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a b s t r a c t

This paper proposes closed-form estimators for nonparametric regressions using twomeasurementswith
non-classical errors. One (administrative) measurement has location-/scale-normalized errors, but the
other (survey) measurement has endogenous errors with arbitrary location and scale. For this setting
of data combination, we derive closed-form identification of nonparametric regressions, and practical
closed-form estimators that perform well with small samples. Applying this method to NHANES III, we
study how obesity explains health care usage. Clinical measurements and self reports of BMI are used as
two measurements with normalized errors and endogenous errors, respectively. We robustly find that
health care usage increases with obesity.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

For the increasing availability of combined administrative and
survey data (Moffitt and Ridder, 2007), econometric methods that
can properly handle matched data with measurement errors have
become of great practical importance. For econometric methods to
be truly useful no matter how complicated a model is, estimators
should ideally be given in a closed form explicitly written in terms
of observed data, like the OLS. Unfortunately, such convenient
characteristics are rarely shared by nonparametric estimators for
non-classical measurement errors.

Identification and estimation of regression models with two
measurements of explanatory variables are proposed by Li (2002)
and Schennach (2004a,b) among others. A limitation with the ex-
isting methods is that they require twomeasurements with classi-
cal errors. In practice, empirical datawith twomeasurements often
come from matched administrative, imputed, and/or survey data,
where particularly survey data are often subject to non-classical
errors (e.g. Bound et al., 2001; Koijen et al., 2013). Ignoring the non-
classical nature of errors inmeasurementsmay lead to inconsistent
estimation, as we demonstrate in our simulations. In this paper,
we propose closed-form estimators for nonparametric regression
models using two measurements with non-classical errors.
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Specifically, we explicitly estimate the nonparametric regres-
sion function g for the model

Y = g(X∗) + U E

U|X∗


= 0,

where Y is an observed dependent variable, X∗ is an unobserved
explanatory variable, and U is the regression residual. While the
true explanatory variable X∗ is not observed, two measurements,
X1 and X2, are available frommatched data. For simplicity, X∗ is as-
sumed to be a scalar and continuously distributed. The relationship
between the twomeasurements and the true explanatory variable
X∗ is modeled as follows.

X1 =

P
p=0

γpX∗p
+ E1

X2 = X∗
+ E2.

Unless γ1 = 1 and γ2 = · · · = γP = 0 are true, the first measure-
mentX1 entails non-classical errorswith nonlinearity. Allowing for
such non-classical errors is crucial particularly for survey data that
are often contaminated by endogenous self-reporting biases. Since
the truthX∗ is unobserved, the secondmeasurementX2 is location-
/scale-normalizedwith respect to the unobserved truth X∗. We use
alternative independence assumptions on the measurement error
E2 depending on which order P we assume about X1, but these as-
sumptions are more innocuous than assuming classical errors in
any case.
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Under assumptions thatwill be introduced below,we show that
the regression function g can be explicitly expressed as a functional
of the joint CDF FYX1X2 in the sense that g(x∗) = λ(x∗

|FYX1X2). We
provide the concrete expression for this functional λ(x∗

| · ). In
order to construct a sample-counterpart estimator of g(x∗) given
this closed-form identifying solution, it suffices to substitute the
empirical distributionFYX1X2 in this known transformation so we
get the closed-form estimator g(x∗) = λ(x∗

| FYX1X2). We present
its theoretical large sample properties as well as its small sample
performance. Monte Carlo simulations show that the estimator
works quite well with N = 500, a very small sample size for
nonparametrics.

Measurement error models have been extensively studied in
both statistics and econometrics. The statistical literature focuses
on cases of classical errors, where measurement errors are inde-
pendent of the true values — see Fuller (1987) and Carroll et al.
(2006) for reviews. The econometric literature investigates non-
linear models and nonclassical measurement errors — see Chen
et al. (2011), Bound et al. (2001) and Schennach (2013) for reviews.
However, closed-form estimation, nonlinear/nonparametric mod-
els, and non-classical measurement errors still remain unsolved,
despite their joint practical relevance. Two measurements are
known to be useful to correct measurement errors even for ex-
ternal samples if the matched administrative data is known to be
true (e.g., Chen et al., 2005). The baseline model of our framework
was introduced by Li (2002) and Schennach (2004a), where they
consider parametric regression models under two measurements
with classical errors. Hu and Schennach (2008) provide general
identification results for nonseparable and non-classical measure-
ment errors,1 but their estimator relies on semi-/non-parametric
extremal estimatorwhere nuisance functions are approximated by
truncated series.2 Unlike these existing approaches, we develop a
closed-form estimator for nonparametric models involving non-
classical measurement errors.

Our results share much in common with Schennach (2004b)
where she develops a closed-form estimator under the restriction,
γ1 = 1 and γ2 = · · · = γP = 0, of a classical-error structure. There
are notable differences and thus values added by this paper as
well. Our method paves the way for non-classical error structures
with highdegrees of nonlinearitywhereas the existing closed-form
estimator can handle only classical errors. To this end, we propose
a new method to recover and use the characteristic function of
the generated latent variable

P
p=1 γpX∗p, instead of just X∗, in the

framework of deconvolution approaches. Not surprisingly, as we
show through simulations, the classical error assumption γ1 = 1
and γ2 = · · · = γP = 0 can severely bias estimates if the
true DGP does not conform with this assumption. In our empirical
application, we find that γ1 ≠ 1 is indeed true when people report
their physical characteristics, and hence the existing closed-form
estimator that assumes classical errors would likely suffer from
biased estimates. The contribution of our method is to overcome
these practical limitations of the existing closed-form estimators.

For an empirical illustration, we investigate how obesity mea-
sured by the BodyMass Index (BMI) explains the health care usage
by using a sample of about 1900 observations extracted from the
National Health and Nutrition Examination Survey (NHANES III).

1 Also see Mahajan (2006), Lewbel (2007), and Hu (2008) for non-/semi-
parametric identification and estimation under non-classical measurement errors
with discrete variables.
2 Our model is also closely related to nonparametric regression models with

classical measurement errors, which are extensively studied in the rich literature
in statistics. When the error distribution is known, the regression function may be
estimated by deconvolution — see Fan and Truong (1993) and Carroll et al. (2006)
for reviews. When the error distribution is unknown, Schennach (2004b) uses
Kotlarski’s identify (see Rao, 1992) to provide a Nadaraya–Watson-type estimator
for the regression function.
This data set uniquely matches self-reports and clinical measure-
ments of the BMI.We allow the formermeasurement to suffer from
endogenous biases with arbitrary location and scale, while the lat-
ter measurement is location-/scale-normalized with respect to the
true BMI. Our results show a robust upward-sloping tendency of
the mean health care usage as a function of the true BMI, control-
ling for the most important health factors, namely gender and age.
This tendency is particularly stronger for females.

2. Closed-form identification: a baseline model

Our objective is to derive closed-form identifying formulas
for the nonparametric regression function g . For the purpose of
intuitive exposition, we first focus on the following simple model:

Y = g(X∗) + U, E[U | X∗
] = 0

X1 = γ1X∗
+ E1 E[E1] = γ0

X2 = X∗
+ E2, E[E2] = 0

(2.1)

where we observe the joint distribution of (Y , X1, X2). The restric-
tion E[U | X∗

] = 0 means that g(X∗) is the nonparametric re-
gression of Y on X∗. We do not assume E[E1] to be zero in order to
accommodate arbitrary intercept γ0 for the first measurement X1.
As such, we suppress γ0 from the equation for X1, i.e., it is embed-
ded in γ0 = E[E1]. On the other hand, the locational normalization
E[E2] = 0 is imposed on the second measurement X2. A leading
example of (2.1) is the case with γ1 = 1 often assumed in related
papers in the literature. We do not make such an assumption, and
thus our model (2.1) accommodates the possibility that the first
measurement X1 is endogenously biased even if X∗

⊥⊥ E1 is as-
sumed, as E[X1 − X∗

| X∗
] = γ0 + (γ1 − 1)X∗.

We can easily show that γ1 is identified from the observed data
by the closed-form formula

γ1 =
Cov(Y , X1)

Cov(Y , X2)
(2.2)

under the following assumption.

Assumption 1 (Identification of γ1). Cov(E1, Y ) = Cov(E2, Y ) = 0
and Cov(Y , X2) ≠ 0.

The first part of this assumption requires that E1 and E2 are un-
correlated with the dependent variable. These zero covariance re-
strictions can be implied by a lower-level assumption, such as E[U |

X∗, E1, E2] = 0, E1 ⊥⊥ X∗, and E[E2 | X∗
] = 0,which also imply the

additional identifying restrictions presented later (Assumption 3).
The second part of Assumption 1 is empirically testable with ob-
served data, and implies a non-zero denominator in the identifying
Eq. (2.2). We state this auxiliary result below for ease of reference.

