even a

 type of instrument that is "caused by" x*, as suggested by Chalak and White
 (2006). Finally, note that our assumptions allow for the measurement error
 (x - x*) to be correlated with x*, which is crucial in the presence of potentially
 nonclassical measurement error.
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 NONCLASSICAL MEASUREMENT ERROR 199

 To facilitate the statement of our next assumption, is it useful to note that a
 function of two variables can be associated with an integral operator.

 DEFINITION 1: Let a and b denote random variables with respective sup-
 ports A and B. Given two corresponding spaces 9(A) and 9(B) of functions
 with domains A and B, respectively, let Lbla denote the operator mapping
 g e g(A) to Lblag e G(B) defined by

 [Lblag](b) =- f. fba(bla) da,
 where fbla(bla) denotes the conditional density of b given a.

 For the density fbla(bla) to be uniquely determined by the operator Lbla,
 the space G(A) upon which the operator acts must be sufficiently large so
 that fbla(bla) is "sampled" everywhere. For an integral operator, it is sufficient
 to consider 9(A) to be ?1(A), the set of all absolutely integrable functions

 with domain A (endowed with the norm glgjl = f [g(a)l da). It is even suf-
 ficient to limit 9(A) to the set of functions in ?1(A) that are also bounded

 (SupaeA Ig(a)l < oc), denoted blnd3(A).3 In our subsequent treatment, we will
 consider the cases where 9 = l1 or where 9 = 4Lnd. We can then state our next
 assumption.

 ASSUMPTION 3: The operators Lxlx, and Lzlx are injective (for either 9 = L' or

 - = L nd)'

 An operator Lbla is said to be injective if its inverse L-1 is defined over the
 range of the operator Lbla (see Section 3.1 in Carrasco, Florens, and Renault
 (2005)). The qualification on the range is needed to account for the fact that
 inverses are often defined only over a restricted domain in infinite-dimensional
 spaces. Assumption 3 could also be stated in terms of the injectivity of Lzlx* and
 Lxlx*, since it can be shown that injectivity of Lzlx, and Lxlx, implies injectivity
 of Lzlx.

 3This can be seen from the fact that

 fbla(blao) = lim [Lblagn,ao](b),

 where gn,ao(a) = nl(la - a0l n-l), a sequence of absolutely integrable and bounded func-
 tions (the limit of that sequence does not need to belong to g(A), since we are not calculat-

 ing Lbla limn--oo n,ao). The so-called kernel fbla(blao) of the integral operator Lbla is therefore
 uniquely determined by evaluating this limit for all values of ao e A. It is also straightforward

 to check that for a bounded fbla(bla), g e L1(A) implies Lblag E ?1(B) and that g AC nd(A)

 implies Lblag E nLnd(B). Indeed, IILblaglll f fbla(bla) db Ig(a)Ida = fllg(a)l da = |lgll1 and
 supbeB [blag](b)l < f(supbee supaea Ifbla(bla)I)lg(a)l da = (supb, supaEa Ifbla(bla)1)|1gll.
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 200 Y. HU AND S. M. SCHENNACH

 Intuitively, an operator Lbla will be injective if there is enough variation in
 the density of b for different values of a. For instance, a simple case where
 Lbla is not injective is when fbla(bla) is a uniform density on B for any a E .A.
 In general, however, injectivity assumptions are quite weak and are commonly
 made in the literature on nonparametric instrumental variable methods. They
 are sometimes invoked by assuming that an operator Lbla admits a singular
 value decomposition with nonzero singular values (Darolles, Florens, and Re-
 nault (2002)) or by stating that an operator is nonsingular (Horowitz (2006),
 Hall and Horowitz (2005)).
 Injectivity assumptions are often phrased in terms of completeness (or

 bounded completeness) of the family of distributions that play the role of
 the kernel of the integral operator considered (Newey and Powell (2003),
 Blundell, Chen, and Kristensen (2007), Chernozhukov and Hansen (2005),
 Chernozhukov, Imbens, and Newey (2007)). This characterization is worth ex-
 plaining in more detail, as it leads to primitive sufficient conditions. Formally,
 a family of distribution falb(alb) is complete if the only solution g(a) to

 (1) g(a) fab(alb)da= 0 forall be

 (among all g(a) such that (1) is defined) is 9(a) = 0. Under Assumption 1,
 this condition implies injectivity of Lbla (viewed as a mapping from ?'1(A)
 to ?1(B)). Indeed, f falb(alb)g(a) da = (fb(b))-1 f fbIa(bla)fa(a)g(a) da, and
 since 0 < fa(a) < oo and 0 <fb(b) <00 over the interior of their respec-
 tive supports, having g(a) = 0 as the unique solution is equivalent to having

 g(a) = 0 as the unique solution to f fbla(bla)g(a) da = 0. If g(a) = 0 is the
 unique solution among all g(a) such that the integral is defined, then it is also
 the unique solution in L1(A), which implies that Lbla is injective. Bounded
 completeness is similarly defined by stating that the only solution to (1) among
 all bounded g(a) is 9(a) = 0. Analogously, this implies that Lbla is injective

