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CLOSED-FORM IDENTIFICATION OF
DYNAMIC DISCRETE CHOICE
MODELS WITH PROXIES FOR

UNOBSERVED STATE VARIABLES

YINGYAO HU AND YUYA SASAKI
Department of Economics, Johns Hopkins University

Proxies for unobserved skills and technologies are increasingly available in empir-
ical data. For dynamic discrete choice models of forward-looking agents where a
continuous state variable is unobserved but its proxy is available, we derive closed-
form identification of the structure by explicitly solving integral equations. In the
first step, we derive closed-form identification of Markov components, including
the conditional choice probabilities and the law of state transition. In the second
step, we plug in these first-step identifying formulas to obtain primitive structural
parameters of dynamically optimizing agents.

1. INTRODUCTION

The structure of forward-looking agents making dynamic decisions based on
unobserved state variables is of wide interest in economic research. Further-
more, many recent economic studies are concerned with the dynamics of unob-
served state variables, such as human capital stocks or technologies (e.g., Cunha,
Heckman, and Schennach, 2010; Todd and Wolpin, 2012). While econometri-
cians may not observe the true state variables, they often have access to proxy
variables for these latent variables. Cunha et al. (2010), for example, obtain a list
of proxies for cognitive skills, such as the Peabody Individual Achievement Test
(PIAT) scores available in NLSY79, and a list of proxies for noncognitive skills,
such as the Behavior Problems Index (BPI) available in NSLY79, for their anal-
ysis of dynamic skill production that takes parental investment as input. With the
increasing availability of proxies in empirical data, it is a natural idea to use them
to identify and estimate primitive structural parameters for dynamically optimiz-
ing agents, such as parents investing in their children. Because of the nonlinearity
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of the forward-looking discrete choice structure, however, naive substitution of a
proxy generally biases the estimates of structural parameters, even if the proxy
entails only a classical measurement error. As such, a proper identification result
needs to be established. In this paper, we develop closed-form identification of
dynamic discrete choice models when a proxy for an unobserved continuous state
variable is available.

The setup for the econometric model and our results are as follows. Agent j
at time t makes discrete decisions dj,t based on its latent state x∗

j,t , accounting
for the future evolution of x∗

j,t which may be affected by dj,t . The state x∗
j,t is

observed by agent j , but not by econometricians. We, as econometricians, obtain
a proxy xj,t = x∗

j,t + εj,t for the unobserved state x∗
j,t with a (dj,t -conditionally)

independent measurement error εj,t . If true state x∗
j,t were observable, then iden-

tification of the structural parameters of forward-looking agents would follow
from identification of two auxiliary objects: (1) the conditional choice probabil-
ity (CCP) denoted by f1(dt | x∗

t ); and (2) the law of state transition denoted by
f2(x∗

t | dt−1,x∗
t−1) (Hotz and Miller, 1993). Our result claims that these two aux-

iliary objects, f1(dt | x∗
t ) and f2(x∗

t | dt−1,x∗
t−1), are identified using proxies xj,t

without observing true states x∗
j,t , and, consequently, the structural parameters of

current–time payoff are identified.
Indeed, identification of dynamic discrete choice models with unobservables

(e.g., Aguirregabiria and Mira, 2007; Kasahara and Shimotsu, 2009; Arcidiacono
and Miller, 2011; Hu and Shum, 2012 – see also the survey by Aguirregabiria
and Mira, 2013) and identification of dynamic discrete choice models with con-
tinuous state variables (Srisuma and Linton, 2012) are studied in the literature,
but no preceding work handles continuous unobserved state variables. The model
studied in this paper allows for continuously distributed unobservables at the
expense of the requirement of proxy variables for the unobservables. Our use
of proxy variables in dynamic structural models is related to Cunha et al. (2010)
and Todd and Wolpin (2012). As we are interested in the payoff parameters of
forward-looking agents characterized by Bellman equations, however, we follow
a different approach as outlined below.

In the first step, we identify the CCP f1(dt | x∗
t ) and the law of state tran-

sition f2(x∗
t | dt−1,x∗

t−1) using a proxy variable in Section 2. For this step, we
use an approach related to the closed-estimator of Schennach (2004b) and Hu
and Sasaki (2015) for nonparametric regression models with measurement errors
(cf. Li, 2002; Schennach, 2004a), as well as the deconvolution methods (Li and
Vuong, 1998). In the second step, the preliminarily identified Markov compo-
nents, f1(dt | x∗

t ) and f2(x∗
t | dt−1,x∗

t−1), are used in turn to identify structural
parameters of a current-time payoff. Once the Markov components are identified,
this second step can be conducted by directly applying existing CCP-based meth-
ods (Hotz and Miller, 1993; Hotz, Miller, Sanders and Smith, 1994). Section 3
presents a brief explanation of this second-step procedure, following a state-of-
the-art technique (Srisuma and Linton, 2012; Srisuma, 2015) in the literature that
nicely handles continuous state variables.

https://doi.org/10.1017/S0266466617000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466617000081


168 YINGYAO HU AND YUYA SASAKI

2. CLOSED-FORM IDENTIFICATION OF MARKOV COMPONENTS

2.1. The Model and Notations

Our basic notations are fixed as follows. A discrete control variable, taking values
in

{
0,1, . . . , d̄

}
, is denoted by dj,t . For example, it may indicate the number of

books targeted at age t that child j has, as a measure of parental investment in
child of age t (Cunha et al., 2010). An unobserved state variable is denoted by
x∗

j,t . It may, for example, be the reading skills of child j at age t . Finally, a proxy
for x∗

j,t is denoted by xj,t . It may, for example, be the PIAT score for reading
comprehension of child j at age t , as in Cunha, Heckman, and Schennach. We
consider the dynamics of this list of random variables. To simplify exposition, we
hereafter omit individual subscript j . Our identification strategy is based on the
assumptions listed below.

Assumption 1 (First-order Markov process). The triple
{
dt ,x∗

t ,xt
}

jointly
follows a first-order Markov process.

This Markovian structure is decomposed into three independent modules, as
follows.

Assumption 2 (Independence). The Markov kernel can be decomposed as

f
(
dt ,x∗

t ,xt |dt−1,x∗
t−1,xt−1

) = f1
(
dt |x∗

t

)
f2

(
x∗

t |dt−1,x∗
t−1

)
f3

(
xt |x∗

t

)
,

where the three components represent

f1
(
dt |x∗

t

)
conditional choice probability (CCP);

f2
(
x∗

t |dt−1,x∗
t−1

)
transition rule for the unobserved state variable; and

f3
(
xt |x∗

t

)
proxy model.

This independence assumption is the key to our closed-form identification
results. To better understand this key assumption in the context of the standard
independence assumptions used in the dynamic discrete choice literature, we dis-
cuss primitive conditions for this decomposition. Consider the following four
independence conditions.

(i) Rust’s conditional independence assumption:

f (dt ,x∗
t | dt−1,x∗

t−1) = f1(dt | x∗
t ) · f2(x∗

t | dt−1,x∗
t−1).

