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 IDENTIFICATION OF PAIRED
 NONSEPARABLE MEASUREMENT

 ERROR MODELS

 Yingyao Hu and Yuya Sasaki
 Johns Hopkins University

 This paper studies the paired nonseparable measurement error models, where two
 measurements, X and Y, are produced by mutually independent unobservables, U,

 V, and W, through the system, X = g(U, V) and Y = h(U, IV). We propose re
 strictions to identify the marginal distribution of the common component U and the

 conditional distributions of X and y given U. Applying this method to twin panel

 data, we find the following robust reporting patterns for years of education: (1) self

 reports are accurate only when the true years of education are 16 or 18, typically

 corresponding to advanced university degrees in the US education system; (2) sib
 ling reports are accurate whenever the true years of education are 12,14,16, and 18,

 which are typical diploma years.

 1. INTRODUCTION

 We consider the paired nonseparable measurement error model of the following
 form

 ^ ~ where U, V, and W are mutually independent. (1.1)

 The random variables X and Y are observed by econometricians, but the vari
 ables U, V, and W are not. For example, we may think of U as the true years of
 education in which econometricians are interested but do not observe in the data.

 Instead, we observe self reports X and sibling reports Y of U. The nonsepara
 ble errors V and W are nonadditive factors of self- and sibling-reporting errors,

 respectively. Throughout the main text, we focus on the case where U is finitely

 supported—see Section B.5 in the online appendix for a general case.
 Under the stated independence condition, we can represent the model (1.1) by

 the triple (Fx\u, Fy\u> Fu) of conditional and marginal distribution functions.1

 For observed variables X and Y, we assume their conditional distributions given
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 U are either discrete or continuous. Let fx\u and fy\u denote the conditional
 pmf (respectively, pdf) when they are discrete (respectively, continuous). Let fy

 denote the marginal pmf of U, the distribution of which is assumed to be finitely

 supported. The supports of the marginal distributions of X, Y, and U are denoted

 by X, J>, and U, respectively. We are interested in finding restrictions under which

 the triple (fx\u, fy\u, fu) is identified from the observed joint distribution fxj.
 Our identification strategy works in the following manner. We order the sup

 port of U as U = {u\,...,uj] from u\ to uj. If x\ e X and yi e y are the
 reports produced only by those individuals with u\ (i.e., fx\u(*i I «1) > 0 and
 fr\u(y 1 I "1) > 0 but fx\u(x\ I uj) = fy\u(yi I ";) = 0 for all j > 1), then we
 use this "support exclusion restriction" to identify fx\u( • | «1) > 0 with y\ as a

 control variable and to identify fy\v ( • I " 1 ) > 0 with x\ as a control variable. This

 high-level restriction of the support exclusion can be rationalized by assumptions
 on economic behaviors. For example, if we assume that the respondent and his
 sibling have no incentive to report numbers lower than the true years of education,

 then we obtain fx\u("1 I uj) = fy\u(u\ I "/) = 0 for all j > 1. The identification
 of fx\u( ■ I Uj) > 0 and fy\u( • I Uj) > 0 for j > 1 follows inductively by similar
 arguments based on the principle of mathematical induction.

 The model (1.1) of our interest is related to a number of nonclassical measure

 ment error models considered in the literature (e.g., Chen, Hong and Tamer, 2005;

 Mahajan, 2006; Lewbel, 2007; Chen, Hong and Tarozzi, 2008; Hu, 2008; Hu
 and Schennach, 2008; Chen, Hu, and Lewbel, 2009; Carroll, Chen and Hu, 2010;
 D'Haultfoeuille and Février, 2010; Song, Schennach and White, 2012). One of the
 most closely related is D'Haultfoeuille and Février (2010), who show nonpara
 metric identification of nonseparable measurement error models using support
 variations and three or more measurements of the latent variable. Similarly to the

 approach of D'Haultfoeuille and Février, we use support variations as a source of
 identification. The empirical data that we use in this paper are based only on self
 and sibling reports, and contains neither a third measurement nor an additional
 instrument. We thus need to relax the data requirements of these existing econo

 metric methods. To this end, we develop alternative identifying restrictions where

 our model (1.1) requires only two measurements, X and Y, instead of three, and

 our identification strategy does not rely on instrumental variables. Another one

 of the most closely related is Chen, Hu, and Lewbel (2009), where they identify

 a regression model under misclassification without requiring an additional mea
 surement. This setup parallels our data requirement, and the assumptions that they

 impose on regression functions imply our assumption. In other words, we provide

 a generalized assumption for this particular setup, although a direct comparison
 is difficult due to the different support cardinality assumptions about U.

 Related to our model (1.1) is the repeated measurement model with additive
 errors:

 X = U + y
 where U,V, and W are mutually independent.

 Y = U + W
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 While we do not consider the case of continuous (U, V, W), a large number of

 econometric papers use this paired additive model or its variants under the set
 ting of continuous random variables.2 Furthermore, (1.1) can be used to model
 nonadditive structural functions. For example, consider a production structure
 Y = h(U, IV), where U is the quantity of a factor of production and W summa
 rizes unobserved technologies. The true quantity U is often imperfectly observed

 with conceivably endogenous measurement errors <p(U, V). Let X denote an
 observed proxy of U. We hence obtain the following paired structure.

 ■

 X U +<f>(U, V) wjjere u y an(j mutually independent.
 Y = h{U,W)

 Economists are interested in identifying the structural responses of the produced

 quantity Y to the true unobserved quantity U of factors, i.e., h or Fy\v?
 This paper is organized as follows. In Section 2, we derive identification of

 the triple (fx\u,fy\u,fu) representing the model (1.1). Two alternative assump
 tions tailored to our empirical application are proposed in Sections 2.1 and 2.2.
 In Section 3, we propose an estimation procedure following the identification ap

 proach. We apply our method to twin panel data in Section 4, where we analyze
 self- and sibling-reporting patterns for years of education. Before presenting our
 conclusions, we discuss an application to regression models in Section 5.

 2. IDENTIFICATION

 Let the support U — {u\,...,uj} off/ satisfy the following restriction.

 Restriction 1 (The Basic Identifying Restriction).

 (i) X(uj) := support (fx\u( ■ \ uj)) \ Uj<k support (fx\u( • I «*)) # 9 for all
 j e {1,...,/},

 (ii) y(uj) := support(fY\u( • I ";)) \ U,•<* support(fr\u( • I "*)) ^ 0 for all
 j e {1,•••,/}•

 Examples of sufficient conditions for this restriction will be stated as Assump
 tions 1 and 2 in Section 2.1 and Assumption 3 in Section 2.2. Furthermore, when

 we apply our model to regression models, Restriction 1 implies the assumptions

 that papers in the literature (e.g., Chen, Hu, and Lewbel, 2009) impose on
 regression functions, although a direct comparison is not possible due to the
 different support cardinality assumptions about U—see Section 5. This restric
 tion can be considered as a support exclusion restriction, where an element

 xj e X{uj) excluded from support(fx\u( • I «*)) for all k > j is used as a
 control variable to identify fy\u( ■ I ";)• Similarly, an element yj e y(uj)
 excluded from support (/y|j/( • I "*)) for all k > j is used as a control variable
 to identify fx\u( ■ I «;)• In this sense, this restriction is also related to the
 monotonicity restriction often used in the treatment effects literature. The fol

 lowing two auxiliary lemmas provide main devices to prove the identification of
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 (fx\u> fï\u, fu) by Restriction 1 through the principle of mathematical induction
 on the index set {1,..., /}.

 LEMMA 1. Suppose that Restriction 1 holds for the model (1.1). If sets X(u\)

 and y(u\) are known, then (fx\u( • I «l), fr\u( -1 mi), fu(«i)) is identified.

 LEMMA 2. Suppose that Restriction 1 holds for the model (1.1). Let 1 < j
 and j + 1 < J. If ( fx\u( ■ I Uk),fy\u( ■ I "/t), /c/("jfc)) » identified for all
 k^j and if sets X(uj+\) andy(uj+\) areknown, then (fx\u( • I Uj+1), fy\u( • I
 Uj+1), fu(uj+i)) is identified.

 See Sections A.l and A.2 in the appendix for proof of Lemmas 1 and 2,
 respectively. Lemma 1 serves as the base step, and Lemma 2 serves as the
 inductive step in the principle of mathematical induction. We illustrate how to
 use these auxiliary lemmas in the following two subsections under alternative
 lower-level assumptions.

 2.1. Monotone Support Boundaries

 One special instance to satisfy Restriction 1 is the case of monotone support
 boundaries of fx\u and fy\u, as formally stated below.

 Assumption 1 (Monotone Support Boundaries). The supports of X and Y are
 bounded, and the following two conditions are satisfied.

