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NONPARAMETRIC ESTIMATOR
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� We reconsider Taupin’s (2001) Integrated Nonlinear Regression (INLR) estimator for a
nonlinear regression with a mismeasured covariate. We find that if we restrict the distribution
of the measurement error to a class of distributions with restricted support, then much weaker
smoothness assumptions than hers suffice to ensure

√
n consistency of the estimator. In addition,

we show that the INLR estimator remains consistent under these weaker smoothness assumptions
if the support of the measurement error distribution expands with the sample size. In that case
the estimator remains also asymptotically normal with a rate of convergence that is arbitrarily
close to

√
n. Our results show that deconvolution can be used in a nonparametric first step

without imposing restrictive smoothness assumptions on the parametric model.

Keywords Asymptotic normality; Bounded support; Deconvolution; Measurement error model;
Nonparametric estimation; Ordinary smooth.

JEL Classification C13; C14.

1. INTRODUCTION

To estimate the parameters of a model that is nonlinear in a
mismeasured covariate consistently it is necessary to identify and estimate
(at an appropriate rate) the density of the latent true value given the
reported value and the error-free covariates. There are a number of
different identifying assumptions that can be used for this purpose.
A common feature is that estimation of the conditional density involves
deconvolution. Examples are Li and Vuong (1998), Li (2002), and
Schennach (2004) who assume repeated measurements, Taupin (2001)
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who assumes that the distribution of the measurement error is known,
and Hu and Ridder (2003) who consider the case that there is marginal
information on the distribution of the latent true value. In all cases,
the first stage estimate of the conditional density is used in a second stage
to integrate the latent value from the parametric model. The parameters
of the model are estimated in the second stage by Maximum Likelihood
(ML) or the Generalized Method of Moments (GMM).

In an influential article, Taupin (2001) has argued that if the
distribution of the measurement error is normal and if the first-stage
density is estimated by deconvolution, then a nonlinear regression model1

has to be restricted to a polynomial or an exponential function, both
sufficiently smooth to keep the variance of the second-stage nonlinear
regression estimator finite. Her result suggests that deconvolution can only
be used in a first-stage density estimator, if the parametric model satisfies
restrictive smoothness assumptions.

In this note we reconsider Taupin’s Integrated Nonlinear Regression
(INLR) estimator. We argue that most economic variables have a restricted
range. They are non-negative or they are bounded. This implies that
measurement errors have a similar restricted range. If the distribution of
the measurement error has a restricted range, then the convergence speed
of the first-stage non-parametric estimator is sufficiently fast that minimal
smoothness assumptions on the parametric model suffice to ensure

√
n

consistent estimators in the second stage.
This result can be generalized to the case that the support of the

measurement error distribution expands with the number of observations.2

The rate of uniform convergence of the first stage nonparametric
estimator is with an appropriate choice of the rate at which the support
expands arbitrarily close to that obtained for measurement errors with
restricted range, even if measurement error distribution that is truncated
at a decreasing rate is supersmooth, e.g., has a normal distribution. For
instance, if the measurement error distribution is truncated normal with
truncation points that diverge at the

√
logn rate, then the INLR estimator

is asymptotically normal with a rate of convergence that is arbitrarily close
to

√
n.

2. THE INTEGRATED NONLINEAR REGRESSION ESTIMATOR

We use the same setup as Taupin (2001). We have a random sample
yi , xi , i = 1, � � � ,n. The covariate x is measured with error

x = x∗ + ��

1She only considers nonlinear regression, but analogous restrictions must be imposed on any
parametric model.

2This extension was suggested by one of the referees.
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We assume that

� ⊥ x∗,

i.e., the measurement error is classical. Note that restricted supports of
x and x∗ are compatible with independence of these variables, if the
support of x is larger than that of x∗.3 Independence also implies that
the variance of x is larger than that of x∗. Under the assumptions made
the parameters are not identified if the measurement error is nonclassical
and the correlation between x and x∗ is unknown. With a validation sample
no assumptions on the correlation are needed (see, e.g., Chen et al.,
2005).

The parametric model specifies the conditional mean function

E(y | x∗) = h(x∗, �0)

that depends on the unobserved latent true value x∗. To concentrate on
essentials we assume that there are no other covariates. By the Law of
Iterated Expectations, the conditional mean function given the observed
x is

E(y | x) =
∫
�∗

h(x∗, �0)g (x∗ | x)dx∗

with �∗ the support of x∗. The corresponding moment function is

m(y, x , �) = w(x)
(
y −

∫
�∗

h(x∗, �0)g (x∗ | x)dx∗
)

with w a (vector of) weighting function(s) with dimension at least as large
as the number of parameters in �. In this note, we only consider the just
identified case where the dimension of w and the number of parameters
in � are equal.

