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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED
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 YINGYAO HUa* AND GEERT RIDDERb
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 SUMMARY

 We consider the estimation of nonlinear models with mismeasured explanatory variables, when information
 on the marginal distribution of the true values of these variables is available. We derive a semi-parametric
 MLE that is shown to be *Jn consistent and asymptotically normally distributed. In a simulation experiment
 we find that the finite sample distribution of the estimator is close to the asymptotic approximation. The semi-
 parametric MLE is applied to a duration model for AFDC welfare spells with misreported welfare benefits.
 The marginal distribution of the correctly measured welfare benefits is obtained from an administrative
 source. Copyright © 2010 John Wiley & Sons, Ltd.

 1. INTRODUCTION

 Many models that are routinely used in empirical research in microeconomics are nonlinear in
 the explanatory variables. Examples are nonlinear (in variables) regression models, models for
 limited-dependent variables (logit, probit, tobit etc.), and duration models. Often the parameters
 of such nonlinear models are estimated using economic data in which one or more independent
 variables are measured with error (Bound et al ., 2001). The identification and estimation of models
 that are nonlinear in mismeasured variables is a notoriously difficult problem (see Carroll et al .,
 1995, for a survey).
 There are three approaches to this problem: (i) the parametric approach; (ii) the instrumental

 variable method; and (iii) methods that use an additional sample, such as a validation sample.
 Throughout we assume that we have a parametric model for the relation between the dependent
 and independent variables, but that we want to make minimal assumptions on the measurement
 errors and the distribution of the explanatory variables.

 The parametric approach makes strong and untestable distributional assumptions. In particular,
 it is assumed that the distribution of the measurement error is in some parametric class (Bickel
 and Ritov, 1987; Hsiao, 1989, 1991; Cheng and Van Ness, 1994; Murphy and Van Der Vaart,
 1996; Wang, 1998; Kong and Gu, 1999; Hsiao and Wang, 2000; Augustin, 2004). With this
 assumption the estimation problem is complicated, but fully parametric. The second approach is
 the instrumental variable method. In an errors-in-variables model, a valid instrument is a variable
 that (a) can be excluded from the model, (b) is correlated with the latent true value, and (c) is
 independent of the measurement error (Amemiya and Fuller, 1988; Carroll and Stefanski, 1990;
 Hausman et al ., 1991, 1995; Li and Vuong, 1998; Newey, 2001). Schennach (2004a, 2007) and Hu
 and Schennach (2008) extend the IV estimator to general nonlinear models. The third approach
 is to use an additional sample, such as a validation sample (Bound et al., 1989; Hsiao, 1989;

 * Correspondence to: Yingyao Hu, Department of Economics, Johns Hopkins University, 3400 N Charles Street, Baltimore,
 MD 21 218, USA. E-mail: yhu@jhu.edu
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 Hausman et al., 1991; Pepe and Fleming, 1991; Carroll and Wand, 1991; Lee and Sepanski, 1995;
 Chen et al ., 2005). A validation sample is a subsample of the original sample for which accurate
 measurements are available. The approach taken in this paper is along these lines.
 In this paper we show that many of the benefits of a validation sample can be obtained if we

 have a random sample from the marginal distribution of the mismeasured variables, i.e. we need
 not observe the mismeasured and true value and the other independent variables for the same units.
 Information on the marginal distribution of the true value is available in administrative registers, as
 employer's records, tax returns, quality control samples, medical records, unemployment insurance
 and social security records, and financial institution records. In fact, most validation samples are
 constructed by matching survey data to administrative data. Creating such matched samples is
 very costly and sometimes impossible. Moreover, the owners of the administrative data may be
 reluctant to release the data because the matching raises privacy issues. Our approach only requires
 a random sample from the administrative register. Indeed the random sample and the survey need
 not have any unit in common. Of course, if available a validation sample is preferable over
 marginal information. With a validation sample the assumptions on the measurement error can be
 substantially weaker than with marginal information. Because we do not observe the mismeasured
 and accurate variables for the same units, marginal information cannot identify the correlation
 between the measurement error and the true value. For that reason we maintain the assumption
 of classical measurement error, i.e. the measurement error is independent of the true value and
 also independent of the other covariates in the model. The latter assumption can be relaxed if
 these covariates are common to the survey sample and the administrative data. Validation studies
 have found that the assumption of classical measurement errors may not hold in practice (see,
 for example, Bound et al ., 1989). The main advantage of a validation sample over marginal
 information is that it allows us to avoid this assumption. However, as with a validation sample,
 marginal information allows us to avoid assumptions on the distribution of the measurement
 error and the latent true value. Given the scarcity of validation samples relative to administrative
 datasets, the correction developed in this paper can be more widely applied, but researchers must
 be aware that the estimates are biased if the assumptions on the measurement error do not hold.1
 In recent years many studies have used administrative data, because they are considered to be

 more accurate. For example, employer's records have been used to study annual earnings and
 hourly wages (Angrist and Krueger, 1999; Bound et al ., 1994), union coverage (Barron et al .,
 1997), and unemployment spells (Mathiowetz and Duncan, 1988). Tax returns have been used in
 studies of wage and income (Code, 1992), unemployment benefits (Dibbs et al ., 1995), and asset
 ownership and interest income (Grondin and Michaud, 1994). Cohen and Carlson (1994) study
 health care expenditures using medical records, and Johnson and Sanchez (1993) use these records
 to study health outcomes. Transcript data have been used to study years of schooling (Kane et al .,
 1999). Card et al. (2001) examine Medicaid coverage using Medicaid data. Bound et al. (2001)
 give a survey of studies that use administrative data. A problem with administrative records is that
 they usually contain only a small number of variables. We show that the marginal distribution of
 the latent true values from administrative records is sufficient to correct for measurement error in

 a survey sample. There have been earlier attempts to combine survey and administrative data to
 deal with the measurement error in survey data. In the 1970s statistical matching of surveys and
 administrative files without common units was used to create synthetic datasets that contained the
 accurate data. Ridder and Moffitt (2007) survey this literature. This paper can be considered as
 a better approach to the use of accurate data from a secondary source to deal with measurement
 error.

 1 It is possible to apply the estimator developed in this paper with a level of dependence between the true value and the
 measurement error. In that case prior knowledge must be used to set the degree of dependence.

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 349

 Our application indicates what type of data can be used. We consider a duration model for
 the relation between welfare benefits and the length of welfare spells. The survey data are from
 the Survey of Income and Program Participation (SIPP). The welfare benefits in the SIPP are
 self-reported and are likely to contain reporting errors. The federal government requires the states
 to report random samples from their welfare records to check whether the welfare benefits are
 calculated correctly. The random samples are publicly available as the AFDC Quality Control
 Survey (AFDC QC). For that reason they do not contain identifiers that could be used to match
 the AFDC QC to the SIPP, a task that would yield a small sample anyway because of the lack of
 overlap of the two samples. Besides the welfare benefits the AFDC QC contains only a few other
 variables.

 This paper shows that the combination of a sample survey in which some of the independent
 variables are measured with error and a secondary dataset that contains a sample from the
 marginal distribution of the latent true values of the mismeasured variables identifies the conditional
 distribution of the latent true value given the reported value and the other independent variables.
 This distribution is used to integrate out the latent true values from the model. The resulting mixture
 model (with estimated mixing distribution) can then be estimated by maximum likelihood (ML) (or
 generalized method of moments (GMM)). Our semi-parametric MLE involves two decon volutions.
 The use of deconvolution estimators in the first stage is potentially problematic (Taupin, 2001). We
 apply the results in Hu and Ridder (2010), who show that consistency can be obtained if the
 distribution of the measurement error is range-restricted.2 We derive its asymptotic variance that
 accounts for the fact that the mixing distribution is estimated. The semi-parametric MLE avoids
 any assumption on the distribution of the measurement error and/or the distribution of the latent
 true value.

 The paper is organized as follows. Section 2 establishes non-parametric identification. Section
 3 gives the estimator and its properties. Section 4 presents Monte Carlo evidence on the finite-
 sample performance of the estimator. An empirical application is given in Section 5. Section 6
 contains extensions and conclusions. The proofs are in the Appendix.

 2. IDENTIFICATION USING MARGINAL INFORMATION

 A parametric model for the relation between a dependent variable y, a latent true variable x* and
 other covariates w can be expressed as a conditional density of y given x*, w, f*(y 'x*, w'Q). The
 relation between the observed x and the latent x* is

 X = X* + £ (1)

 with the classical measurement error assumption sii*, w, y where _L indicates stochastic
 independence. In the linear regression model the independence of the measurement error and
 y given jt*, w, which is implied by this assumption, is equivalent to the independence of the
 measurement error and the regression error. The variable x* (and hence x) is continuous. The
 independent variables in w can be either discrete or continuous. To keep the notation simple, the
 theory will be developed for the case that w is scalar.
 The data are a random sample y¡, i = 1, . . . , n from the joint distribution of y, x , w,
 the survey data, and a random sample xf, i = 1, . . . , n' from the marginal distribution of x*, the
 secondary sample that in most cases is a random sample from an administrative file. In asymptotic

 2 The 'range-restricted' condition does exclude some interesting distributions, such as the normal distribution. We clarify
 this limitation in the estimation section.

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 350 Y. HU AND G RIDDER

 arguments we assume that both n, n' become large and that their ratio converges to a positive
 and finite number.

 Efficient inference for the parameters в is based on the likelihood function. The individual
 contribution to the likelihood is the conditional density of у given Jt, w, f(y'x, w'0). The relation
 between this density and that of the parametric model is

 f(y'x,w;0)= Í f*(y'x*,w;e)g(x*'x,w) dx* (2)
 J X*

 The conditional density g(x* 'x, w) does not depend on 0, because jt*, w is assumed to be ancillary
 for 0, and the measurement error is independent of у given x*9 w.

 The key problem with the use of the conditional density (2) in likelihood inference is that it
 requires knowledge of the density g(jc*|jt, w). This density can be expressed as

 , *, ч g(x'x* ,w)g2(x* ,w)
 g(x , *, 'x, XV) ч =

 g(x, XV)

 For likelihood inference we must identify the densities g{x'x*,w) and g2(x*,w), while the
 density in the denominator does not affect the inference. We could choose a parametric density
 for g(x*'x, w) and estimate its parameters jointly with 0. There are at least two problems with
 that approach. First, it is not clear whether the parameters in the density are identified, and if so,
 whether the identification is by the arbitrary distributional assumptions and/or the functional form
 of the parametric model. If there is (parametric) identification, misspecification of g(x*'x, w) will
 bias the MLE of 0. Second, empirical researchers are reluctant to make distributional assumptions
 on the independent variables in conditional models. For that reason we consider non-parametric
 identification and estimation of the density of x* given jt, w.