(ii) True state x∗
t is a sufficient statistic for proxy xt :

f (xt | dt ,x∗
t ,dt−1,x∗

t−1,xt−1) = f3(xt | x∗
t ).

(iii) The irrelevance of lagged variables to the choice dt given true state x∗
t :

f (dt | x∗
t ,dt−1,x∗

t−1,xt−1) = f1(dt | x∗
t ).

(iv) The irrelevance of proxy xt to the state transition:

f (x∗
t | dt−1,x∗

t−1,xt−1) = f2(x∗
t | dt−1,x∗

t−1).
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It is not difficult to see that, together, (i)–(iv) are equivalent to Assumption 2.
Part (i) is standard in the dynamic discrete choice literature and we are not adding
any new assumption here. Likewise, parts (iii) and (iv) are intuitive in the spirit
of dynamic discrete choice models. As such, part (ii) is effectively the only new
condition we are invoking in Assumption 2 compared to the existing literature.
It is satisfied if the measurement error, defined as the difference between proxy xt

and true state x∗
t , is independent of (dt ,x∗

t ,dt−1,x∗
t−1,xt−1). This classical error

assumption can be restrictive for some applications, and we, therefore, present a
way to relax this assumption in Appendix A.2.

In the context of parental investment in a child’s abilities and skills, part (i)
means that the investment decision dt is based only on the current actual abili-
ties x∗

t , and the past information (dt−1,x∗
t−1) is irrelevant to this decision. This

setup is consistent with the investment model of Cunha et al. (2010; equation 4.2)
motivated by economic theory. Part (ii) means that the PIAT score xt only reflects
on current actual abilities x∗

t , and past information (dt−1,x∗
t−1,xt−1) as well as

the current investment decision dt are irrelevant to the current test score xt once
the current abilities x∗

t are controlled for. This measurement feature is consistent
with Cunha et al. (2010). The implication of part (iii) is similar to that of part (i):
the investment decision dt is based only on the current actual abilities x∗

t , and the
test score xt as well as the past information (dt−1,x∗

t−1) are irrelevant to this
decision. Again, this is consistent with the investment model of Cunha et al.
(2010; Equation 4.2). Part (iv) means that the dynamics of human capital x∗

t
depends on the parental investment dt−1 and the human capital stock x∗

t−1 in
the last period, and does not depend on the measurement xt−1 of the actual stock
x∗

t−1. This setup is also consistent with the skill production function of Cunha
et al. (2010; equation 2.1).

Because the state variable x∗
t of interest is unit-less and unobserved, we require

a restriction of location- and scale-normalization. To this goal, the transition rule
for the unobserved state variable and the state-proxy relation are semiparametri-
cally specified, as follows.

Assumption 3 (Semi-parametric restrictions on the unobservables). The tran-
sition rule for the unobserved state variable and the state-proxy relation are semi-
parametrically specified by

f2
(
x∗

t |dt−1,x∗
t−1

)
: x∗

t = αd +γ d x∗
t−1 +ηd

t if dt−1 = d (2.1)

f3
(
xt |x∗

t

)
: xt = x∗

t + εt , (2.2)

where εt and ηd
t have mean zero for each d , and satisfy

εt ⊥⊥ ({dτ }τ ,{x∗
τ }τ ,{ετ }τ �=t ) for all t

ηd
t ⊥⊥ ({dτ }τ<t ,{x∗

τ }τ<t
)

for all t .

When we consider the discrete choice dt of an investment decision, for exam-
ple, it is important that the coefficients, (αd ,γ d ), are allowed to depend on the
amount d of investments as how much is invested will likely affect the dynamics

https://doi.org/10.1017/S0266466617000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466617000081


170 YINGYAO HU AND YUYA SASAKI

of technological evolution. For example, ordering such as γ 0 < γ 1 < · · · < γ d̄

allows for the dynamic complementarity of parental investment in human capital
stocks in the framework of Cunha et al. (2010). As such, we allow these param-
eters to have the d superscripts in (2.1). The semiparametric model (2.2) of the
state-proxy relation specifies the proxy xt as a measurement of the latent tech-
nology x∗

t with a classical error. As it is often restrictive in applications, we also
discuss how to relax this classical-error assumption in Section A.2.

By Assumption 3, closed-form identification of the transition rule for x∗
t and

the proxy model for x∗
t follows from identification of the parameters (αd ,γ d ) for

each d and from identification of the nonparametric distributions of the unobserv-
ables, εt , x∗

t , and ηd
t for each d . We show that identification of the parameters

(αd ,γ d ) follows from the empirically testable rank condition stated as Assump-
tion 4 below.1 We also obtain identification of the nonparametric distributions of
the unobservables, εt , x∗

t , and ηd
t , by deconvolution methods under the regularity

condition stated as Assumption 5 below.

Assumption 4 (Testable rank condition). Pr(dt−1 = d) > 0 and the following
matrix is nonsingular for each d .[

1 E[xt−1 | dt−1 = d]

E[dt−2 | dt−1 = d] E[xt−1dt−2 | dt−1 = d]

]
Assumption 4 is empirically testable, as is the common rank condition in

generic econometric contexts. While we propose a simple affine model in (2.1)
for Assumption 3, we remark that this particular functional form is not crucial
for our identification result. We may include higher-order terms (and interaction
terms, which will be relevant in Appendix A.1 where an observed state variable
is included) as far as the corresponding rank condition, analogously to the one
in Assumption 4, is satisfied. In that case, higher-order lags of dt will be needed
to meet the rank condition of larger dimensions. Finally, we use the following
regularity conditions.

Assumption 5 (Regularity). The random variable x∗
t has a bounded conditional

first moment given dt . The conditional characteristic function of x∗
t given dt = d

does not vanish on the real line, and is absolutely integrable. Random variables εt

and ηd
t have bounded first moments and have absolutely integrable characteristic

functions that do not vanish on the real line.

Assumption 5 is satisfied by common distribution families, such as the normal
family, and is standard in the deconvolution literature.

2.2. The Result

Under the five assumptions stated and discussed in Section 2.1, we obtain the fol-
lowing closed-form identification result for the three components of the Markov
kernel.
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THEOREM 1. If Assumptions 1, 2, 3, 4, and 5 are satisfied, then the three
components, f1

(
dt |x∗

t

)
, f2

(
x∗

t |dt−1,x∗
t−1

)
, f3

(
xt |x∗

t

)
, of the Markov kernel

f
(
dt ,x∗

t ,xt |dt−1,x∗
t−1,xt−1

)
are identified with closed-form formulas.

Proof. Our closed-form identification involves three steps.