Lemma 1 (Identification of γ1). If Assumption 1 holds, then γ1 is
identified with (2.2).

In some applications, we may simply assume γ1 = 1 from the
outset, and Assumption 1 need not be invoked. In any case, we
hereafter assume that γ1 is known either by assumption or by the
identifying formula (2.2), and that γ1 is different from zero.

Assumption 2 (Nonzero γ1). γ1 ≠ 0.

If this assumption fails, then the observed variable X1 fails to
be an informative signal of X∗. Assumption 2 therefore plays the
role of letting X1 be an effective proxy for the latent variable X∗.
To complete our definition of the model (2.1), we impose the
following independence restrictions.

Assumption 3 (Restrictions). (i) E [U|X1] = 0. (ii) E1 ⊥⊥ X∗.
(iii) E [E2|X1] = 0.
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.3)
g(x∗) =


+∞

−∞
e−itx∗ exp

 t
0


∂

∂t2
φX1X2 (t1/γ1,t2)


t2=0

φX1 (t1/γ1)
dt1

 
∂
∂s φX1Y (t/γ1,s)


s=0

i φX1 (t/γ1)
dt


+∞

−∞
e−itx∗ exp

 t
0


∂

∂t2
φX1X2 (t1/γ1,t2)


t2=0

φX1 (t1/γ1)
dt1


dt

, (2

where the parameter γ1 is identified with the closed-form solution (2.2).
Box I.
Part (i) states that the residual of the outcome equation is con-
ditional mean independent of the first measurement. A stronger
version of part (i) is the mean independence E [U|X∗, E1] = 0. Part
(ii) states that the random error E1 in X1 is independent of the true
explanatory variable X∗. Notice that the coefficient γ1 may not be
equal to one, and therefore the first measurement error defined as
X1 − X∗

= (γ1 − 1)X∗
+ E1 need not be classical, i.e., the measure-

ment error is not independent of the true value X∗, even under part
(ii) of the above assumption. This observation highlights one of the
major advantages of our model compared to the existing models
which imposeγ1 = 1. Part (iii) states that the secondmeasurement
error E2 is conditional mean independent of the first measurement
X1. This assumption is different from the classicalmeasurement er-
ror assumption that E2 is independent of X∗ and U . The last two
parts, (ii) and (iii), can be succinctly implied by the frequently used
assumption in the literature that X∗, E1, and E2 are mutually inde-
pendent, but we state the above weaker assumptions for the sake
of generality. Plausibility of these independence assumptions will
be discussed in the context of a specific empirical application in
Section 6.

Let i =
√

−1 denote the unit imaginary number. Define the
marginal characteristic functions φX1 , φX∗ and φE1 by φX1(t) =

EeitX1 , φX∗(t) = EeitX
∗

and φE1(t) = EeitE1 , respectively. Also define
the joint characteristic functions φX1X2 and φX1Y by φX1X2(t1, t2) =

Eeit1X1+it2X2 andφX1Y (t1, s) = Eeit1X1+isY , respectively.We letF de-
note the transformation defined byF f (t) =


eitxf (x)dx.With this

notation, we state the following assumption for identification of g .

Assumption 4 (Regularity). (i) φX1 does not vanish on the real line.
(ii) fX∗ andF fX∗ are continuous and absolutely integrable. (iii) fX∗ ·g
and F (fX∗ · g) are continuous and absolutely integrable.

Under Assumptions 3(ii) and 4(i), the characteristic functions
φX∗ and φE1 do not vanish on the real line either. This property
of non-vanishing characteristic functions is shared by many of
the common distribution families, e.g., the normal, chi-squared,
Cauchy, gamma, and exponential distributions. In parts of our iden-
tifying formula, the characteristic functions appear as denomina-
tors, and hence this assumption to rule out zero denominator is
crucial. Parts (ii) and (iii) ensure that we can apply the Fourier
transform and inversion to those functions. Under this commonly
invoked regularity condition together with the independence re-
strictions in Assumption 3, we can solve relevant integral equa-
tions explicitly to obtain the following closed-form identification
result.

Theorem 1 (Closed-Form Identification for Affine Models of Endoge-
nous Measurement). Suppose that Assumptions 1–4 hold for the
model (2.1). The nonparametric function g evaluated at x∗ in the in-
terior of the support of X∗ is identified with the closed-form solution
given as Eq. (2.3) in Box I.

A proof is given in Section A.1 in the appendix. Note that every
component on the right-hand side of the identifying formula (2.3)
is computable directly as a moment of observed data. Replacing
the population moments by the corresponding sample moments
therefore yields a closed-form estimator of g(x∗).
3. Closed-form identification: general models

In this section, we consider the following generalized extension
to the baseline model (2.1):

Y = g(X∗) + U, E[U | X∗
] = 0

X1 =

P
p=1

γpX∗p
+ E1 E[E1] = γ0

X2 = X∗
+ E2, E[E2] = 0

(3.1)

where we observe the joint distribution of (Y , X1, X2). The first
measurement X1 is systematically biased with an arbitrarily high
order of nonlinearity. We demonstrate that a similar closed-form
identification result can be obtained for this extended model.
To this goal, we impose the following independence restrictions
on (3.1).

Assumption 5 (Restrictions for the General Polynomial Model). (i)
E[U | X∗, E1, E2] = 0. (ii) X∗

⊥⊥ E1. (iii) (X∗, E1) ⊥⊥ E2.

Parts (i)–(iii) of this assumption are analogous to the corre-
sponding parts in Assumption 3. We remark that parts (i) and (iii)
are stronger than those corresponding parts in Assumption 3, and
that we can deal with the higher-order measurement model (3.1)
at the cost of this strengthening of the independence assumption. A
preliminary step before the closed-form identification of g(X∗) in-
volves identification of the polynomial coefficients γ0, . . . , γP and
the moments of E2 up to the Pth order. This preliminary step is
presented in Section 3.1. After the preliminary step, we then pro-
ceed with closed-form identification of the nonparametric regres-
sion function g in Section 3.2.

3.1. A preliminary step: identification of γp and E[Ep
2 ]

As is the case for the simple affine model of endogenous mea-
surement presented in Section 2 (see (2.2) and Lemma 1), iden-
tification of the parameters γp and σ

p
2 := E[Ep

2 ] for the model
(3.1) also follows from an appropriate set of moment restrictions.
To form such restrictions, one can propose several alternative sta-
tistical and mean independence assumptions, and there is not the
unique set of identifying restrictions to this goal. One might there-
fore want to come up with the most convenient set of restriction
tailored to specific empirical applications. As a general prescrip-
tion, we can form restrictions of the form

Cov(YXq
2 , X1) = E


Y (X∗

+ E2)
q


P

p=1

γpX∗p
+ E1



− E

Y (X∗

+ E2)
q E P

p=1

γpX∗p
+ E1



=

P
p=0

q
q′=0

γpσ
q−q′

2


q
q′


E[YX∗(p+q′)

] − E[YX∗q′

]E[X∗p
]


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Cov(YX r
2, X

s
2) = E[Y (X∗

+ E2)
r+s

] − E[Y (X∗
+ E2)

r
]E[(X∗

+ E2)
s
]

=

r+s
r ′=0

σ r+s−r ′
2


r + s
r ′


E[YX∗r ′

]

−

r
r ′=0

s
s′=0

σ r+s−r ′−s′
2

 r
r ′

  s
s′


E[YX∗r ′

]E[X∗s′
]

for various q = 0, 1, . . . ,Q − P , r = 0, 1, . . . and s = 1, . . .
such that r + s 6 Q for some Q ∈ N. The right-hand sides
of the above two equations involve the unknowns, (γ0, . . . , γP),
(σ 2

2 , . . . , σ
Q
2 ), (E[X∗

], . . . , E[X∗Q
]), and (E[YX∗

], . . . , E[YX∗Q
]),

under Assumption 5. As such, we obtain (Q − P + 1) +
Q (Q+1)

2 restrictions for 3Q + P unknown parameters, (γ0, . . . , γP),
(σ 2

2 , . . . , σ
Q
2 ), (E[X∗

], . . . , E[X∗Q
]), and (E[YX∗

], . . . , E[YX∗Q
]).

Clearly for any given order P of polynomial, as we increase the
number Q , we have sufficiently more number of restrictions than
the unknowns to recover the polynomial coefficients γ0, . . . , γP
and the moments σ 2

2 , . . . , σ P
2 which we need.