The final step is to estimate the conditional density of x∗ given x .
We have

g (x∗ | x) = g (x | x∗)gx∗(x∗)
gx(x)

= g�(x − x∗)�
gx(x)

gx∗(x∗)�

As we assume that the density of the measurement error � is
known, we need to estimate the marginal densities of x and of x∗

nonparametrically. Because x is observed, we can use a standard
nonparametric estimator, e.g., a kernel estimator. In this note, we assume
that the density of x is known, i.e., we ignore sampling variation in the

3If x and x∗ are discrete independence only holds in special cases.
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density estimate. Although the estimation of the density of x affects the
sampling variance of the second stage estimator, it is not the reason that
that variance can become infinite.

To estimate the density of x∗, we use the fact that the measurement
error model and the independence of x∗ and � imply that

�x∗(t) = �x(t)
��(t)

with �x(t) = E(e itx) the characteristic function of x . If �x∗(t) is absolutely
integrable then by the Fourier inversion theorem

gx∗(x∗) = 1
2�

∫ ∞

−∞
e−itx∗

�x∗(t)dt �

The corresponding density estimator is

ĝx∗(x∗) = 1
2�

∫ ∞

−∞
e−itx∗ �̂x(t)

��(t)
K ∗

n (t)dt �

with

�̂x(t) = 1
n

n∑
i=1

e itxi =
∫
�
e itxdFn(x)

the empirical characteristic function (ecf) of x (Fn is the empirical cdf
of the sample x1, � � � , xn). The Fourier inversion theorem does not hold
for the ecf and for that reason the integrand is multiplied by the kernel
K ∗

n (t) = K ∗( t
Tn

)
which ensures that the integral exists. The function K ∗ is

the Fourier transform of the function K and 1
Tn

is the bandwidth. By the
convolution theorem multiplication of the ecf by K ∗( t

Tn

)
smoothes the ecf.

The kernel K satisfies:

(i) K is an even function and K 2 is integrable;
(ii) Its Fourier transform is such that K ∗(t) = 1 for |t | ≤ 1;
(iii) |K ∗(t)| ≤ I[−2,2](t) all t ;
(iv)

∫
K (z)dz = 1,

∫ |K (z)|dz < ∞,
∫
zjK (z)dz = 0 for j = 1, 2, � � � , q − 1,

and | ∫ zqK (z)dz| < ∞, i.e., K is a higher order kernel of order q ,
for q ≥ 2.

A detailed discussion of the kernel functions can be found in Taupin
(2001, Remark 2.2). Substitution of this estimator in the moment function
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gives the INLR estimator as the solution to

mn(�̂) ≡ 1
n

n∑
i=1

w(xi)
(
yi −

∫
�∗

h(x∗, �̂)
g�(xi − x∗)

gx(xi)
ĝx∗(x∗)dx∗

)
= 0� (1)

3. THE CHARACTERISTIC FUNCTION
OF RANGE-RESTRICTED DISTRIBUTIONS

The asymptotic bias of the first-stage deconvolution estimator is
determined by the behavior of the characteristic function of the
measurement error if its argument is large. By the Riemann–Lebesgue
theorem (Feller, 1971) the (absolute value of the) characteristic function
�v(t) of a distribution is bounded above by C |t |−k if the distribution has
a density with a kth derivative that is absolutely integrable.4 The upper
bound can converge faster for certain distributions. Fan (1991) introduced
two classes of characteristic functions. The supersmooth characteristic
functions are bounded from below and above by functions that decrease
exponentially if t is large. The ordinary smooth characteristic functions are
bounded from below and above by functions that decrease geometrically
if t is large. The normal distribution has a supersmooth characteristic
function.

In general, deconvolution estimators of densities converge at a
logarithmic rate if the measurement error has a distribution with a
supersmooth characteristic function. Hence, it is important to know how
“prevalent” distributions with such a characteristic function are. We say that
the distribution of a random variable v is range restricted of order k if v has a
density (with respect to the Lebesgue measure) fv that is positive on [L,U ]
with either L or U finite, equals zero outside [L,U ], and has k + 2 for k ≥ 0
absolutely integrable derivatives f (j)

v with:

(i) |f (k)
v (U )| �= |f (k)

v (L)|;
(ii) If k > 1, f (j)

v (U ) = f (j)
v (L) = 0 for j = 0, � � � , k − 1.

The next theorem establishes that all range restricted distributions
have ordinary smooth characteristic functions.