 when viewed as a mapping from lfnd(A) to L'nd'(B).
 A nice consequence of the connection between injectivity and (bounded)

 completeness is that primitive conditions for (bounded) completeness are
 readily available in the literature. For instance, some very general exponen-
 tial families of distributions are known to be complete (as invoked in Newey
 and Powell (2003)). The weaker notion of bounded completeness can also be
 used to find even more general families of distributions leading to injective
 operators (as discussed in Blundell, Chen, and Kristensen (2007)). In partic-
 ular, when falb(alb) can be written in the form f,(a - b), then Lbla is injec-
 tive if and only if the Fourier transform of f, is everywhere nonvanishing (by
 Theorem 2.1 in Mattner (1993)), and similar results have also been obtained
 for more general families of distributions that cannot be written as f,(a - b)
 (d'Haultfoeuille (2006)).
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 NONCLASSICAL MEASUREMENT ERROR 201

 The assumption of injectivity of Lxx,* allows for x* and x to be multivariate.
 Injectivity of Lzlx in multivariate settings is also natural whenever the dimen-
 sion of z is greater or equal to the dimension of x. If the dimension of z is less
 than the dimension of x or if z contains too many colinear elements, identifi-
 cation will not be possible, as expected.
 While Assumption 3 places restrictions on the relationships between z, x,

 and x*, the following assumption places restrictions on the relationship be-
 tween y and x*.

 ASSUMPTION 4: For all x7, x* X*, the set {y: fylx,(ylxt) : fylx,(ylx*)} has
 positive probability (under the marginal of y) whenever x* , x4.

 This assumption is even weaker than injectivity. It is automatically satisfied
 if E[ylx*] is strictly monotone (for univariate x*), but also holds far more gen-
 erally. The presence of conditional heteroskedasticity can be sufficient in the
 absence of monotonicity. Assumption 4 is only violated if the distribution of y
 conditional on x* is identical at two values of x*.

 REMARK: In the special case of binary y, Assumption 4 amounts to a
 monotonicity assumption (e.g., P[y = 0Ix*] is strictly monotone in x*). When
 x* is multivariate, while the outcome variable is still binary (or when P[y =
 OIx*] is not monotone), it will be necessary to define y to be a vector that con-
 tains auxiliary variables in addition to the binary outcome to allow for enough
 variation in the distribution of y conditional on x* to satisfy Assumption 4.
 Each of these additional variables need not be part of the model of interest
 per se, but does need to be affected by x* is some way. In that sense, such a
 variable is a type of "instrument," although it differs conceptually from conven-
 tional instruments, as it would typically be "caused by x*" instead of "causing
 x*." See Chalak and White (2006) for a discussion of this type of instrument.

 We then characterize the nature of measurement error via an assumption
 that considerably generalizes the case of classical measurement error.

 ASSUMPTION 5: There exists a known functional M such that M[fxlx,* (. Ix*)] =
 x* for all x* e X*.

 M is a very general functional that maps a density to a real number (or a vec-
 tor if x* is multivariate) and that defines some measure of location. Examples
 of M include, but are not limited to, the mean, the mode, and the r quantile,
 corresponding to the following definitions of M, respectively:

 (2) M[f] =Jxf(x)dx,
 (3) M[f] = argmaxf(x),

 xX,-
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 202 Y. HU AND S. M. SCHENNACH

 (4) M[f] = inf{x* eX*":fl(x < x*)f(x) dx > .
 Case (2) above covers classical measurement error (in which x = x* + e, where
 E[elx*] = 0), since M[fxlx*(.Ix*)] = E[xlx*] = E[x* + Elx*] = x* +E[EIX*] = x*
 in that case. The other two examples of M cover nonclassical measurement
 error of various forms. For multivariate x, (2) and (3) apply directly, while
 (4) could then take the form of a vector of univariate marginal quantiles, for
 instance.

 It should be noted that Assumptions 1-5 are not mutually contradictory:
 Models that satisfy all of them can easily be constructed. For instance, one can
 set fxy(zx*x, y, z, x*) = fxlx (xIx*)fy (ylx*)fzlxx*(zl)fx* (x*), where fx,(x*) is a
 normal, andwhere fxIx*(xlx*), fylx*(ylx*), and fzlx*(zlx*) each are homoskedas-
 tic normals whose means depend linearly on x* (with nonzero slope) and such
 that E[xlx*] = x*. We are now ready to state our main result.

 THEOREM 1: UnderAssumptions 1-5, given the true observed density fyxlz, the
 equation

 (5) fyxlz(y, xlz) = fylx*(y x*)fxlx*(Xx*)fx*,lz(x* z) dx*

 for all y E Y,x E X,z E Z,

 admits a unique solution4 (ylx*, f xlx*, fx*| z). A similar result holds for

 (6) fyxz(Y, x, z) =- fyx,*(y, x*)fxix*(x Ix*)fzx*(z x*) dx*
 for all y E Y, x E X, Z E Z.