 We have to show that the densities in the numerator are non-parametrically identified. First, the
 assumption that the measurement error £ is independent of x*, w implies that

 g(x'x*,w) = g'(x-x*) (4)

 with gi the density of e. Because the observed x is the convolution, i.e. sum, of the latent true
 value and the measurement error, it is convenient to work with the characteristic function of the

 random variables, instead of their density or distribution functions. Of course, there is a one-to-one
 correspondence between characteristic functions and distributions. Let </>x(t) = E(exp(/dc)) be the
 characteristic function of the random variable x. From (1) and the assumption that x* and s are
 independent we have </>x(t) = фх*(0фе(0- Hence, if the marginal distribution of x* is known, we
 can solve for the characteristic function of the measurement error distribution

 Фх(0
 0e(í) = (5)

 ФА0

 Because of the one-to-one correspondence between characteristic functions and distributions,
 this identifies g(x'x*, w). By the law of total probability the density g2(x*, w) is related to the
 density g{x, w) as

 g(x, w)= [ £Сф*, w)g2(x *, w) dx* = [ gi(x - x*)g2(x *, w) dx* (6)
 J Л* Jx*

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 351

 This implies that the joint characteristic function (pxw(r , s) = E(exp (irx + isw)) of the distribu-
 tion of X, w, is equal to (with a change of variables to s = x - x*)

 0xw(r, s)= [ [ [ eir{x~x*} gi(x - x*) âxeirx*+lswg2(x *, w) dx* dw = фе(г)фх*„(г, s) (7)
 Jw J X* J X

 so that
 0Л>И;(Г,5) ФхАГ^)Фх*(г) /оч

 Фх-Аг, S) = =

 Фе(П фх(г)

 If the data consist of a primary sample from the joint distribution of y, x, w and a secondary
 sample from the marginal distribution of x*9 then the right-hand side of (8) contains only
 characteristic functions of distributions that can be observed in either sample.
 The conditional density in (2) is a mixture with a mixing distribution that can be identified from

 the joint distribution of jc, w and the marginal distribution of x*. We still must establish that в
 can be identified from this mixture. The parametric model for the relation between у and x*, w,
 specifies the conditional density of у given x*9 w, f*(y'x*, w;0). The parameters in this model
 are identified, if for all О Ф Oo with Oo the population value of the parameter vector, there is a set
 A(0) with positive measure, such that for (y, x*, w) e A(0 ), f*(y'x*, w; 0) ф f*(y'x*, w; 0o)- If the
 parameters are identified, then the expected (with respect to the population distribution of y, x*,
 w) log likelihood has a unique and well-separated maximum in Oo (Van Der Vaart, 1998, Lemma
 5.35).

 Under weak assumptions on the distribution of the measurement error, identification of 0 in
 f*(y'x*, w'0) implies identification of 0 in f(y'x, w'Q).

 Theorem 1. If (i) Oo is identified if we observe y, x*, w, (ii) the characteristic function of s has
 a countable number of zeros, and (iii) the density of jc*, w and f*(y'x*, w'0) have two absolutely
 integrable derivatives with respect to jc*, then is identified if we observe y, x, w.

 Proof. See Appendix.
 The fact that the density of jc* given x, w is non-parametrically identified makes it possible to

 study, for example, non-parametric regression of _y on x*, w using data from the joint distribution
 of j, w and the marginal distribution of x*. This is beyond the scope of the present paper, which
 considers only parametric models. However, it must be stressed that the conditional density of
 j given x*, w is non-parametrically identified, so that we do not rely on functional form or
 distributional assumptions in the identification of 0.

 3. ESTIMATION WITH MARGINAL INFORMATION

 3.1. Non-parametric Fourier Inversion Estimators

 Our estimator is a two-step semi-parametric estimator. The first step in the estimation is to obtain
 a non-parametric estimator of gi(x - x*)g2(x*, w). The density g' of the measurement error £ has

 characteristic function, abbreviated as cf, фе(0 = The operation by which the cf of one of
 the random variables in a convolution is obtained from the cf of the sum and the cf of the other

 component is called deconvolution. By Fourier inversion we have, if ф£ is absolutely integrable
 (see below),

 gx{x-x*)=±- Г dř (9)
 2л" J -oo фх * (0

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appl. Econ. 27: 347-385 (2012)
 DOI: 10.1002/jae

This content downloaded from 
������������76.21.153.87 on Wed, 14 Feb 2024 22:51:51 +00:00������������ 

All use subject to https://about.jstor.org/terms



 352 Y. HU AND G RIDDER

 The joint characteristic function of je*, w is </>x*w(r , s ) = s^x* (r' Again Fourier inversion
 gives, if </>x*w is absolutely integrable, the joint density of x*, w as

 gl(x., w) = _L Г Г dr ^ (10) (2.ТГ / ,. / , «г)

 The Fourier inversion formulas become non-parametric estimators, if we replace the cf by
 empirical characteristic functions (ecf). If we have a random sample x¡9 i = 1, . . . , n from the
 distribution of x, then the ecf is defined as

 4>At)=-ÍZeitXi (И) ntí
 However, the estimators that we obtain if we substitute the ecf of x and x* in (9) and the ecf of

 x, w, x* and x in (10) are not well defined. In particular, sampling variations cause the integrals
 not to converge. Moreover, to prove consistency of the estimators we need results on the uniform
 convergence of the empirical cf (as a function of t). Uniform convergence for - oo > t > oo
 cannot be established. For these reasons we introduce integration limits in the definition of the
 non-parametric density estimators by multiplying the integrand by a weight function K*(t) that

 is 0 for |ř| > Tn. For reasons that will become clear, we choose K*n(t) = K* (j-) with the
 Fourier transform of the function К , i.e. K*(t ) = e~ltzK(z ) d z. The function К is a kernel that

 satisfies: (i) K(z ) = K(-z) and К 2 is integrable; (ii) K*(t ) = 0 for |ř| > 1; (iii) f™œK(z) d z = 1,
 J-œ zjK{z) dz = 0 for j = 1,2,...,^- 1, and |z|^(z) dz > oo, i.e. К is a kernel of order
 q. In the nonparametric density estimator of jc*, w we multiply by a bivariate weight function

 K^(r, s) = K* with K*(r , s) the bivariate Fourier transform of the kernel K(v , z) that
 satisfies (i)-(ii), and (iii) K(v, z) d z dv = 1, vkzlK(v , z) dz dv = 0 if к + 1 > q
 and 'v'k'z'lK(v, z) dz dv > oo if к + / = q.

 With these weight functions the nonparametric density estimators are

 Ы* - x") = -Î- Г d t (12)
 J- oo Фх*( 0

 h(x*, w) = Г Г s) ^ dr (13)
 47Г J- oo J -oo фх (^)

 The implicit integration limits Tn,Rn, and 5n diverge at an appropriate rate, to be defined below.
 Although we integrate a complex-valued function the integrals are real.3 However, because we

 3 Because eltxi = cos(tXj ) + i sm(tXj ) the ecf has a real part that is an even function of t and an imaginary part that is an
 odd function of t. Let Ek(t) for k = 1, 2, 3, 4 be real even functions in t, i.e. Ek(t) = Ek(-t), where t may be a vector.
 Let Oic(t ) for к = 1, 2, 3, 4 be real odd functions in t, i.e. Ok(-t ) = -Ok(t). For any E'(t), E2(t), 0'(t), C>2(t), we have
 that

 [EM + ЮхШЕгЦ) + i02(t)' = E3(t) + i03(t)

 and
 E'(t) + iO'{t)
 с /,ч . -n f.' = E 4(ř) + !°4<í)
 E2(t) с /,ч + . i02(t) -n f.'

 Let the even functions and the odd functions be the real and the imaginary part of the ecf. Then the multiplica-
 tion/division of ecf results in functions with an imaginary part that is an odd function of t. This implies that the imaginary
 part of the integrand is an odd function of t so that its integral is 0.

 Copyright © 2010 John Wiley & Sons, Ltd. /. Appl. Econ. 27: 347-385 (2012)
 DOI: 10.1002/jae

This content downloaded from 
������������76.21.153.87 on Wed, 14 Feb 2024 22:51:51 +00:00������������ 

All use subject to https://about.jstor.org/terms



 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 353

 truncate the range of integration, the estimated densities need not be positive. Diggle and Hall
 (1993) suggest that this phenomenon may be due to the sharp boundary cut-off of the domain of
 K*n{t). Figure 1 illustrates this for our application with K*(t) = (1 - |ř|)/(|ř| < 1).

 Demonstration of consistency of the non-parametric estimators in (12) and (13) requires some
 restrictions on the distributions of x* and s. A relatively weak restriction is that the cf of s and that
 of X*, w must be absolutely integrable, i.e. '<¡)s(t)'dt > oo and '(/>x*w(r, s)|dr ds > oo.
 A sufficient condition is that, for example, > oo with gf[ the second derivative of
 the pdf of s, which is a weak smoothness condition (and an analogous condition on the joint
 density of x, w).

 A second restriction derives from the fact that deconvolution involves division by an (empirical)
 characteristic function. For this reason a common assumption in the deconvolution literature is that
 the characteristic function in the denominator is never equal to 0. For instance, the characteristic
 function of the normal distribution with mean 0 has this property. This assumption is not necessary
 to ensure the consistency of the semiparametric MLE. However, we have been unable to prove

 consistency of the semi-parametric MLE without it. The assumption is not innocuous, because
 it excludes, for example, the symmetrically truncated normal distribution (with mean 0). To ensure
 *Jn consistency we restrict the distributions whose cf appears in the denominator to the class of
 range-restricted distributions. Because these distributions are asymmetrically truncated, their cf s
 do not have (real) zeros (see Figure 2 for a counterexample). The nonzero cf assumption is a
 peculiarity of the deconvolution approach to the solution of linear integral equations. Its resolution
 may require a different solution method for the linear integral equations that determine the densities
 of s and of jt*, w. This is beyond the scope of the present paper.

 Finally, to obtain a rate of convergence of the first-stage nonparametric density estimators that
 is fast enough to ensure consistency of the semi-parametric MLE, a sufficient condition is
 that the characteristic functions of x* and s are ordinarily smooth (Fan, 1991), i.e. for large t the

 Figure 1. Estimate and 95% CI of the measurement error density (Tn = 1; 200 repetitions)

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appl. Econ. 27: 347-385 (2012)
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 354 Y. HU AND G RIDDER

 Figure 2. Characteristic function of symmetrically truncated (at -3 and 3) Laplace distribution. This figure
 is available in color online at wileyonlinelibrary.com/journal/jae

 characteristic functions must be such that for some Co, C', к > 0

 C0r№+1) < '4>v(t)' < Cir(i+1) (14)

 The integer к is the index of smoothness. In the deconvolution literature, assumptions on the tail
 behavior of characteristic functions are common. Hu and Ridder (2010) relate these assumptions
 to the underlying distributions. They show that a sufficient condition is that distributions of
 the latent true value x* and the measurement error s are range-restricted (Hu and Ridder,
 2010).The distribution of a random variable v is range restricted of order к with к - 0, 1, 2, . . .
 if: (i) its density fv has support [L, U] with either L or U finite; (ii) the density fv has
 к + 2 absolutely integrable derivatives (iii) f^{U) = f^'L) = 0 for j = 0, ... Д - 1 and

 ф |/^(L)|. This is a sufficient but not necessary condition for ordinary smoothness.4
 If k = 0, then a sufficient condition for range restriction is that the density is not equal at the

 upper and lower truncation points. This is obviously satisfied if the truncation is one-sided, e.g. if
 the distribution is half normal. Furthermore, a range restricted distribution may also be obtained
 by truncating a distribution with unbounded support, where the bounds L and U may diverge to
 - oo and oo with the sample size going to infinity.
 Because we observe the marginal distribution of x and that of x*, one might wonder whether

 the assumption that the distributions of x* and the measurement error are both range restricted
 together with the measurement error model has testable implications. For instance, if both x* and
 the measurement error are non-negative, then x is also non-negative. If both are bounded, then
 X is also bounded with a support that is larger than that of jt*, if the measurement error has a
 support that includes both negative and positive values. If the support of s is bounded from below

 4 'Range-restricted' distributions do not include distributions that are 'supersmooth' like the normal distribution. In that
 case, Schennach (2004b) shows that fast nonparametric rates (i.e. op{n~x'A)) of convergence are still possible when both
 the error distribution and that of the latent true values are supersmooth. We do not explore that possibility in this paper.

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 355

 by a positive number, the lower bound on the support of x will be larger than that of the support
 of X*. The only case that is excluded is a support of Jt that is a strict subset of that of x*. Note
 that our assumption is compatible with the classical measurement error assumption, because we
 do not impose restrictions on the support of x.