 (i) inf(supp(/*|t/( • I uj))) is increasing in j or sup (s\ipp{fX\v( ■ I if/))) is
 decreasing in j.

 (ii) inf(supp(/y|t/( • | u;))) is increasing in j or sup(supp(/y|(/( • | uj))) is
 decreasing in j.

 We will later characterize this assumption in terms of reporting patterns in
 Assumption 2. Furthermore, when we apply our baseline model to the regression

 analysis, this assumption is implied by the standard assumptions (e.g., monotonic

 ity and independence) used in the literature—see Section 5. The most closely
 related assumptions used in the literature are a variety of monotonicity assump

 tions used to allow for unique ordering of eigenvalues in the spectral decompo
 sition approaches when an additional measurement is available (e.g., Hu, 2008).
 While those existing monotonicity assumptions concern the values of conditional
 densities or the values of conditional expectations, our monotonicity assumption

 concerns the support boundaries of conditional distributions. Our monotonicity
 assumption, together with the support cardinality assumption for U, allows us to
 identify the model without additional measurements.

 PROPOSITION 1. Assumption 1 for (1.1) implies Restriction 1 for (1.1).

 See Section A.3 for a proof. While this proposition only shows that Assump

 tion 1 is sufficient for nonemptiness of X(uj) and y(uj) for each j e {1,..., /},
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 this assumption also allows these nonempty sets to be identified. We state this
 argument as the following two auxiliary lemmas.

 LEMMA 3. Suppose that Assumption 1 holds for (1.1). The sets X(u\) and
 y(u i ) are identified.

 LEMMA 4. Suppose that Assumption 1 holds for (1.1). If (fx\u( ■ I "t),
 fy\u( • I Uk), /{/(«*)) is known for each k < j, then the sets X(uj) and y{uj)
 are identified.

 See Sections A.4 and A.5 in the appendix for proofs of Lemmas 3 and 4, re

 spectively. With the Lemmas 1-4, we can now identify the triple (fx\u, fy\u, fu)
 through the principle of mathematical induction.

 THEOREM 1. If Assumption 1 holds for (1.1), then

 (i) the sets X(uj) and y(uj) are identified for each ;e{l J}; and
 (ii) (fx\u( ■ I uj), fy\u( • I uj), fu(uj)) is identified for each j e {1,..., J).

 Proof. First, note that Restriction 1 is satisfied by Proposition 1. We prove
 the theorem by the principle of mathematical induction on {1,...,7}. For the
 base step, the sets X(ui) and y(u\) are identified by Lemma 3. Consequently,
 (fx\u( • I «l), fy\u( • I "i)> /[/("l)) is identified by Lemma 1. Now, assume in
 ductively that (fx\u ( • I "*)> fy\u( • I fu ("*)) is identified for each k <j +1.
 Then, the sets X(juj+1) and y(uj+\) are identified by Lemma 4. Consequently,
 (fx\u( ■ I «;•+1), fy\u( ■ I «y+l), fu(uj+1)) is identified by Lemma 2. ■

 In the special case where X and ^ are exactly the same sets as U = {k i },
 the sets X(uj) and J(Uj ) for each j = {1,..., J} can be constructed easily without
 relying on Lemmas 3 and 4. Specifically, if inf (supp(/x|£/( • | «/))) is increasing
 in j as in Assumption l(i), then the equality U = X forces X(uj) = {uj} for
 each j = {1,...,/}. A similar argument applies to the set y(uj) for each j =
 {1,

 Finally, we discuss the main assumption of the current subsection in the context

 of our application to years of education. What kind of survey reporting pattern
 rationalizes the monotone support boundaries of Assumption 1? We propose the
 following reporting pattern as a sufficient condition for Assumption 1, which in
 turn is sufficient for Restriction 1.

 Assumption 2 (No Under-Reporting). The following two conditions are satis
 fied.

 (i) Pr(X <U) = Pr(y <U) = 0.
 (ii) Pr(X = U I U = u) > 0 and Pr(F = U | U = u) > 0 for each u e U.

 Part (i) states that individuals do not under-report years of education. Part (ii)
 states that honest individuals exist for each actual year u of education. Under
 the triangular conditional support imposed by part (i), the requirement (ii) of the
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 positive probabilities of zero errors plays a similar role to the matrix invertibility

 assumption made in the three-measurements literature (e.g., Hu, 2008). At the
 expense of assuming this specific invertibility, we improve upon this three
 measurements literature by reducing the required number of measurements from

 three to two. This assumption is consistent with the empirical fact that the self

 reporting errors for years of education are likely to be negatively correlated with

 the true years of education (Siegel and Hodge, 1968). In other words, this negative

 correlation may well arise when people do not under-report their education, as in

 dividuals with low education have more room for over-reporting while individuals
 with high education have little choice but to report truthfully. Section B.4.1 in the

 online appendix proposes a choice model where Assumption 2 is rationalized by
 a utility maximization behavior. Part (i) may be restrictive in applications. Thus,

 Section 2.2 introduces an alternative assumption to relax this restriction. The fol

 lowing proposition claims that Assumption 2 implies Assumption 1.

 PROPOSITION 2. If Assumption 2 holds, then Assumption 1 holds with the

 ordering ofU = {u\,...,uj) defined by j <k if and only ifuj < u*.

 2.2. Alternative Reporting Patterns

 Assumption 2, which entirely prohibits under-reporting of years of education,
 may be restrictive in applications. Certainly, those individuals having just com
 pleted diploma-granting years of education, e.g., U = 12, 14, 16, and 18,4 may
 have no incentive to under-report their education. On the other hand, the re
 maining individuals, i.e., those with U = 13, 15, and 17, may have an incentive
 to under-report their education by one year due to the stigma of dropping out
 before gaining a diploma, or simply by rounding numbers to the diploma
 granting year for mnemonic reasons. As such, min (support(X | V — 12)) =
 min (support(X | U = 13)) = 12 may result and Assumption 1 can thus fail.
 In light of this possibility, we propose the following alternative assumption in
 the current subsection.

 Assumption 3 (Dropout and Diploma). Let V = {di,...,dL) C U be a set of
 diploma-granting years, and Ve = U\D be its complement. The following are
 true.

 (i) Pr(X e Ve \ U e V) = Pr(y e Ve \ U e V) = 0.

 (ii) X < U =» X = ma\{d eV\d ^U} and Y <U => Y = max{d e V \ d ^
 U}.

 (iii) Pr(X = U | U = u) > 0 and Pr(F = U | U = u) > 0 for each ueU.

 For example, V = {12,14,16,18} can be used for common years of educa
 tion associated with high-school diploma, associate degrees, bachelor's degrees,
 and master's degrees in the US education system. Part (i) states that individuals
 who have actually just completed diploma-granting years of education do not re

 port non-diploma-granting years of education. This restriction is plausible if we
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 assume they have no incentive to voluntarily lie to avoid the stigma of dropout.

 Part (ii) states that under-reporting individuals report the years of education as

 sociated with the highest diploma that they have received, so they can signal
 that they did not drop out while only minimally suppressing the years. Part (iii)

 requires the existence of an honest subpopulation. Section B.4.2 in the online
 appendix proposes a choice model where Assumption 3 is rationalized by a util
 ity maximization behavior. Under this set of assumptions, the general identifying
 restriction of Section 2 is satisfied as follows

 PROPOSITION 3. If Assumption 3 holds for (1.1), then U can be written as
 an indexed setU = {« i} such that Restriction 1 is satisfied.

 Proof is given in Section A.7 in the appendix. In view of the proof, we can
 construct the indices 1,..., J for an ordering of the set U by following the rule:

 If uj e Ve and m* = max{w e V | u < uj}, then j < k.

 Otherwise, Uj < Uk <==> j < k. (2.1)

 This definition of ordering states that 1. a non-diploma-granting year should pre

 cede the highest lower diploma-granting year; and 2. otherwise lower years should
 precede higher years.

 Example 1
 In the US education system, high-school diplomas, associate degrees, bachelor's
 degrees, and master's degrees are associated with 12, 14, 16, and 18 years of
 education, respectively. If V — {12,14,16,18} and Ve = {13,15,17} for U =
 {12,13,14,15,16,17,18}, then we order U by u\ = 13, «2 = 12, «3 = 15, «4 =
 14, m5 = 17, «6 = 16, and «7 = 18 according to (2.1).

 Example 2
 Associate degrees are less likely to be terminal degrees. If u = 14 is removed from

 T>, i.e.,P = {12,16,18} and Ve — {13,14,15,17}, then the rule (2.1) produces the
 alternative ordering of U by u\ = 13, U2 = 14, K3 = 15,1/4 = 12, us = 17, «6 = 16,
 and «7 = 18.