Theorem 1. If a random variable v is range restricted of order k, then its
characteristic function is ordinary smooth. In particular, there is a t0 > 0 such that
for all |t | ≥ t0 and some C0, C1 > 0

C0

∣∣|f (k)
v (U )| − |f (k)

v (L)|∣∣t−(k+1) ≤ |�v(t)| ≤ C1(|f (k)
v (U )| + |f (k)

v (L)|)t−(k+1)�
(2)

4Here and in the sequel, C denotes a generic constant.
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Proof. In Appendix. �

Remark 1. For the truncated normal distribution the theorem holds with
k = 0 if the truncation points are not symmetric with respect to the mean.
In that case the characteristic function also does not have any real zeros,
which is convenient because in the deconvolution estimator of the density
we divide by the characteristic function.

Remark 2. If we consider a mixture of a random variable v1 with a
support that has an upper bound and a random variable v2 with a support
that has a lower bound, then

�v(t) = p�v1(t) + (1 − p)�v2(t)�

Hence v has unbounded support and is ordinary smooth. It is however
hard to see which economic variables can be represented by such mixtures.

Note that in general both the lower and the upper bounds converge
to 0 at a slower rate for range-restricted distributions if it is a truncation
of some distribution that has a characteristic function that decreases at a
faster rate. That is also true for distributions that have an ordinary smooth
characteristic function when the support is unrestricted. For instance,
if the density of a distribution with unbounded support has l absolutely
integrable derivatives, then its characteristic function decreases at least as
fast as |t |−l . If we truncate the support, the rate can be as slow as |t |−1.

A random variable with a distribution that is obtained by truncating
a distribution with unbounded support from below at Ln and from above
by Un is denoted by vn . The underlying untruncated random variable is v.
The density function of vn is

fvn (v) = fv(v)∫ Un
Ln

fv(z)dz

for Ln ≤ x ≤ Un . If the range restricted distribution is obtained by
truncating a distribution with unbounded support, the following corollary
gives a lower bound on the rate at which |�vn (Tn)| converges to 0 if
Tn → ∞ and the bounds on the support Ln → −∞ and Un → ∞.

Corollary 1. Suppose that fv has absolutely integrable derivatives f (j)
v on 
 for

j = 1, 2. Let Tn = O
((

n
logn

)�)
and Un → ∞ such that

1
fvn (Un)

= O
((

n
logn

)�)
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with � < �. Moreover, let Ln → −∞ such that

fvn (Ln)

fvn (Un)
→ 0�

Then there is an n0 such that for n ≥ n0

|�vn (Tn)| ≥ C
(
logn
n

)�+�

�

The conditions on Ln are satisfied if Ln = −∞. For the standard normal
distribution the condition on Un is satisfied if

Un = O

(√
log

(
n

logn

))
�

Note that the lower and upper bound are treated asymmetrically. We can
interchange their roles and reach the same conclusion.

4. THE RATE OF UNIFORM CONVERGENCE
OF THE DECONVOLUTION DENSITY ESTIMATOR

The first application of Theorem 1 is to the rate of convergence of the
deconvolution density estimator of Section 2. In particular, we show that
its uniform rate of convergence can be at least n− 1

4 , a rate that is required
to ensure that the second stage estimator is

√
n consistent (Newey, 1994).

Theorem 2. Suppose that |��(t)| > 0 for all t ∈ 
, that the distribution of �
is range restricted of order k, and that the distribution of x∗ has a density that is
q times differentiable and the qth derivative is continuous and bounded on �∗.
Choose Tn = O

((
n

logn

)�)
with 0 < � < 1

2 , and let the kernel K be of order q. Then
for an arbitrary � > 0 a.s.

sup
x∗∈�∗

∣∣ĝx∗(x∗) − gx∗(x∗)
∣∣ = O

((
logn
n

) 1
2−(k+3)�−�)

+ O
((

logn
n

)q�)
� (3)

Proof. In Appendix. �

As shown in the proof, we introduce the constant � in order to
allow the smoothing parameter Tn to increase at the specified rate (and
not slower than that rate). This theorem shows that the best rate of
convergence is n− q

2(k+3+q)+� and if k = 0 the rate is certainly faster than n− 1
4

if q ≥ 4.
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If the distribution of the measurement error is obtained by truncating
a distribution with unbounded support at Ln and Un , we can replace
the assumption that the distribution of the measurement error is range
restricted by the assumptions on the rate at which the truncation points
expand as in Corollary 1. Note that these assumptions imply that the
support of the distribution of the measurement error grows at (a slightly)
slower rate than Tn , the truncating parameter in the nonparametric density
estimator.