 The properties, and in particular the rate of uniform convergence, of the first-stage nonparametric
 density estimators are given by the following lemma.

 Lemma 1.

 (i) Let ф£ be absolutely integrable and let the density of s be q times differentiable with a
 q-th derivative that is bounded on its support. Suppose 10** (01 > 0 for all t еШ and that the

 distribution of X* is range restricted of order kx *. Let Tn - O ( ( ¡Qg n ) ^ for 0 > y > j. Then
 a.s. if > À with 0>A>ooforrc->oo

 sup <">
 ''nj I VV П ) J

 for г) > 0 and q the order of the kernel in the density estimator.
 (ii) Let фх* w(t, s ) be absolutely integrable and let the density of x*9 w be q times differentiable with
 all gth derivatives bounded. Suppose 10* (01 > 10** (01 > 0 f°r all ř ^ 9^, the distribution of
 X* is range restricted of order kx* and the distribution of s is range restricted of order k£. Let

 Sn = 0 ((l5g7r)y ) and Rn = 0 ((lõgTz )K ) with 0 > Y' > T Then a-s- if и1 ^ À with
 0>'>ooforn-^oo

 л . //lognXS-^+^+^'-A f flog nYy'' sup 'g2(x*,w)-g2(x*,w)' л . = 0 M-) +0
 (jc*,w)e^xvv ''nJ I '' n J J

 (16)
 for г] > 0 and q the order of the kernel in the density estimator.

 Proof. See Appendix.
 Note that in the bounds the first term is the variance and the second the bias term. As usual,

 the bias term can be made arbitrarily small by choosing a higher-order kernel. To obtain a rate of

 convergence of n~ * or faster (Newey, 1994) we require that

 - > у >

 4 q 4(^+3)

 and

 - > v' r >
 - 4 q > r >

 which requires that we choose the order of the kernel q to be greater than kx* +ke + 5.
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 356 Y. HU AND G RIDDER

 3.2. The Semi-parametric MLE

 The data consist of a random sample x¡, i = 1, . . . , n and an independent random sample
 x*9 i = 1, . . . , n'. The population density of the observations in the first sample is

 , /14 f s*, , * n Sgl(x-X*)g2(x*,w) ck „
 f(y'x,w-,e0)= , /14 f s*, (y'x , * ,w-,e0) n Jx> g(x, ; w)

 in which f*(y |jc*, w'Q) is the parametric model for the conditional distribution of у given w and
 the latent x*. The densities fx, fx*, fw'x have support X, A*, W, respectively. These supports may
 be bounded.

 The semi-parametric MLE is defined as

 n

 в = arg max Y" In / (у, | x¡ , w¡ ; в) (20)
 0E0

 i= 1

 with f(yi'xi,Wi',0) the conditional density in which we replace g i, g2 by their non-parametric
 Fourier inversion estimators. The parameter vector в is of dimension d. The semi-parametric
 MLE satisfies the moment condition

 n

 ^2m(yi,Xi,Wi, 0, gì, gì) = 0 (21)
 Í= 1

 where the moment function m(y , x, w, в, gì, £2) is the score of the integrated likelihood

 f df*(y'x*,w,e) f , ч л ,
 /

 m{y, X, w, 9, gi , g2) =

 / f*(y'x*,w,e)gi(x-x*)g2(x*,w)dx*
 J X*

 The next two theorems give conditions under which the semi-parametric MLE is consistent and
 asymptotically normal.

 Theorem 2. If

 (Al) The parametric model f*(y'x*, w; 0) is such that there are constants 0 > rao > m' > oo such
 that for all ( у , x*, w) e У x X" x W and 0 e 0

 то < f*(y'x*, w; в) < rai (23)

 df'y'x'w-0) ^
 OUk

 and that for all (_y, w) e У x W and 0 e ©

 [ f*(y'x*,w;0)áx* >oo (25)
 J x*

 f df*(y'x*, w; 0) * / f df*(y'x*, L w; 0) * (26) J X* oOk

 with к = 1 , ... ,d. The density of x, w is bounded from 0 on its support X x W.

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 357

 (A2) The characteristic functions of s and x*9 w are absolutely integrable and their densities q
 times differentiable with qth derivatives that are bounded on their support. The cf of s and
 X* do not have (real) zeros and are range-restricted of order k£ and kx *, respectively.

 (A3) Tn - O with 0 > у > 2(k¿+3)> and Sn = О ((е^)"),

 = 0 ( tó ) " ) with 0 > / > 2(кх,+ке + 5) . and Дт = Я., О > Л > oo.

 Then for the semi-parametric MLE

 n

 в = arg max Y] z - ' In / (y¡ 'x, , w¡ ; в) (27) 9e@ z - '
 i= 1

 we have

 вЛв0 (28)

 Proof. See Appendix.
 Assumption (Al) is sufficient but by no means necessary. It can be replaced by boundedness
 assumptions on the moment function and the Fréchet differential of the moment function (see the
 proof in the Appendix). However, we prefer to give sufficient conditions that can be verified more
 easily in most applications. In some cases, e.g. if у has unbounded support, the more complicated
 sufficient conditions must hold.

 The next lemma shows that the two-step semi-parametric MLE has an asymptotically linear
 representation.

 Lemma 2. If the assumptions of Theorem 2 hold and in addition

 (A4) E (m(y, x, w, 60, g i , g2)m(y, x, w, в0, gì , g2)') > oo.

 (А5)Гй=0((15|7Г)К) with ^ > К > 4(kJ+ 3), and Sn - O and

 Rn - О ^(iog„) ^ Wlth -ц > У > 4 (1се + кх, +5)'
 (A6)gi(č) has ke + 1 absolutely integrable derivatives and g2(x*,w) has kx* - f 1 absolutely

 integrable derivatives with respect to x*. The range-restricted distribution of x* has support
 Л* = [L, U ] where L can be - oo or U can be oo and the derivatives of the marginal density of
 x* satisfy g*? (L) = g2«)(U) - 0 for к = 0, . . . ,кх* - 1. We assume that the partial derivatives
 of the joint density of jc*, w with respect to x* satisfy5 w) = g^'u, w) = 0 for к =

 0, ... ,kx* - 1 for all w G W. f*(y'x*9 w; Oo) and ^ '^w,Oo) ^ауе max|^ _j_ i _|_ ij
 absolutely integrable derivatives with respect to x*.

 Then
 1 n
 - 1 ^miyj, xj, Wj, во, gu h)-^N(0, ß) (29)
 V« j=l

 where

 Q = E [i/r(y, x , w)ý(y, x , w)'] + XE[<p(x*)<p(x*)'] (30)

 5 This is automatically satisfied if the order of range-restriction is 0, which is the leading case.
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 358 Y. HU AND G RIDDER

 1 />оо roo Ж t(r)
 ý(y, X, w) - m(y, X, w, во, fa) + .. .2 / / s) Ï r ' [e'rx+,sw - фт(г, i)] ds d r

 (2л) .. .2 J- 00 J- oo Фх(г) r '

 1 f°° í00 j*/ ^Фхп(г, й)фх.(г) r irx ж ^ dí A A - ТГТ2 / / ^ j*/ *) ,,,,,, [g r irx - <kM] ж ^ dí A dr A
 ТГТ2 (2tt)¿ J-00 J-oo Фх(г)ФХ(Г) ,,,,,,

 1 roo Л*(7Л

 + W 2тг 1 J roo ^'гУ'х Л*(7Л ~ dt (31) 2тг J -oo фх * (O

 **>- -¿ 2тг J Г - oo 2тг J - oo Фх* (О Фх * (O

 + 7t~'2 (2тг)2 J-00 / i-oo í d^r' &(r) ~ &*(')] dv dr (32) 7t~'2 (2тг)2 J-00 i-oo &(r)

 d* (O = £[íCi (í, у, *, w)] (33)

 ďj(r, 5) = £[/с2(г, 5, y, JC, w)] (34)

 /С; (ř, y, X, w) = J e~u(x~xt)8(y, x, w, x*)g2(x*, w)àx* (35)

 *5(r, 5, y, Je, w) = J e~irx'-isw8(y, x, w , x*)gl (x - x*)dx* (36)

 x*/,. (yl * „л ) / -f*(y'x*,w) - f(y, x, w)^
 S(y, * x, w , JC*) = x*/,. (yl * ' „л ) I 30^

 * x, w , JC*) = /(y,x,w) I f*(y'x*,w)

 Proof. See Appendix.
 The influence function of the semi-parametric MLE is equal to m(j, x, w, Oo, ho) + if(y, x, w) +

 'cp(x*). The term m(y, x , w, Oo, ho) + ý(y, x, w) is the influence function for the survey data and
 the term cp(x*) is that for the marginal sample. The next theorem is an easy implication of the
 lemma.

 Theorem 3. If assumptions (A1)-(A5) are satisfied, then

 >/ñ( в - e0)-ÍN(0, V) (38)

 with V = (M')~l&M~1 where

 ( дт(у, x, w, Oo, g', £2) '

 M = E í - дт(у, x, w, д0, Oo, g', J (39)
 The matrix Q is estimated by substituting estimates for unknown parameters and empirical for

 population characteristic functions. The matrix £2 has a closed-form representation. Although we
 do not need this expression to estimate Q , we consider it to see how zeros in the cf of x and x*
 may affect the asymptotic variance. To keep the discussion simple we consider the third term of
 '¡/(y, x , w), which has a variance equal to

 Г(М V2W-00 rm yi J V2W-00 <ыо J
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 359

 = Л 4 7T¿ J Г J- Г тшт-^ +s)~ фЛ1)фЛз)) át ás 4 7T¿ J -00 J- co

 = А 47Г J Г J Г d'(t)d*^ems(s) ( - í) dt di (40) 47Г J -oc J -ОС 'ФХО)ФХ(з) J

 Now if for some finite t both фх and фх* are 0, while фе is bounded from 0, then the integral
 may diverge and in that case the asymptotic variance is infinite.

 4. A MONTE CARLO SIMULATION

 This section applies the method developed above to a probit model with a mismeasured explanatory
 variable. The conditional density function of the probit model is

 f*(y'x*9 w; 0) = P(y , X*, w; 0)y( 1 - P(y, x*, w; 0))l~y (41)

 P(y, x*, w; 0) = Ф(^0 + ß'x* + ßiw)

 where в = (ßo, ß', ßi)' and Ф is the standard normal edf. The true value and the error both have a
 normal distribution truncated at plus and minus 4 standard deviations, which is practically the same
 as the original normal distribution in the small sample. Four estimators are considered: (i) the ML
 probit estimator that uses mismeasured covariate x in the primary sample as if it were accurate,
 i.e. it ignores the measurement error. The MLE is not consistent. The conditional density function
 in this case is written as f*(y'x, w'9)' (ii) the infeasible ML probit estimator that uses the latent
 true X* as covariate. This estimator is consistent and has the smallest asymptotic variance of all
 estimators that we consider. The conditional density function is f*(y 'x*9 w;0); (iii) the mixture
 MLE that assumes that the density function of x* given x, w is known and that uses this density
 to integrate out the latent jt*. This estimator is consistent, but it is less efficient than the MLE in
 (i); and (iv) the semi-parametric MLE developed above that uses both the primary sample yt,
 Wi, i = 1, 2, . . . , n and the secondary sample x*, j = 1, 2, . . . , n'.

 For each estimator, we report root mean squared error (RMSE), the average bias of estimates,
 and the standard deviation of the estimates over the replications.

 We consider three different values of the measurement error variance: large, moderate and small
 (relative to the variance of the latent true value). The results are summarized in Table I. In all
 cases the smoothing parameters S , T are chosen as suggested in Diggle and Hall (1993). The
 results are quite robust against changes in the smoothing parameters, and the same is true in our
 application in Section 5.