 The proof can be found in the Appendix and can be outlined as follows.
 Assumption 2 lets us obtain the integral Equation (5) that relates the joint
 densities of the observable variables to the joint densities of the unobservable
 variables. This equation is then shown to define the operator equivalence rela-
 tionship

 (7) Ly;xlz = Lxix* Ay;x*Lx*,z,
 where Ly;xiz is defined analogously to Lxlz with fxlz replaced by fy,xlz for a given
 y E Y and where Ay;x* is the "diagonal" operator mapping the function g(x*) to
 the function fylx,(ylx*)g(x*), for a given y E Y. Next, we note that the equiva-

 lence Lxlz = LxlxLx*,  also holds (by integration of (7) over all y E Y). Isolating
 Lx, z to yield

 (8) LxI, = L, Lxz,

 4More formally, if multiple solutions exist, they differ only on a set of zero probability.
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 NONCLASSICAL MEASUREMENT ERROR 203

 substituting it into (7), and rearranging, we obtain

 (9) =Ly;xzL - Lxix*,Ay;x*Lx*,

 where all inverses can be shown to exist over suitable domains by Assumption 3

 and Lemma 1 in the Appendix. Equation (9) states that the operator Ly;xizL-iz
 admits a spectral decomposition (specifically, an eigenvalue-eigenfunction de-
 composition in this case). The operator to be diagonalized is defined in terms
 of observable densities, while the resulting eigenvalues fylx,(ylx*) and eigen-
 functions fxlx,(lIx*) (both indexed by x* e X*) provide the unobserved densi-
 ties of interest. To ensure uniqueness of this decomposition, we employ four
 techniques. First, a powerful result from spectral analysis (Theorem XV.4.5 in
 Dunford and Schwartz (1971)) ensures uniqueness up to some normalizations.
 Second, the a priori arbitrary scale of the eigenfunctions is fixed by the require-
 ment that densities must integrate to 1. Third, to avoid any ambiguity in the de-
 finition of the eigenfunctions when degenerate eigenvalues are present, we use
 Assumption 4 and the fact that the eigenfunctions (which do not depend on y,

 unlike the eigenvalues fylx*(ylx*)) must be consistent across different values of
 the dependent variable y. Finally, to uniquely determine the ordering and in-
 dexing of the eigenvalues and eigenfunctions, we invoke Assumption 5: If one
 considers another variable X* related to x* through x* = R(2*), we have

 M[fxii*(.I*)] = M[fxix*(.IR(i*))] = R(i*),
 which is only equal to i* if R is the identity function. These four steps ensure
 that the diagonalization operation uniquely specifies the unobserved densities
 fylx* (ylx*) and fxlx,(xlx*) of interest. Next, Equation (8) implies that fx*Iz(x* lz)
 is also identified. Since the identities (9) and (8) use and provide the same in-
 formation as Equation (5), this establishes uniqueness of the solution to Equa-
 tion (5). The second conclusion of the theorem (Equation (6)) follows by sim-
 ilar manipulations.

 It is possible to replace fy,xlz(y, xlz) by E[ylx, z]fxlz(xlz) and fylx*(ylx*)
 by E[ylx*] throughout to obtain an identification result for E[ylx*] directly,
 without fully identifying fylx,(ylx*). This would slightly weaken Assump-
 tion 2(i) to E[ylx, x*, z] = E[ylx*]. However, under this approach, the ana-
 logues of Assumptions 1 and 4 would become somewhat restrictive for uni-
 variate y and x*, requiring E[ylx*] to be strictly monotone in x* and such
 that supx,ex, IE[ylx*] < o00. These restrictions are avoided if identification of
 E[ylx*] is secured through the identification of fylx* (ylx*).

 While Theorem 1 establishes identification, we can also show that the model
 is actually overidentified, thus permitting a test of the model. Equation (5) re-
 lates a function of three variables to a triplet of functions of two variables. Since
 the set of functions of three variables is much "larger" than the set of triplets
 of functions of two variables, there exist densities fyxl(y, xlz) that cannot be
 generated by Equation (5), a telltale sign of an overidentifying restriction. The
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 204 Y. HU AND S. M. SCHENNACH

 availability of more than one valid instrument offers further opportunities to
 test the model's assumptions.

 3. ESTIMATION USING SIEVE MAXIMUM LIKELIHOOD

 As a starting point, we consider a model expressed in terms of the observed
 variable y and the unobserved mismeasured regressor x*:

 (10) fylx*(ylx*; 0).

 It is often convenient to decompose the potentially infinite-dimensional para-

 meter 0 that we seek to estimate into two subvectors: b, a finite-dimensional
 parameter vector of interest, and qr, a potentially infinite-dimensional nuisance
 parameter. Naturally, we assume that the parametrization (10) does not in-
 clude redundant degrees of freedom, that is, 0 = (b, rq) is identified if fylx* is
 identified.