 In addition to ensuring their nonemptiness, we can also construct the sets X{u)
 and y(u) for each u. Specifically, if X = ^ = U is the case, then we can see that

 X(uj) = y(uj) = {uj} for each uj e U. As the sets X(u) and y(u) are known
 for each u e U, we can readily use Lemmas 1 and 2 to identify (fx\u, fy\u, fu)
 through the principle of mathematical induction.

 THEOREM2. If Assumption 3 holds for (1.1) and a givenV cU, thenforthe
 rule (2.1):

 (i) the sets X(uj) and y(uj) are identified for each j e {1,..., J); and

 (ii) (fx\u( ■ I Uj),fy\u( ■ | Uj),fu(uj)) is identified for each j e {1,...,7}.
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 Proof. First, note that Restriction 1 is satisfied by Proposition 3. Assumption

 3 and the rule (2.1) construct the sets X(uj) and y(uj) for each j e {1,..., J).
 Thus, applying the principle of mathematical induction, with Lemma 1 for the

 base step and Lemma 2 for the inductive step, yields identification of (fx\u( • I
 Uj),fy\u( • I fu(uj)) for each j U

 2.3. Identifying Formulas

 In this section, we display for convenience the inductive identifying formulas ob

 tained in the proofs. For the first element «i e U, the identifying formulas are:

 fx\u(x I »0 = for all x e X
 fr(y 0

 fï\u(y I mi) = for all y 6 y
 fx(x l)

 r „ fx(xi)fr(yi)
 /l/("l) = —z—z r fxï(x\,yi)

 with xi € X(ui) and y\ e ^(«l)- Recall that there is an analogy between our
 identification strategy and the existing control variable approaches. The first one
 of the above identifying formulas reflects the idea that the excluded variable >'i

 plays the role of a control variable for mi while varying x. Likewise, the second

 identifying formula above reflects the idea that the excluded variable x\ plays the
 role of a control variable for mi while varying y.

 For subsequent elements Uj+\ e U, the identifying formulas are:

 , , , , fxrb.yj+i)-'Ltsljfx\vto\itk)fr\u(yj+i\uk)fu(uk) , „
 fx\u(x |M;+l)= T} r—^ 7—7 1—TTT-! for all * 6

 fr(yj+\)-i.kij fr\u(yj+i I "*)/(/(«*)

 , , , , fxr(xj+i,y)-'Lk^jfx\u(xj+i\uk)fY\u(y\uk)fu(uk) fr\u(y\Uj+i)= j-7 r-^ 7—; j—, , for all y e ^
 fx\u(xj+1 i uk)fu(uk)

 [/x(*/+i)-Zt!s./ fx\u(xj+i I «*)/{/(«*:)] [/r(yj+i)-S^j fy\u(yj+i I "t)/t/(«t)]

 /u(";+i) fxr(xj+i,yJ+i)-Xk^j fx\u(xj+i I uk)fï\u(yj+i I uk)fu(uk)

 with Xj+i e X(uj+\) and yj+\ e y(uj+\), where fx\u( ■ I uk), fy\u( • I uk) and
 fu(uk) for all k ^ j have been inductively identified in previous steps. Further
 more, see Section B.2 in the online appendix for closed-form identifying formu

 las obtained by successive substitutions of these inductive formulas. As in the
 previous paragraph, the first identifying formula above reflects the idea that the

 excluded variable yj+\ plays the role of a control variable for Uj+\ while varying
 x. Likewise, the second identifying formula above reflects the idea that the ex

 cluded variable Xj+\ plays the role of a control variable for uj+\ while varying x.

 3. ESTIMATION

 The identification results imply that information accumulates as the sample
 size increases, which leads to consistent estimation of the representing model
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 (fx\u, fï\u, fu)- Section 2.3 suggests that the following iterative procedure esti

 mates the representing model. Let f%Y denote the empirical joint pmf of the ob

 served variables (X, Y), with f% and fY denoting its marginals. Choosing points
 xi e X(ui) and yi € y(u\), we estimate (fx\u( • I «i)>/y|i/( • I "l), fv(ui)) by
 the following formulas.

 fx\u(x I Ml) = f^X'y:} for all * e X
 fyiy l)

 î ( I \ fxy(x 1'^) t ii "w /y|y(yl«i)= /», - for all

 JU\Ul) — ( . •
 fxy(xi>y\)

 The fact that u 1 does not appear on the right-hand sides of these formulas may be

 intuitively understood by noting that x\ and ji serve as control variables for u 1
 under the varying support condition.

 A A

 By the beginning of the y-th step, we have obtained (fx\u (•!«*), fnu ( • I «*)>

 fu(uk)) for all k < j. Therefore, choosing xj € X(uj) and yj e y(ui), we
 estimate (fx\u( ■ I u/),fY\u( • I uj),fu(uj)) in the y'-th step by the following
 formulas.

 Ai»(.I»;)- "S,".' fm(;I»ùfmi,, I.»)/»(■.)
 fr Ôï)~Zt=i fr\u(yj I uk)fu(uk)

 fmt, I.,) - 1 1 ")A("') for al) y € y
 fïW-lLl fx\v(xj I uk)fu(uk)

 ~Zi=î fxwixj I «*)/£/(«*)] [fy(yj) - X*=1 fr\u(yj I «t)/u(w/t)]

 fxr(xi<yj) - Z*=1 A|ü(*/ I "k)fr\u(yj I "*)/u("*)

 Because J is finite, we can complete this iterative procedure to eventually obtain
 an estimate (fx\u,fr\u,fu) of the representing model. See Section B.3 in the
 online appendix for closed-form estimators.

 3.1. Asymptotic Properties

 Note that the estimator (fx\u( ■ I «;)» fy\u( • I fu(.uj))j=\ is a smooth trans
 formation of the empirical data F^Y through the above closed-form arithmetic
 formulas provided that singular cases are excluded. Therefore, the standard -JN

 asymptotic normality of this estimator immediately follows from the first-order

 asymptotics by the weak convergence of the empirical process -/N(F^y ~ F\y)
 through the delta method. Although the arguments are standard, we present con
 crete expressions for asymptotic variances. In the main text, we focus on the case

 of j = 1 for compactness of exposition. Similar arguments continue to apply for
 higher j—see Section B.3 in the online appendix.
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 PROPOSITION 4. Suppose that one of the alternative identifying restrictions
 is satisfied and that the sample is drawn independently from an identical distribu
 tion.

 (i) If fr Ol) > 0, then <fN(fx\u(x | mi) - fx\u(x I «0) asymptoti
 cally follows the normal distribution with mean zero and variance
 /xr(*,yi)[/rCyi)-/xi'(.x,yi)]

 /y(vi)3

 (ii) If fx(xl) > 0, then VN(fy\u(y I »0 ~ fï\u(y I "l)) asymptoti
 cally follows the normal distribution with mean zero and variance
 fxï(xi,y)[fx(xi)-fxï(x\,y)]

 fx(x i)3

 (iii) If fxY(x\,y\) > 0, then *J~N (fu (u\) — fu (u i)) asymptotically follows the
 normal distribution with mean zero and variance

 fx(*\)fY(y\)[(fx(.x\)-fxY(x\,y\))(fY(y\)-fxr(x\,y\)) + fxY(,x\,y\)(fxï(,x\,y\)-fx(*\)h(y\))]
 fxr(x\,y i)3

 Note that the singularity issue occurs simply when fy(y\) = 0, fx(x\) = 0,
 and fxy{x\,y\) = 0 for parts (i), (ii), and (iii), respectively. For higher j, the
 singularity occurs in more complicated ways. Specifically, for the asymptotic

 normality of */N(fu(«2) - fufa)), we require the nonsingularity condition
 fxY{x\,y\)-fxY (.XI, y2) Î fxY(x\,yi)- fxr (X2, yi) in addition to fx y (*1, yi) >
 0—see Proposition 5 in Section B.3 in the online appendix for details. Continu

 ing with Uj for higher j for a couple of steps, we can see that nonzero leading

 minors of the j x j matrix {fxy(xr, yc)]Jr C=J are required for the asymptotic nor

 mality for -JN( fu(uj) - fu(uj)). We numerically study the performance of the
 estimators for parameter values near these singularities in the following section.