Step 1: Closed-Form Identification of the Transition Rule
f2

(
x∗

t |dt−1,x∗
t−1

)
: First, we show the identification of the parameters and

the distributions in the transition law of x∗
t . As

xt = x∗
t + εt =

∑
d

�{dt−1 = d}[αd +γ d x∗
t−1 +ηd

t ] + εt

=
∑

d

�{dt−1 = d}[αd +γ d xt−1 +ηd
t −γ dεt−1] + εt

is true under Assumption 3, we obtain the following equalities for each d:

E [xt | dt−1 = d] = αd +γ d E[xt−1 | dt−1 = d]

−E[γ dεt−1 | dt−1 = d]+E [ηd
t | dt−1 = d]+E [εt | dt−1 = d]

= αd +γ d E[xt−1 | dt−1 = d]

E[xt dt−2 | dt−1 = d] = αd E[dt−2 | dt−1 = d]+γ d E[xt−1dt−2 | dt−1 = d]

−E[γ dεt−1dt−2 | dt−1 = d]+E [ηd
t dt−2 | dt−1 = d]

+E[εt dt−2 | dt−1 = d]

= αd E[dt−2 | dt−1 = d]+γ d E[xt−1dt−2 | dt−1 = d].

The independence and zero mean assumptions for ηd
t and εt stated in Assumption

3 are used above. We, thus, obtain the linear equation[
E[xt | dt−1 = d]

E[xt dt−2 | dt−1 = d]

]
=

[
1 E[xt−1 | dt−1 = d]

E[dt−2 | dt−1 = d] E[xt−1dt−2 | dt−1 = d]

][
αd

γ d

]
.

By the nonsingularity of the matrix on the right-hand side stated in Assumption 4, we can
identify the parameters (αd ,γ d ) by[

αd

γ d

]
=

[
1 E[xt−1 | dt−1 = d]

E[dt−2 | dt−1 = d] E[xt−1dt−2 | dt−1 = d]

]−1 [
E[xt | dt−1 = d]

E[xt dt−2 | dt−1 = d]

]
.

Next, we show the identification of the distributions of εt and ηd
t for each d . Observe

that

E
[
exp(is1xt−1 + is2xt ) |dt−1 = d

]
= E

[
exp

(
is1

(
x∗

t−1 + εt−1
)+ is2

(
αd +γ d x∗

t−1 +ηd
t + εt

))|dt−1 = d
]

= E
[
exp

(
i
(
s1x∗

t−1 + s2α
d + s2γ

d x∗
t−1

))|dt−1 = d
]

E
[

exp
(
is1εt−1

)]
E

[
exp

(
is2

(
ηd

t + εt
))]

follows from the independence assumptions for ηd
t and εt stated in Assumption 3. Taking

the derivative with respect to s2 yields
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[
∂

∂s2
lnE

[
exp (is1xt−1 + is2xt )

∣∣dt−1 = d
]]

s2=0
= E

[
i
(
αd +γ d x∗

t−1

)
exp

(
is1x∗

t−1

)∣∣dt−1 = d
]

E
[

exp
(
is1x∗

t−1

)∣∣dt−1 = d
]

= iαd +γ d ∂

∂s1
lnE

[
exp

(
is1x∗

t−1

)∣∣dt−1 = d
]
,

where the switch of the differential and integral operators is permissible provided there
exists h ∈ L1(Fx∗

t−1|dt−1=d ) such that
∣∣i(αd +γ d x∗

t−1

)
exp

(
is1x∗

t−1

)∣∣ < h(x∗
t−1) holds

for all x∗
t−1, which follows from the bounded conditional moment condition provided in

Assumption 5, and the denominator is nonzero as the conditional characteristic function of
x∗

t given dt does not vanish on the real line under Assumption 5. Therefore, we have

E
[

exp
(
isx∗

t−1
)∣∣dt−1 = d

] = exp

[∫ s

0

E
[
i
(
xt −αd )

exp
(
is1xt−1

) ∣∣dt−1 = d
]

γ dE
[

exp
(
is1xt−1

)∣∣dt−1 = d
] ds1

]
.

On the other hand, from the proxy model and the independence conditions for εt stated in
Assumption 3, we also have

E
[

exp (isxt−1)
∣∣dt−1 = d

] = E
[
exp

(
isx∗

t−1
)∣∣dt−1 = d

]
E

[
exp

(
isεt−1

)]
.

Combining the above two equations, we obtain the following identifying formula using
any d .

E
[
exp(isεt−1)

] = E
[
exp(isxt−1)|dt−1 = d

]
E

[
exp

(
isx∗

t−1

)∣∣dt−1 = d
] = E

[
exp(isxt−1)|dt−1 = d

]
exp

[∫ s
0

E[i(xt −αd )exp(is1 xt−1)|dt−1=d]
γ d E[exp(is1xt−1)|dt−1=d] ds1

] .

This argument holds for all t , so that we can identify the characteristic function of εt by

φεt (s) = E[exp (isεt )] = E
[
exp (isxt ) |dt = d

]
exp

[∫ s
0

E
[
i(xt+1−αd )exp(is1xt )|dt=d

]
γ d E[exp(is1 xt )|dt =d] ds1

] (2.3)

using any d .
To identify the distribution of ηd

t for each d , consider

xt +γ dεt−1 = αd +γ d xt−1 +εt +ηd

which holds under Assumption 3. From this equality,

E
[
exp (isxt ) |dt−1 = d

]
E

[
exp

(
isγ dεt−1

)] = E
[

exp
(
is

(
αd +γ d xt−1

))∣∣dt−1 = d
]

×E
[
exp

(
isηd

t
)]

E
[

exp (isεt )
]

follows by the independence assumptions for ηd
t and εt stated in Assumption 3. There-

fore, by the identifying formula (2.3) for φεt , the characteristic function of ηd
t can be

expressed by

φηd
t
(s) = E

[
exp

(
isηd

t

)] = E
[
exp (isxt ) |dt−1 = d

] ·E
[

exp
(
isγ dεt−1

)]
E

[
exp

(
is(αd +γ d xt−1)

) ∣∣dt−1 = d
]

E
[
exp (isεt )

]
=

E
[
exp (isxt ) |dt−1 = d

] · exp
[∫ s

0
E
[
i(xt+1−αd )exp(is1xt )|dt =d

]
γ d E[exp(is1xt )|dt =d] ds1

]
E

[
exp

(
is(αd +γ d xt−1)

)∣∣dt−1 = d
] ·E

[
exp (isxt )

∣∣dt = d
]

× E
[

exp
(
isγ d xt−1

)∣∣dt−1 = d
]

exp
[∫ sγ d

0
E[i(xt −αd )exp(is1xt−1)|dt−1=d]

γ d E[exp(is1xt−1)|dt−1=d] ds1

] . (2.4)
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The denominator on the right-hand side is nonzero, as the conditional and unconditional
characteristic functions do not vanish on the real line under Assumption 5. Letting F
denote the Fourier transform operator defined by

(Fφ)(ξ) = 1

2π

∫
e−isξ φ(s)ds for all φ ∈ L1(R) and ξ ∈ R,

we identify fηd
t

by

fηd
t
(η) =

(
Fφηd

t

)
(η) for all η,

under Assumption 5, where the characteristic function φηd
t

is identified in (2.4). We can

use this identified density function fηd
t

to identify the transition rule f2
(
x∗

t
∣∣dt−1, x∗

t−1

)
with

f2
(
x∗

t
∣∣dt−1, x∗

t−1
) =

∑
d

�{dt−1 = d} fηd
t

(
x∗

t −αd −γ d x∗
t−1

)
.