 Table I shows that the MLE that ignores the measurement error is significantly biased as
 expected. The bias of the coefficient of the mismeasured independent variable is larger than
 the bias of the coefficient of the other covariate or the constant. Some of the consistent estimators

 have a small-sample bias that is significantly different from 0. In particular, the (small-sample)
 biases in the new semi-parametric MLE are similar to those of the other consistent estimators.

 In all cases the MSE of the infeasible MLE is (much) smaller than that of the other consistent
 estimators. The loss of precision is associated with the fact that x* is not observed, but that
 we must integrate with respect to its distribution given jc, w. It does not seem to matter that in
 the semi-parametric MLE this density is estimated non-parametrically, because the MSE of the
 estimator with a known distribution of the latent true value given x, w is only marginally smaller
 than that of our proposed estimator.

 We also tested whether the sampling distribution of the semi-parametric MLE is normal. Figure 3
 shows the empirical distribution of 400 semi-parametric MLE estimates of /3i . It is close to a normal

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 360 Y. HU AND G RIDDER

 Table I. Simulation results, probit model: n = 500, nx - 600, number of repetitions 200

 ß' ßi ßo

 Root MSE Mean bias SD Root MSE Mean bias SD Root MSE Mean bias SD

 2

 Ц- = 1.96a
 Gx*

 Ignoring 0.6909 -0.6871* 0.0730 0.1452 0.0679* 0.1283 0.0692 -0.0340* 0.0603
 meas, error

 True jc* 0.1464 0.0221* 0.1447 0.1310 -0.0143 0.1302 0.0598 0.0056 0.0595
 Known meas. 0.2862 0.0330 0.2843 0.1498 -0.0151 0.1491 0.0712 0.0077 0.0708

 error dist.

 Marginal 0.3288 -0.0923 0.3156 0.1886 -0.0197 0.1876 0.0815 0.0025 0.0815
 information

 2

 3f- = lb
 (J *

 Ignoring 0.5386 -0.5311* 0.0894 0.1546 0.0562* 0.1441 0.0698 -0.0177* 0.0675
 meas, error

 True x* 0.1407 0.0025 0.1407 0.1466 0.0007 0.1466 0.0705 0.0111* 0.0696
 Known meas. 0.2218 0.0152 0.2213 0.1563 -0.0046 0.1563 0.0758 0.0135* 0.0746

 error dist.

 Marginal 0.2481 0.0082 0.2480 0.1701 -0.0158 0.1693 0.0873 0.0163* 0.0858
 information

 2

 Ц- = 0.36c

 Ignoring 0.2938 -0.2723* 0.1103 0.1449 0.0174* 0.1439 0.0630 -0.0132* 0.0616
 meas, error

 True X* 0.1384 0.0123 0.1379 0.1477 -0.0130 0.1471 0.0642 0.0031 0.0641
 Known meas. 0.1711 0.0336* 0.1678 0.1518 -0.0177 0.1507 0.0655 0.0042 0.0653

 error dist.

 Marginal 0.1764 -0.0325* 0.1733 0.1743 -0.0634 0.1624 0.0942 0.0206* 0.0919
 information

 a ßi = 1, ß2 = -1, ßo = 0.5; je* ~ N( 0, 0.25), w ~ N(0, 0.25), £ ~ N(0, <J^)' smoothing parameters are Tn = 0.7 for
 density of £ and Sn = Rn = 0.6 for joint density of **, w.
 b ß' = 1, ß2 = -1, ßo = 0.5; je* ~ N(0, 0.25), w ~ N( 0, 0.25), s ~ N(0, o])' smoothing parameters are Tn = 0.6 for
 density of s and Sn = Rn = 0.7 for joint density of x*, w.
 c ßi = l, ß2 = -1, ßo = 0.5; x* ~ Л^(0, 0.25), w ~ A^(0, 0.25), £ ~ A^(0, о]. ); smoothing parameters are Tn - 0.75 for
 density of £ and Sn = Rn = 0-2 for joint density of **, w.

 density with the same mean and variance. The p-value of the normality test, the Shapiro-Wilk W
 test, is 0.21, and therefore one cannot reject the hypothesis that the distribution of ß' is normal.

 The computation of the Fourier inversion estimators in the simulation involves one-dimensional
 (distribution of s) and two-dimensional (distribution of x*, w) numerical integrals. In the
 simulations these are computed by Gauss -Laguerre quadrature. In the empirical application in
 Section 5 the second estimator involves a numerical integral of a dimension equal to the number of
 covariates in w plus 1. This numerical integral is computed by the Monte Carlo method (100 draws).

 5. AN EMPIRICAL APPLICATION: THE DURATION OF WELFARE SPELLS

 5.1. Background

 The Aid to Families with Dependent Children (AFDC) program was created in 1935 to provide
 financial support to families with children who were deprived of the support of one biological
 parent by reason of death, disability, or absence from the home, and were under the care of the
 other parent or another relative. Only families with income and assets lower than a specified level

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 361

 Figure 3. Sampling distribution of SPMLE of ß' (200 repetitions)

 are eligible. The majority of families of this type are single-mother families, consisting of a mother
 and her children. The AFDC benefit level is determined by maximum benefit level, the so-called
 guarantee, and deductions for earned income, child care, and work-related expenses. The maxi-
 mum benefit level varies across the states, while the benefit reduction rate, sometimes called the

 tax rate, is set by the federal government. For example, the benefit reduction rate on earnings was
 reduced to 67% from 100% in 1967 and was raised back to 100% in 1981. AFDC was eliminated

 in 1996 and replaced by Temporary Assistance for Needy Families (TANF).
 A review of the research on AFDC can be found in Moffitt (1992, 2002). In this application,

 we investigate to what extent the characteristics of the recipients, external economic factors,
 and the level of welfare benefits received influence the length of time spent on welfare. Most
 studies on welfare spells (Bane and Ellwood, 1994; Ellwood, 1986; O'Neill et al., 1984; Blank,
 1989; Fitzgerald, 1991) find that the level of benefits is negatively and significantly related to the
 probability of leaving welfare. Almost all studies use the AFDC guarantee rather than the reported
 benefit level as the independent variable. One reason for not using the reported benefit level is
 the fear of biases due to reporting error. The AFDC guarantee has less variation than the actual
 benefit level, as the AFDC guarantee is the same for all families with the same number of people
 who live in a particular state.

 5.2. Data

 The primary sample used here is extracted from the Survey of Income and Program Participation,
 a longitudinal survey that collects information on topics such as income, employment, health
 insurance coverage, and participation in government transfer programs. The SIPP population
 consists of persons resident in US households and persons living in group quarters. People selected
 for the SIPP sample are interviewed once every 4 months over the observation period. Sample
 members within each panel are randomly divided into four rotation groups of roughly equal size.
 Each month, the members of one rotation group are interviewed and information is collected
 about the previous 4 months, which are called reference months. Therefore, all rotation groups are
 interviewed every 4 months so that we have a panel with quarterly waves.

 We use the 1992 and 1993 SIPP panels, each of which contains nine waves.6 The SIPP 1992
 panel follows 21,577 households from October 1991 through December 1994. The SIPP 1993

 6 The 1992 panel actually has 10 waves, but the 10th wave is only available in the longitudinal file. The original wave
 files are used here instead of the longitudinal file.
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 362 Y. HU AND G RIDDER

 panel contains information on 21,823 households, from October 1992 through December 1995.
 Each sample member is followed over a 36-month period.
 We consider a flow sample of all single mothers of age 18-64 who entered the AFDC program

 during the 36-month observation period. For simplicity, only a single spell for each individual is
 considered here. A single spell is defined as the first spell during the observation period for each
 mother. A spell is right-censored if it does not end during the observation period. The SIPP duration
 sample contains 520 single spells, of which 269 spells are right-censored. Figure 4 presents the
 empirical hazard function based on these observations.
 The benefit level in the SIPP sample is expected to be misreported. The reporting error in

 transfer income in survey data has been studied extensively. In the SIPP the reporting of transfer
 income is in two stages. First, respondents report receipt or not of a particular form of income, and
 if they report that they receive some type of transfer income they are asked the amount that they
 receive. Validation studies have shown that there is a tendency to underreport receipt, although
 for some types there is also evidence of overreporting receipt. The second source of measurement
 error is the response error in the amount of transfer income. Several studies find significant differ-
 ences between survey reports and administrative records, but there are also studies that find little
 difference between reports and records. Most studies find that transfer income is underreported,
 and underreporting is particularly important for the AFDC program. A review of the research can
 be found in Bound et al. (2001).
 The AFDC QC is a repeated cross-section that is conducted every month. Every month each

 state reports benefit amounts, last opening dates and other information from the case records of a
 randomly selected sample of the cases receiving cash payments in that state. Hence for the QC
 sample we know not only the true benefit level of a welfare recipient but also when the current
 welfare spell started. Therefore we can select from the QC sample all the women who enter the
 program in a particular month. The QC sample used here is restricted to the same population as
 the SIPP sample, which is all single mothers of age 18-64 who entered the program during the
 period from October 1991 to December 1995.
 Because the welfare recipients can enter welfare in any month during the 51 -month observation

 period, the distribution of the true benefits given the reported benefits and the other independent
 variables could be different for each of the 51 months. For instance, the composition of the families
 who go on welfare could have a seasonal or cyclical pattern. If this were the case we would have

 Figure 4. Empirical hazard rate of welfare durations in SIPP. This figure is available in color online at
 wiley onlinelibrary . com/j ournal/j ae
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 363

 to estimate 5 1 distributions. Although this is feasible it is preferable to investigate first whether we
 can do with fewer. We test whether the distribution of the benefits is constant over the 5 1 months

 of entry or, if suspect cyclical shifts, the 4 years of the observation period. Table II reports the
 Kruskal-Wallis test for the null hypothesis of a constant distribution over the entry months (first
 row) and the entry years (second row). Table III reports the results of the Kolmogorov-Smirnov
 test of the hypothesis that the distribution of the welfare benefits in a particular month is the same
 as that in all other 50 months. The conclusion is that it is allowed to pool the 51 entry months
 and to estimate a single distribution of the true benefits given the reported benefits and the other
 independent variables.7

 Since both the SIPP and AFDC QC samples come from the same population, we can compare
 the distributions of the nominal benefit levels in the two samples. Figure 5 shows the estimated
 density of log nominal benefit levels and Table IV reports summary statistics and the result
 of the Kolmogorov-Smirnov test of equality of the two distributions. A comparison of the

 Table II. Stationarity of distribution of nominal benefits in QC sample: Kruskal-Wallis test, n =3318

 Kruskal-Wallis statistic Degrees of freedom p- value

 Nominal benefits between months 57.2 50 0.2254

 Nominal benefits between years 6.1 4 0.1948

 Table III. Stationarity of distribution nominal benefit levels in QC sample: Kolmogorov-Smirnov test
 distribution in indicated month vs. other months

 Month # obs. K-S stat. /»-value Month # obs. K-S stat. p-value

 1 82 0.077 0.725 27 80 0.078 0.727
 2 82 0.062 0.923 28 48 0.094 0.793
 3 75 0.105 0.391 29 67 0.120 0.301
 4 64 0.082 0.798 30 67 0.112 0.383
 5 67 0.106 0.455 31 63 0.096 0.623
 6 63 0.089 0.711 32 54 0.137 0.273
 7 58 0.127 0.319 33 62 0.091 0.694
 8 55 0.172** 0.082 34 87 0.073 0.754
 9 70 0.093 0.593 35 68 0.204* 0.008
 10 68 0.071 0.889 36 66 0.119 0.317
 11 68 0.120 0.293 37 68 0.136 0.168
 12 67 0.076 0.840 38 81 0.090 0.551
 13 69 0.142 0.132 39 62 0.146 0.151
 14 59 0.102 0.589 40 45 0.117 0.573
 15 61 0.123 0.329 41 72 0.057 0.975
 16 62 0.110 0.449 42 50 0.141 0.279
 17 57 0.103 0.594 43 61 0.137 0.208
 18 47 0.106 0.677 44 55 0.166 0.101
 19 59 0.074 0.905 45 68 0.113 0.364
 20 52 0.105 0.623 46 57 0.110 0.507
 21 43 0.109 0.694 47 63 0.088 0.724
 22 69 0.125 0.242 48 83 0.117 0.221
 23 70 0.041 1.000 49 80 0.140** 0.092
 24 69 0.128 0.220 50 62 0.081 0.822
 25 76 0.092 0.562 51 73 0.114 0.312
 26 64 0.138 0.180

 Note : Significant at * 5% level; ** 10% level.