 This framework nests most commonly used models as subcases. First, set-
 ting 0 - b covers the parametric likelihood case (which will then become
 semiparametric once we account for measurement error). Second, mod-
 els defined via conditional moment restrictions E[m(y, x*, b)lx*] = 0 can
 be considered by defining a family of densities fyl,*(ylx*; b, -q) such that
 ffylx*(ylx*; b, r7)m(y, x*, b) dy = 0 for all b and -q, which is clearly equiva-
 lent to imposing a moment condition. For example, in a nonlinear regres-
 sion model y = g(x*, b) + e with E(elx*) = 0, we have fylx*(ylx*; b, -a) =
 flx*(y - g(x*, b) x*). The infinite-dimensional nuisance parameter qr is the

 conditional density felx*('I-), constrained to have zero mean. Another impor- tant example is the quantile regression case5 (where the conditional density

 flx* ('1) is constrained to have its conditional 7-quantile equal to 0). Quantile restrictions are useful, as they provide the fundamental concept that enables a
 natural treatment of nonseparable models (e.g., Chernozhukov, Imbens, and
 Newey (2007), Matzkin (2003), Chesher (2003)). More generally, our frame-
 work also covers most semiparametric setups. For instance, one could devise a
 family of densities fylx*(yIx*; b, qr) such that b sets the value of the average
 derivative f(dE[ylx*]/dx*)w(x*) dx* (for some weighting function w(x*)),
 while 7r controls all remaining degrees of freedom that affect the shape of
 the density but that do not affect the value of the average derivative. More
 examples of a partition of 0 into b and rq can be found in Shen (1997).

 Given a model expressed in terms of the true unobserved variables (10),
 Equation (5) in Theorem 1 suggests a corresponding measurement-error ro-
 bust sieve maximum likelihood estimator (e.g., Grenander (1981), Shen (1997),

 5The nonsmoothness of the moment conditions in this case does not pose special problems,
 because all quantities are effectively smoothed by the truncated series used to represent all den-
 sities.
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 Chen and Shen (1998), Ai and Chen (2003)):

 (11) (0, f, ff2)

 1 f * )(XiX
 =arg max - In fylx*(yi|x*; 6)f (xIx*)f2(x*Izi) dx*.

 (0,flf2)EAn n f*

 Here, (xi, yi, zi)i1 is an independent and identically distributed (i.i.d.) sample and An is a sequence of approximating sieve spaces that contain progressively
 more flexible parametric approximations to the densities (as sample size n in-
 creases). While Equation (11) enforces Assumption 2 by construction, func-
 tions in An are required to satisfy Assumption 5 as well as normalizations that
 ensure that the relevant conditional densities suitably integrate to 1. The re-
 maining assumptions made in the identification theory are regularity condi-
 tions that the generating process is assumed to satisfy but that do not need to
 be imposed in the estimation procedure. Typically, the approximating spaces

 An are generated by the span of series approximations that are linear in the
 coefficients, such as polynomials, splines, and so forth. In this case, all restric-
 tions on An imposed by the original semiparametric model or by Assumption 5
 can be easily implemented, since they amount to imposing linear restrictions
 on the coefficients of the sieve that represent the unknown densities.

 The supplementary material available on the Econometrica website (Hu
 and Schennach (2008)) fully develops the asymptotic theory of the proposed
 sieve maximum likelihood estimator. A nonparametric consistency result (in
 a weighted sup norm) is provided as well as a semiparametric root n consis-
 tency and asymptotic normality result for the estimated parametric component

 b of the parameter 0. Our treatment allows for the support of all variables
 y, x*, x, z to be unbounded. For the purposes of simplicity and conciseness,
 our treatment provides primitive sufficient conditions for the independent and
 identically distributed case. However, since our estimator takes the form of a
 semiparametric sieve estimator, the very general treatment of Shen (1997) and
 Chen and Shen (1998) can be used to establish asymptotic normality and root
 n consistency under a very wide variety of conditions that include dependent
 and nonidentically distributed data. The regularity conditions invoked for the
 asymptotic theory fall into three general classes:

 (i) Smoothness and boundedness restrictions that limit the "size" of the
 space of functions considered so as to obtain the compactness of the parame-
 ter space (where, here, the parameters include functions) that is traditionally
 invoked to show consistency.

 (ii) Envelope conditions that limit how rapidly the objective function can
 change in value as the parameters change; this helps secure stochastic equicon-
 tinuity and uniform convergence results.

 (iii) Sieve approximation rates (i.e., at what rate must the number of terms
 in the series increase to guarantee a given rate of decay of the approximation
 error?).
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 206 Y. HU AND S. M. SCHENNACH

 The practical implementation of the method requires the selection of the
 number of terms in the various approximating series. While a formal selection
 rule for these smoothing parameters (e.g., based on a higher-order asymptotic
 analysis) would be desirable, it is beyond the scope of the present paper. Some
 informal guidelines can nevertheless be given. In our semiparametric setting,
 selection of the smoothing parameters is somewhat facilitated (relative to fully
 nonparametric approaches), because semiparametric estimators are known to
 have the same asymptotic distribution for a wide range of smoothing parame-
 ter sequences. This observation suggests that a valid smoothing parameter can
 be obtained by scanning a range of values in search of a region where the es-
 timates are not very sensitive to small variations in the smoothing parameter.
 Typically, for very short series, the smoothing bias dominates and the estimates
 will exhibit a marked trend as the number of terms is increased. At the other

 extreme, for very long series, the statistical noise dominates and, although the
 point estimates vary significantly as additional terms are added, no clear trend
 should be visible. In between those extremes should lie a region where any
 clear trend has leveled off and where the random noise in the estimates has

 not yet grown to an excessive level. The middle of that region points to a suit-
 able value of the smoothing parameters.