A drawback to the above general prescription is that these mo-
ment restrictions may not necessarily lead to a closed-form solu-
tion to these parameters. One can make alternative statistical and
mean independence assumptions for the goal of obtaining closed-
form identification of the polynomial coefficients γ0, . . . , γP and
the moments σ 2

2 , . . . , σ P
2 . For example, we may show a closed-

form solution in the quadratic case, where the endogenous mea-
surement X1 is modeled with P = 2 by

X1 = γ1X∗
+ γ2X∗2

+ E1 : E[E1] = γ0. (3.2)

If we assume the homoscedasticity E[U2
| X∗, E1, E2] = E[U2

] and
the empirically testable rank condition Cov(Y , X2) · Cov(Y 2, X2

2 ) ≠

Cov(Y , X2
2 ) · Cov(Y 2, X2), then we can show that the coefficients

γ1 and γ2 of the model (3.2) are identified with the closed-form
solutions

γ1 =
Cov(Y , X1) · Cov(Y 2, X2

2 ) − Cov(Y , X2
2 ) · Cov(Y 2, X1)

Cov(Y , X2) · Cov(Y 2, X2
2 ) − Cov(Y , X2

2 ) · Cov(Y 2, X2)
and

γ2 =
Cov(Y , X2) · Cov(Y 2, X1) − Cov(Y , X1) · Cov(Y 2, X2)

Cov(Y , X2) · Cov(Y 2, X2
2 ) − Cov(Y , X2

2 ) · Cov(Y 2, X2)
.

Furthermore, Assumption 5 also allows us to identify γ0 and σ 2
2

with the closed-form solutionγ0

σ 2
2

σ 3
2

 =

 E[Y ] −γ2E[Y ] 0
E[X2] −γ1 − 3γ2E[X2] −γ2
E[YX2] −γ1E[Y ] − 3γ2E[YX2] −γ2E[Y ]

−1

×

 E[YX1]

E[X1X2]

E[YX1X2]


,

provided the nonsingularity of the inverted matrix. Detailed
derivations of these closed-form identifying formulas can be found
in Section A.2 in the appendix.

3.2. Identification of nonparametric regression g

With the polynomial coefficients (γ1, . . . , γP) and themoments
(σ 2

2 , . . . , σ P
2 ) for the model (3.1) identified with the methods

outlined in Section 3.1, we proceedwith closed-form identification
of the nonparametric regression function g evaluated at various
points x∗ in the interior of the support ofX∗. To this end,we assume
the following rank condition, which is effectively an empirically
testable assumption as (σ 2

2 , . . . , σ P
2 ) are identified from observed

data FYX1X2 .
Assumption 6 (Empirically Testable Rank Condition). The following
matrix is nonsingular.

1


P
P − 1


σ 1
2 · · ·


P
2


σ P−2
2


P
1


σ P−1
2

1 · · ·


P − 1

2


σ P−3
2


P − 1

1


σ P−2
2

. . .
...

...

1

2
1


σ 1
2

1


P×P

.

Besides its empirical testability, this rank condition is auto-
matically satisfied for the linear case (P = 1) and the quadratic
case (P = 2) due to the normalization E[E2] = 0 in (3.1).3
For convenience of writing, we let Z∗ denote the random variableP

p=1 γpX∗p. The role of Assumption 6 is to identify the distribution
of this generated latent variable Z∗ in the followingmanner. Under
Assumption 6, we can write the following vector on the left-hand
side in terms of the expression on the right-hand side that consists
of observed data.
µ(t, P; σ 1

2 , . . . , σ P
2 ; FX1X2) · · · µ(t, 1; σ 1

2 , . . . , σ P
2 ; FX1X2)

′

:=



1


P
P − 1


σ 1
2 · · ·


P
2


σ P−2
2


P
1


σ P−1
2

1 · · ·


P − 1

2


σ P−3
2


P − 1

1


σ P−2
2

. . .
...

...

1

2
1


σ 1
2

1



−1

×



E[(XP
2 − σ P

2 )eitX1 ]

E[(XP−1
2 − σ P−1

2 )eitX1 ]
...

E[(X2
2 − σ 2

2 )eitX1 ]

E[(X2 − σ 1
2 )eitX1 ]

 . (3.3)

It is shown in the theorem below that this vector is sufficient
to pin down the distribution of the generated latent variable
Z∗

=
P

p=1 γpX∗p, and hence its distribution (equivalently, its
characteristic function) can be identified from observed data.

To make use of this auxiliary result to identify the nonparamet-
ric regression function g of interest, we next propose the following
regularity conditions.

Assumption 7 (Regularity). (i) φX1 and φX2 do not vanish on the
real line. (ii) fX∗ andF fX∗ are continuous and absolutely integrable.
(iii) fZ∗ andF fZ∗ are continuous and absolutely integrable. (iv) fX∗ ·g
and F (fX∗ · g) are continuous and absolutely integrable.

This assumption plays a similar role to Assumption 4. In parts
of our identifying formula, the characteristic functions appear as
denominators, and hence part (i) of this assumption rules out
zero denominator. This property of non-vanishing characteristic
functions is shared by many of the common distribution families,
e.g., the normal, chi-squared, Cauchy, gamma, and exponential dis-

3 However, when the order of polynomial is P = 3 or above, this rank condition
can be shown to be unsatisfied, e.g., one can check that σ 2

2 =
1
3 when P = 3 fails

the assumption.



396 Y. Hu, Y. Sasaki / Journal of Econometrics 185 (2015) 392–408
tributions. Parts (ii) and (iii) ensure that we can apply the Fourier
transform and inversion to those functions. The model allows for
nonlinear and endogenous errors in the sense of E[X1 | X∗

] =P
p=0 γpX∗p. However, we rule out the case where the report X1

is decreasing while the truth X∗ is increasing. Specifically, we as-
sume the following monotonicity restriction.

Assumption 8 (Monotonicity).
P

p=0 γpxp is non-decreasing in x
on the support of X∗.

This monotonicity assumption is used for the purpose of apply-
ing the density transformation formula to derive the density func-
tion for the transformed random variable. Polynomial functions do
not generally exhibitmonotonicity on the entire real line. Note that
Assumption 8 only requires the monotonicity to hold on the sup-
port of X∗, and hence is not restrictive when the support of X∗ is a
proper subset of R. For example, many economic variables X∗ are
innately positive, i.e., supp(X∗) ⊆ R+, and the quadratic function
E[X1 | X∗

] = γ2X∗2, for example, necessarily satisfies Assump-
tion 8 for such variables.

With this set of assumptions, we can still identify the nonpara-
metric function g with a closed-form formula, even if themeasure-
ment X1 is systematically biased with endogeneity and such a high
order of nonlinearity. The following theorem states the exact re-
sult.

Theorem 2 (Closed-Form Identification for High Order Models of En-
dogenous Measurement). Suppose that Assumptions 5–8 hold for the
model (3.1). The nonparametric function g evaluated at x∗ in the in-
terior of the support of X∗ is identified with the closed-form solution:

g(x∗)

=

  
e
−itx∗+itx−it ′


P

p=1
γpxp

  P
p=1

pγpxp−1

 E[YeitX2 ]

E[eitX2 ]
φZ∗(t ′)dt ′dxdt

2π

e
−ith


P

p=1
γpx∗p

  P
p=1

pγpx∗(p−1)

φZ∗(t)dt

,

where φZ∗ is identified with the closed-form solution

φZ∗(t) = exp


 t

0

P
p=1

γpµ(t1, p ; σ 1
2 , . . . , σ P

2 ; FX1X2)

E[eit1X1 ]
dt1


and µ(t, p ; σ 1

2 , . . . , σ P
2 ; FX1X2) for all p = 1, . . . , P are given by the

closed-form solution (3.3).

A proof is given in Section A.3 in the appendix. Note that this
general version of the closed-form identifying formula, involving
the triple integral instead of a single integral due to the nonlin-
ear transformation, is qualitatively quite different from the tradi-
tional formulas including the one in Theorem 1 as well as that of
Schennach (2004b). Theorem 1 may appear to be a special case of
this theorem, as the former focuses on affine models and the latter
extends to higher order polynomials. Strictly speaking, it is not a
special case, because Theorem 1 requires slightly weaker indepen-
dence assumptions than Theorem 2. As such, we stated Theorem 1
separately in the previous section for the practical importance of
parsimonious affinemodels. Section A.2 in the appendix illustrates
how the closed-form identifying formula looks like in the case of
quadratic model of measurement, P = 2, as an example.

4. Closed-form estimator

Given the closed-form identifying formulas of Theorems 1 and
2, one can easily construct a direct sample-counterpart estimator
by replacing the population moments by the sample moments for
the characteristic functions. As this basic idea is the same across
all the cases, we focus on the simplest model (2.1) for simplicity in
this section. If γ1 is known, then the sample-counterpart estimator
g(x∗) of the closed-form identifying formula (2.3) is given by
g(x∗)

=


+∞

−∞
e−itx∗ exp

i
 t
0

n
j=1

X2,je
it1X1,j/γ1

n
j=1

eit1X1,j/γ1
dt1

 n
j=1

Yje
itX1,j/γ1

n
j=1

eitX1,j/γ1
φK (th)dt


+∞

−∞
e−itx∗ exp

i
 t
0

n
j=1

X2,je
it1X1,j/γ1

n
j=1

eit1X1,j/γ1
dt1

φK (th)dt

(4.1)
where φK denotes the Fourier transform of a kernel function K
whichweuse togetherwith the tuning parameter h for the purpose
of regularization.