 7 In Table III we reject the null hypothesis once for the 51 tests. Although the test statistics are not independent, a rejection
 in a single case is to be expected.
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 364 Y. HU AND G RIDDER

 Figure 5. Density estimates of log benefits in SIPP and QC

 Table IV. Comparison of the distribution of welfare benefits in SIPP and QC samples

 Real benefits Nominal benefits

 SIPP QC SIPP QC

 Mean 285.3 303.8 304.2 327.7
 SD 169.6 156.9 180.9 169.4
 Min. 9.3 9.6 10 10
 Max. 959 1598 1025 1801
 Skewness 1.08 1.27 1.07 1.33
 Kurtosis 4.60 6.83 4.54 7.46
 n 520 3318 520 3318
 K-S statistic 0.123 0.128
 p-value 0.0000 0.0000

 estimated densities and the sample means shows that benefits are indeed underreported. Indeed
 the Kolmogorov-Smirnov test confirms that the distribution in the SIPP sample is significantly
 different from the distribution in the AFDC QC. The variance of welfare benefits in the SIPP is
 larger than in the AFDC QC, which is a necessary condition for classical measurement error in
 the log benefits.

 5.3. The Model and Estimation

 We use a discrete duration model to analyze the grouped duration data, since the welfare duration
 is measured to the nearest month. As mentioned before, we consider a flow sample, and therefore
 we do not need to consider the sample selection problem that arises with stock sampling (Ridder,
 1984). Let [0, M ] be the observation period, and let i/o £ [0, Щ denote the month that individual
 i enters the welfare program, and tu e [0, M] the month that she leaves, if she leaves welfare
 during the observation period. If t* is the length of the welfare spell in months, then the event
 ta is equivalent to

 U' - Uo - 1 5 ř* í U' - ho + 1 (42)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 365

 Also if the welfare spell is censored in month M , then

 t* > M - ti о (43)

 Hence the censoring time is determined by the month of entry. We assume that this censoring
 time is independent of the welfare spell conditional on the (observed) covariates ц and this is
 equivalent to the assumption that the month of entry is independent of the welfare spell conditional
 on these covariates.

 The primary sample contains tio, tn, Zi, <5/ where is the censoring indicator. The latent t*
 has a continuous conditional density that is assumed to be independent of the starting time, t ¿o,
 conditional on the vector of observed covariates ц. Let X(t, z, 0) be a parametric hazard function
 and let Pm(zi, 0) denote the probability that a welfare spell lasts at least m months, given that it
 has lasted m - I months. Then

 Pm{Zi, в) = P(t * > m't* >m-l,Zi) = exp f" ^ X(t, z„, в) d/j (44)
 If we allow for censored spells, the conditional density function for individual i with welfare

 spell ti is
 ti- 1

 S¡, I Zi-, в) = [1 - Pti(zi, 0)f П Pm(z„ в) (45)
 m= 1

 The hazard is specified as a proportional hazard model with a piece-wise constant baseline
 hazard:

 Á(ř, Zi, 0) = Àm exp (ziß), m - 1 < t > m (46)

 This hazard specification implies that

 Pm(Zi, 0) = exp[- Àm expfojS)] (47)

 If the Xm are unrestricted, then the covariates ц cannot contain a constant term. For simplicity,
 define À = (Ài, À2» • • • » ÀMy. The unknown parameters then are 0 = (ß' À')' .
 The covariates are Zi = (xf, where the scalar jc* is the log real benefit level and the vector

 Wi contains the other covariates. The log real benefit level is defined as

 xt=3Ç-p, (48)

 where xf is the log nominal benefit level and p is the log of the deflator.8
 The measurement error £ř is i.i.d. and the measurement error model is

 Xi = X* + Si, Si -L ti , Zi, Si (49)

 where x¡ is the log reported nominal benefit level and s¡ is the individual reporting error. Note
 that error Si is not assumed to have a zero mean, and a non-zero mean can be interpreted as a
 systematic reporting error.
 The variables involved in estimation are summarized in Table V. The MLE are reported in

 Table VI. We report the biased MLE that ignores the reporting error in the welfare benefits and
 the semi-parametric MLE that uses the marginal information in the AFDC QC. Note that the
 coefficient on the benefit level is larger for the semi-parametric MLE. This is in line with the bias

 8 We take the consumer price level as the deflator. We match the deflator to the month for which the welfare benefits are
 reported.
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 366 Y. HU AND G RIDDER

 Table V. Descriptive statistics, n = 520

 Mean SD Min. Max.

 Welfare spell (month) 9.07 8.25 1 35
 Fraction censored 0.52 - 0 1
 Age (years) 31.8 8.2 18 54
 Disabled 0.84 - 0 1
 Labor hours per week 13.3 17.6 0 70
 Log real welfare benefits (week) 5.46 0.68 2.23 6.86
 Log nominal welfare benefits (week) 5.52 0.68 2.30 6.93
 Number of children under 18 1.92 1.02 1 7
 Number of children under 5 0.60 0.76 0 4
 Real non-benefits income ($1000/week) 0.234 0.402 0 0.360
 State unemployment rate (%) 6.72 1.41 2.9 10.9
 Education (years) 11.6 2.64 0 18

 Table VI. Parameter estimates of duration model, n = 520, n' = 3318

 Variable MLE with marginal information MLE ignoring measurement error

 MLE SE MLE SE

 Log real benefits -0.3368 0.1025 -0.2528 0.0877
 Hours worked per week 0.2828 0.0955 0.2828 0.0938
 Real non-benefits inc. 0.1891 0.1425 0.1842 0.1527
 No. of children age >5 -0.1855 0.1095 -0.1809 0.1111
 No. of children age >18 0.0724 0.0674 0.0712 0.0718
 Years of education (/24) -0.1803 0.9877 -0.3086 0.9663
 Age (years/100) -0.0692 0.0505 -0.0691 0.0481
 State unempl. rate (%) 0.0112 0.0295 0.0082 0.0290
 Disabled -0.1093 0.1833 -0.1198 0.1867
 Baseline hazard (weeks)
 1 0.0516 0.0097 0.0546 0.0105
 2 0.0662 0.0120 0.0697 0.0127
 3 0.0409 0.0097 0.0429 0.0104
 4 0.1385 0.0203 0.1445 0.0211
 5 0.0433 0.0121 0.0450 0.0128
 6 0.0771 0.0169 0.0798 0.0177
 7 0.0543 0.0151 0.0562 0.0156
 8 0.0646 0.0180 0.0668 0.0186
 9 0.0787 0.0211 0.0807 0.0217
 10 0.0565 0.0189 0.0575 0.0195
 11 0.0480 0.0184 0.0486 0.0186
 12 0.0750 0.0250 0.0756 0.0252
 13-14 0.0438 0.0146 0.0440 0.0144
 15-16 0.0226 0.0113 0.0227 0.0114
 17-18 0.0286 0.0143 0.0285 0.0143
 19-20 0.0263 0.0152 0.0261 0.0150
 21+ 0.0116 0.0058 0.0114 0.0055

 Note : The smoothing parameters are: distribution s, Tn = 0.7, distribution of x*, w, Sn = 0.875 and Rn = 0.9.

 that we would expect in a linear model with a mismeasured covariate.9 The other coefficients and
 the baseline hazard seem to be mostly unaffected by the reporting error. This may be due to the
 fact that the measurement error in this application is relatively small.

 9 There are no general results on the bias in nonlinear models and the bias could have been away from 0.
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 367

 6. CONCLUSION

 This paper considers the problem of consistent estimation of nonlinear models with mismeasured
 explanatory variables, when marginal information on the true values of these variables is
 available. The marginal distribution of the true variables is used to identify the distribution of
 the measurement error, and the distribution of the true variables conditional on the mismeasured

 variables and the other explanatory variables. The estimator is shown to be consistent and
 asymptotically normally distributed. The simulation results are in line with the asymptotic results.
 The semi-parametric MLE is applied to a duration model of AFDC welfare spells with misreported
 welfare benefits. The marginal distribution of welfare benefits is obtained from the AFDC Quality
 Control data. We find that the MLE that ignores the reporting error underestimates the effect of
 welfare benefits on probability of leaving welfare.
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 APPENDIX

 Proof of Theorem 1

 Assume that 0 is observationally equivalent to 0 o. Then for all y, w, x

 f(y'x,w;9)-f(y'x,w;e0) (50)

 - f (f*(y'x*,w,e)-f4y'x*,w,e0))g(x*'x,w)dx*=0
 Jx*

 After substitution of (3) and (4) and a change of variable in the integration, this is equivalent

 t0 Í
 j Í (f*(y'x - £, w;0) - f*(y'x - e, w;00))g2(x ~ e, w)gi(s) ds = 0 (51)

 By the convolution theorem this implies that

 h*(t, j, w, 0)0e(O = 0 (52)

 for all t, y, w, 0, with

 h*(t, y, w, 0) = f eltx*h(y , w, x*, 0) dx* (53)
 Jx*

 and

 h(y, w, x*, в) = (f*(y'x*, w; 0) - f*(y'x*, w; 00))g2(x*, w) (54)

 so that

 h*(t9 y, w, 0) = 0 (55)

 except possibly for a countable number of values of t. Because h*(t, y, w, 0) is absolute integrable
 with respect to t under the assumptions, we have by the Fourier inversion theorem that for all
 У, w, х*,в

 h(y , w,x*, 0) = (f'y'x' w'6) - f*(y'x*, w;e0))g2(x*, w) = 0 (56)

 Hence on the support of jc*, w we have

 f*(y'x*,w;e) = f*(y'x'w9eo) (57)

 so that 0 = Oq. □
 The next lemma gives an almost sure rate of convergence for the empirical characteristic function
 without any restriction on the support of the distribution, which is related to Lemma 6 in Schennach
 (2004a). It can be compared to the result in Lemma 1 of Horowitz and Markatou (1996).

 Lemma 3.

 (i) Let 0(ř) = eltx d Fn(x) be the empirical characteristic function of a random sample from

 a distribution with cdf F and with E(|jc|) > oo. For 0 > y > j, let Tn = o ) • Then

 sup 10(0 - 0(01 = o(an) a.s. (58)
 't'<T„

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
 DOI: 10.1002/jae

This content downloaded from 
������������76.21.153.87 on Wed, 14 Feb 2024 22:51:51 +00:00������������ 

All use subject to https://about.jstor.org/terms



 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 371

 /logn' 2~y i
 with an = o( 1 ) and -

 (ii) Let 4>(s, t) = f^x>e'sx+"y dF„ (x, y) be the empirical characteristic function of a random

 sample from a bivariate distribution with cdf F and with E(|x| + v| ) > oo. For 0 > / >

 le,'° "• = " ((iöts)1") a°d S" = » ((lot?)'')- ^

 sup ф(г, s) - ф(г, s) - o(an) a.s. (59)
 'r'<Rni,s'<Sn

 Í log n ' 2~Y'

 with an = o( 1) and - - Г^г~ w/i
 case.