In summary, we obtain the closed-form identifying formula for the law of state transition
f2

(
x∗

t
∣∣dt−1, x∗

t−1

)
:

f2
(
x∗

t

∣∣dt−1, x∗
t−1

) =
∑

d

�{dt−1 = d}
2π

∫
exp

(− is
(
x∗

t −αd −γ d x∗
t−1

))

×
E

[
exp(isxt ) |dt−1 = d

] · exp

[∫ s
0

E
[
i(xt+1−αd′

)exp(is1 xt )|dt =d ′
]

γ d′ E[exp(is1 xt )|dt =d ′]
ds1

]
E

[
exp

(
is(αd +γ d xt−1)

) |dt−1 = d
] ·E

[
exp (isxt ) |dt = d

]
× E

[
exp

(
isγ d xt−1

)∣∣dt−1 = d ′]
exp

[∫ sγ d

0

E
[
i(xt −αd′

)exp(is1 xt−1)|dt−1=d ′
]

γ d′ E[exp(is1 xt−1)|dt−1=d ′]
ds1

] ds.

using any d ′. This completes Step 1.

Step 2: Closed-Form Identification of the Proxy Model f3
(
xt | x∗

t
)
: We can write the

density function of εt by

fεt (ε) = (Fφεt

)
(ε) for all ε,

where the characteristic function φεt is identified in (2.3) with a closed-form formula.
Provided this identified density function fεt , we identify the proxy model f3(xt | x∗

t ) by

f3(xt | x∗
t ) = fεt (xt − x∗

t ).

In summary, we obtain the closed-form identifying formula for the proxy model
f3(xt | x∗

t ):

f3(xt | x∗
t ) = 1

2π

∫
exp

(−is(xt − x∗
t )

) ·E
[
exp (isxt ) |dt = d

]
exp

[∫ s
0

E
[
i(xt+1−αd )exp(is1 xt )|dt=d

]
γ d E[exp(is1xt )|dt=d] ds1

] ds

using any d . This completes Step 2.
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Step 3: Closed-Form Identification of the CCP f1
(
dt |x∗

t
)
: We can write

E
[
�{dt = d}exp (isxt )

] = E
[
�{dt = d}exp

(
isx∗

t + isεt
)]

= E
[
�{dt = d}exp

(
isx∗

t

)]
E

[
exp (isεt )

]
= E

[
E

[
�{dt = d}|x∗

t

]
exp

(
isx∗

t

)]
E

[
exp(isεt )

]
by the independence assumption for εt stated in Assumption 3 and the law of iterated
expectations. Therefore, we obtain

E
[
�{dt = d}exp (isxt )

]
E

[
exp(isεt )

] = E
[
E

[
�{dt = d}|x∗

t

]
exp

(
isx∗

t

)]
=

∫
exp

(
isx∗)E

[
�{dt = d}|x∗

t = x∗] fx∗
t

(
x∗)dx∗.

This is the Fourier inversion of E
[
�{dt = d}|x∗

t = · ]
fx∗

t
(·). On the other hand, the Fourier

inversion of fx∗
t

can be found as

E
[
exp

(
isx∗

t

)] = E
[
exp(isxt )

]
E

[
exp (isεt )

] .

Therefore, we find the closed-form expression for CCP f1
(
dt |x∗

t
)

as follows.

Pr
(
dt = d|x∗

t

) = E
[
�{dt = d}|x∗

t

] = E
[
�{dt = d}|x∗

t

]
fx∗

t

(
x∗

t

)
fx∗

t

(
x∗

t

) =
(Fφ(d)x∗

t

)
(x∗

t )(Fφx∗
t

)
(x∗

t )
,

where the ‘phi’ functions in the last expression are

φ(d)x∗
t
(s) = E

[
�{dt = d}exp (isxt )

]
E

[
exp (isεt )

]
=

E
[
�{dt = d}exp (isxt )

] · exp

[∫ s
0

E
[

i(xt+1 −αd′
)exp(is1 xt )|dt =d ′]

γ d′ E[exp(is1 xt )|dt =d ′]
ds1

]
E

[
exp(isxt ) |dt = d ′]

and

φx∗
t
(s) = E

[
exp (isxt )

]
E

[
exp(isεt )

] =
E

[
exp (isxt )

] · exp

[∫ s
0

E
[
i(xt+1 −αd′

)exp(is1 xt )|dt =d ′
]

γ d′ E[exp(is1 xt )|dt =d ′]
ds1

]
E

[
exp(isxt ) |dt = d ′]

from (2.3) using any d ′. In summary, we obtain the closed-form identifying formula for
the CCP f1(dt | x∗

t ):

Pr
(
dt = d|x∗

t

) =
(Fφ(d)x∗

t

)
(x∗

t )(Fφx∗
t

)
(x∗

t )

=
∫

exp
(−isx∗

t

) ·E
[
�{dt = d}exp(isxt )

] exp

[∫ s
0

E
[
i(xt+1−αd ′

)exp(i s1 xt )|dt =d ′
]

γ d ′ E[exp(i s1xt )|dt =d ′]
ds1

]
E

[
exp(isxt ) |dt = d ′] ds

/

∫
exp

(−isx∗
t

) ·E
[
exp(isxt )

] exp

[∫ s
0

E
[
i(xt+1−αd ′

)exp(i s1xt )|dt =d ′
]

γ d ′ E[exp(i s1xt )|dt =d ′]
ds1

]
E

[
exp(isxt ) |dt = d ′] ds

using any d ′. This completes Step 3. �
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2.3. Closed-Form Analog Estimation

By the closed-form identifying formulas for the three components, f1
(
dt |x∗

t

)
,

f2
(
x∗

t |dt−1,x∗
t−1

)
and f3

(
xt |x∗

t

)
, obtained in the theorem above, it is straightfor-

ward to develop sample-analog closed-form estimators of them. First, an analog
estimator for the CCP f1(dt | x∗

t ) can be written as

f̂1(d | x∗) =
∑N

j=1�{dj,t = d}K̂N ((x∗ − xj t)/hN )∑N
j=1 K̂N ((x∗ − xj t)/hN )

, (2.5)

where the estimated deconvoluting kernel K̂N takes the form of

K̂N (x) = 1

2π

∫
e−isx φK (s)

φ̂εt (s/hN )
ds

φ̂εt (s) = ÊN
[
exp(i sxt) |dt = d ′]

exp

[∫ s
0

ÊN

[
i(xt+1−α̂d ′

)exp(is1xt )|dt=d ′
]