 A number of straightforward extensions of the above approach are possible.
 First, the model specified in (10) also could be conditional on any number of
 other, correctly measured, variables. The same identification proof and esti-
 mation method follow, after conditioning all densities on those variables.

 The second conclusion of Theorem 1 also suggests an alternative expression
 for the observed density which proves useful if the model specifies fyx* (y, x*)
 instead of fylx* (ylx*). Our sieve approach, now based on a likelihood expressed
 in terms of fyxz(y, x, z), covers this case as well. This also enables the treat-
 ment of models defined via unconditional moment restrictions (i.e., E[m(y, x*,
 b)] = 0).

 4. SIMULATIONS

 This section investigates the performance of the proposed estimator with
 simulated data. We consider a simple parametric probit model

 fylx*(ylx*) = [F(a + bx*)]Y[1 - 4(a + bx*)]'-Y for y Y= = {0, 1},

 where (a, b) is the unknown parameter vector and F(.) is the standard normal
 cumulative distribution function (c.d.f.). In the simulations, we generate the
 instrumental variable and the latent variable as follows: z - N(1, (0.7)2) and
 x* = z + 0.3(e - z) with an independent e ~ N(1, (0.7)2). The distributions
 of both z and r4 are truncated on [0, 2] for simplicity in the implementation.
 To illustrate our method's ability to handle a variety of assumptions regarding
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 the measurement error, our examples of generating processes have the general
 form

 f*1 (x - x* \ f(x*) \o(x*)

 where f, is a density function that will be specified in each example below. We
 allow for considerable heteroskedasticity, setting o.(x*) = 0.5 exp(-x*) in all
 examples. Sieves for functions of two variables are constructed through tensor
 product bases of univariate trigonometric series. We let i, and j, denote the
 number of terms taken from each of the two series. The smoothing parame-
 ters were determined following the guidelines given in the previous section,
 by locating the middle of a range of values of i, and j, over which the point
 estimates are relatively constant.

 We consider three maximum likelihood estimators: (i) the (inconsistent)
 estimator obtained when ignoring measurement error, (ii) the (infeasible)
 estimator obtained using error-free data, and (iii) the proposed (consistent
 and feasible) sieve maximum likelihood estimator. We consider models where
 (i) the mode of f, is at zero, (ii) the median of f. is at zero, and (iii) the 100th
 percentile of f, is at zero. The supplementary material (Hu and Schennach
 (2008)) presents additional simulation examples.

 The simulation results (see Table I) show that our proposed estimator per-
 forms well under a variety of identification conditions. The sieve estimator has
 a considerably smaller bias than the estimator ignoring the measurement er-
 ror. As expected, the sieve estimator has a larger variance than the other two
 estimators, due to the estimation of nonparametric components. However, the
 sieve estimator still achieves a reduction in the overall root mean square error
 (RMSE), relative to the other feasible estimator.

 5. CONCLUSION

 This paper represents the first treatment of a wide class of nonclassical non-
 linear errors-in-variables models with continuously distributed variables using
 instruments (or repeated measurements). Our main identifying assumption ex-
 ploits the observation that, even though the measurement error may not have
 zero mean conditional on the true value of the regressor, perhaps some other
 measure of location, such as the median or the mode, could still be zero. We
 show that the identification problem can be cast into the form of an operator
 diagonalization problem in which the operator to be diagonalized is defined in
 terms of observable densities, while the resulting eigenvalues and eigenfunc-
 tions provide the unobserved joint densities of the variables of interest.

 This nonparametric identification result suggests a natural sieve-based semi-
 parametric maximum likelihood estimator that is relatively simple to imple-
 ment. Our framework enables the construction of measurement-error-robust
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 TABLE I

 SIMULATION RESULTSa

 Parameter (=True Value)

 a=-l b=1

 Mean Std. Dev. RMSE Mean Std. Dev. RMSE

 Error distribution (zero mode): f,(v) = exp[v - exp(v)]
 Ignoring meas. error -0.5676 0.0649 0.4372 0.6404 0.0632 0.3651
 Accurate data -1.0010 0.0813 0.0813 1.0030 0.0761 0.0761
 Sieve MLE -0.9575 0.2208 0.2249 0.9825 0.1586 0.1596

 Smoothing parameters: in, = 6, j, = 3 in fl; in, = 3, j, = 2 in f2

 Error distribution (zero median): f (v) = 1(1 + [1 + exp(v) - exp(-v)]2)-1
 Ignoring meas. error -0.6514 0.0714 0.3559 0.6375 0.0629 0.3679
 Accurate data -1.0020 0.0796 0.0796 1.0020 0.0747 0.0748
 Sieve MLE -0.9561 0.2982 0.3014 0.9196 0.2734 0.2850