 The lemma ensures that the Fourier inversion estimators g ' and g2 are well defined if n is
 sufficiently large, because the denominators of the integrands are bounded from 0 except possibly
 on a set that has probability 0.

 Proof of Lemma 3
 For part (i) consider the parametric class of functions Qn = {eltx''t' <Tn}. The first step is
 to find the Li covering number of Gn- Because eltx = cos(to) + / sin(to), we need covers of
 G'n = {cos(ta)||ř| < Tn } and {Тг n = sin(to)||ř| < Tn}. Because | cos(í2^) - cos(řix)| < |jc||í2 - h'

 and E(|x|) > oc, an |E(|x|) cover (with respect to the L' norm) of G'n is obtained from an è cover
 of {t''t' < Tn} by choosing tk, к = 1, . . . , К arbitrarily from the distinct covering sets, where К

 от

 is the smallest integer larger than -^L. Because | sin^*) - sin(řiJt)| < |jc||í2 - h', the functions
 sin (tkx), к = 1, . . . , К are an |E(|x|) cover of JT2n. Hence cos(ř^) + i sin(ř^jc), к = I, ... ,К is
 an eE(|jt|) cover of Gn, and we conclude that

 M (e,P,Gn)<A7^- (60)
 £

 with P an arbitrary probability measure such that E(|jc|) > oo and A > 0, a constant that does not
 depend on n. The next step is to apply the argument that leads to Theorem 2.37 in Pollard (1984).
 The theorem cannot be used directly, because the condition AT'(s, P,Gn) < Ae~w is not met. In
 Pollard's proof we set 8n = 1 for all n, and en - san. Equations (30) and (31) in Pollard (1984,
 p. 31) are valid for N'(e, P, Gn ) defined above. Hence we have as in Pollard's proof using his
 (31)

 Pr( sup 100) - 0(01 > 2e„) < 2A ( exp 128 + Pr( sup ф{ 2t) > 64) (61) |f|<r, '1п/ V 128 / |r|<7-„

 The second term on the right-hand side is obviously 0. The first term on the right-hand side is
 bounded by

 (62)

 10 We could allow for different growth in Sn and Tn, but nothing is gained by this.
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 372 Y. HU AND G RIDDER

 The restrictions on an and Tn imply that ^ = o ^y^logn) » апс* hence log (J^ - ^ log я ->
 na2

 - oo. The same restrictions imply that 00 • The result now follows from the В orel -Cantelli
 lemma.

 For part (ii) we note that the covers of |s| < Sn and 'r' < Rn generate |E(|x| + 'y') covers
 of cosOjk + ty ), and sinaje + ty) and an eE(|jt| + 'y') cover of elsx+lty. Hence (60) becomes

 M'{ß,P,Gn)<A^- (63)

 Hence in (61) we must replace by and in the next equation log by log ) +

 Lemma 3 suggests that we can choose Tn = O ((j5^)K). Rn = 0 г)Х)' S" =

 О ^ ( log n)Y ) ' anc' an =0 П ) ^ ^ for any arbitrarily small t] > 0.

 Proof of Lemma 1

 (i) Define £ = X - x*. Then

 sup lih(e) - gi 001 < sup -Î- 2 7Г J- f e~m ( Ыу- - Фх*'Ч Oř) àt eeS se£ 2 7Г J- oo 'Фх*{0 Фх*'Ч J
 1 r°°

 + sup - 1 / е~аефШ 1 - K(t)] dt (64)
 eeS J-o о

 We give bounds on the terms that are uniform over e e 8. Using the identity

 a a 1 _ a -
 - - - = _ a) - -(b - b) (65)
 b b b bb

 we bound the first term on the right-hand side, the variance term, by (^*(0 = 0 for 't' > Tn)'

 1_ [T- _i_ U) - ФЛ t) lK*(t)ldt + ±_ fT" Ш _J_
 2 ФАП ФЛ0 lK*(t)ldt " + 2tt ,Lti: <px4t) ^it)

 Фх * (0 Фх * (0

 Фх У * (0 - 0JC* (0 Фх У * (0 - „ 0JC* (0 I^WIdř (66)
 Фх* „ (0

 Because 'фх*0)' > 0 and фх*0) is absolute integrable so that lim^^oo 'фх*(0' = 0, we have that
 inf|ř| <7Й 'Фх* (01 - 'ФЛТп)' if ft is sufficiently large. Note also that because |^T(^)| dz ^ oo
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 f T" 'K*n(t)'dt = J f" K* (^-) dt = Tn J f 'K*(s)'ds < Tn J [ 1 J - T n J - Tn V и / J - 1 J - 1

 /00 -00
 |X"(z)|dz ás < CTn (67)

 -00

 Using this and Lemma 3 we find that (66) is a.s. bounded by (the first term dominates the
 second because ф8 is absolutely integrable and 'K*(t)' < 1)

 °i

 where Tn == О ) ) anc* the distribution of x* is range-restricted of order kx*. Consider

 the second term in (64), i.e. the bias term. Because К * = f^°œ e~ltzK(Tnz ) dz we have
 by the convolution theorem

 J roc roc

 - ¿Л J / e-i,£<pe(t)[ 1 - Ä-*C01 dř = gi(e) - / gì (e - гЖ(Г„г) dz = gì (e) ¿Л J- oc J -oc

 - / g' (e - K(z) dz (69)
 Expanding gì in a gth order Taylor series we have, because К is a gth order kernel
 and the gth derivative of g' is bounded

 ^ J e~i,e<j>E{t)[' - К* (ř)] dt < CT-" j°° |z| "К (z) dz (70)

 Therefore the bias term is 0(T~q). Hence we have the combined bound

 sup |gi(x -X*) -g'(x - лг*>| = О (тк/+2 ^+0(Г~?) (71)
 (х,х*)еХхХ* ' ' п / /

 (ii) We have

 sup 'g2Íx* > w) - 82ÍX* , w)'
 (x *,w)eX*xW

 < sup ' Г Г ( '^:s)*Ar) - ф"{г' s}*Ar)) K<r. ») di d г
 (x*,w)eX*xW (2тг) J -oc J -oc ' фх(г) Фх(г) J I

 + sup --2 / / e
 (jc*,w)e§*xW (2jr) J -oq J -ос Фх'Т)

 Using the identity
 ас ас с _ a . ч ас - 1ч
 -

 b b b b bb
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 374 Y. HU AND G RIDDER

 the first term, i.e. the variance term, is bounded by

 1 rR- fs« фх,(г ) -
 T-2 / TTT фх,(г ) '<t>xw(r,s)-<l>xw(r,s)''K*n(r,s)'dsdr -
 {2л) ./-/?„ J -s„ <px(r)

 + 70~Ý[ (2л) J J-S„ Í фх(г ) 'Фх'(г)~Фх'(г)''К*п(Г^^ dr (2л) J -Rn J-S„ фх(г )

 1 f°° [°° 4>xw(r, s)(px*(r) .
 + 7^Ý '¿7Z) J f°° J / [°° 4>xw(r, Г, s)(px*(r) Jr Шг) . - флт K»(r> í)|ds dr '¿7Z) J -oo J -ос Фх'Т)Фх'г)

 - 1 [Rn [Sn IwWI ã ом
 -7^2 - / ã IwWI ом

 -7^2 (2л) J-R„ J-Sn I Фх(г)

 'Фе(г)'  ¡T-T-г: 'ФАг)'

 + , 1 [*• Л - l&wfo /..м S) I
 + , ,2 I / - l&wfo /..м S) I (2я) ,2 J-RnJ-Sn 'Фх(г) X - Фх(г)' 'Фх* (г)1

 Шг)| -

 + ¡T7 (2л-) J-ooJ-œ Г Г *"<">" ¡T7 (2л-) J-ooJ-œ |#*(г)
 ^е(г)|

 iXTTi 'Фх'(г)'

 Note that by a similar argument to that in (67)

 /00 oo J / -oc roo / 'K*n(r, s)'àr às < CRnSn (75) oo J -oc

 Using the same method of proof as in part (i), the bound is (note that the final two terms are
 dominated by the first)

 WsiRnWARn))

 where Sn = O ), Rn = O ((nf^)"), and an = О For the
 bias term we have by the convolution theorem

 I roo roo
 / / е-'гх'-^фх.к(г, í)[1 - К* (r, s)]ds dr

 (Z7 T) J - oo J - oo

 = g2(x*,w)- í f g2 fx* - - , w - K(r, í)dr di (76)
 J -oc J -OO ' Rn bn J

 Because K(r, s) is a <?th order kernel and all the <yth order derivatives of gi{x*, w) are bounded,
 we have by a i/th order Taylor series expansion of g2

 2 roo roo

 / е~1гх*~1шфх*„(г, s)[l - K*n(r, 5)] di dr < CR~q,S~q2 (77)
 '¿7T) J -oo J -oo

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 375

 with q' + ¿72 = Я- Combining the bounds on the variance and bias terms we find, if s is range
 restricted of order ke and x* is range-restricted of order kx * ,

 sup Ых*, w) - g2(x*, w)' = O (r^+^S,, 2 Y + 0(V' V2) (78)
 (x* ,w)eX* xW ' ' n J J

 with q' + q2 = q.n □

 Proof of Theorem 2

 First we linearize the moment function. Let ho be the joint density of x*, x, w, i.e. ho(x*, x , w) =
 gi(x - x*)g2(x *, w). We have h(x *, x, w) = g'(x - x*)g2(^*, w). Both the population densities g ь
 g2 and their estimators are obtained by Fourier inversion. Because the corresponding characteristic
 functions are assumed to be absolutely integrable, g i, g2 are bounded on their support. Their
 estimators are bounded for finite n. Hence without loss of generality we can restrict g', g2 and
 hence h to the set of densities that are bounded on their support.

 The moment function is

 [ ^-f*(y'x*,w,e)h(x*,x,w)dx*
 m(y, x, w, в, h) = J-^

 / /*Су1**» w; 0)h(x*, x , w) dx*
 Jx*

 The joint density of y, x, w is denoted by f(y,x,w,0). The population density of x*, x , w
 is denoted by ho(x*, x , w), fo(y, x, 0) - f*(y'x*, w; 0)ho(x*, x, w) dx*, and / ( y , x, w, 0) =
 fx* 0)h(x*, x , w) dx*.

 Both the numerator and denominator in (79) are linear in h. Hence m is Fréchet differentiable
 in h and

 sup I m(y, x , w, 0 , h) - m(y, x, w, 0, ho)
 (y,x,w)eyxXxW

 - Í 'ÇP^^-(s*(y'x*,w-,e)-So(y'x,w-,e))}(h(x*,x,w)-ho(x*,x,w))dx*'
 Jx> [ fo(y, X, w; в)

 = o(''h-h0'') (80)

 with s* and ,V() the scores of /*(; y'x*, vv; в) and fo(y'x, w'6) respectively.
 To prove consistency we need that for all в e 0

 'm(y, x, w, в, /i0) I < b' (y, x, w) (81)

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appl. Econ. 27: 347-385 (2012)
 DOI: 10.1002/jae

 11 Although the 'range-restricted' assumption rules out distributions that are 'supersmooth' like the normal distribution,
 the desirable nonparametric rate of convergence is still feasible in the case where both the error distribution and that of
 the latent true values are supersmooth. In that case, the bias terms converge to zero exponentially with respect to the
 smoothing parameters Tn, Rn, and Sn. This fact allows those smoothing parameters to diverge very slowly with respect
 to the sample size n, for example, 0('ogn), to still achieve the desirable convergence rate of both the variance terms and
 the bias terms. The rest of the proofs could be modified similarly to allow this case (see Schennach, 2004b, for further
 discussion).
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 376 Y. HU AND G RIDDER

 with E(b'(y, XV, x)) > oo, and that for all h in a (small) neighborhood of ho and all 0 e 0, the
 Fréchet differential in h satisfies

 [ ^ (■**№*, w;fl) - s(yl*. w;fl)) dx* <b2(y,w,x) (82) Ja* f(y,x,w;d)

 with E (b2(y, w, *)) > oo.
 The following weak restrictions on the parametric model are sufficient. There are constants

 0 > mo > mi > oo such that for all (y, x*, w) € У x Л* x W and 0 e 0

 mo<f4y'x*,w;e)<mi (83)

 This is sufficient for (81). For (82) we need in addition that for all ( y, w) e У x W and 0 e 0

 [ f*(y'x*,w;0) dx* > oo (85)
 Jx*

 f df*(y'x*,w,e) A .
 /
 JX* vV

 If (82) holds then by Proposition 2 in Luenberger (1969, p. 176)

 'm(y, x , w, 0, h ) - m(y, x, w, 0, Ao)l < ^(y» w) sup |/г(х*, x, w) - ho(x*, x, w) | (87)
 (y,x*,w)G3;xA4< xW

 Hence Assumptions 5.4 and 5.5. in Newey (1994) are satisfied and we conclude that the
 semiparametric MLE is consistent if we use a (uniformly in jc*, x, w) consistent estimator for h.