γ̂ d ′ ÊN [exp(is1 xt )|dt =d ′]
ds1

]
for any d ′, with hN denoting a bandwidth parameter, φK denoting the Fourier
inverse of a kernel function K , and ÊN denoting the sample conditional mean
operator. It is important to note that ÊN converges at the parametric rate under
standard conditions because of the discreteness of dt . The Nadaraya–Watson-type
estimator (2.5) with the estimated deconvoluting kernel K̂N is analyzed in the
literature, and consistency results are available (e.g., Schennach, 2004b). Non-
parametric convergence rates depend on smoothness assumptions for the distribu-
tions of x∗

t and εt .
Similarly, the remaining two components of the Markov kernel can be written

as deconvoluting kernel density estimators. Let

φ̂ηd
t
(s) = ÊN [exp(i sxt ) | dt−1 = d] · φ̂εt−1(γ̂

ds)

ÊN [exp(i s (̂αd + γ̂ d xt−1)) | dt−1 = d] · φ̂εt (s)

estimate the characteristic function of ηd
t . The transition rule f2(x∗

t | dt−1,x∗
t−1)

and the proxy model f3(xt | x∗
t ) can be estimated by

f̂2(x∗ | d,x∗−) = 1

2π

∫
e−is(x∗−α̂d−γ̂ d x∗−)φK (shN )φ̂ηd

t
(s)ds and

f̂3(x | x∗) = 1

2π

∫
e−is(x−x∗)φK (shN )φ̂εt (s)ds,

respectively. The consistency of f̂3 can be shown by directly applying Li and
Vuong (1998). On the other hand, the consistency of f̂2 does not directly follow
from Li and Vuong or any other method to our best knowledge. Therefore,
we discuss asymptotic analysis of this estimator in Section C in supple-
mentary material to this article, available at Cambridge Journals Online
(journals.cambridge.org/ect). Similarly to f̂1, nonparametric rates of convergence
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for these two estimators depend on smoothness assumptions for the distributions
of x∗

t , εt , and ηd
t .

Some remarks are in order concerning estimation and inference. In the literature
on deconvoluting kernel estimation, inference results are not yet well established.
For cases of known error densities, some papers in statistics certainly develop
methods of inference (e.g., Bissantz, Dümbgen, Holtzmann, and Munk, 2007).
However, for cases of unknown error densities, as in our model, the existing lit-
erature focuses only on consistency, and does not provide methods of inference.2

Inference for this class of estimators is a nontrivial issue even under very sim-
ple settings. Hence, some future advancements in this field are awaited. Second,
given the nonparametric identification result stated in Theorem 1, one could alter-
natively use the maximum likelihood estimator as Hu and Schennach (2008) did
in a related nonparametric context. However, such an alternative approach may
suffer from heavy computational burdens and practical difficulties in finding a
global solution. On the other hand, our closed-form estimator requires less com-
putation, with one-dimensional numerical integration being the most demanding
computational part, and is guaranteed to find a global solution unlike extremal
estimation over large dimensions.

3. IDENTIFICATION OF DYNAMIC DISCRETE CHOICE MODELS

Once the two Markov components, the CCP f1(dt | x∗
t ) and the law of state transi-

tion f2(x∗
t | dt−1,x∗

t−1), are identified, one can apply one of the existing methods
to further identify the underlying structure of dynamic discrete choice models in
the framework of Hotz and Miller (1993) and Hotz et al. (1994). This section
briefly explains how existing methods can be applied in our context, borrowing a
state-of-the-art technique (e.g., Pesendorfer and Schmidt-Dengler, 2008; Srisuma
and Linton, 2012; Sanches, Silva, and Srisuma, 2015; Srisuma 2015).

Suppose that an agent receives the θ -dependent current-time payoff

Uθ (dt , x∗
t ,υt ) = πθ (dt , x∗

t )+
d̄∑

d=0

υdt�{dt = d}

at time t if she makes the choice dt = d under the state (x∗
t ,υt ), where υt =

{υdt }d̄
d=0 and υdt is a private payoff shock associated with the choice dt = d

at time t , independently following the type I extreme value distribution. The
dynamically optimizing agent sequentially makes decisions {dt} to maximize the
expected discounted sum of payoffs

E

[ ∞∑
s=t

ρs−tUθ (dt , x∗
t ,υt )

∣∣∣∣∣ x∗
t ,υt

]
,

where ρ ∈ (0,1) is the rate of time preference. Let Vθ denote the value function
that follows from this optimal choice rule. Economists are interested in consis-
tently estimating the structural parameters θ . The rate ρ of time preference is
assumed to be known.3
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We outline the procedure to identify and estimate the structural parameters θ
following Srisuma and Linton (2012) and Srisuma (2015). First, given the CCP
f1 identified in Section 2, identify rθ = E[Uθ (dt ,x∗

t ,υt ) | x∗
t = · ] by

rθ (x∗) =
d̄∑

d=0

f1(d | x∗)πθ (d, x∗)+χ +
d̄∑

d=0

f1(d | x∗) log f1(d | x∗), (3.1)

where χ ≈ 0.577 is the Euler’s constant. Second, given the CCP f1 and the law
of state transition f2 identified in Section 2, identify the conditional expectation
operators L and H

Lg(x∗) =
∫

g(x∗∗)
d̄∑

d=0

f1(d | x∗) f2(dx∗∗ | d, x∗) and (3.2)

Hg(d, x∗) =
∫

g(x∗∗) f2(dx∗∗ | d, x∗). (3.3)

Third, given rθ and L identified in (3.1) and (3.2), identify mθ = E[Vθ (x∗
t ,υt ) |

x∗
t = · ] by

mθ = (I −ρL)−1rθ . (3.4)

Fourth, given H and mθ identified in (3.3) and (3.4), identify the state action value
function

vθ = πθ +ρHmθ . (3.5)

Finally, given vθ identified in (3.5), obtain the logit conditional likelihood function

Pθ (d | x∗) = exp(vθ (d, x∗)
/

d̄∑
d=0

exp(vθ (d
′, x∗)).

An analog estimator of this likelihood function can be used to estimate the
parameters θ in the standard manner.

4. SUMMARY

In this paper, we show that the structure of forward-looking agents making a
sequence of discrete choices can be identified without observing the true state
variable, provided that a proxy for the unobserved state variable is available in
the data. Our approach combines econometric methods in the following manner.
First, we identify Markov components, including the CCP and the law of state
transition, by using a proxy variable. This is done by explicitly solving integral
equations based on deconvolution methods. Second, the CCP-based method is
applied to the preliminarily identified Markov components to obtain the structural
parameters of a current-time payoff.
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NOTES

1. This matrix consists of moments estimable at the parametric rate of convergence, and hence
the standard rank tests (e.g., Cragg and Donald, 1997; Robin and Smith, 2000; Kleibergen and Paap,
2006) can be used.

2. An exception is a recent paper by Kato and Sasaki (2016). They develop methods of inference
for cases of unknown error densities with symmetric error distributions.

3. This rate is generally nonidentifiable together with the payoffs (Rust,1994; Magnac and
Thesmar, 2002).
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APPENDIX A

A.1. Extension 1: Independent Covariates

The baseline model presented in Section 2 includes only the unobserved state variable x∗
t .