 Smoothing parameters: in = 8, jn = 8 in fi; in = 3, jn = 2 in f2

 Error distribution (100th percentile at zero): f,(v) = exp(v) for v e [-oo, 0]
 Ignoring meas. error -0.5562 0.0601 0.4478 0.693 0.0632 0.3134
 Accurate data -1.0010 0.0813 0.0813 1.003 0.0761 0.0761
 Sieve MLE -0.9230 0.2389 0.2510 1.071 0.2324 0.2429

 Smoothing parameters: in = 4, jn = 6 in fl; in = 3, jn = 2 in f2

 aFor each estimator, we report the mean, the standard deviation (std. dev.), and the square root of the mean
 squared error (RMSE) of the estimators averaged over all 1,000 replications. The sample size is 2,000.

 counterparts of parametric likelihood or moment conditions models, as well as
 numerous semiparametric models. Our semiparametric estimator is shown to
 be root n consistent and asymptotically normal.

 Dept. of Economics, Johns Hopkins University, 440 Mergenthaler Hall, 3400
 N. Charles Street, Baltimore, MD 21218, U.S.A.; yhu@jhu.edu

 and
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 APPENDIX: PROOFS

 PROOF OF THEOREM 1: By the definition of conditional densities and As-
 sumption 2,

 fyxiz(yxjz) =f fyxx*z1(y, x, x*z) dx*

 = f ylxx*(yx, x*, z)fxx*Iz(x, x*lz) dx*
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 = f fylx*(ylx*)fxx*Iz(X, x* z) dx*

 =f fylx*(ylx*)fxx*z(xx*, z)fx* z(x*| Iz) dx*
 = f fylx*(yIx*)fxlx*(xIx*)fx*iz (x*Iz) dx*.

 This establishes Equation (5) of the theorem. We now show the uniqueness of
 the solution.

 Let the operators Lxlz, Lxlx,, and Lx*,l, be given by Definition 1, and let

 Ly;xiz: 9(Z) -+(X) with Ly;x1zg ffyx(Y, . z)g(z) dz,

 Ay;x*: 9(X*) - 9(X*) with Ay;x*g fyix*,(Y')g(').

 The notation Ly;xiz emphasizes that y is regarded as a parameter on which
 Ly;xiz depends, while the operator itself maps functions of z onto functions of
 x. The Ay;x* operator is a "diagonal" operator since it is just a multiplication
 by a function (for a given y), that is, [Ay;xg](x*) = fylx,(ylx*)g(x*). By calcu-
 lating Ly;xlzg for an arbitrary g E G(Z), we rewrite Equation (5) as an operator
 equivalence relationship,

 (12) [Ly;xlzg](x) = fyxz(y, xlz)g(z) dz

 = f f fyx,x(y,x,x*Iz)dx*g(z)dz

 = f f fxix*(xIx*)fylx*(ylx*)fx*z(x*Iz) dx*g(z) dz

 = f fxlx*(Xlx*)fylx*(yIx*) fx, 1z(x*iz)g(z) dzdx*

 = fxlx*(x lx*)fylx*(yl x*) [Lx*Izg](x*) dx*

 = f xlx(x Ix*)[ Ay;x LxIzg](x*) dx*
 = [Lxlx* Ay;x*Lx*zg](x),

 where we have used (i) Equation (5), (ii) an interchange of the order of in-
 tegration (justified by Fubini's theorem), (iii) the definition of Lx,*l, (iv) the
 definition of Ay;x, operating on the function [Lx*1,g], and (v) the definition of

 LxIx, operating on the function [Ay;xLx*lzg].
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 210 Y. HU AND S. M. SCHENNACH

 Equation (12) thus implies the operator equivalence (which holds over the
 domain 9(Z))

 (13) Ly;xlz = LxIx*Ay;x*Lx*Lz.

 By integration over y and noting that f, Ly;xliz(dy) = Lxl, and f, Ay;x*,t(dy) =
 I, the identity operator, we similarly get

 (14) Lxlz = Lxlx*Lx*lz.

 Since Lxlx, is injective (by Assumption 3), Equation (14) can be written as

 (15) Lx, z = Lx, Lxlz.
 The domain of the inverse is guaranteed to be dense in the range of Lxlz be-

 cause the results of the inversion Lxx *LxIz yield a well-defined integral opera- tor Lx*lz. Moreover, the operator equivalence (15) holds for the same domain
 space g(Z) as in (14) because the inverse operator was applied from the left
 side of Equation (14). The expression (15) for Lx*lz can be substituted into
 Equation (13) to yield

 (1-1 (16) Ly;xiz = Lxix*Ay;x*Lxx, Lxiz.

 As shown in Lemma 1 below, the fact that Lzlx is injective (by Assumption 3)
 implies that the inverse L-1 can be applied "from the right" on each side of
 Equation (16) to yield

 (17) Ly;,xiL-l = Lxx*,Ay;x,*L

 where the operator equivalence holds over a dense subset of the domain space
 g(X). The equivalence can then be extended to the whole domain space 9(X)
 by the standard extension procedure for linear operators.