 3.2. Monte Carlo Simulations

 We consider the following simulation design. The observed reports (X, K) and
 the latent variable U are supported on the set, U = X = y = {1,2,3}, consisting
 of three ordered elements, u\ — 1, «2 = 2, and «3 = 3. The marginal distribution

 of U is given by the uniform law /i/(l) = fu(2) = fu(3) = 1/3. The reporting
 patterns follow the assumption of no under-reporting (Assumption 2). We vary

 probabilities fx\u(l I 1). /k|£/(1 I 1). fx\u(2 I 2), and fy\u(2 I 2) of honest re
 porting as shown in the first two columns of Table 1 across sets of simulations. In
 addition, we fix the conditional probabilities, Pr(X = 3 | U = 1, X > 1) = 0.5 and
 Pr(y = 3 I U = 1, Y > 1) = 0.5. These specifications are sufficient to define the
 joint probability of (U, X, K). We run Monte Carlo simulations with the sample
 size of N = 300,5 repeated for 5,000 iterations in each set.

 The third and fourth columns in Table 1 show the first two leading principal

 minors, £»1 := /at(1, 1) and Ö2 := fxY(1, l)/Arr(2,2)-/xy(l,2)/xy(2,1), of
 the matrix [fxy(xr,>"c)]^c=i- Recall from Section 3.1 (and Section B.3 in the

This content downloaded from 76.21.153.87 on Wed, 14 Feb 2024 22:28:45 +00:00
All use subject to https://about.jstor.org/terms



 PAIRED NONSEPARABLE MEASUREMENT ERROR MODELS 965

 Table 1. Simulation results for N = 300 with 5,000 Monte Carlo iterations.
 The first two columns show the data-generating processes. The next two columns
 show the first and second leading principal minors, D\ := /xy(l, 1) and Dj :=
 fxr( 1, l)fxr(2,2) - fxY(l,2)fxy(2,1), respectively, for each data-generating
 process. The remaining columns show estimation results, including the bias, the
 root mean square errors (RMSE), and the 95% coverage probabilities of the es
 timators that are computed using the asymptotic normality results provided in
 Propositions 4 and 5

 Data-Generating Process  Estimators

 fx\uO- I 1) /a-|t/(212) Minors fv( 1) /(/(2)
 /r|I/(l|l) fr\u(2\2) Di D2 Bias RMSE 95% Bias RMSE 95%

 0.800 0.100 0.213 0.001 -0.000 0.029 0.947 6E+11 4E+13 0.733
 0.800 0.200 0.213 0.003 0.000 0.028 0.954 0.106 2.226 0.909
 0.800 0.400 0.213 0.011 -0.000 0.028 0.955 0.008 0.065 0.946

 0.800 0.800 0.213 0.046 -0.000 0.029 0.949 -0.000 0.030 0.946

 0.400 0.800 0.053 0.011 0.004 0.047 0.946 -0.003 0.042 0.955
 0.200 0.800 0.013 0.003 0.013 0.089 0.940 -0.009 0.061 0.964
 0.100 0.800 0.003 0.001 0.026 0.120 0.939 -0.015 0.089 0.952

 online appendix) that the singularity of these leading principal minors is associ
 ated with problems in the estimators—see Propositions 4 and 5 . In other words,

 we expect that the estimators behave poorly when these minors take small val
 ues. The middle row of the table shows the benchmark setting, /x|i/(l I 1) =
 /r|i/(l I 1) = fx\u(2 I 2) = /k|{/(2 | 2) = 0.8, where the probabilities of honest
 reporting is high enough. In this case, both leading principal minors, D\ and £>2,
 are relatively far away from zero. Consequently, we indeed see that the estima
 tors fu( 1) and fu(2) behave fairly well in terms of the biases, the root mean
 square errors (RMSE), and the 95% coverage rates that are computed based on
 the asymptotic normality results displayed in Propositions 4 and 5.

 As we move down from the middle row in the table, the probabilities,
 fx|£/(1 I 1) and fy|j/(l I 1), of honest reporting given U = 1 decrease toward
 zero. Accordingly, both of the two leading principal minors, D\ and £>2, also
 decrease toward zero. Notice that the performance of the estimators, fu( 1) and

 /{/(2), becomes worse in terms of the biases, the RMSE, and the 95% coverage
 rates toward the bottom row. This result is consistent with the fact that the singu

 larity of D\ is ruled out in Proposition 4 for the estimator 1), and the fact that

 the singularity of both D\ and D2 is ruled out in Proposition 5 for the estimator
 fu( 2).

 On the other hand, as we move up from the middle row in the table, the prob
 abilities, fx\uO. I 2) and fy\u(21 2), of honest reporting given U = 2 decrease

 fy\U (212) D\ D2 Bias RMSE 95%

 o.ioo  0 213 0.001  -0.000 0 029 0 947

This content downloaded from 76.21.153.87 on Wed, 14 Feb 2024 22:28:45 +00:00
All use subject to https://about.jstor.org/terms



 966  YINGYAO HU AND YUYA SASAKI

 toward zero. Accordingly, the second leading principal minor £>2 also decreases

 toward zero, but the first leading principal minor D\ stays constant. Notice that
 the performance of the estimator fu(2) becomes worse in terms of the biases, the

 RMSE, and the 95% coverage rates toward the top row, but the performance of
 the other estimator fu( 1) is not affected. This result is consistent with the fact

 that the singularity of Di is not ruled out in Proposition 4 for the estimator fu (1),

 and the fact that the singularity of Di is ruled out in Proposition 5 for the estima
 tor fu (2).

 4. THE TRUE DISTRIBUTION OF YEARS OF EDUCATION

 In labor economics and economics of education, isolating unobserved innate abil
 ities from intensities of endogenous treatments, such as years of education, is a

 great concern for program evaluations. For panel data of monozygotic twins shar

 ing innate abilities as common factors, it is a common practice to assume that
 within-pair differences in labor outcomes are imputed to differential treatment
 intensities. Behrman, Taubman, and Wales (1977) use a sample of twin panels
 to estimate the effects of schooling on labor outcomes. Ashenfelter and Krueger
 (1994) advance this literature by accounting for potential measurement errors in

 years of education in addition to controlling for the unobserved heterogeneity. See

 Miller, Mulvey, and Martin (1995), Behrman and Rosenzweig (1999), and Rouse
 (1999) for related empirical research.

 To correct errors in self-reported education, Ashenfelter and Krueger collected
 a sample of not only self-reported education, but also sibling-reported education

 in the 16th annual Twins Days Festival in Twinsburg, Ohio, in 1991. The paired
 classical measurement error model assumed by their study can be represented by

 Y U + W w^ere an<* W are mutually independent. (4.1)

 The unobserved variable U denotes the true years of education. Econometri
 cians observe the self-reported years of education denoted by X, and the sibling

 reported years of education denoted by Y. The exogenous unobserved variables
 V and W are self-reporting error and sibling-reporting error, respectively.

 If the additive independent errors in the model (4.1) were indeed true, then ex

 isting approaches might be applicable to identify the distribution of true years of
 education. However, this classical measurement error setup is perhaps too restric

 tive in the current context for at least two reasons. First, self-reporting errors V are

 likely to be negatively correlated with U, as reported by Siegel and Hodge (1968).

 For example, individuals with less U may have upwardly biased errors V due to
 stigma, whereas individuals with high U may have no such incentive to give bi
 ased reports. In this light, it is more general to assume endogenous self-reporting

 error via the nonseparable model X = g (U, V), where the self-reporting error de

 fined by [g(U, V) - U] is no longer independent of U by construction. Second,
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 sibling-reporting errors W are likely to be correlated with the true U. For exam

 ple, siblings may round true U up to the nearest diploma years, such as Y = 14,
 16, and 18, simply due to limited memory. In this case, the reporting errors IV
 may be almost degenerate if true U is already one of the diploma years, whereas

 W may be nondegenerate otherwise. In other words, the distribution of W is likely

 to depend on U without any monotonie patterns. For such irregular endogenous
 reporting errors, a nonseparable model Y = h(U, W) is probably a more natu
 ral description of the true reporting behaviors, where the sibling-reporting error

 defined by h(U, W) — U is no longer independent of U by construction. There
 fore, we replace the paired classical measurement error model (4.1) by the paired

 nonseparable measurement error model ( 1.1 ) in our empirical analysis:

 X g(U, V) wjjere y y an(j jy ajg mutually independent. Y = h(U,W) 3 F

 Sections 2.1 and 2.2 propose sufficient conditions for identifying this model,

 particularly in the context of the current empirical problem. Recall that Assump

 tion 2 and thus Assumption 1 are consistent with the aforementioned empirical

 fact that the self-reporting errors for years of education are likely to be negatively

 correlated with the true years of education (Siegel and Hodge, 1968). For exam
 ple, this negative correlation may well arise when people do not under-report their

 education, as individuals with low education have more room for over-reporting

 while individuals with high education have little choice but to report truthfully.
 In addition, we propose a couple of choice models in Sections B.4.1 and B.4.2 in

 the online appendix as theoretical support for Assumptions 2 and 3, respectively.