Corollary 2. Let the distribution of �n be obtained by truncating a distribution
with unbounded support at Ln from below and Un from above, and let the first
two derivatives of the untruncated density be absolutely integrable. For sequences
Un ,Ln ,Tn as specified in Corollary 1 and conditions on the kernel K and the
distribution of x∗ as in Theorem 2, we have

sup
x∗∈�∗

∣∣ĝx∗(x∗) − gx∗(x∗)
∣∣ = O

((
logn
n

) 1
2−3�−�−�)

+ O
((

logn
n

)q�)
(4)

for 0 < � < � < 1/2 and all � > 0�

Proof. In Appendix. �

The best rate of convergence is now n− q
2(q+4)+�, which is slightly slower

than that if L,U are fixed (and k = 0).

5. THE ASYMPTOTIC PROPERTIES
OF THE INLR ESTIMATOR

5.1. Consistency

The next theorem provides a set of conditions that ensure that the
INLR estimator is weakly consistent.

Theorem 3. If:

(i) Ex [w(x)
∫
�∗(h(x∗, �0) − h(x∗, �))g (x∗ | x)dx∗] = 0 if and only if � = �0;

(ii) The regression function h is bounded on �∗ × 	;
(iii) The density of x gx(x) is bounded from 0 on �;
(iv) w(x) is bounded on �;
(v) The distribution of the measurement error is range-restricted of order k;
(vi) |��(t)| > 0 for all t ;
(vii) Tn = O

((
n

logn

)�)
with 0 < � < 1

2(k+3) ;

then the INLR estimator is weakly consistent.
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Proof. In Appendix. �

The assumption on the boundedness of h(·) is sufficient but by no
means necessary. It can be replaced by boundedness assumptions on the
moment function and the Frechet differential of the moment function.
However, we prefer to give sufficient conditions that can be verified more
easily in most applications.

We can also establish consistency if the distribution of �n is obtained
by truncating a distribution with unbounded support at Ln and Un .

Corollary 3. If we replace (v) by the assumption that the first two derivatives of
the untruncated measurement error density are absolutely integrable, Ln ,Un are as
in Corollary 1, and in (vii) 0 < � < 1/8 and 0 < � < �, then the INLR estimator
is weakly consistent.

5.2. The Asymptotic Distribution

The next theorem gives the asymptotically linear representation of
the INLR estimator and establishes that the estimator is asymptotically
normally distributed. The proof is in the Appendix.

Theorem 4. If:

(i) Assumptions (i)–(vii) of Theorem 3 hold;
(ii) 
h(x∗,�)


�′ is bounded on �∗ and continuous in � for (almost all) x∗ ∈ �∗.
The derivative with respect to x∗, h ′(x∗, �0), is bounded on �∗;

(iii) g�(�) have at least k + 3 absolutely integrable derivatives;
(iv) rankG = d� with d� the dimension of � and G = E[w(x)∫

�∗

h(x∗,�0)


�′ g (x∗ | x)dx∗];
(v)

√
nT −q

n → 0;

then if we define

c∗(x , t , �) = 1
2�

∫
�∗

e−itx∗
w(x)h(x∗, �)

g�(x − x∗)
gx(x)

dx∗,

the INLR estimator is asymptotically linear with

√
n(�̂ − �0) = G−1

(
1√
n

n∑
i=1

w(xi)
(
yi −

∫
�∗

h(x∗, �0)g (x∗ | xi)dx∗
)

− 1√
n

n∑
i=1

∫
E[c∗(x , t , �0)]

��(t)
(e itxi − �x(t))K ∗

n (t)dt
)
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with

1√
n

n∑
i=1

∫
E[c∗(x , t , �0)]

��(t)
(e itxi − �x(t))K ∗

n (t)dt

the correction term that accounts for the use of the deconvolution estimator in the
first stage. The asymptotic variance of its limiting normal distribution is finite.

Proof. In Appendix. �

If the distribution of the measurement error is obtained by truncating
an unbounded distribution and we let the lower and upper bound on the
support diverge, then the INLR estimator has a slower rate of convergence,
but at that slower rate the estimator is still asymptotically normal.

Corollary 4. Suppose that the assumptions of Corollary 3 and Theorem 4 hold
with the exception of (iii) in Theorem 4, then

√
ng�n (Un)(�̂ − �0)

= G−1

(
g�n (Un)√

n

n∑
i=1

w(xi)
(
yi −

∫
�∗

h(x∗, �0)g (x∗ | xi)dx∗
)

− 1√
n

n∑
i=1

∫
E[c∗(x , t , �0)]
��n (t)/g�n (Un)

(e itxi − �x(t))K ∗
n (t)dt

)
+ op(1)�

The variance of the final term is finite (and in general strictly positive).