On the other hand, if γ1 is not known, we replace γ1 by its
estimate and the estimator thus takes the form
g(x∗)

=


+∞

−∞
e−itx∗ exp

i
 t
0

n
j=1

X2,je
it1X1,j/γ̂1

n
j=1

eit1X1,j/γ̂1
dt1

 n
j=1

Yje
itX1,j/γ̂1

n
j=1

eitX1,j/γ̂1
φK (th)dt


+∞

−∞
e−itx∗ exp

i
 t
0

n
j=1

X2,je
it1X1,j/γ̂1

n
j=1

eit1X1,j/γ̂1
dt1

φK (th)dt

(4.2)
where γ̂1 is computed by the following sample-counterpart of
(2.2).

γ̂1 =

1
n

n
j=1

YjX1,j −


1
n

n
j=1

Yj


1
n

n
j=1

X1,j


1
n

n
j=1

YjX2,j −


1
n

n
j=1

Yj


1
n

n
j=1

X2,j

 .

It turns out that the substitution of the estimate γ̂1 for the true
value of γ1 does not affect the asymptotic property of g(x∗). We
assume the following basic regularity conditions to derive the
consistency of g(x∗) in both (4.1) and (4.2).

Assumption 9 (Basic Assumptions for Consistency). (i) {X∗, E1, E2,
U} is independently and identically distributed. (ii) φK is symmet-
ric, satisfies φK (0) = 1, and has integrable second derivatives. (iii)
E |X1|

2+δ < ∞, E |X2|
2+δ < ∞, and E |Y |

2+δ < ∞ for some δ > 0.

In case of using the version (4.2) of the closed-form estimator
instead of (4.1), we assume the following bounded fourth moment
restriction in addition to part (iii) of Assumption 9.
Assumption 9.(iii)′ E |X1|

4 < ∞, E |X2|
4 < ∞, and E |Y |

4 < ∞.
The asymptotic rate of convergence of the closed-form estimators
(4.1) and (4.2) depends on the Hölder exponents of the nonpara-
metric density fX∗ and the nonparametric regression g . We there-
fore introduce the following assumption with index numbers that
determine the asymptotic orders.

Assumption 10 (Determinants of the Asymptotic Orders of Bi-
ases). (i) fX∗ is twice continuously differentiable at x∗, and the
k1th derivative of fX∗ is k2-Hölder continuouswith Hölder constant
bounded by k0, i.e.,

f (k1)
X∗ (x) − f (k1)

X∗ (x + δ)

 6 k0 |δ|k2 for all x, δ.
(ii) g is twice continuously differentiable at x∗, and the l1th deriva-
tive of g is l2-Hölder continuous with Hölder constant bounded by
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l0, i.e.,
g(l1)(x) − g(l1)(x + δ)

 6 l0 |δ|l2 for all x, δ. Let k = k1 + k2
and l = l1 + l2 be the largest numbers satisfying the above prop-
erties.

Since optimal choices of the bandwidth parameter h depend on
the shape of the underlying characteristic function, we first state
the following auxiliary result of convergence rate under free choice
of h.

Lemma 2 (Mean Square Error of the Closed-Form Estimator). Sup-
pose that Assumptions 2–4 hold for the model (2.1). If Assumptions 9
and 10 are satisfied and x∗ is in the interior of the support of X∗, then,
with any choice of h such that h → 0 and nh4

φX1(1/h)
4 → ∞

as n → ∞, the mean square error of the closed-form estimator g(x∗)
given in (4.1) has the asymptotic order:

O(h2min{k,l}) + O


1

nh4
φX1(1/h)

4


, (4.3)

where the first and second terms correspond to the asymptotic orders
of the squared bias and the variance, respectively. The same conclusion
holds for the closed-form estimator g(x∗) given in (4.2), provided
that Assumptions 1 and 9(iii)′ additionally hold.

This lemma implies that the MSE-optimizing choice of h obvi-
ously depends on the tail behavior of the characteristic function
φX1 , which in turn depends on the characteristic functions φX∗ and
φE1 . Therefore, we branch into the following two cases: (a) at least
one of X∗ and E1 has a super-smooth distribution; and (b) both X∗

and E1 have ordinary-smooth distributions. These two cases are
precisely stated in the following two separate assumptions.

Assumption 11 (Super-Smooth Distributions). Assume that (i) the
distribution of X∗ is super-smooth of order β1 > 0, i.e., there exist
κ1 > 0 such that |φX∗(t)| = O


e−|t|β1 /κ1


as t → ±∞, or (ii)

the distribution of E1 is super-smooth of order β2 > 0, i.e., there
exist κ2 > 0 such that

φE1(t)
 = O


e−|t|β2 /κ2


as t → ±∞, or

both (i) and (ii) hold. For convenience of notation, we let β1 = 0
(respectively, β2 = 0) if the distribution of X∗ (respectively, E1) is
not super-smooth.

Assumption 12 (Ordinary-Smooth Distributions). Assume that (i)
the distribution ofX∗ is ordinary-smoothof orderβ1, i.e., |φX∗(t)| =

O

|t|−β1


as t → ±∞, and (ii) the distribution of E1 is ordinary-

smooth of order β2, i.e.,
φE1(t)

 = O

|t|−β2


as t → ±∞.

These two smoothness definitions characterized by the tail
behavior of the characteristic functions measure the smooth-
ness of the density function. Examples of super-smooth distribu-
tions include the normal, Cauchy, and mixed normal distributions.
Examples of ordinary-smooth distributions include the gamma,
exponential, and uniform distributions. If at least one of X∗ and
E1 has a super-smooth distribution in the sense of Assumption 11,
then the closed-form estimators follow log n rates of convergence
as follows.

Theorem 3 (Consistency of the Closed-Form Estimator under Super-
Smooth Distribution(s)). Suppose that Assumptions 2–4 hold for
the model (2.1). If Assumptions 9–11 are satisfied and x∗ is in
the interior of the support of X∗, then the closed-form estima-
tor g(x∗) given in (4.1) is consistent with the convergence rate
E

g(x∗) − g(x∗)

21/2

= O


(log n)

−min{k,l}
max{β1,β2}


under the choice

of the tuning parameter h ∝ (log n)−1/max{β1,β2}. The same conclu-
sion holds for the closed-form estimator g(x∗) given in (4.2), provided
that Assumptions 1 and 9 (iii)′ additionally hold.
On the other hand, if both X∗ and E1 have ordinary-smooth
distributions in the sense of Assumption 12, then the closed-form
estimator follows polynomial rates of convergence as follows.

Theorem 4 (Consistency of the Closed-Form Estimator under Ordi
nary-Smooth Distributions). Suppose that Assumptions 2–4 hold for
the model (2.1). If Assumptions 9, 10 and 12 are satisfied and
x∗ is in the interior of the support of X∗, then the closed-form
estimator g(x∗) given in (4.1) is consistent with the convergence rate
E

g(x∗) − g(x∗)

21/2

= O


n

−min{k,l}
2(min{k,l}+2(β1+β2+1))


under the

choice of the tuning parameter h ∝ n−1/2(min{k,l}+2(β1+β2+1)). The
same conclusion holds for the closed-form estimator g(x∗) given
in (4.2), provided that Assumptions 1 and 9 (iii)′ additionally hold.

While the contexts and the setups are different and a direct
comparison cannot be made, the two cases covered in Theorems 3
and 4 can be connected to Cases 2 and 4 of Theorem 2 in Schen-
nach (2004b), respectively.4 The slow convergence rates in the
case of the super-smooth distributions could be improved in the-
ory provided that the mean regression g(X∗) is also super-smooth.
However, this improvement requires an infinite order kernel that
vanishes the bias faster than any power of the bandwidth parame-
ter, and it may suffer from problems of near zero denominators in
practical implementation in finite sample. See Schennach (2004b)
for discussions.

5. Monte Carlo simulations

In this section, we use Monte Carlo simulations to assess the
small sample performance of the estimator (4.2) proposed in the
previous section.

Each set of simulations constructs data of size N = 500 by the
following distributional model for the primitives.

X∗
∼ N(0, 22),


E1 ∼ N(0, 12)

E2 ∼ N(0, 12)
, U ∼ N(0, 12).