 A remaining issue is whether these assumptions are also consistent with other po
 tential reasons for reporting errors, such as poor memory, misunderstanding the
 question, and recording errors. If reporters with poor memory are to round up
 (respectively, round down) to the nearest diploma granting year, then the resul

 tant reporting pattern can be consistent with Assumptions 1 and 2 (respectively,
 Assumption 3). A similar argument applies to the case of recording errors where
 rounding occurs on the part of the interviewers.

 Table 2 summarizes the orderings of U = {u\,...,uj} obtained through each
 of the approaches proposed in Sections 2.1 and 2.2. Recall that each of these

 restrictions uniquely defines X{uj) and y(uj) for each j in the current setup
 provided U — X — y\ hence there is no need of pre-estimating them using data.

 As neither Assumption 2 nor Assumption 3 is empirically testable, we do not want

 to rely on any one of these particular identifying restrictions. Instead, we estimate

 TàBLE 2. Summary of identifying restrictions and the implied well-orders

 Section Assumption Reporting Pattern Implied Ordering of U

 2.1 1,2 No Under-Reporting {mj, ...,«7} = {12,13,14,15,16,17,18}
 2.2 3 Stigma against Dropout {«i, ...,«7} = {13,12,15,14,17,16,18}

 \sii iw^ui uiig x auuu

 No Under-Reporting [u

This content downloaded from 76.21.153.87 on Wed, 14 Feb 2024 22:28:45 +00:00
All use subject to https://about.jstor.org/terms



 968  YINGYAO HU AND YUYA SASAKI

 our model under each of these alternative assumptions, and report the results that
 we obtain robustly across these alternative assumptions.

 In our empirical analysis, we use the data of Ashenfelter and Krueger that con
 sist of an extract from a survey of twins conducted at the 16th annual Twins Days
 Festival in Twinsburg, Ohio, in 1991. The sample contains 340 twins (680 indi
 viduals). Figure 1(a) shows probability masses of self-reported years of education
 X (dashed lines) and sibling-reported years of education Y (dotted lines). Both
 X and Y have relative peaks at the diploma years, namely high-school graduation

 (a) Probability mass of X and Y. (b) Estimated probability mass of U
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 Figure 1. (a) Probability masses of self-reported education X and sibling-reported educa
 tion Y. The remaining two graphs illustrate estimated probability masses of true education
 U under (b) the assumption of no under-reporting and under (c) the assumption of stigma
 against dropout without diploma. The vertical lines indicate ±1.96 x estimated standard
 errors. The bottom left graph overlays the estimates in (c) on top of the estimates in (b) for
 the purpose of comparison.
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 (12), associate degrees (14), bachelors degrees (16), and masters degrees (18).
 The sibling report Y particularly stands out at these peaks, which is consistent
 with the hypothesis that sibling reports may perhaps tend to round the true U
 to near diploma years more evidently than the self reports X. The discrepancy
 between X and Y suggests that at least one of X and Y is false.

 Following the iterative procedure outlined in Section 3, we estimate the distri
 bution Fjj of the true years of schooling under each of the alternative restrictions
 given in Table 2. The two remaining graphs in Figure 1 show the probability
 masses of the estimated true years of schooling under Figure 1 (b) the assump
 tion of no under-reporting and under Figure 1 (c) the assumption of stigma against
 dropout without diploma. The frequencies of self reports are accurate at 16 and
 17 years of education robustly across the alternative identifying restrictions. How
 ever, this particular result does not imply that individuals with U = 16 are honest
 reporters. There may exist individuals with other values of U who falsely report
 X = 16, i.e., frequency 'inflows' into X = 16. These inflows must be compen
 sated for by false reports by individuals with U — 16, i.e., frequency 'outflows'

 from U = 16, because //y (16) % /^(16) requires conservation of inflowing and
 outflowing frequencies. By similar arguments, the discrepancy in the frequencies
 between self reports and the estimated truths at 18 does not imply that individuals
 with U = 18 tend to lie. The difference may be due only to frequency inflows
 from other values of U into X = 18.

 In Figure 2, we compare our estimates to more naive estimates of the cumula
 tive distribution of U, such as using the distribution of X, the distribution of Y,
 or the distribution of (X + Y)/2. The left figure shows that our estimate based
 on the assumption of no under-reporting is first-order stochastically dominated
 by all three naive estimates. Likewise, the figure on the right shows that our esti

 aP  I

 Years ol Education  Years of Education

 m*sm£

 Years o( Education  Years of Education

 Figure 2. Comparisons of our estimates for the distribution of true years of schooling
 with more naive estimates based on X, Y, and (X + Y)/2. The left figure displays our
 estimate based on the assumption of no under-reporting, and the right figure displays our
 estimate based on the assumption of stigma against dropout without diploma.
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 mate based on the assumption of stigma against dropping out without a diploma is

 almost stochastically dominated by all three naive estimates, except at the lowest
 level m € [12,13). These comparisons imply overall left shifts of our estimated
 distributions relative to the naively estimated distributions.

 To assess the actual reporting behaviors (i.e., to reveal who tends to report
 correctly or falsely), we can use the estimated pmfs (fx\u, fy\u,fu) to compute
 the conditional probabilities of correct reports given the truth as follows:

 Pr(Self report is correct | U = u) = fx\u(u I w)
 A

 Pr(Sibling report is correct | U = u) = fy\u(u I «)•

 These estimated conditional probabilities of correct self and sibling reports are
 shown in Figure 3. The left and right columns show the results of self reports and

 sibling reports, respectively. The results displayed in the top and bottom rows are

 based on the estimates under Figure 3(a) the assumption of no under-reporting
 and under Figure 3(b) the assumption of stigma against dropout without diploma,
 respectively. The pattern of self reports are somewhat different across the alterna

 tive specifications, but the left column robustly shows that the self reports tend to

 be accurate whenever the true years of education are U = 16 or 18, correspond
 ing to bachelor's and master's degrees in the US education system, while they
 are robustly inaccurate when the true years of education are U = 13, who may
 be characterized as freshman/sophomore dropouts. On the other hand, the right
 column robustly shows that the accuracy of sibling reports stands out at every
 even number, 1/ = 12,14,16, and 18, corresponding to the typical diploma years,
 while sibling reports are robustly inaccurate whenever the truth is an odd number.

 Note that the estimation method used to obtain the results in the top row Figure
 3(a) does not rely on direct assumptions associated with a distinction between
 diploma years and other years, but the results show that the peaks of correct re

 porting probabilities occur exactly at diploma years. In other words, these robust
 results are not entirely driven by the assumptions.

 By these robust parts of the results across the alternative identifying assump

 tions, we draw the following conclusion. First, the hypothesis that self reports

 are accurate when the true years of education correspond to the typical years
 granting high-level diplomas is not overturned. Second, the hypothesis that sib
 ling reports tend to round the true numbers to typical diploma-granting years for
 mnemonic reasons is not overturned. These conclusions are not due to statisti

 cal sampling variation, except for the second conclusion about the sibling reports
 given U = 17, for which the long 95% confidence interval extends all the way
 up to 1.0.

 In concluding the empirical application, we remark on some interpretation
 problems under a possible violation of our identifying assumptions. While the
 nonseparability condition generalizes the classical measurement error model to
 a large extent, the assumption that U, V, and W are independent can be still
 questionable for this application. For example, twins may agree upon a mismea
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 (a) Self reports.  (a) Sibling reports.
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 Figure 3. Left column: conditional probabilities that self reporting is correct given the
 truth. Right column: conditional probabilities that sibling reporting is correct given the
 truth. The conditional probabilities are estimated under (a) the assumption of no under
 reporting, and (b) the assumption of stigma against dropping out without a diploma The
 vertical lines indicate ±1.96 x estimated standard errors.

 sure i//(U,ri) with the common error rj. Suppose that the true structure consists
 of X = g(i//(U, r\), V) and Y = h(i//(U, rj), W). It is observationally equivalent to
 the structure, X = g(U, V) and Y — h(U, W), where V = (//, V) and W = (rj, W).
 In this case, even if U, rj, V, and W are mutually independent, U, V, and W are
 not. Our method then identifies the distribution of rj) instead of U, but it
 is still better than the aforementioned naive estimates, such as using the distribu
 tion of X or the distribution of Y, in the sense that !//((/, rf) is at least free of the
 additional noises V and W.
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 5. EXTENSION TO REGRESSION ANALYSIS

 Thus far, we have focused on the repeated measurement model (1.1), where U is
 the unobserved latent variable and (X, Y) are two measurements. In economet
 rics, we are often interested in structural models and regression models. Before

 concluding the paper, we discuss how our identification results can be applied to
 regression analyses.