In empirical applications, we may want to include an observed state variable, which we
denote by wt . The current section presents an extension of the basic identification result
with this additional feature of the model. Analogously to Assumptions 1, 2, 3, 4, and 5
stated in the context of the baseline model, we make the following assumptions for the
current extension.

Assumption A.1 (First-order Markov process). The quadruple
{
dt ,wt , x∗

t , xt
}

jointly
follows a first-order Markov process.

Assumption A.2 (Independence). The Markov kernel can be decomposed as follows.

f
(
dt ,wt , x∗

t , xt |dt−1,wt−1, x∗
t−1, xt−1

)
= f1

(
dt |wt , x∗

t
)

f2
(
wt |dt−1,wt−1, x∗

t−1
)

f3
(
x∗

t |dt−1,wt−1, x∗
t−1

)
f4

(
xt |x∗

t
)
,

where the four components represent

f1
(
dt |wt , x∗

t
)

conditional choice probability (CCP);
f2

(
wt |dt−1,wt−1, x∗

t−1

)
transition rule for the observed state variable;

f3
(
x∗

t |dt−1,wt−1, x∗
t−1

)
transition rule for the unobserved state variable; and

f4
(
xt |x∗

t
)

proxy model.

Like Assumption 2 for the baseline model, this independence assumption is key to our
closed-form identification results and is better understood in the context of the standard
independence assumptions used in the dynamic discrete choice literature. Consider the
following five independence conditions.

(i) Rust’s conditional independence assumption:

f (dt , x∗
t ,wt | dt−1, x∗

t−1,wt−1) = f1(dt | x∗
t ,wt ) · f (x∗

t ,wt | dt−1, x∗
t−1,wt−1)

(ii) True state x∗
t is a sufficient statistic for proxy xt :

f (xt | dt , x∗
t ,wt ,dt−1, x∗

t−1,wt−1, xt−1) = f4(xt | x∗
t )

(iii) The irrelevance of lagged variables to choice dt given true state (x∗
t ,wt ):

f (dt | x∗
t ,wt ,dt−1, x∗

t−1,wt−1, xt−1) = f1(dt | x∗
t ,wt )
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(iv) The irrelevance of proxy xt to the state transition:

f (x∗
t ,wt | dt−1, x∗

t−1,wt−1, xt−1) = f (x∗
t ,wt | dt−1, x∗

t−1,wt−1)

(v) Conditionally independent evolution of true state (x∗
t ,wt ):

f (x∗
t ,wt | dt−1, x∗

t−1,wt−1) = f3(x∗
t | dt−1, x∗

t−1,wt−1) f2(wt | dt−1, x∗
t−1,wt−1).

Parts (i)–(v) are together equivalent to Assumption A.2. As argued in Section 2.1, parts (i),
(iii), and (iv) are less objectionable in the spirit of the dynamic discrete choice literature. Parts
(ii) and (v) are new conditions that we are invoking in Assumption A.2 compared to the
existing literature. Part (ii) is satisfied if the measurement error, as defined as the difference
between proxy xt and true state x∗

t , is independent of (dt , x∗
t ,wt ,dt−1, x∗

t−1,wt−1, xt−1).
We present a way to relax this assumption in Appendix A.2. Part (iv) is satisfied if the two
states wt and x∗

t evolve independently, conditional on the past. This part may also be restric-
tive in some applications. We discuss how this assumption can be relaxed in Section A.3.

Assumption A.3 (Semi-parametric restrictions on the unobservables). The transition
rule for the unobserved state variable and the state-proxy relation are semiparametrically
specified as follows:

f3
(
x∗

t
∣∣dt−1,wt−1, x∗

t−1
)

: x∗
t = αd +βdwt−1 +γ d x∗

t−1 +ηd
t if dt−1 = d (A.1)

f4
(
xt |x∗

t
)

: xt = x∗
t +εt , (A.2)

where εt and ηd
t have mean zero for each d , and satisfy

εt ⊥⊥ ({dτ }τ ,{x∗
τ }τ ,{wτ }τ ,{ετ }τ �=t ) for all t

ηd
t ⊥⊥ (

dτ , x∗
τ ,wτ

)
for all τ < t for all t .

Assumption A.4 (Testable rank condition). Pr(dt−1 = d) > 0 and the following matrix
is nonsingular for each d .⎡⎢⎣ 1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[wt−1 | dt−1 = d] E[w2
t−1 | dt−1 = d] E[xt−1wt−1 | dt−1 = d]

E[wt | dt−1 = d] E[wt−1wt | dt−1 = d] E[xt−1wt | dt−1 = d]

⎤⎥⎦
Like Assumption 4, this assumption is empirically testable. While we propose a simple

affine model in (A.1) for Assumption A.3, this particular functional form is not crucial to our
identification result. We may include arbitrary higher-order terms and interaction terms of
wt−1 and x∗

t−1 as far as the corresponding rank condition, analogous to the one in Assump-
tion A.4, is satisfied. In that case, powers and/or higher-order lags of wt will be needed
to meet the rank condition of larger dimensions. Finally, we use the following regularity
conditions.

Assumption A.5 (Regularity). The random variables wt and x∗
t have bounded condi-

tional first moments given dt . The conditional characteristic functions of wt and x∗
t given

dt = d do not vanish on the real line, and are absolutely integrable. The conditional charac-
teristic function of (x∗

t−1,wt ) given (dt−1,wt−1) and the conditional characteristic func-

tion of x∗
t given wt are absolutely integrable. Random variables εt and ηd

t have bounded
first moments and absolutely integrable characteristic functions that do not vanish on the
real line.
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Under this list of five assumptions, we obtain the following closed-form identification
result for the four components of the Markov kernel.

THEOREM A.1. If Assumptions A.1, A.2, A.3, A.4, and A.5 are satisfied, then the four
components f1

(
dt |wt , x∗

t
)
, f2

(
wt |dt−1,wt−1, x∗

t−1

)
, f3

(
x∗

t |dt−1,wt−1, x∗
t−1

)
, f4

(
xt |x∗

t
)

of the Markov kernel

f
(
dt ,wt , x∗

t , xt |dt−1,wt−1, x∗
t−1, xt−1

)
are identified with closed-form formulas.

Proof is provided in Section B.1 in supplementary material to this article, available at
Cambridge Journals Online (journals.cambridge.org/ect).

A.2. Extension 2: Relaxing the Classical Error Assumption

The models presented in Sections 2 and A.1 assume classical measurement errors. To relax
this assumption, we now allow the relationship between the proxy and the unobserved state
variable to depend on the endogenous choice made in the previous period. This generaliza-
tion is useful if the past action can affect the measurement nature of the proxy variable. For
example, when the choice dt leads to entry and exit status of a firm, what proxy measure we
may obtain for the unobserved productivity of the firm may differ depending on whether the
firm is inside or outside the market.

To allow the proxy model to depend on endogenous actions, we modify Assumptions A.2,
A.3, A.4, and A.5 as follows.