These four random variables are generated mutually indepen-
dently. The true X∗ has a twice as large variation (σ = 2) as the
noises E1 and E2 (σ = 1). These four latent variables in turn gener-
ate the observed randomvariables, X1, X2, and Y through themodel
(2.1), given a definition of the nonparametric regression function
g as well as the coefficients γp. We set γ0 = 0 and γ1 = 2 for the
model of endogenous measurement X1, but the choice of these co-
efficients does not alter simulation resultsmuch unless γ1 is set ar-
bitrarily close to zero. Notice that this data generating process,with
the super-smooth Gaussian distributions, is a worse case scenario
in terms of the asymptotic convergence rate (cf. Theorems 3 and 4).
In other words, we are not cherry-picking convenient Monte Carlo
settings.

Consider the following four function specifications. (i) g(x∗) =

x∗; (ii) g(x∗) = (x∗
+ 1)2; (iii) g(x∗) = Φ(x∗) where Φ is the

standard normal cdf; and (iv) g(x∗) = sin(x∗). For the purpose of
checking robustness of the nonparametric closed-form estimator,
this list contains two broad classes of functions. The first two func-
tions are polynomial functions, and the latter two functions are
transcendental functions. We emphasize that truncated polyno-
mial approximations would not work precisely for the latter class.

We ran 1000 Monte Carlo iterations for each of the above four
function specifications. Fig. 1 shows simulation results for the

4 Specifically, the auxiliary parameters βv , γb and γv used in Schennach (2004b)
can be reconciled with our regularity parameters through the relations βv =

max{β1, β2}, γb = −min{k, l} and γv = 2(β1 + β2 + 1).
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Fig. 1. Monte Carlo simulation results with N = 500 for the closed-form estimator (4.2) using estimates γ̂1 . The four function specifications displayed are (i) g(x∗) = x∗ ,
(ii) g(x∗) = (x∗

+ 1)2 , (iii) g(x∗) = Φ(x∗), and (iv) g(x∗) = sin(x∗). The solid curves represent the true function g . The dashed curves are the 10th, 30th, 50th, 70th, and
90th percentiles of the Monte Carlo distributions.
closed-form estimator (4.2), which uses estimates γ̂1 for the un-
known parameter γ1. The solid curves represent the true function
g . The dashed curves are the 10th, 30th, 50th, 70th, and 90th per-
centiles of the Monte Carlo distributions. The Monte Carlo quan-
tiles capture the true function in each of the four cases displayed
in the figure. Recall that we use only N = 500 observations in the
simulations. With this very small sample size for nonparametrics,
the Monte Carlo distributions are fairly tight with our closed-form
estimator (4.2).5

For the purpose of comparison, we also ran Monte Carlo iter-
ations with the same setup, but by using the naive version of the
closed-form estimator (4.1), where wewrongly set γ1 = 1 as is the
case for the existing methods in the literature that assume classi-
cal errors. Fig. 2 shows simulation results with this classical error

5 The results are reasonably robust across alternative values of bandwidth
parameters. We refer the readers to Diggle and Hall (1993) for discussions about
the choice of tuning parameters for deconvolution estimators based on Fourier
transformation.
assumption. Unlike the previous results in Fig. 1, the Monte Carlo
quantiles in Fig. 2 fail to capture the true functionswell. This failure
is particularly the case for the (ii) quadratic and (iv) sine functions,
for which the MC quantiles tend to be biased outward from the
swinging curves. Even in the absence of curves, the widely spread
MC quantiles evidence that this estimator wrongly assuming clas-
sical errors suffer from greater variances. Therefore, the estimator
assuming classical errors performs poorly both in terms of bias and
variance, compared to our estimator (4.2) which allows for non-
classical measurement errors.

6. Empirical illustration: BMI and health care usage

A recently growing body of the health economic literature
contains extensive studies of economic causes and economic im-
plications of obesity, including but not limited to the following
list of papers. Cohen-Cole and Flecther (2008) and Trogdon et al.
(2008) study causal and propagation mechanisms of obesity. Caw-
ley et al. (2013) evaluate preventive programs for obesity. Cawley
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Fig. 2. Monte Carlo simulation results with N = 500 for the closed-form estimator (4.1) wrongly assuming γ1 = 1 is true. The four function specifications displayed are
(i) g(x∗) = x∗ , (ii) g(x∗) = (x∗

+ 1)2 , (iii) g(x∗) = Φ(x∗), and (iv) g(x∗) = sin(x∗). The solid curves represent the true function g . The dashed curves are the 10th, 30th,
50th, 70th, and 90th percentiles of the Monte Carlo distributions.
(2004), Bhattacharya and Bundorf (2009), and Cawley andMaclean
(2012) analyze labor and health market implications of obesity.
The social cost structure of obesity and its policy implications are
discussed by Bhattacharya and Sood (2011) and Cawley and Mey-
erhoefer (2012). While it should not be regarded as a medical di-
agnosis, the Body Mass Index (BMI) is widely used as a measure of
obesity. It is defined by the following formula.

BMI (kg/m2) = Mass (kg)/ (Height (m))2 .

This index, or indicators of obesity generated by this index, is used
in each of the above list of empirical research papers as well as
many others.

Survey data often contain necessary variables to compute the
BMI, namely weight and height, but they are usually based on
self reports. How accurate are the BMIs constructed by the self-
reported bodymeasures? To answer this question, we use National
Health and Nutrition Examination Survey (NHANES III) of Center
for Disease Control and Prevention, which uniquely combines
survey responses and various results of medical examination and
laboratory tests. Table 1 shows a summary of variables that we
extracted from this source. Using this data set, we can match self-
reported body measures and clinically measured body measures.
Fig. 3 shows a scatter plot of clinically measured BMI on the
horizontal axis against self-reported BMI on the vertical axis. It
evidences a nontrivial discrepancy between the two measures,
showing that self-reports, clinical measures, or both of them have
errors.

In this paper, we have shown that the mean regression g(X∗)
of an outcome variable Y on the true BMI X∗ can be explicitly
identified and explicitly estimated using two observed measures
of the unobserved truth X∗, where one measurement can be en-
dogenously biased. Applying this econometric method, we analyze
how obesity measured by the BMI explains health care usage, tak-
ing into account the likely possibility that self reports may be en-
dogenously biased. Specifically, the following list of variables are
used for the baseline model (2.1).
Y = Health Care Received (Observed Explained Variable)
X∗

= True BMI (Unobserved Explanatory Variable)
X1 = Self-Reported BMI E1 = Reporting Error
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Table 1
NHANES III 2009–2010 variable list and summary statistics.

Data folder Label Variable description Mean (Std. Dev.)
Male Female

Demographics RIAGENDR Gender
Demographics RIDAGEYR Age

Examination BMXHT Clinically measured height (cm) 173.8 (7.9) 159.8 (7.2)
Examination BMXWT Clinically measured weight (kg) 88.1 (19.6) 76.1 (19.6)
Questionnaire WHD010 Self-reported height (inches) 69.1 (3.4) 63.5 (3.0)
Questionnaire WHD020 Self-reported weight (pounds) 194.3 (41.0) 165.5 (41.0)
Questionnaire HUQ050 Receive healthcare 2.16 (1.44) 2.46 (1.33)

Sample of individuals aged 40 or older. N = 1, 905 N = 1, 936
Fig. 3. Scatter plot of clinically measured BMI (horizontal axis) against self-
reported BMI (vertical axis). 2009–2010 sample ofmale and female individuals aged
40 or older.

X2 = Clinically Measured BMI
E2 = Clinical Measurement Error.

Our model setup requires that the clinical measurement X2 is
location-/scale-normalized with respect to the truth, which is
plausible if clinical measurements have only random additive
noises with mean zero. On the other hand, the self-reporting can
be endogenously biased with arbitrary location and scale, because
neither γ1 = 1 nor γ0 = E[E1] = 0 is assumed. If γ1 < 1, for exam-
ple, then we can accommodate the likely case in which individuals
under-report their BMI by 100× (1− γ1) percent on average even
if γ0 = E[E1] = 0 is the case. Similarly, if γ0 = E[E1] < 0, for
example, then we can accommodate the likely case in which indi-
viduals under-report their BMI by |γ0| = |E[E1]| on average even
if γ1 = 1 is the case.

We have shown that these parameters γ0 and γ1 for the self-
reporting model are also identified as a byproduct of our main
identification result. Using the estimates, γ̂0 and γ̂1, we graphically
illustrate the mean self-reporting behaviors E[X1 | X∗

] across
various gender and age groups. Fig. 4 shows the results, where the
dashed lines indicate the 45◦ line, and the solid lines indicate the
estimated regressionE[X1 | X∗

] = γ̂0 + γ̂1X∗ of self-reporting
patterns. Not surprisingly, these results imply the tendency that
actual overweight is associated with under-reporting for all the
groups. Formally, we reject the null hypothesis that γ1 = 1 for
male 50 s (at the 10% level) and female 70 or above (at the 5% level).
For the entire sample, it is rejected at the 1% level. These results
imply that the traditional classical error assumption γ1 = 1 is not
necessarily innocuous in practice, and hence our estimator proves
more relevant to the current empirical problem than the existing
closed-form estimators based on classical errors.