 Suppose that we are interested in the model

 where the outcome variable Y is observed, but the explanatory variable U is not
 observable. Instead, we observe a noisy measure X of U, produced by the nonad
 ditive measurement error model:

 We assume the explanatory variable U is finitely supported on U = {mi, ..., uj}
 with the order mi <•■■ <uj on E. The noisy measure X and the outcome variable

 Y may be distributed discretely or continuously distributed.

 Assumption 4. The following conditions are satisfied for the regression model
 (5.1) and the measurement model (5.2).

 (i) The regression function h is strictly monotone.

 (ii) U, V, and W are mutually independent, E[W] = 0, and W is compactly
 supported.

 (iii) Pr(X < U) = 0.
 (iv) Pr(X = U I U = m) > 0 for each U.

 Part (i) is the shape restriction ruling out hump-shaped and wavy regression
 functions. The function h is assumed to be either strictly increasing or strictly de

 creasing. This sort of shape restriction is not new in the literature of measurement

 errors (e.g., Chen, Hu, and Lewbel, 2009). Part (ii) requires the strong exogeneity

 assumption that the regressor U is statistically independent of the residual W in
 (5.1), in addition to the standard locational normalization E[W] = 0 and a com

 pact support restriction for W. We require these two parts, (i) and (ii), to guarantee

 that the conditional distributions fy\x( • I "/) have monotone support boundaries

 required by Assumption 1 (ii). Parts (iii) and (iv) of Assumption 4 are the same
 as the assumption of no under-reporting (Assumption 2 for X), which in turn
 implies Assumption l(i) by Proposition 2. Therefore, fy\u is identified under As
 sumption 4 by Theorem 1. Furthermore, by Assumption 4(ii), this identification of

 fy\u in turn implies the identification of the nonparametric regression function h

 as h(uj) = / yfY\u 01 "/ )dy or h(uj) = yfy\v (y\uj) for each je {I,..., J).
 Summarizing these arguments, we obtain the following corollary of Theorem 1.

 COROLLARY 1. If Assumption 4 is satisfied for the regression model (5.1)
 and the measurement model (5.2), then the regression function h is identified.

 Y = h(U) + W,  (5.1)

 X = g(U,V).  (5.2)
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 At the cost of invoking Assumption 4 and the finite support U, we can identify

 the nonparametric regression model using only one measurement. This feature is
 to be contrasted with the existing identification results for nonparametric regres

 sion models that require two measurements (e.g., Li, 2002; Schennach, 2004ab;
 Hu and Sasaki, 2015) and the identification results for the nonseparable models
 (e.g., Hu, 2008; Hu and Schennach, 2008; D'Haultfoeuille and Février, 2010).
 On the other hand, this corollary parallels the result by Chen, Hu, and Lewbel
 (2009) where they also identify regression models without requiring additional
 measurements, although direct comparisons are difficult due to the different sup

 port cardinality assumptions about U. They require the monotonicity of h as in

 our Assumption 4(i) as well as the independence and the locational normaliza
 tion as in our Assumption 4(ii) in order to identify the regression function m
 without using additional measurements as in our context. Although our baseline

 restriction (Restriction 1) imposes a strong condition when the model is applied
 to regression models, it is effectively no stronger than the assumption imposed on

 the regression models with the same measurement setting in the literature.

 6. SUMMARY

 This paper proposes nonparametric identifying restrictions for nonseparable
 paired measurement error models. The general identifying restriction requires that

 some ordering on the support of unobserved truth entails nonoverlapping condi

 tional support. We provide sufficient conditions for this high-level assumption in

 the context of our empirical application.

 Focusing on our empirical application, we propose several primitive sufficient

 conditions for the general identifying restriction. Applying the method to the
 twin panel data of Ashenfelter and Krueger (1994) containing self-reported and
 sibling-reported years of education, we attempt to recover the distribution of true

 years of education as well as the behavioral patterns of self reports and sibling
 reports. Across alternative identifying restrictions, we obtain the following robust

 patterns. Self reports are accurate if the true years of education are 16 or 18, typ
 ically corresponding to advanced university degrees. On the other hand, sibling
 reports are accurate when the true years of education are 12,14, 16, or 18, which

 are typical diploma years. Such a nonlinear result would not have been obtained

 with the traditional methods based on additively separable independent errors.

 NOTES

 1. This representation of an otherwise observationally equivalent set of underlying structures fol

 lows by normalizing the distributions of V and W. See Matzkin (2003) for necessity of normalizing
 the error distributions for nonseparable models, and for examples of normalization.

 2. Examples include, but are not limited to, measurement error models (Li and Vuong, 1998; Li,

 2002; Schennach, 2004ab; Song, Schennach, and White, 2012), auction models (Li, Perrigne, and
 Vuong, 2000; Krasnokutskaya, 2011), panel models (Evdokimov, 2010; Arellano and Bonhomme,
 2012), and labor economic applications (Cunha, Heckman, and Navarro, 2005; Bonhomme and Robin,

 2010; Hansen, Heckman, and Mullen, 2004; Kennan and Walker, 2011).
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 3. For a related example, Kim, Petrin, and Song (2016) propose how to estimate production func
 tions with mismeasured factors.

 4. In the United States, 12,14,16, and 18 years of education are often, but not necessarily, associ

 ated with high-school diplomas, associate degrees, bachelor's degrees, and master's degrees, respec
 tively.

 5. We chose this sample size because it is close to the size (N = 340) of the empirical data that we

 use for our empirical application in Section 4.
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 APPENDIX A

 A.1. Proof of Lemma 1

 Proof. Note that > 0 because u\ e U. By Restriction 1, we can choose x* €
 X(ui) and y* e y("i)- Because fx\u(x* I ";) = 0 for all j > 1 by the choice of **, we

 have fxy(x*>y) = Z/= i fx\u(x* | Uj)fY\u(y I Uj)fu(uj) = fX\u(x* I u\)fY\ui.y I
 ul)fu(ul) for all y ey by the independence assumption of the model (1.1). Simi
 larly, fxy(x,y*) = fx\u(x I u\)fY\u(y* I "])/[/(" 1 ) holds for all x e X. In particu
 lar, fxy(x*,y*) = fx\u(x* I u\)fY\u(y* I «i)/t/("i)- Moreover, fx(x*) = fx\uU* \
 "l)/t/("l) and fY{y*) = fY\u(y* I u\)fu(ul) follow. Using all these equalities,
 we get

 , . . . fx\u(x\u\)fY\u(y* \ui)fu(u\) fxY(x,y*)
 fx\u(x I wl)= —7—7-77—,, , , = . , for aïlxeX fy\u(y l«i)/t/("i) fy(y*)

 , , . . /x|£/(** I«i)/y|c/0' I «i)/e/(«i) fxY(x*,y) . ^, fY\uiy I #1) = —i—7—, ' w . . = . . for all y e y /xïî/(* l"i)/y("i) /x(**)

 f , , _ /xit/(** I«i)/rit/(y* I "i)/t/(«i)2 _ /x(**)/r(y*)
 u 1 fx\u(x* I ui)fY\u(y* I ui)fu(ui) fxY(x*,y*)

 Note that the right-hand sides of these equalities consist of the observed data fxY- There

 fore, (fx\u( ■ I "l). fY\u( ■ I "l). /t/(" 1)) is identified. ■
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 A.2. Proof of Lemma 2

 Proof. Note that fu(uj+1) > 0 because Uj+\ e U. By Restriction 1, we can choose
 x* g X(uj+\) and y* e y{i*j+1). Because fx\u(x* I "it) = 0 f°r all k > j + 1 by

 the choice of x*, we have fxY(x*,y) = £/=i fx\u(x* I "iOfY\u(y I H)fu(»k) =
 ZK; fx\u(x* I "k)fY\u(y I >*k)fu(uk) + fx\u(x* I "j+\)fY\u(y I uj+l)fu(uj+l) for
 all j e y. Similarly, fxr(x, y*) = fx\u(* I "k)fy\u(y* I uk)fu("k) + fx\u(x I
 Uj+l)fY\u(y* I uj+l)fu(uj+l) holds for all x e X. In particular, fxy(x*,y*) =
 ±Kjfx\u(x* I uk)fY\u(y* I"k)fu(<*k) + fx\u(x* I "j+\)fY\u(y* I "/ + l)AK«/+l)
 Moreover, fx(x*) = Tk^j fx\u(*' I "k)fu(uk) + fx|î/(** I w/+l)/£/(«/+l) and
 fy(y*) = HkçjfY\u(y* I uk)fu(uk) + fy\u(y* i w;-+i)/(/("/+i) follow. Using all
 these equalities, we get

 Note that the right-hand sides of these equalities consist of the observed data fxy> or are

 assumed in the statement of the lemma to be known. Therefore, ( fx\u ( • I «;+i)> fy\u ( ' I

 Uj+\), /(/(wj+i)) is identified. ■

 A.3. Proof of Proposition 1

 Proof. To show that Restriction l(i) is satisfied, assume without loss of generality that

 infsupp(/x|t/( • I Uj)) is increasing in j as in Assumption l(i). Similar arguments fol
 low in the other case. Let Uj,Uj+i e U. Let sj = infsupp(/jsc|t/( • I «;')) and sj+\ =
 infsupp(/x|[/( • I "j+i)). where sj < sj+\ holds by Assumption l(i). By the definition of

 Sj as the infimum of the set supp (fx\u( • I «;)). there exists xj such that sj < xj < sj+\.