Assumption A.2′. The Markov kernel can be decomposed as follows.

f
(
dt ,wt , x∗

t , xt |dt−1,wt−1, x∗
t−1, xt−1

)
= f1

(
dt |wt , x∗

t
)

f2
(
wt |dt−1,wt−1, x∗

t−1
)

f3
(
x∗

t |dt−1,wt−1, x∗
t−1

)
f4

(
xt |dt−1, x∗

t
)
,

where the proxy model now depends on the endogenous choice dt−1 made in the last period.

Assumption A.3′. The transition rule for the unobserved state variable and the state-proxy
relation are semiparametrically specified by

f3
(
x∗

t |dt−1,wt−1, x∗
t−1

)
: x∗

t = αd +βdwt−1 +γ d x∗
t−1 +ηd

t if dt−1 = d

f4
(
xt |dt−1, x∗

t
)

: xt = δd x∗
t +εd

t if dt−1 = d,

where εt and ηd
t have mean zero for each d , and satisfy

εd
t ⊥⊥ ({dτ }τ ,{x∗

τ }τ ,{wτ }τ ,{ετ }τ �=t ) for all t
ηd

t ⊥⊥ (
dτ , x∗

τ ,wτ
)

for all τ < t for all t .

where εt = (ε0
t ,ε1

t , . . . ,εd̄
t ),

Assumption A.4′. For each d , ((dt−1 = d) > 0 and the following matrix is nonsingular
for each of d ′ = d and d ′ = 0.⎡⎢⎣ 1 E[wt−1 | dt−1 = d,dt−2 = d ′] E[xt−1 | dt−1 = d,dt−2 = d ′]

E[wt−1 | dt−1 = d,dt−2 = d ′] E[w2
t−1 | dt−1 = d,dt−2 = d ′] E[xt−1wt−1 | dt−1 = d,dt−2 = d ′]

E[wt | dt−1 = d,dt−2 = d ′] E[wt−1wt | dt−1 = d,dt−2 = d ′] E[xt−1wt | dt−1 = d,dt−2 = d ′]

⎤⎥⎦
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Assumption A.5′. The random variables wt and x∗
t have bounded conditional first

moments given (dt ,dt−1). The conditional characteristic functions of wt and x∗
t given

(dt ,dt−1) do not vanish on the real line, and are absolutely integrable. The conditional char-
acteristic function of (x∗

t−1,wt ) given (dt−1,dt−2,wt−1) and the conditional characteristic

function of x∗
t given (wt ,dt−1) are absolutely integrable. Random variables εt and ηd

t have
bounded first moments and absolutely integrable characteristic functions that do not vanish
on the real line.

Similar discussions to those made of Assumptions A.2, A.3, A.4, and A.5 are relevant for
Assumptions A.2′, A.3′, A.4′, and A.5′. Because x∗

t is a unit-less unobserved variable, there

would be a continuum of observationally equivalent set of (δ0, . . . , δd̄ ) and distributions

of (ε0
t , . . . ,εd̄

t ), unless we normalize δd for one of the choices d . We, therefore, make the
following assumption in addition to the baseline assumptions.

Assumption A.6. With no loss of generality, we normalize δ0 = 1.

Under this set of assumptions, we obtain the following closed-form identification result.

THEOREM A.2 (Closed-form identification). If Assumptions A.1, A.2′, A.3′, A.4′, A.5′,
and A.6 are satisfied, then the four components f1

(
dt |wt , x∗

t
)
, f2

(
wt |dt−1,wt−1, x∗

t−1

)
,

f3
(
x∗

t |dt−1,wt−1, x∗
t−1

)
, f4

(
xt |dt−1, x∗

t
)

of the Markov kernel

f
(
dt ,wt , x∗

t , xt |dt−1,wt−1, x∗
t−1, xt−1

)
are identified by closed-form formulas.

Proof is provided in Section B.2 in supplementary material to this article, available at
Cambridge Journals Online (journals.cambridge.org/ect).

A.3. Extension 3: Relaxing the Independent Evolution

In the basic model with an unobserved state x∗
t and an observed state wt presented in Section

A.1, the requirement of the conditionally independent evolution of x∗
t and wt was mentioned

to be restrictive depending on an application. In this section, we propose how to relax this
assumption of conditionally independent evolution. We first decompose the Markov kernel
as follows.

Assumption A.7 (Independence). The Markov kernel can be decomposed as follows.

f
(
dt ,wt , x∗

t , xt
∣∣dt−1,wt−1, x∗

t−1, xt−1
)

= f1
(
dt

∣∣wt , x∗
t
)

f2
(
wt , x∗

t
∣∣dt−1,wt−1, x∗

t−1
)

f3
(
xt |x∗

t
)
,

where the four components represent

f1
(
dt |wt , x∗

t
)

conditional choice probability (CCP);
f2

(
wt , x∗

t |dt−1,wt−1, x∗
t−1

)
transition rule for the observed state variable;

f3
(
xt |x∗

t
)

proxy model.

As with Assumption A.2, this independence assumption is key to our closed-form
identification results, and is better understood in the context of the standard independence
assumptions used in the dynamic discrete choice literature if we discuss primitive condi-
tions. Consider the following four independence conditions.
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(i) Rust’s conditional independence assumption:

f (dt , x∗
t ,wt | dt−1, x∗

t−1,wt−1) = f1(dt | x∗
t ,wt ) · f2(x∗

t ,wt | dt−1, x∗
t−1,wt−1)

(ii) The true state x∗
t is a sufficient statistic for the proxy xt :

f (xt | dt , x∗
t ,wt ,dt−1, x∗

t−1,wt−1, xt−1) = f3(xt | x∗
t )

(iii) The irrelevance of lagged variables to the choice dt given the true state (x∗
t ,wt ):

f (dt | x∗
t ,wt ,dt−1, x∗

t−1,wt−1, xt−1) = f1(dt | x∗
t ,wt )

(iv) The irrelevance of the proxy xt to the state transition:

f (x∗
t ,wt | dt−1, x∗

t−1,wt−1, xt−1) = f2(x∗
t ,wt | dt−1, x∗

t−1,wt−1).

Parts (i)–(iv) are together equivalent to Assumption A.2. As in Section A.1, parts (i), (iii),
and (iv) are less objectionable in the spirit of the dynamic discrete choice literature. Part (ii)
is the only new condition that we are invoking in Assumption A.2 compared to the existing
literature. Part (ii) is satisfied if the measurement error, as defined as the difference between
proxy xt and true state x∗

t , is independent of (dt , x∗
t ,wt ,dt−1, x∗

t−1,wt−1, xt−1). Note that
part (v), which we required in Section A.1, is now absent from the current section. This elim-
ination of the fifth part is allowed under the following condition replacing Assumption A.3
of Section A.1.