Nonparametric estimates of the mean regressions of the health
care usage Y with respect to the true BMI X∗ are computed. To get
a sense of the effects of random sampling, we ran 1000 bootstrap
iterations for each age group for each gender. Fig. 5 (respectively,
Fig. 6) shows 10, 30, 50, 70, and 90-th percentiles of the bootstrap
distributions of the estimates based on (4.2) using estimates γ̂1
of the unknown parameter γ1 for male (respectively, female)
individuals. The four graphs in each figure illustrate results for four
age groups. All the curves, except the one for male individuals
aged 70 or above, show robust upward-sloping tendency of the
mean health care usage with respect to the true BMI. These slopes
are steeper particularly for females. Overall, obesity measured by
the BMI is a positive explanatory factor for the health care usage,
controlling for gender and age groups.

7. Conclusions

This paper provides a closed-form estimator of nonparamet-
ric regression models using two measurements with non-classical
errors. We allow endogenous biases with arbitrary location and
scale for one of two measurements, while the other is location-/
scale-normalized with respect to the truth. Two distinct specifi-
cations for the models of the two measurements, X1 and X2, may
be suitable for the common practical setting where two mea-
surements are combined together from different data sources.
Because of its closed form like the OLS, our estimator is easily
implementable by practitioners. Monte Carlo simulations suggest
that the estimator performswell evenwith a small sample size like
N = 500. For an illustration, we investigate how obesity explains
health care usage by using NHANES III that uniquely match clin-
ical measurement and self-reports of the BMI. While the former
measurement is assumed to be location-/scale-normalizedwith re-
spect to the true BMI, the self-reports are allowed to be endoge-
nously biased. We find robust upward sloping patterns for the
health care usagewith respect to obesity controlling for gender and
age groups. These slopes are steeper especially for females.
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Appendix. Mathematical appendix

A.1. Proof of Theorem 1

First, note that the coefficient γ1 is uniquely determined by
γ1 = Cov(Y , X1)/Cov(Y , X2) under Assumption 1 — see Lemma 1.
We identify fX∗ using Kotlarski’s identity (see Rao, 1992) as a
preliminary step. Note that the last two equations of the model
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Fig. 4. Estimated conditional mean self-reports E[X1 | X∗
] across various sex and age groups. The dashed lines indicate the 45° line, and the solid lines indicate the estimated

regression.
(2.1) yield φX1X2(t1, t2) = E

ei(γ1t1+t2)X∗

+it1E1+it2E2

. Differentiate

this characteristic function with respect to t2 and evaluate it at
t2 = 0 to obtain

∂

∂t2
φX1X2(t1, t2)


t2=0

= E

iX∗eiγ1t1X

∗
+it1E1


+ E


iE2eiX1t1


= E


iX∗eiγ1t1X

∗


· E

eit1E1


(A.1)

where the last equality follows from Assumption 3(ii) and (iii).
Given Assumption 3(ii), we similarly have

φX1(t1) = E

eit1X1


= E


eiγ1t1X

∗


· E

eit1E1


. (A.2)

Assumption 4(i) allows us to take the ratio of (A.1) to (A.2) to

obtain
∂

∂t2
φX1X2 (t1,t2)


t2=0

φX1 (t1)
=

E

iX∗eiγ1t1X

∗


E

eiγ1t1X

∗
 =

∂
∂τ

ln E

eiτX

∗
τ=γ1t1

.

Therefore, it follows that the characteristic function of X∗ is given
by

φX∗(t) = exp

 t

0

∂
∂t2

φX1X2(t1/γ1, t2)

t2=0

φX1(t1/γ1)
dt1

 . (A.3)

To solve the model explicitly for g(x∗), we make a similar
calculation. For φX1Y defined by φX1Y (t1, s) = E


eit1X1+isY


,

we have ∂
∂sφX1Y (t1, s)


s=0 = iE


(g(X∗) + U) eit1(γ1X

∗
+E1)


=

iE

g(X∗) eit1(γ1X

∗
+E1)


+ iE


Ueit1X1


= iE


g(X∗) eit1γ1X

∗ φX1 (t1)
φX∗ (t1γ1)

,

where the last equality is due to Assumption 3(i) and (ii). The
last expression makes sense because Assumption 4(i) implies
that the characteristic function φX∗ does not vanish on the real

line. Rearranging this equality yields φX∗(t1)
∂
∂s φX1Y (t1/γ1,s)


s=0

i φX1 (t1/γ1)
=

eit1x
∗

g(x∗) fX∗(x∗)dx∗. This is the Fourier inverse of g · fX∗ ,
and applying the Fourier transform yields g(x∗) fX∗(x∗) =

1
2π


+∞

−∞
e−it1x∗φX∗(t1)

∂
∂s φX1Y (t1/γ1,s)


s=0

i φX1 (t1/γ1)
dt1 for each point x∗ by the

Fourier transformation. Therefore, we derive the following closed-
form solution to g(x∗).

g(x∗)

=


+∞

−∞
e−itx∗ exp

 t
0

∂
∂t2

φX1X2 (t1/γ1,t2)

t2=0

φX1 (t1/γ1)
dt1


∂
∂s φX1Y (t/γ1,s)


s=0

i φX1 (t/γ1)
dt


+∞

−∞
e−itx∗ exp

 t
0

∂
∂t2

φX1X2 (t1/γ1,t2)

t2=0

φX1 (t1/γ1)
dt1


dt

where the first equality uses the Fourier inversion of φX∗(t) for fX∗

in the denominator and the second equality uses the expression of
φX∗(t) in Eq. (A.3).

A.2. Quadratic model of measurement

Suppose that the endogenousmeasurement X1 is modeledwith
P = 2 by

X1 = γ1X∗
+ γ2X∗2

+ E1 E[E1] = γ0. (A.4)

Consider the following homoscedasticity assumption:

E[U2
| X∗, E1, E2] = E[U2

]. (A.5)

With Assumption 5 and (A.5), if the empirically testable rank
condition

Cov(Y , X2) · Cov(Y 2, X2
2 ) ≠ Cov(Y , X2

2 ) · Cov(Y 2, X2) (A.6)

holds, thenwe can show that the coefficientsγ1 andγ2 of themodel
(A.4) are identified with closed-form solutions as follows.

By Assumption 5, we get Cov(Y , X1) = γ1 Cov(g(X∗), X∗) +

γ2 Cov(g(X∗), X∗2), Cov(Y , X2) = Cov(g(X∗), X∗) and Cov(Y , X2
2 )
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Fig. 5. Bootstrap quantiles for average number of times health care is received per year for male individuals by age group and BMI. Estimation is based on (4.2) using γ̂1 .
= Cov(g(X∗), X∗2). Furthermore, by Assumption 5 and (A.5),
we obtain Cov(Y 2, X1) = γ1 Cov(g(X∗)2, X∗) + γ2 Cov(g(X∗)2,
X∗2), Cov(Y 2, X2) = Cov(g(X∗)2, X∗) and Cov(Y 2, X2

2 ) =

Cov(g(X∗)2, X∗2). Combining these six equations yields
Cov(Y , X1)

Cov(Y 2, X1)


=


Cov(Y , X2) Cov(Y , X2

2 )

Cov(Y 2, X2) Cov(Y 2, X2
2 )

 
γ1
γ2


.

Therefore, we identify γ1 and γ2 under the rank condition (A.6)
with the closed-form formula:

γ1 =
Cov(Y , X1) · Cov(Y 2, X2

2 ) − Cov(Y , X2
2 ) · Cov(Y 2, X1)

Cov(Y , X2) · Cov(Y 2, X2
2 ) − Cov(Y , X2

2 ) · Cov(Y 2, X2)
(A.7)

γ2 =
Cov(Y , X2) · Cov(Y 2, X1) − Cov(Y , X1) · Cov(Y 2, X2)

Cov(Y , X2) · Cov(Y 2, X2
2 ) − Cov(Y , X2

2 ) · Cov(Y 2, X2)
. (A.8)

Furthermore, Assumption 5 also allows us to identify γ0 and σ 2
2

with closed-form solutions as follows. Again, by using Assump-
tion 5, we obtain E[YX1] = γ1E[YX∗

] + γ2E[YX∗2
] + γ0E[Y ],

E[X1X2] = γ1E[X∗2
]+γ2E[X∗3

]+γ0E[X∗
], E[YX1X2] = γ1E[YX∗2

]+
γ2E[YX∗3
] + γ0E[YX∗

], E[X2] = E[X∗
], E[X2

2 ] = E[X∗2
] + σ 2

2 ,
E[X3

2 ] = E[X∗3
] + 3σ 2

2 E[X
∗
] + σ 3

2 , E[X2] = E[YX∗
], E[X2

2 ] =

E[YX∗2
] + σ 2

2 E[Y ], and E[X3
2 ] = E[YX∗3

] + 3σ 2
2 E[YX

∗
] + σ 3

2 E[Y ].
Substituting the last six equations into the first three equations
above, we obtain the following system of three equations E[YX1] =

γ1E[YX2] + γ2(E[YX2
2 ] − σ 2

2 E[Y ]) + γ0E[Y ], E[X1X2] = γ1(E[X2
2 ] −

σ 2
2 ) + γ2(E[X2

2 ] − 3σ 2
2 E[X2] − σ 3

2 ) + γ0E[X2] and E[YX1X2] =

γ1(E[YX2
2 ]−σ 2

2 E[Y ])+γ2(E[YX3
2 ]−3σ 2

2 E[YX2]−σ 3
2 E[Y ])+γ0E[YX2].

This system can be written as the linear equation: E[YX1]

E[X1X2]

E[YX1X2]


=

 E[Y ] −γ2E[Y ] 0
E[X2] −γ1 − 3γ2E[X2] −γ2
E[YX2] −γ1E[Y ] − 3γ2E[YX2] −γ2E[Y ]



×

γ0

σ 2
2

σ 3
2

 .