 By Assumption l(i), xj is not an element of supp (fx\u( • I uk)) for all k > j. Therefore,
 Restriction l(i) is satisfied. Similar lines of argument show that Assumption l(ii) implies
 that Restriction l(ii) is satisfied. ■

 A.4. Proof of Lemma 3

 Proof. Assume without loss of generality that inf (/x|C7 ( • I ";)) and inf (fy\u( • I ";))
 are increasing in j as in Assumption l(i) and (ii). Similar arguments follow in the other

 cases. We use the short-hand notations Sj = inf(x e X | fx\u (* I uj) > 0} and tj = inf{y e
 y I fy\u(y I uj) > 0} for each j = 1 Notice that s\ — inf A1 and t\ = inf y under
 the current assumption. To prove the lemma, we want to find S2 and tj- To this end, we

 claim that the equality fxY(xi,y\)fxy(x2,y2) = fxY(*l,y2)fxY(x2,y\) holds for all
 X\,X2 e [ii,s)n* and all y\,yz e y if and only if j 02

 Suppose that s < 52 holds. For all x e [si, j) n X, fx\u(x | mi) > 0 but fx\u(x \
 uj) = 0 for all j =2,..., J by Assumption 1. Therefore, fxy(x,y) = Y.j fx\u(x |

 fx\v

 fy\u<
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 ";)•/{/(«;)• fy\u (y I uj ) = fx\u (* I " 1 )•/(/(" 1 )■ ÏY\U (y I " 1 ) for all jc e , s) n X and

 all yey. It follows that fxr&l, yi) fxY(x2, VI) = fx |{/(*11 «l)/x|l/(*21 "l)/y|{/()'l I
 Ul)fy\u(y21 Ul)fu(»l)2 = fxY(xi,y2)fxY(x2,y\) holds for allxi,*2e[si,s)n,r and
 all yi,y2€ y.

 Conversely, suppose that s > s2 holds. By definition of s2 as the infimum of the

 set (x e X I fx\u(x I "2) > 0}, there exists jq e [S2>s) H X such that fx\u(x\ I
 «2) > 0. Because of Assumption 1, we can choose such x\ so that x\ < S3.
 Let X2 6 [si,s2) [s],s) n X, yj e {y e y \ fY\u(y I »2) > 0} C y, and
 y2 e tfi.'2)ny C y. Note that fxY{x\,y\)fxY(x2^2) = fx\u(x\ I "i)/*|t/(*2 I
 "i)/y|i/(yi I "i)/y|i/(y2 I "i)/t/(«i)2 + fx\u(.*i I u2)fx\u(x2 I "i)/rit/(yi I
 «2)/y|f (y21 "i)/i/(«i)/f ("2) # /x|£/C*i I ui)fx\u(.*21 "i)/y|t/(yi I «i)/y|î/(y21
 "l)/[/("l)2 because /x|C/(^l I "2)/j/("2)/y|i/(yi I "2) / 0 for our choice of X| and
 yi as well as fx\u(x2 I "l)/l/("l)/y|{/(y2 I "l) / 0 for our choice of x2 and y2
 On the other hand, fxYix\,y2)fxY(x2,y\) = fx\u(x\ I u\)fx\u(x2 I "i)/y|£/(yi I
 u\)fy\uiy2 I "l)/y("l)2 for our choice of *2 and y2 under Assumption 1. It
 follows that fxr(xuyi)fxY(x2>y2) / fxY(xuy2)fxY(*2>yi) for these xhx2 €
 [jl,s)n.f and yi,y2 e This shows that the equality /xy(*i,yi)/xr(*2>y2) =
 fxY(xi,y2)fxY(x2>yi) need not hold for all xi,x2 e [^1, jr) 0 A" and all yi,y2 e ^ when
 s > s2.

 Therefore, it follows that the equality fxY(x\,y\)fxY(x2,y2) = fxy(x\,y2)
 /xy(x2,yi) holds for all x\,x2 e [îi,s)n^f and all yi,y2 e y if and only if s < s2.
 This implies that s2 can be characterized by s2 = inf{s e X\3 x\,x2 e [si,s)nX and
 yi, y2 e y s.t. fXY(x 1, y\)fxY(x2, y2) / fxï(x\, y2)fxy(x2, yi)}. Similar lines of argu
 ment show that t2 can be characterized by t2 — inf{/ g 3>|3 x\,x2eX and y\, y2 e [?i, /)D

 y s.t. /xy(.x 1, y\)fxY(x2, y2) / fxvix 1, y2)fxy(x2, yi)}- Notice that every component
 in the right-hand sides of these equalities can be directly identified by the observed data

 fxY■ Hence, under Assumption 1, we identify X(u\) and ^("1) by [si,$2) H# and
 ['l, t2) fi 3>, respectively. ■

 A.5. Proof of Lemma 4

 Proof. We use the short-hand notations s* = inf{* e X | fx\u(x I uk) > 0} and
 Ik = inf(y e ^ I fy\u(y I uk) > 0} for each k = 1,..J. Assume without loss of gen
 erality that inf(/x|j/( • | «*)) and inf(/y|{/( • | uk)) are increasing in k as in Assump
 tion l(i) and (ii). In this case, sj and tj are known by the inductive assumption. Sim

 ilar arguments follow in the other cases. To prove the lemma, we want to find sj+j
 and tj+1. To this end, we claim that the equality [/xr(^i,yi) - Y.k<j fx\u(xl I uk)
 fu(Uk)fY\u(yi I Uk)][fxY(x2,y2) ~ ^£k<j fx\u(X2 I H)fu(Mk)fY\uiy2 I "it)] =

 fx\u(x 1 I Uj)fx\u(x2 I uj)fY\u(y\ I Uj)fy\u(y2 I uj)fu(uj)2 = lfxy(xuy2) -
 Xk<jfx\u(x\ I Uk)fu("k)fY\u(y2 I "k)][fxY(X2> yi) -~Lk<j fx\u(x2 I Uk)fu("k)
 fy\u(y\ I holds forall^i,X2 e [sy-,s)n X and all yi,y2 e ^ if and only if s < Sj+\.
 Suppose that s < sj+\ holds. For all jc e t^.J)n X, fx\u(x I uk) = 0 for all k =

 ; +1 J by Assumption 1. Therefore, /xy(x< y) = Uk fx\U(x I "k) • fu("*) ■ fY\u(y I
 Uk)-llk^jfx\u(x I Uk)-fu(i*k)-fY\u(y I Uk) for all a: e [îj,î)n,¥ and all y £ y.
 It follows that lfxy(xuyi) - Xk<j fx\u(xl I uk)fu(uk)fY\u(y\ | uk)][fxY(x2. y2) -
 Hk<j fx\u(x2 I Uk)fu(uk)fy\u(y2 I "/t)l = fx\u(x 1 I Uj) fX\u(x2 I Uj)fY\u(y\ I uj)
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 fy\u(y2 I uj)fu("j)2 = Uxy(x\,y2) - Z*<//x|£/(*i I <*k)fu(^k)fY\u(yi I «k)]
 [/xrC*2.:vi)-Lt<; fx\u(x2 I "*)/c/(M*)/y|{/0'l I "*)] holds foralljq,^ 6 [s;-,s)n
 X and all y\,y2 e y~

 Conversely, suppose that s > sj+1 holds. By definition of sj+\ as the infi
 mum of the set [x e X | fx\u(x I ";'+l) > 0). there exists x\ e [sj+\,s) n X
 such that fx\u(xl I uj+\) > 0- Because of Assumption 1, we can choose such
 *1 so that x\ < Sj+2. Let yi e {y e ^ | fy\u(y I ";+1) > 0} C y. Also let
 X2 e [sj,sj+i) n X c [sj,sj+\) n X and y2 e [tj,tj+\) n y c J be such that
 fx\u(x2 I uj) > 0 and fy\u(y2 I «/) > 0. where such *2 and y2 are guaranteed to exist
 by the definitions of sj and tj as the infima of the sets [x e X \ fx\u(x I uj) > 0} and
 {y e y I fy\u(y I > 0}> respectively. Given these choices, note that [/xy(*i,yi) -