 Proof of Lemma 2

 The derivation consists of a number of steps. We first linearize the score with respect to 0. Next we
 express the score at the population parameter as the sum of the population score and a correction
 term that accounts for the nonparametric estimates of the density functions. The correction term
 is further linearized in three steps. In the first step, the estimated score is linearized w.r.t. its
 numerator and denominator. In the second step, the leading terms in the first step are linearized
 w.r.t. the estimated densities g' and g2. In the third step, the leading terms left in the previous
 step are linearized w.r.t. the empirical characteristic functions фх*(г), фх(г ), and ф^(г, s). In each
 step, we show that the remainder terms are asymptotically negligible. The resulting expression is
 rewritten as the sum of five U- statistics. The asymptotic variances of these ř/-statistics are shown
 to be finite.

 In the sequel, the moment functions are evaluated at 0 = Oo, and the dependence on Oo is
 suppressed in the notation, e.g. f*(y'x*, w) = f*(y'x*, w;Oo) etc.

 The semi-parametric MLE satisfies

 « д ní ^-f*(yj'x*, Wj,ê)gi(Xj - X*)g2(x* , XV j) dx*
 ^2m(yj,xj,Wj,e,gi,g2) д = ^2-^?

 j= 1 j= 1 / f*(yj'x*,Wj,ê)gi(xj -x*)g2(x*,Wj) dx*
 Jx*

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 377

 Linearization with respect to в gives (the integration region is A*)

 1 " J ^ /*(>'/ Iх*' wj- öo)S'i (Xj -x*)g2(x*, wj) dx*

 ^ J=l J wj, в0 )gi(Xj - x*)g2(x' wj) dx*

 ( 1 " Jf*(-yM*'wj'^8i(xj-x*)g2(x*,Wj)dx*J^^f*(yj'x*,Wj,e)gi(xj-x*)
 + n ^

 V ;"

 g2(x*, Wj) dx* - J ^ f*(yj'x *, Wj,e)g'(xj -x*)g2(x*, Wjdx* J -^f*(yj'x*,Wj,e))

 '

 (/ f*(yj'x*, Wj,e)gi(Xj -x*)g2(x*, wj) dx*^ ^
 yfriè - во) (89)

 By Lemma 1 g i and g2 converge uniformly, and this ensures that the matrix in the second term
 on the right-hand side converges to a matrix that is nonsingular, because the model is identified.
 Hence we concentrate on the first term on the right-hand side:

 i 1 " Í iLf*(yj'x*'wj>eo)8dxj - x*)g2(x*,Wj) dx*
 1 Jx* ov

 ^ ;=1 [ f*(yj'x*, Wj, во) g I (Xj - x*)h(x*, Wj) dx *
 Jx*

 1 n
 = -j=Y2m(yj,Xj, ,Wj,e0,gi,g2)

 V" ;= 1

 1 "
 = ~ž=^2m(yj,Xj, ,Wj,e0,gug2) + B (90)

 j= 1

 with

 1 " ( Í w])S'(xj -x*)g2(x*, Wj) dx*
 ß _ _i_ ^ 1 ^2 Jx> ов ^ 7=1 . Í f*(yj'x*, Wj)gi(Xj -x*)g2(x*, Wj) dx*

 ' JX*

 Í -!Lf*(yj'x*>wj)gi(xj -x*)g2(x*,Wj) dx* ^
 Jx* №

 J f*(yj'x*, Wj)gi(xj - X*)g2(x*, Wj) dx* J

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 378 Y. HU AND G RIDDER

 where В is the correction term that accounts for the estimated gi and g2- This term is analyzed
 first. We use the following identities repeatedly:

 ab = ab + b(a - a) + a(b - b) + (a - a)(b - b ) (92)

 ^ = ^ b + b - a) - ^(b b¿ - b) + - bf - ¿(2 - a)(b - b ) (93) b b b b¿ bb2 bb

 To simplify the notation we define

 Xj, wj ) [ Wj)gi (Xj - x*)g2(x*, wj) àx*
 ^ / / (yj, xj> Wj) / f*{yj'x' Wj)gi(Xj - x*)g2(x*, Wj) dx*

 Jx*

 Xj, Wj) J [ ^f*(yj'x*, ov Wj)gl(Xj - x*)g2(x*, Wj) dx*
 aO

 f(yj,Xj, Wj) Í f*(y.'x*t Wj)gi(xj - X*)g2(x*, Wj) dx*
 JX*

 О >4

 First, using identity (93), we linearize the estimated score w.r.t the numerator jj¡gf(yj,Xj, wj)
 and the denominator /(у/, Xj, wj). В then becomes (the integration region is <**)

 1 n 1 id

 в= 1 v" 7~í f{>'j-xj- ,r/) 4 J <ш

 1 "^f(yj,Xj,Wj) f
 (У]'*!'™]) Г J

 1 1 n - f(Vi,xh J Wi) Jj [ 1 1 - dOJ J Wi) Jj
 V« j=l Ibi, Xj, Wj)f2(yj, Xj, Wj)

 X (j f*(yi'x*,wj^g](xi ~X*^S2(x*,Wj)-gi(Xj -x*)g2(x*,Wj)] dx*^

 _ J_y-

 >/" j= 1 / (X/> xj< wj)f(yj>xj> Wj)

 X (/ '**' ^ _ Х")ЫХ*< Wj) - gt (x, - x*)g2(x*, H'y)]dx*^

 X (X« wj^](xj ~x*)Š2(x*,Wj) -gi(Xj -x*)g2(x*,Wj)]
 s Di - D2 + D3 - D4 (96)

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 379

 £>3 is bounded by

 'Di'< sup -r-

 (y,x,w)eyxXxW J {y, X , W)J (y, X , w) (j,w)e^x>V J Л*

 X л/ñ sup |¿i(jc - W) - ^1 (л: - Vf)|2 (97)
 (x,x*,w)eXxX*xW

 By assumption (Al) f (у, x , w) is bounded from 0 on its support so that its uniform consistent
 estimator f(y,x,w) is also bounded from 0 on that support for sufficiently large n. By (Al)

 I -¡¡ßf(y, x, w) I is bounded on the support, and so is | f*(y'x*, w)djc*|. By (92)

 I
 n 4 sup 'gi(x - x*)g2(x*, w) - gl(x ~X*)g2(x*, w)|

 (jc,jc* , w)e A'x Л* x W

 = П4 SUp 'g2(x*, W)(gi(x-x*) -£l(*-**))|
 (x,x*,w)eXxX*xW

 + Л 4 SUp |gi(x - **)(g2(x*, W) - g2(**, W))|
 (jt,** , w)€ Xx X* x W

 + n4 sup l(gl(^-^*)-gl(^-^*))(g2(^*.Vf)-g2(^*, w))| (98)
 (x,x* ,w)eXx X* xW

 If assumption (A5) holds, these expressions are <9^(1). In the same way we show that
 Da = op( 1).

 Next we consider

 1 n Г
 Di -D2 = -ř= У2 / s(yj>xj>wj>x*)lèi(xj - x*)h(x*,Wj) - g'(xj -x*)g2(x*, Wj)]dx*

 Vn Jx*

 (99)
 where

 „ f4yj'x*,Wj) J J (ìjef*iyjìX*'Wj) 40- -52 ïïf(yi'Xj'Wj)'
 8(y¡, xu wu x*) „ = f4yj'x*,Wj) J J 40-

 f(yj,Xj,Wj ) ^ f

 Using identity (92) we obtain

 1 n Г
 Dl-D2 = -=J2 Kyj'XjtWjtX^g&^WjtäiiXj - x*) - gl(Xj -x*)]àx*

 Vй Jx*

 1 n Г
 + ~Ž=J2 S(yj>Xj, Wj,X*)gi(Xj -x*)[g2(x*, Wj ) - g2(x*, Wj)]±<C* V" Jx>

 + -7= У2 [ S('>J, Xj, Wj, X*)[gi (Xj - X*) - gi(Xj - x*)][g2(x*, Wj) - g2(x*, Wj)] dx*
 V« ~l JX>

 = Ei+E2+E3 (101)

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appi Econ. 27: 347-385 (2012)
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 380 Y. HU AND G RIDDER

 Again, because '8(y, x , w, x*)' is bounded by (Al), we have using the same argument as above
 that E 2 = Op(l) by (A5). Next E' + E 2 is decomposed into the variance part and the bias part as
 follows:

 1 n Í
 Ei +E2 - -¡= V / S(yj,xj,wj,x*)g2(x*,wj)[gi(xj-x*)-gl(xj-x*)]àx*

 V n j=i J X*

 1 n r
 + -¿='52 S(Vj,Xj, wj,x*)gl(xj -x*)[g2(x*, Wj ) - g2(x*, Wj)]dx*

 V» ~i J л*

 1 " r
 + ~1=У2 S(yj,Xj,Wj,X*)g2(x*,Wj)lgl(Xj - x*)- gìiXj -x*)]ãx*
 V« ~¡ Jx-

 1 " f
 + -/=$3 / S(yj,xj,wj,x*)gi(xj -x*)[g2(x*,Wj)- g2(x*,Wj)]dx*

 V"

 = Fl+F2 + Fi+F4 (102)

 where

 1 /'°°
 g, (x - x*) = - / e-t(x-x )<psW*n (Odi (103)

 ¿7T J - OO

 I roo poo
 g2(x*. w) = I / е-'х'-'-"фх.н,(г, s)K*(r,s)dsdr (104) 47Г J -oo J -oo

 As shown in Lemma 1 we have

 sup IglOO- Si (e) I = Op(T~q) (105)
 £

 sup 'g2(x*' w ) - £2(**. w)l = Op(R~q^S~qi) (106)
 x*,w

 with qi + q2 = q. Therefore if (A5) holds then |F3| = o( 1) and |F4| = o( 1) because by (Al) S
 is bounded.^ Hence we only need to consider F' and F 2 that we linearize w.r.t the ecf' s фх*(г ),
 фх(г), and s).