If the following empirically testable rank conditions hold, then the
above three by three matrix is nonsingular.
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Fig. 6. Bootstrap quantiles for average number of times health care is received per year for female individuals by age group and BMI. Estimation is based on (4.2) using γ̂1 .
(i) Cov(Y , X2) · Cov(Y 2, X1) ≠ Cov(Y , X1) · Cov(Y 2, X2),

(ii) Cov(Y , X2) ≠ 0, and
(iii) E[Y ] ≠ 0.

(A.9)

Therefore, the linear system yields a unique solution to (γ0, σ
2
2 ,

σ 3
2 ). In particular, it yields the following closed-form formula for

σ 2
2 :

σ 2
2 =

1
2γ2


Cov(Y , X1X2)

Cov(Y , X2)
−

E[YX1]

E[Y ]


. (A.10)

Lastly, recall that σ 1
2 := E[E1

2 ] = 0 by the definition of the model
(3.1). In summary, we obtain γ1, γ2, σ 1

2 , and σ 2
2 , all as closed-form

formulas written in terms of observed data.
Applying the general closed-form identification result of

Theorem 2 to this context, we obtain the following specific
result. Suppose that Assumptions 5–8 hold for the model (A.4).
If in addition (A.5) and the empirically testable rank conditions,
(A.6) and (A.9), are satisfied, then the nonparametric function g
evaluated at x∗ in the interior of the support of X∗ is identifiedwith
the closed-form solution:

g(x∗)

=

  
e−itx∗+itx−it ′(γ1x+γ2x2) |γ1 + 2γ2x| E[YeitX2 ]

E[eitX2 ]
φZ∗(t ′)dt ′dxdt

2π

e−it(γ1x∗+γ2x∗2) |γ1 + 2γ2x∗| φZ∗(t)dt

,

where φZ∗ is identified with the closed-form solution

φZ∗(t)

= exp
 t

0
γ1

E[X2eit1X1 ]
E[eit1X1 ]

+ γ2
E[X2

2 e
it1X1 ] − σ 2

2 E[e
it1X1 ]

E[eit1X1 ]
dt1


,

and γ1, γ2 and σ 2
2 are given by the closed-form solutions (A.7), (A.8)

and (A.10), respectively.

A.3. Proof of Theorem 2

Proof. Define Z∗
:=

J
j=1 γjX∗j. Using Assumption 5(iii), we

obtain the equality E[X j
2e

itX1 ] =
j

q=0


j
q


σ

j−q
2 E[X∗qeit(Z

∗
+E1)] for
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all j = 1, . . . , J . Hence, we obtain the linear equation

1


J
J − 1


σ 1
2 · · ·


J
2


σ

J−2
2


J
1


σ

J−1
2

1 · · ·


J − 1
2


σ

J−3
2


J − 1
1


σ

J−2
2

. . .
...

...

1

2
1


σ 1
2

1



×


E[X∗Jeit(Z

∗
+E1)]

E[X∗(J−1)eit(Z
∗
+E1)]

...

E[X∗2eit(Z
∗
+E1)]

E[X∗eit(Z
∗
+E1)]

 =


E[(X J

2 − σ
J
2)e

itX1 ]

E[(X J−1
2 − σ

J−1
2 )eitX1 ]

...

E[(X2
2 − σ 2

2 )eitX1 ]

E[(X2 − σ 1
2 )eitX1 ]

 .

We obtain the closed-form solution E[X∗jeit(Z
∗
+E1)] = µ(t, j; σ 1

2 ,

. . . , σ
J
2; FX1X2) for j = 1, . . . , J under Assumption 6, where

[µ(t, J; σ 1
2 , . . . , σ

J
2; FX1X2), . . . , µ(t, 1; σ 1

2 , . . . , σ
J
2; FX1X2)]

′ is ex-
plicitly written as



1


J
J − 1


σ 1
2 · · ·


J
2


σ

J−2
2


J
1


σ

J−1
2

1 · · ·


J − 1
2


σ

J−3
2


J − 1
1


σ

J−2
2

. . .
...

...

1

2
1


σ 1
2

1



−1

×


E[(X J

2 − σ
J
2)e

itX1 ]

E[(X J−1
2 − σ

J−1
2 )eitX1 ]

...

E[(X2
2 − σ 2

2 )eitX1 ]

E[(X2 − σ 1
2 )eitX1 ]

 .

Using Assumption 5(ii), we can write µ(t, j; σ 1
2 , . . . , σ

J
2; FX1X2)

= E[X∗jeitZ
∗

]E[eitE1 ] for each j = 1, . . . , J . Division of this equality
by E[eitX1 ] = E[eitZ

∗

]E[eitE1 ] that also follows by Assumption 5(ii)

yields
µ(t,j;σ 1

2 ,...,σ
J
2;FX1X2 )

E[eitX1 ]
=

E[X∗jeitZ
∗
]

E[eitZ∗
]

for each j = 1, . . . , J. Taking a

linear combination of this equality gives
J

j=1 γjµ(t,j;σ 1
2 ,...,σ

J
2;FX1X2 )

E[eitX1 ]
=

E[Z∗eitZ
∗
]

E[eitZ∗
]

=
d
dt ln E[eitZ

∗

]. Thus, the characteristic function φZ∗ is
given by

φZ∗(t) = exp


 t

0

J
j=1

γjµ(t1, j; σ 1
2 , . . . , σ

J
2; FX1X2)

E[eit1X1 ]
dt1

 . (A.11)

By Assumption 7(iii), apply the Fourier transform to this
characteristic function φZ∗ to get fZ∗(z∗) =

1
2π


e−itz∗φZ∗(t)dt.

Define the function h by h(x) =
J

j=1 γjxj. Note that Z∗
=

h(X∗) by the definition of Z∗. Then, by Assumption 8, we use the
transformation formula to obtain fX∗ :
fX∗(x∗) = fZ∗(h(x∗))
h′(x∗)


=
h′(x∗)

 1
2π


e−ith(x∗)φZ∗(t)dt. (A.12)

By Assumption 7(ii), we apply the Fourier inversion to this fX∗ to
get

φX∗(t) =


eitx

∗

fX∗(x∗)

=
1
2π

 
eitx

∗

e−it ′h(x∗)
h′(x∗)

φZ∗(t ′)dt ′dx∗. (A.13)

Now, under Assumption 5(i) and (iii), we have the equalities
E[Ye−itX2 ] = E[g(X∗)eitX

∗

]E[eitE2 ] and E[e−itX2 ] = E[eitX
∗

]E[eitE2 ].
Take the ratio and rearrange the result to obtain E[g(X∗)eitX

∗

] =

E[YeitX2 ]

E[eitX2 ]
φX∗(t). (A.13) yields E[g(X∗)eitX

∗

] =
E[YeitX2 ]

E[eitX2 ]

1
2π

 
eitx

∗

e−it ′h(x∗)
h′(x∗)

φZ∗(t ′)dt ′dx∗. Applying the Fourier transform un-
der Assumption 7(iv), we obtain the equality g(x∗)fX∗(x∗) =

1
4π2

  
e−itx∗+itx−it ′h(x) E[YeitX2 ]

E[eitX2 ]

h′(x)
φZ∗(t ′)dt ′dxdt. Finally, di-

vide this equation by (A.12) to identify g(x∗) with the closed-form
solution.

g(x∗) =

  
e−itx∗+itx−it ′h(x)

h′(x)
 E[YeitX2 ]

E[eitX2 ]
φZ∗(t ′)dt ′dxdt

2π

e−ith(x∗) |h′(x∗)| φZ∗(t)dt

.