 The operator Ly;xizL-1 is defined in terms of densities of the observable vari-
 ables x, y, and z, and can therefore be considered known. Equation (17) states

 that the known operator Ly;xizLx- admits a spectral decomposition that takes the form of an eigenvalue-eigenfunction decomposition.6 The eigenvalues of
 the Ly;xtzL-1 operator are given by the "diagonal elements" of the Ay;x* opera-
 tor (i.e., {fyx1* (ylx*)} for a given y and for all x*) while the eigenfunctions of the

 Ly;xizLx- operator are given by the kernel of the integral operator Lxix,, that is,

 6A spectral decomposition of an operator T takes the form of an eigenvalue-eigenfunction
 decomposition when (T - AI) is not one-to-one for all eigenvalues A in the spectrum. This can
 be verified to be the case here, because all eigenfunctions fxlx,(Ilx*) belong to 9(X) and are
 mapped to 0 under (T - AI). An example of a spectral decomposition that is not an eigenvalue-
 eigenfunction decomposition would be one where some of the eigenfunctions lie outside the
 space of functions considered (e.g., can only be reached by a limiting process).
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 {fxlx, (.Ix*)} for all x*. To establish identification of the unobserved functions of
 interest fylx*(ylx*) and fxlx,(Ilx*), we need to show that the decomposition (17)
 is unique.

 Theorem XV.4.5 in Dunford and Schwartz (1971) provides necessary and
 sufficient conditions for the existence of a unique representation of the so-
 called spectral decomposition of a linear operator. In particular, if a bounded
 operator T can be written as T = A + N, where A is an operator of the form

 (18) A= AP(dA),

 where P is a projection-valued measure7 supported on the spectrum o-, a sub-
 set of the complex plane, and N is a "quasi-nilpotent" operator commuting
 with A, then this representation is unique.

 The result is applicable to our situation (with T = Ly;xizLx-i) in the special case where N = 0 and o- c R. The spectrum o- is simply the range of fylx* (ylx*),
 that is, {fylx,(yIx*) : x* e X*}. Since the largest element of the spectrum is
 bounded (by Assumption 1), the operator T is indeed bounded in the sense
 required by Dunford and Schwartz's result.8

 In our situation, the projection-valued measure P assigned to any subset A
 of R is

 P(A) = LxixIALI1,
 where the operator IA is defined via

 [IAg](x*)-= l(fylx,(ylx*) E A)g(x*).
 An equivalent way to define P(A) is by introducing the subspace

 (19) S(A) = span{fxlx*(.Ix*) : x* such that fylx*(ylx*) E A}

 for any subset A of the spectrum To. The projection P(A) is then uniquely
 defined by specifying that its range is S(A) and that its null space is S(U\A).

 The fact that f[ AP(dA) = Lx, Ay;x,*Lx*, thus connecting Equation (17) with Equation (18), can be shown by noting that

  AP(d) A= - P([-c, A]) dA

 SLxix A dh~,A] dA)L-1

 7Just like a real-valued measure assigns a real number to each set in some field, a projection-
 valued measure assigns a projection operator to each set in some field (here, the Borel o-field).
 A projection operator Q is one that is idempotent, that is, QQ = Q.

 8As explained in Section XV.4 of Dunford and Schwartz (1971).
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 where the operator in parentheses can be obtained by calculating its effect on
 some function g(x*),

 Ah dI-rAdAg](x*) = A l(fylx*(ylx*) e [-oo, A])g(x*) dA

 = A (A - fy.(ylx*))g(x*) dA = fylx*(ylx*)g(x*) = [Ay;x~g](x*),

 where we have used the fact that the generalized differential of a step
 function 1(Ah 0) is a Dirac delta9 8(A), as defined by the property that
 f 8(A - AO)h(A) dA = h(AO) for any function h(A) continuous at A = AO and,
 in particular, for h(A) = A. Hence, we can indeed conclude that f hAP(dA) =

 Lxlx*Ay;x*L-lx,*. Having established uniqueness of the decomposition (18) does not yet imply
 that the representation (17) is unique. The situation is analogous to standard
 matrix diagonalization:

 (i) Each eigenvalue A is associated with a unique subspace S({A}) for S(.)
 as defined in Equation (19). However, there are multiple ways to select a basis
 of functions whose span defines that subspace.

 (a) Each basis function can always be multiplied by a constant.
 (b) Also, if S({A}) has more than one dimension (i.e., if A is degener-

 ate), a new basis can be defined in terms of linear combinations of functions of
 the original basis.

 (ii) There is a unique mapping between A and S({A}), but one is free to
 index the eigenvalues by some other variable (here x*) and represent the diag-
 onalization by a function A(x*) and the family of subspaces S({A(x*)}). The
 choice of the mapping A(x*) is not unique. For matrices, it is sufficient to
 place the eigenvectors in the correct order. For operators, once the order of
 the eigenfunctions is set, it is still possible to parametrize them in multiple
 ways (e.g., index them by x* or by (x*)3), as illustrated in the supplementary
 material (Hu and Schennach (2008)).