 îlk<j fx\u(x\ I «k)fu(uk)fy\u(y\ I Uk)][fxy(x2>y2) - !Lk<j fx\u(x2 I uk)
 fu(uk)fy\u(y2 I uk)] = fx\u(x\ I "j)fx\u(x2 I Uj)fy\u(y\ I "j)fy\u(y2 I «;•)
 fu(uj)2 + fx\u(x\ I uj+\)fx\uix2 I "yO/ric^i I uj+\)fy\u(y2 I uj)fu(uj)
 fu(.Uj+1) # /x|t/(*l I ";)/x|J/(*2 I Uj)fy\u(yi I "y)/riC/(^2 I uj)fu(uj)2 because
 fx\u(x\ I ";+l)/{/(";+l)/y|t/(yi I K/+l) ¥> 0 for our choice of and yj, as well as
 fx\u(x2 I uj)fu(uj)fy\u(y2 I «;) / 0 for our choice of x2 and y2. On the other hand,

 t/xyfa.w) - Hk<j fx\u(x\ I "k)fu("k)fy\u(y21 "kW/xyi*2»yi) - Z*</ /xi£/
 (*21 uk)fu(uk)fY\u(yi I "t)] = /x|c/(*i I Uj)fx\u(x21 uj)fy\u(y\ I "j)/y|j/(y21
 uj)fu(uj)2 for our choice of *2 and y2 under Assumption 1. As a consequence, we have

 lfxy(xi<yi) - Zk<j fx\u(x\ I "Jk)fu(w)fy\u(yi I "fr)H/xy(*2>:y2) - St<j fx\u
 (•*2 I «*)/t/ ("k)fy\u te I "*)] # [/xy(-*i>y2) - /x|[/(*i I uk)fu("k)fY\u(y2 I
 "/OH/xyfe.yi) ~ Zjfc<//x|t/(*2 I Wjfc)/t/("Jt)/y|£/(yi I "it)] for these xux2 e

 and y\,y2 e y. This shows that [/xy(*l,yi) ~Y.k<j fx\u(xl I "*)/{/("*)
 fy\u(y\ I t*k)][fxy(x2>y2) - Hk<j fx\u(x2 I Uk)fu("k)fY\u(y2 I "<:)] =
 [/xy(*i>y2) - Hk<j fx\u(x\ I uk)fuluk)fy\u(y21 "t)][/xy(*2>:yi) - Z*<j fx\u
 (X2 I Uk)fv (uk)fY\u (yi I «*)] need not hold for all xi,x2e [sj, s) n X and all y 1, y2 e y
 when s > si+\.

 It therefore follows that the equality [/xyCq.yi) - J^k<j fx\u(xl I Uk)fu("k)
 fy\u (yi I "k)][fxY(x2. y2) - Z*<j fx\u(x21 H)fu ("t)/y|u (>"21 "(t) 1 = fx\u (-*11 «/)

 fx\u(x21 uj)fy\u(yi I "j)/y|(/(y21 «;)/t;(";)2 = Uxy(xi,y2) -T.k<j fx\u(x\ I
 Uk)fu("k)fY\u(y2 I uk)][fxY(x2<y\) ~ ~Lk<j fx\u(.x2 I uk)fü(<*k)fy\U(>"1 I «t)]
 holds for all jq,x2 e [jj,s)fl^ and all yi,y2 e ^ if and only if s < îj+i. This
 implies that sj+i can be characterized by sj+\ = inf{s e X \ 3 x\,x2 6 [>;,s)n X
 and yby2 e y s.t. [fxy(xi,yi) ~ îlk<j fx\u(xl I uk)fu(uk)fy\u(yi I «*)]•
 t/xyfe.w) - Hk<j fx\u(x2 I uk)fuh*k)fY\u(y2 I uk) 1 / [/xy(*i.y2) -
 Zfc<; fx\uixi I uk)fu(uk)fy\u(y21 "<:)] • [/*y(*2»yi)-Zt<^ /xit/te I uk)fu(<*k)
 fy\u(y\ I "<:)]}• Similarly, ^+i can be characterized by tj+\ = inf{f &y \ 3 x\,x2& X
 and yi,y2 e [tj,t)ny s.t. [fxy(xl,yi) ~Y.k<j fx\u(x\ I H)fu(Mk)fy\u(yi I «*)]•
 [fxy(x2,y2) - Z*<7/x|£/(*2 I uk)fu(Mk)fy\u(.y2 I "k)] / [/xy(*1.>2) -
 Zt<;/x|C/(^l I Uk)fu(Uk)fy\u(y2 I Wit)]- [/xyte.)'l) - lLk<j fx\l/ix2 I
 uk)fu(uk)fy\u(y\ I «jt)]}- Notice that every component in the right-hand sides of
 these equalities can be directly identified by the observed data fxy or known by the induc

 tive assumption. Therefore, sj+\ and tj+\ are identified, and we have X(uj) c [sj,sj+1)
 and y{uj) c [tj,tj+i).

 To further pin down X(uj) and y(uj), it remains to find the subsets of [sj,sj+1)
 and [tj,tj+1) on which fx\u( • I ";) > 0 and fY\u( • I > 0, respectively.
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 Consider the sets Xj = {x e X \ fx(x) - Y.k<j fxu(x>uk) > 0} and Vj = {y e y I
 fr(y) ~ Hk<j ÎYu(x,Uk) > 0}. Note that every component in the right-hand sides of
 these equalities can be directly identified by the observed data fxy or known by the in

 ductive assumption. Therefore, these sets Xj and yj are identified. We now claim that

 X{uj) = Xj n[sj,sj+i), where the right-hand side is identified. First, X(uj) c [sj,sj+\)
 was already claimed. Furthermore, ifx e X(uj)D[i;-,Sj+i), then fx(x) fx\u(x |
 uk)fu(uk) - fx\u(x I uj) > 0 so that x e Xj holds. Conversely, let jc e XjD[sj,Sj+i).
 Then, we have x e Xj D [sj,sj+i) C Xj\lsj+i,oo) c support(/^|y( • | uk))\\Jj<k
 support(/x|(/( • I u/c)), thus showing that x e X(uj). Similarly, we can show y(uj) =
 Xj n[tj,tj+i) where the right-hand side is identified. ■

 A.6. Proof of Proposition 2

 Proof. By Assumption 2(i), infsupp(/^|y(- I «)) > u and infsupp(/y|y(- | «)) ^ u
 for each u 6 U. On the other hand, by Assumption 2(ii), infsupp(/x|{/(- I «)) < u
 and infsupp(/y|t/(- | «)) < u for each u eU. Therefore, infsupp(/x|i/(- I ")) =
 infsupp(/y|(/(-1 u)) = u for each u e U. It then follows that infsupp(/y|{/(-1 Uj)) and
 infsupp(/y|(y(-1 Uj)) are increasing in j with the ordering on U defined by j < k if and
 only if uj <uk. ■

 A.7. Proof of Proposition 3

 Proof. For ease of writing, we define a relation -< on U in the following manner:
 If u e Ve and u' = max{n" e V \ u" < w}, then u -< Otherwise, u < u' <=> u -<
 The induced relation X can be shown to be a linear order on U, so it can construct the

 indexed set U = {u\,...,uj) such that j ^ k if and only if uj X jk.
 Let u € V. If {«' 6 V I u' > u] = 0, then there exist no element u! g U for which u~<u'

 holds due to our definition of -<, and thus u & support(/x|j/ ( • | «')) trivially holds for
 this u'. Next, assume that {«' e V | «' > u] ^ 0, and let «+ = min{«' e V | u' > u}. If
 u X then we have u+ < u' by our definition of Assumption 3(ii) then implies u &
 support(/x|y( • I «'))■ Therefore, Restriction l(i) follows for this u by Assumption 3(iii).

 Let u 6 Ve. If u x then we have u' = max)«" € V | u" < u] or u < u! by our definition

 of X. If the former is the case, then Assumption 3(i) implies u 4 support(/x|c/( • I «'))■ If

 the latter is the case, then Assumption 3(i) and (ii) together imply u & support(/x|i/( • |
 «')). Therefore, Restriction l(i) follows in both cases for this u by Assumption 3(iii).

 The above two paragraphs show that Restriction l(i) is satisfied by Assumption 3.
 Similar lines of argument show that Restriction l(ii) is satisfied. Because U is discrete,

 {«' € U I u! X u} e a(U) and {«' e U | u' x «} e o(U), so Restriction l(iii) trivially
 holds. Finally, Restriction l(iii) follows from the monotonicity of probability measures,
 i.e., ßu({u' eU \u' X u}C\B(u,r)) ^ //(/({«}) > 0 for all u e U. ■
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