Using the closed-form solution (A.11) to φZ∗ and the definition of
the function h yields the desired result. �

A.4. Proof of Lemma 2

Proof. For compactness of writing, we focus on the case of γ1 = 1.
Similar lines of argument show that the same conclusion holds for
general γ1. In order to derive the asymptotic distribution of the
closed-form estimator g(x∗), we decompose it into the numera-
tor and the denominator given by g(x∗)fX∗(x∗) :=

1
2π


+∞

−∞
e−itx∗

exp

i
 t
0

n
j=1 X2,je

it1X1,jn
j=1 eit1X1,j

dt1

 n
j=1 Yje

itX1,jn
j=1 eitX1,j

φK (th)dt and fX∗(x∗) :=
1
2π

+∞

−∞
e−itx∗ exp


i
 t
0

n
j=1 X2,je

it1X1,jn
j=1 eit1X1,j

dt1


φK (th)dt, respectively.

The absolute bias of fX∗(x∗) is bounded by the sumof two terms:E fX∗(x∗) − fX∗(x∗)


6

E fX∗(x∗) −
1
2π


+∞

−∞

e−itx∗φX∗(t)φK (th)dt


+

 1
2π


+∞

−∞

e−itx∗φX∗(t)φK (th)dt − fX∗(x∗)

 .
The first term on the right-hand side is asymptotically bounded by

∥φK∥∞ ∥φX∗∥∞

2πh

 1

−1

 t/h

0


E

 1n n
j=1

X2,jeit1X1,j − EX2,jeit1X1,j

φX1(t1)


+

φ′

X∗


∞

E

 1n n
j=1

eit1X1,j − Eeit1X1,j

φX1(t1)
 + ξf (t1)

 dt1dt

= O


1

n1/2h2
φX1(1/h)




,
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∥φ∗∥
2
∞

∥φK∥
2
∞

4π2h2

 1

−1

 1

−1

 t/h

0

 τ/h

0



E


1
n

n
j=1

X2,jeit1X1,j − EX2,jeit1X1,j
2
 1

2

·

E


1
n

n
j=1

X2,jeiτ1X1,j − EX2,jeiτ1X1,j
2
 1

2

φX1(t1)
 φX1(τ1)



+

2
φ′

X∗(τ1)
E


1
n

n
j=1

X2,jeit1X1,j − EX2,jeit1X1,j
2
 1

2

·

E


1
n

n
j=1

eiτ1X1,j − Eeiτ1X1,j
2
 1

2

φX1(t1)
 φX1(τ1)



+

φ′

X∗(τ1)
 φ′

X∗(t1)
E


1
n

n
j=1

eit1X1,j − Eeit1X1,j
2
 1

2

·

E


1
n

n
j=1

eiτ1X1,j − Eeiτ1X1,j
2
 1

2

φX1(t1)
 φX1(τ1)

 +ξf (t1, τ1)


dτ1dt1dtdτ

= O


1

nh4
φX1(1/h)

2


Box II.
where the higher-order terms ξf vanish faster than the leading
term uniformly under Assumptions 4(i) and 9(iii). On the other
hand, the second term is asymptotically +∞

−∞

fX∗(x1)
1
h
K

x1 − x∗

h


dx1 − fX∗(x∗)

 = O(hk),

where k is the exponent provided in Assumption 10(i). There-
fore, we obtain the asymptotic order

E fX∗(x∗) − fX∗(x∗)

 =

O


1

n1/2h2
φX1 (1/h)




+ O(hk) of the absolute bias of fX∗(x∗).

Similarly, the absolute bias of g(x∗)fX∗(x∗) is bounded by the
sum of two terms:E g(x∗)fX∗(x∗) − g(x∗)fX∗(x∗)


6

E g(x∗)fX∗(x∗) −
1
2π


+∞

−∞

e−itx∗φX∗(t)
EYjeitX1,j

EeitX1,j
φK (th)dt


+

 1
2π


+∞

−∞

e−itx∗φX∗(t)
EYjeitX1,j
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 .
The first term on the right-hand side is asymptotically bounded by
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2πh
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 1
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 t/h
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E
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φ′
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E

 1n n
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eit1X1,j − Eeit1X1,j

φX1(t1)
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×
1φX1(t/h)

dt1dt +
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2πh
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E
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j=1

YjeitX1,j/h − EYjeitX1,j/h
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= O


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n1/2h2
φX1(1/h)

2


under Assumption 9(iii), and the higher-order terms ξf and ξg
vanish faster than the leading terms uniformly. On the other hand,
the second term is asymptotically +∞

−∞

g(x1)fX∗(x1)
1
h
K

x1 − x∗

h


dx1 − g(x∗)fX∗(x∗)


= O(hmin{k,l}),

where k is the exponent for fX∗ provided in Assumption 10(i),
and l is the exponent for g provided in Assumption 10(ii).
Therefore, we have the following asymptotic order of the absolute

bias:
E g(x∗)fX∗(x∗) − g(x∗)fX∗(x∗)

 = O


1

n1/2h2
φX1 (1/h)

2


+

O(hmin{k,l}).

Next, the variance of fX∗(x∗) is asymptotically bounded by the
equation in Box II where the higher-order terms ξf vanish faster
than the leading terms uniformly under Assumption 4(i) and 9(iii).
Similarly, the variance of g(x∗)fX∗(x∗) is asymptotically bounded
by the equation in Box III.
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+ ξf (t1, τ1) + ξg(t, τ ),

where the higher-order terms ξf and ξg vanish faster than the leading terms uniformly.
Box III.



Y. Hu, Y. Sasaki / Journal of Econometrics 185 (2015) 392–408 407
The mean square errors (MSE) of the estimator g(x∗) is
asymptotically bounded by 1

fX2 (x∗)2
· MSE


g(x∗)fX∗(x∗)


+

g(x∗)2

fX∗ (x∗)2

MSE


fX∗(x∗)


and higher-order terms that vanish faster than
these first-order terms. Thus, we have the biases of order
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n1/2h2
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+ O(hk) and
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+ O(hmin{k,l}), and we

have the variances of order Var
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4


. Note that the first

term in the bias when it is squared gives the same asymptotic
order as that of the variance for each of the two components of the
estimator. Hence, the MSE go to zero in the order of O(h2min{k,l})+

O


1

nh4
φX1 (1/h)

4


with a choice of h such that h → 0 and nh4

φX1(1/h)
4 → ∞ as n → ∞. This completes a proof for the

closed-form estimator (4.1).
Lastly, we deal with the case where the closed-form estimator

(4.2) is used instead of (4.1). To emphasize on the dependence on
γ1 and γ̂1, we let g(x∗, γ1) and g(x∗, γ̂1) denote the closed-form
estimators (4.1) and (4.2), respectively. Since
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.

By the mean value theorem and Cauchy–Schwarz inequality, we
have
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where γ ∗

1 is between γ1 and γ̂1. Note that γ̂1 − γ1 = O

n−1/2


under Assumptions 1 and 9(iii). The second factor in the last line
is O


n−1
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under Assumptions 1 and 9 with (iii)′. On the other

hand, the first factor in the last line is O

h−4
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−2

under

Assumptions 4(i) and 9 with (iii)′ by similar lines of calculations to
the ones used to derive the asymptotic order of the variances:
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, where the integrand I(t, τ , t1, τ1, t̃, τ̃ , t̃1, τ̃1, h)

consists of first moments of quadratic interactions and higher-
order terms that vanish faster than these first-order terms. It

follows that E


g(x∗, γ̂1) − g(x∗, γ1)
2

= O
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. This
part converges at least as fast as the rate E
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=
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4


. Therefore, the use of the closed-

form estimator (4.2) instead of (4.1) does not alter the asymptotic
order of the MSE. �

A.5. Proof of Theorem 3

Proof. Under Assumption 11, Assumption 3(ii) implies
φX1(1/h)


= O


e−h−max{β1,β2}/κ


as h → 0 for some κ > 0. Equating the

asymptotic orders of the squared bias and the variance obtained
in Lemma 2 with this smoothness condition, we obtain the
asymptotic rate h ∼ (log n)−1/max{β1,β2} . Substituting this choice
of h in the asymptotic order or the squared bias or the variance
obtained in Lemma 2, we obtain the asymptotic order

E


g(x∗) − g(x∗)
2

= O


(log n)

−2min{k,l}
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A.6. Proof of Theorem 4

Proof. Under Assumption 12, Assumption 3(ii) implies
φX1(1/h)


= O


hβ1+β2


as h → 0. Equating the asymptotic orders

of the squared bias and the variance obtained in Lemma 2
with this smoothness condition, we obtain the asymptotic rate

h ∼ n
−1

2(min{k,l}+2(β1+β2+1)) . Substituting this choice of h in the
asymptotic order or the squared bias or the variance obtained in

Lemma 2, we obtain the asymptotic order E


g(x∗) − g(x∗)
2

=

O


n

−min{k,l}
min{k,l}+2(β1+β2+1)
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. �
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