 Issue (i)(a) is avoided because the requirement that f fxx,*(xlx*) dx = 1 sets
 the scale of the eigenfunctions.

 Issue (i)(b) above, is handled via Assumption 4. The idea is that the operator
 Lxlx, that defines the eigenfunctions does not depend on y, while the eigenval-
 ues given by fylx*(ylx*) do. Hence, if there is an eigenvalue degeneracy that in-
 volves two eigenfunctions fxlx, (.Ix*) and fxlx,*( Ix*) for some value of y, we can
 look for another value of y that does not exhibit this problem to resolve the

 9This derivation can alternatively be written in terms of Lebesgue-Stieltjes integrals, which
 avoids the need to explicitly introduce delta functions, but this is notationally cumbersome.
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 ambiguity. Formally, this can be shown as follows. Consider a given eigenfunc-

 tion fxIx*('Ix*) and let D(y, x*) = {* : fyl*(yll*) = fylx*(ylx*)}, the set of other values of x* that index eigenfunctions sharing the same eigenvalue. Any linear

 combination of functions fxlx, ("Ik*) for "* e D(y, x*) is a potential eigenfunc-
 tion of Ly;x,,zL-l. However, if v(x*) r YE,, span({fxIlx*(.Il*)}*ED(y,x*)) is one di-
 mensional, then the set v(x*) will uniquely specify the eigenfunction fxlx,(l x*)
 (after normalization to integrate to 1). We now proceed by contradiction and
 show that if v(x*) is not one dimensional, then Assumption 4 is violated. In-
 deed, if v(x*) has more than one dimension, it must contain at least two eigen-

 functions, say fxIx,( Ix*) and fxIx,(.l-*). This implies that Y,,, D(y, x*) must at
 least contain the two points x* and X*. By the definition of D(y, x*), we must

 have that fylx*(ylx*) = fylx*(ylX*) for all y E Y, thus violating Assumption 4.
 (The qualification that the set on which the densities differ must have positive
 probability merely accounts for the fact that densities that differ on a set of
 zero probability actually represent the same density.)
 Next, Assumption 5 resolves the ordering/indexing ambiguity (issue (ii)

 above), because if one considers another variable i* related to x* through
 x* = R (*), we have

 M[fxi,(.(l *)] = M[fxix*(.IR(i*))] = R(x*),
 which is only equal to X* if R is the identity function. Having shown that

 fylx*(yIx*) and fxxl,(xIx*) are uniquely determined, we can then show that
 fx,*z(x*Iz) is uniquely determined, since Lx*lz = L , Lxlz, where Lxlx, is now
 known and where Lxlz is also known because its kernel is an observed density.

 The second conclusion of the theorem is obtained by noting that

 fyxz(Y, X Z) = fyxlz(Y, xz)fZ(Z)

 = fxix*(xIx*)fyix*(yIx*)fx,*iz(X* z) dx* fz(z)
 =f fxix*(XIx*)fylx*(yIx*)fx*z(X*, z) dx*

 = fxlx*(xx*)fylx,(y x*)fx*(x*)fzlx.(zx*) dx*

 = f fxix(xlx*)fy,x*(y, x*)fzlx*(zlx*) dx*

 and showing that fxlx,, fyx,, and fzlx, are uniquely determined from fyxz.
 First, we have already shown that fxx, (x|x*) is identified from fyxkz(y, xlz)
 (and therefore from fyxz(y, x,z)). By Equation (15), fx*Iz(x*lz) is also iden-
 tified. Next, fx,*(x*) = fxlz(x*z)fz(z)dz, where fz(z) is observed. Then

 fzlx,(ZIX*) = fx*Iz(X*IZ)fz(z)/fx*(X*) and, finally, fy,x,(y,x*) = fylx,*(ylx*) x fx,*(X*). Hence the solution to Equation (6) is unique. Q.E.D.
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 LEMMA 1: Under Assumption 1, if Llx is injective, then LI exists and is
 densely defined over 9 (X) (for 9 = L1, b1nd).

 PROOF: Under Assumption 1, injectivity of Lzlx implies injectivity of Ltxl,
 the adjoint of LxIz. This follows from arguments similar to those given after
 Equation (1) and the fact that g(.)/fx(.) E c*(X), where G*(X) denotes the
 dual space of 9(X), implies that g e 9(X).

 Next, Lxlz can be shown to be injective when viewed as a mapping of R(Lx1I)
 into 9(X), where R(LxlI) denotes the closure in G(Z) of the range of LxI,.

 Indeed, by Lemma VI.2.8 in Dunford and Schwartz (1971), R(Ltxl) is the or-
 thogonal complement of the null space of Lxlz, denoted Af(LxzI). It follows that
 L-1 exists.

 By Lemma VI.2.8 in Dunford and Schwartz (1971) again, R(Lxlz) is the or-
 thogonal complement of A/(Lt1z), but since Lt1z is injective, A/(Lt~) = {0}.

 Hence, 7(Lxlz) = 9(X) and L-I is therefore defined on a dense subset of
 G(X). Q.E.D.
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