Assumption A.8 (Semi-parametric restrictions on the unobservables). The transition
rule for the unobserved state variable and the state-proxy relation are semiparametrically
specified by

f2
(
wt , x∗

t |dt−1,wt−1, x∗
t−1

)
: x∗

t = αd +βdwt−1 +γ d x∗
t−1 +ηd

t if dt−1 = d (A.3)

f3
(
xt |x∗

t

)
: xt = x∗

t + εt , (A.4)

where εt and ηd
t have mean zero for each d , and satisfy

εt ⊥⊥ ({dτ }τ ,{x∗
τ }τ ,{wτ }τ ,{ετ }τ �=t ) for all t

ηd
t ⊥⊥ (

dτ , x∗
τ ,wτ

) | wt for all τ < t for all t .

The only difference from Assumption A.3 is the last conditional independence condi-
tion ηd

t ⊥⊥ (
dτ , x∗

τ ,wτ
) | wt , which has replaced the unconditional independence condition

ηd
t ⊥⊥ (

dτ , x∗
τ ,wτ

)
. In this new framework, the idiosyncratic error ηd

t for the law of unob-
served state transition can depend onwt , effectively allowing for the conditionally dependent
evolution of x∗

t and wt . However, conditionally on wt , the idiosyncratic error ηd
t has to be

independent of the past. We use the following version of the rank condition in the current
section.

Assumption A.9 (Testable rank condition). Pr(dt−1 = d) > 0 and the following matrix
is nonsingular for each d .⎡⎢⎣ 1 E[wt−1 | dt−1 = d] E[xt−1 | dt−1 = d]

E[dt−2 | dt−1 = d] E[wt−1dt−2 | dt−1 = d] E[xt−1dt−2 | dt−1 = d]

E[dt−3 | dt−1 = d] E[wt−1dt−3 | dt−1 = d] E[xt−1dt−3 | dt−1 = d]

⎤⎥⎦
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THEOREM A.3. If Assumptions A.1, A.5, A.7, A.8, and A.9 are satisfied, then the four
components f1

(
dt |wt , x∗

t
)
, f2

(
wt , x∗

t |dt−1,wt−1, x∗
t−1

)
, and f3

(
xt |x∗

t
)

of the Markov
kernel

f
(
dt ,wt , x∗

t , xt |dt−1,wt−1, x∗
t−1, xt−1

)
are identified with closed-form formulas.

Proof is provided in Section B.3 in supplementary material to this article, available at
Cambridge Journals Online (journals.cambridge.org/ect).

A.4. Extension 4: Bivariate Unobserved State Variables

In the baseline model and the above extensions, we consider models with a univariate
unobserved state variable. In the current section, we consider an alternative extension where
there are two unobserved state variables, x∗

t and y∗
t . This framework may be relevant to the

model of Cunha, Heckman and Schennach (2010), where cognitive and noncongnitive abil-
ities are considered as two unobserved state variables. We replace Assumptions 1–5 in the
baseline model by the following five assumptions.

Assumption A.10 (First-order markov process). The triple
{
dt , x∗

t , xt , y∗
t , yt

}
jointly

follows a first-order Markov process.

Assumption A.11 (Independence). The Markov kernel can be decomposed as

f
(
dt , x∗

t , xt , y∗
t , yt |dt−1, x∗

t−1, xt−1, y∗
t−1, yt−1

) = f1
(
dt |x∗

t , y∗
t

)
f2x

(
x∗

t |dt−1, x∗
t−1

)
× f2y

(
y∗

t |dt−1, y∗
t−1

)
f3x

(
xt |x∗

t

)
f3y

(
yt |y∗

t

)
,

where the five components represent

f1
(
dt |x∗

t , y∗
t
)

conditional choice probability (CCP);
f2x

(
x∗

t |dt−1, x∗
t−1

)
transition rule for the unobserved state variable x∗

t ;
f2x

(
y∗

t |dt−1, y∗
t−1

)
transition rule for the unobserved state variable y∗

t ;
f3x

(
xt |x∗

t
)

proxy model for x∗
t ; and

f3y
(
yt |y∗

t
)

proxy model for y∗
t .

Assumption A.12 (Semi-parametric restrictions on the unobservables). The transition
rule for the unobserved state variables and the state-proxy relation are semiparametrically
specified by

f2x
(
x∗

t |dt−1, x∗
t−1

)
: x∗

t = αx,d +γ x,d x∗
t−1 +ηx,d

t if dt−1 = d

f2y
(
y∗

t |dt−1, y∗
t−1

)
: x∗

t = αy,d +γ y,d y∗
t−1 +η

y,d
t if dt−1 = d

f3x
(
xt |x∗

t
)

: xt = x∗
t +εx

t

f3y
(
yt |y∗

t
)

: yt = y∗
t +ε

y
t

where εx
t , ε

y
t , ηx,d

t , and η
y,d
t have mean zero for each d , and satisfy

εx
t ⊥⊥ ({dτ }τ ,{x∗

τ }τ ,{y∗
τ }τ ,{εx

τ }τ �=t ,{εy
τ }τ ) for all t

ε
y
t ⊥⊥ ({dτ }τ ,{x∗

τ }τ ,{y∗
τ }τ ,{εx

τ }τ ,{εy
τ }τ �=t ) for all t

η
x,d
t ⊥⊥ ({dτ }τ<t ,{x∗

τ }τ<t
)

for all t

η
y,d
t ⊥⊥ ({dτ }τ<t ,{y∗

τ }τ<t
)

for all t .
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Assumption A.13 (Testable rank condition). Pr(dt−1 = d) > 0 and the following matri-
ces are nonsingular for each d .[

1 E[xt−1 | dt−1 = d]

E[dt−2 | dt−1 = d] E[xt−1dt−2 | dt−1 = d]

]
[

1 E[yt−1 | dt−1 = d]

E[dt−2 | dt−1 = d] E[yt−1dt−2 | dt−1 = d]

]

Assumption A.14 (Regularity). The random variables x∗
t and y∗

t have a bounded con-
ditional first moments given dt . The conditional characteristic function of x∗

t given dt = d
and the conditional characteristic function of y∗

t given dt = d do not vanish on the real line,

and are absolutely integrable. Random variables εx
t , ε

y
t , ηx,d

t , and η
y,d
t have bounded first

moments and have absolutely integrable characteristic functions that do not vanish on the
real line.

While Assumptions A.11 and A.12 imply that the two unobserved state variables x∗
t and

y∗
t are conditionally independent, we emphasize that they are not unconditionally indepen-

dent. The discrete choice dt−1 in the last time and the correlated past state (x∗
t−1, y∗

t−1)

induces a correlation between x∗
t and y∗

t . Under the five assumptions stated above, we
obtain the following closed-form identification result for the five components of the Markov
kernel.

THEOREM A.4. If Assumptions A.10, A.11, A.12, A.13, and A.14 are satisfied, then the
five components, f1

(
dt |x∗

t , y∗
t
)
, f2x

(
x∗

t |dt−1, x∗
t−1

)
, f2y

(
y∗

t |dt−1, y∗
t−1

)
, f3x

(
xt |x∗

t
)
, and

f3y
(
yt |y∗

t
)

are identified with closed-form formulas.

The proof is provided in Section B.4 in supplementary material to this article, available
at Cambridge Journals Online (journals.cambridge.org/ect).
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