 We have for F '

 1 n Г
 Fl = -= ^2 / s(yj>xj> Wj,x*)g2(x*, Wj)lgi(xj -x*)-gi(Xj -x*)]ck*

 V n j=] Jx*

 = -7= ¿ Í S(y.n xr *>j, x*)g2(x*, Wj) ' -Î- У-оо [ к (ř)dřl dx* -7= V«pií xr *>j, _2л г У-оо V^C) ^*(í)/

 where

 K*(t,yj,Xj,Wj)= í e~ltix'~x,)S(yj,Xj,Wj,x*)g2(x*,Wj) dx* (108)
 J X*

 Copyright © 2010 John Wiley & Sons, Ltd. /. Appi Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 381

 Fi can be linearized further using identity (93):

 F1 = ~r A. 27r J- / *l(ř' yj' Xj' Wj) - лП7л ФхЛЧ - Kn{t) di ~r V" 27r J- OO лП7л ФхЛЧ

 1 1 ч Фх&) 0ЛГ*(О ~~ Фх*({) ч dř ^
 ~~rl^ñZ 2^7-00 Kl (ř' н^);Г7л ч <ř>x*U) 2^7-00 <ř>x*U) Г7л Фх*(ч

 , 1^1 Г 4^(0 (ФАО-ФАО '2
 + , ~~ž=/^^~ Kx{t,yj,Xj,Wj)-,

 ~~ž=/^^~ Jňj^2jrJ- oo <Ы0 ' "Г- ч /
 1 и 1 /»OO J

 - -p V - / <(ř, y;, w,b
 V n 'jri 2n (px.(t)4>x. (ť)

 = F '' - F i2 + F'3 - Pii (109)

 Consider K*(t, yj,Xj,Wj), which we denote by K*(t). We also use the notation Sj(x*) -
 8(yj,Xj, Wj,x *) and kj (x* ) = Sj(x*)g2(x*, w¡). A superscript (k) indicates that we consider the
 Ath derivative of a function. If we integrate by parts kx* + 1 times we obtain, if .1* = [L, U],

 K*j(t) = ^ (~1)¿; 1 е-'^-^кЧ~1)(х*)'^ + x Г к f'+l)(x*) dx* (110)
 i= i 00 00 x jl

 with ^

 K?V) = E (Î) ^ s?(x*)g(2~l) (X*, ™j) àx* (111) 1=0 ^ '

 If x* is range-restricted of order kx *, then gV(L) = g^W) ~ 0 f°r k - 0, . . . ,/:** - 1, so that
 if, as assumed, this implies that g^iL, w) = gf'u, w) = 0 for k = 0, . . . ,kx* - 1 and all w e Щ
 we have that

 k*(OI < c|ř|^+1 (112)

 We conclude that 1 s bounded.
 ФхЛЧ

 Hence by Lemma 3 and (67)

 = = 0„ (vs (1^) '' *") (113)

 so that these terms are op( 1) if (A5) holds.
 Fu can be written as

 J-, 1 ^ Ч0*(О ~ 0x0) л ^
 ^ 1 S s ^ ■/-»"' Ч0*(О A-(0 ~ 0x0) *"w л ^

 Copyright © 2010 John Wiley & Sons, Ltd. У. Appl. Econ. 27: 347-385 (2012)
 DOI: 10.1002/jae

This content downloaded from 
������������76.21.153.87 on Wed, 14 Feb 2024 22:51:51 +00:00������������ 

All use subject to https://about.jstor.org/terms



 382 Y. HU AND G RIDDER

 nvnf ' ¿¿¿ J-°° r5M^i^k'---*(')K(.)d, ФхЛЧ «из» nvnf J-°° ФхЛЧ

 If we omit the terms к - j in the summations (these terms are 6^(1)) the resulting expression
 is a one-sample ř/-statistic. Using the same line of proof as in Hu and Ridder (2010), we can
 show that this term is Op( 1). Hence by projection

 1 n 1 i°° d*(t)

 Fu = -j= 1 V - 2n 1 / т~гг [e',Xj - 4>x(t)]K*n(t)dt + op( 1) (116)
 -j= Vn ^ 2n J_0 о 0x*(t)

 with

 ď1(t) = E[K*i(t9y,x,w))] (117)

 Similarly, we have

 F'2 = v n 1 VñT ^ 2ж Г §^^)[eÍ'Xl (ř) фх* (t) ~ФАт»{1) àt + °P(ì) (118) v n 1 VñT ^ 2ж 00 (ř) фх* (t)

 The next step is to analyze

 1 " Г
 Fi^-^T, S(yj, Xj, wj, x*)gl (xj - x*)[g2U' Wj) - hi**, Wj )]dx*

 V« Jx>

 1 " 1 roo ,00 / 4>xw(r, i)0j»(r) fe(r,i)fe.(r)'
 = ^ g õrf У-„ L Mr' '• y" ** (- 4>xw(r, Ей i)0j»(r)
 •£*(r,s)dsdr (119)

 where

 ^(r, s, у j, xj , w;) = f e~irx*~lsWj8(yj , w/, **)Si(*/ - л*) dx* (120)
 Jx*

 To linearize ^ we use the identity
 ФЛг)

 ас ас 1 ^ öc - «с - 0 1 ^
 -==-- + -(ас ^ - ac)
 b b b bl bb2 bb

 ас с ^ а ^ ас - ас - 0 1 ^ _

 = 1 - + t(ö ^ - «) + r(c b ^ - c) - - b) + (b - b) + -(а b ^ - a)(c _ - c) 1 о о b b bb b

 - ^-(a - a){b - b) - ^-(c - c)(b - b) - J -(a - a)(c - c)(b - /?) (121)
 bb bb bb

 Therefore, we have

 Z7 1 ^ Г A00 */ 40xw(^^)r- ( ч Л A A
 Fl Z7 = ~ž= 2^ / I K2 */ 0> >J . x} • w/ ) , , . [0*- (r) ( ч - (г)]й:„ (r, s) Л ds A àr A

 'jn ^ '¿7T) J -oc J -oc Çxv)

 Copyright © 2010 John Wiley & Sons, Ltd. J. Appl. Econ. 27: 347-385 (2012)
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 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 383

 I " 1 Г f°° Фх*(>")
 + -7= 2 / Г / f°° K*2{r, s, yj, Xj, Wj ) Фх*(>") ~т~7~г [*Pxw(.f> s) - ф^г, s)]K*n(r, s ) di d г

 V lì j_i (2тг) J -ОС J - oc Çxv)

 1 1 í°° í°° */ з)Фх*(г) - Л ds л Л
 ~~rZ^ 7w J / / *2Ír> */ Уу. ФхКПфх(г) ^ /гч^ /гч ^*(г) - 0х(г)]ЛГи(г, 5) Л ds л dr Л ~~rZ^ V" 7w (2л Г J -О о J-00 ФхКПфх(г) ^ /гч^ /гч

 + ^24

 = F21 + F22 - ^23 + F 24 (122)

 where F24 = Gì + G2 + G3 + G4 + G5 contains all the other (quadratic) terms in the linearization.

 Integration by parts as for /c*(ř, xj, wj) shows that

 1*2 O, s, yj, Xj , Wy ) I < С|г|^+1 (123)

 if £ is range-restricted of order ke and ¿(y, x, w, jc*), gi(£) have absolutely integrable derivatives of
 /с* (v ' S У X ' w)

 order ke + 1 with respect to x* and e, respectively. This implies that -2 - ' ф У ' - *s bounded
 in r, sè

 Hence

 G ' _ - 1 1 Z*00 Г°° yj>Xj'Wj)

 ' _ - vs (2я)2 U Ф,(г)
 ' ФАг) J

 ■ ( фх{г ) - фх(г))2К*(г, " s) ás dr = Op (jñ
 " s) = Op Ч

 Next

 G 1 1 Г°° Í00 K*2(r, S, yj,Xj,Wj) фх-(г) - фх* (г)
 У» y= j (27Г )2 J-oo J - oo Фе (*") Фх * (У)

 • (</w(r, s) - фт(г, s))K*(r, s) di dr

 = Ч^Ь*0 <125)
 Further

 G 3 _ 1 1 y00 /~°° /с|(г, i, yj,Xj, Wj)

 3 _ 4ñ p[ (2тг)2 J- 00 У-оо 0e(r)
 {фа7)-ФЛг))+ФАг) фх(г)

 Щг)-фЛгШФАг)-ФАгП ds dr
 </>,.(r)2

 =м^от-)
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 384 Y. HU AND G RIDDER

 Also

 g 4
 4

 +*,<-•)

 ( Фх(г ) - <Px(r))(<Pxw(r, S) - фт{г, S)) „ ds Ar
 ФЛгШг)

 = Op( Vn
 Ч Vn

 The final term is dominated by the others, so that the final bound is

 гл ( r~ Rn$n 2^'
 Op гл 'Jn r~ 4 mRnMARnf J

 which is op( 1) if (A5) holds.
 Using the same line of proof as in Hu and Ridder (2010), we can show that F21, F 22, and F 23

 are Op( 1). Moreover, they can be written as ¿/-statistics, so that

 _ Г~п~ 1 ^ J_ [°° [°° Ä .^wM)
 21 _ V "l л/ñi ^ ^ J_ (2л-)2 J- [°° 00 J- [°° 00 2 r' Ä .^wM) Фх(г)

 [eitxJ - фх, (t)]K*n (r, i) ds dr + op(l ) (128)

 1^1 г Г j./ A-W
 F22=Tn^^LLd2(r's)i^) 1^1 г Г j./ A-W

 [eirxi+iswi _ 5)]tf*(r, 5) di dr + o„(l) (129)

 J7 - ^ ^ /°° í°° лФш(г » S)<j>x*(jr)
 23 - '/ñ ^ (2л-)2 J-oo J- 00 2 r' S' фх(г)фх(г) »

 [eirx> - фх(г)'К* (r, s) ds dr + op( 1) (130)

 where

 ¿^(r, í) = £,H(r' s' У/> */> wJ)] (131)

 Substitution in (90) gives the asymptotically linear expression for the score

 1 "
 -= m(y¡ , Xj, Wj, в0, gì, g2)
 Jn . 1

 j= . 1 i

 I n
 = -j= xj,wj,^o, g', g2) + F'i -Fn + F2' + F22- F23+op(l)

 V« J=l

 I n 1 n 1 /*00

 = ~r I */• w./. 0O, gi, ft) + -¡= 1 4Z 27r 1 ^-00 / wTTÃ^ ФхЛч " ^(0]^*(0 dř ~¡ -¡= 27r ^-00 ФхЛч
 Copyright © 2010 John Wiley & Sons, Ltd. J. Appl. Econ. 27: 347-385 (2012)

 DOI: 10.1002/jae

This content downloaded from 
������������76.21.153.87 on Wed, 14 Feb 2024 22:51:51 +00:00������������ 

All use subject to https://about.jstor.org/terms



 ESTIMATION OF NONLINEAR MODELS WITH MISMEASURED REGRESSORS 385

 1 f°° ^*(ř) Фх(г) ritx) , (twr*(t' rit
 v"l V"1 2ж J- oo Фх'(!) 4>x'(t)

 I ^ ^ Г f°° J*/ 'Ф xw(r,s ) » /<v,p.*, 4 ds A A
 + I -j=-¡=¿. ^2 i-co / J*/ , , л [g > -^.(i)]ÄTn(r,s) /<v,p.*, 4 ds A dr A -j=-¡=¿. v"l v"l ^2 (2л-) i-co J-oo Фх(г) , , л

 1 ГС 1 Г00 Г00 /Л *(г)

 + -j= X] 7w / / ^(г' J)x7T Фх(п *(г) [^^+,slVj - Фх№(г, s)]K*n(r, s) di dr -j= Vw 7w (2л-) J-oo J-oo Фх(п

 1^1 /-00 Z100 ^xw(r, s)(px*(r) ir
 "tL^2 7-00 / 2^' *) , , 4 - , X [g ir J -^(г)]ЛГя(г,5) di dr + Op(l) Vn ^ (2л)2 J-oo 7-00 Фх(г)Фх(г) , , 4 - , X

 By the triangular array central limit theorem this expression converges in distribution to a normal
 random variable with mean 0 and variance matrix Í2 given in Lemma 2.
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