We can replace g�n (Un) by g�(Un) with g� the underlying untruncated
density. The rate of convergence is essentially n

1
2 g�(Un) = n

1
2−�. Hence

the estimator converges slower if we let the support of the measurement
error expand faster. The upper limit is � < 1/8. Because of the slower rate
the main term in the asymptotically linear representation is asymptotically
negligible and the asymptotic distribution depends only on the correction
term.

As noted by Taupin (2001) the correction term in the asymptotic linear
representation is asymptotically normally distributed, if its asymptotic
variance is finite. If the distribution of the measurement error is range-
restricted of order k this requires mild smoothness assumptions on the
regression function. In the leading case that k = 0 the existence of three
(absolutely integrable) derivatives suffices. This should be compared with
the requirement that the regression function has to be polynomial or
exponential as in Taupin. The trade-off is between a mild assumption on
the measurement error distribution (that does not affect its ability to fit
the data) and extreme smoothness assumptions on the parametric model.



On Deconvolution 375

The assumption that the support of the measurement error
distribution is bounded may not be appealing to everyone. Corollary 4
shows that we can let the bounded support expand with the sample size.
The resulting INLR estimator is still consistent and asymptotically normal,
be it at a marginally slower rate that depends on the rate of expansion.
Therefore we can adjust the bounds on the support to an increasing
sample size, as one likely do in practice.

Assumptions (v) of Theorem 4 and (vii) of Theorem 3 imply that
Tn = O

((
n

logn

)�)
with 1

2q < � < 1
2(k+3) . For k = 0 this implies that q ≥ 4 which

is consistent with a convergence rate of at least n− 1
4 for the first-stage

nonparametric deconvolution estimator.
Finally, we show the performance of a deconvolution estimator

when the error distribution is range-restricted. Consider a probit model
with f (y | x∗,w) = �(�0 + �1x∗ + �2w)y[1 − �(�0 + �1x∗ + �2w)]1−y, where
observables include (y, x ,w) with x = x∗ + � and w ∼ N (0, 0�25). In the
simulation, the distributions of x∗ and � are truncated normal generated
by truncating N (0, 0�25) from above at point Ctrunc. Instead of using
the true characteristic function of x∗, we use a secondary sample only
containing x∗ to estimate the characteristic function of x∗, and then
use the deconvolution estimator in Hu and Ridder (2003) to estimate
(�0, �1, �2). The smoothing parameters of the density estimators (Equations
17 and 18 in Hu and Ridder, 2003) are 0.6 and (0�7, 0�7). Tables 1
and 2 provide the simulation results, together with the sample sizes and
the repetition times. The results imply that the deconvolution estimator

TABLE 1 Simulation results with Probit model: n = 500, n1 = 600, reps = 100

�1 = 1 �2 = −1 �0 = 0�5

Root MSE Mean Std. dev. Root MSE Mean Std. dev. Root MSE Mean Std. dev.

Ctrunc = 1
Ignoring 0.5321 0.4770 0.0976 0.1274 −0�9523 0.1182 0.0669 0.4923 0.0664

meas. error
True x∗ 0.1300 1.0098 0.1296 0.1154 −1�0073 0.1151 0.0669 0.5175 0.0646
Deconvolution 0.3044 1.0597 0.2985 0.1504 −1�0206 0.1490 0.0850 0.5320 0.0787
Ctrunc = 1�2
Ignoring 0.5227 0.4871 0.1007 0.1399 −0�9576 0.1334 0.0725 0.4900 0.0718

meas. error
True x∗ 0.1393 1.0279 0.1365 0.1338 −1�0190 0.1324 0.0750 0.5190 0.0725
Deconvolution 0.2862 1.0539 0.2811 0.1776 −1�0340 0.1743 0.0929 0.5283 0.0885
Ctrunc = 4
Ignoring 0.5412 0.4655 0.0849 0.1474 −0�9580 0.1413 0.0702 0.4819 0.0678

meas. error
True x∗ 0.1414 0.9810 0.1401 0.1425 −1�0126 0.1419 0.0690 0.5103 0.0682
Deconvolution 0.2359 1.0067 0.2358 0.1800 −1�0343 0.1767 0.0859 0.5137 0.0848
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TABLE 2 Simulation results with Probit model: n = 500, n1 = 600, reps = 100

�1 = 1 �2 = −1 �0 = 0�5

90% confi. 5th 95th 5th 95th 5th 95th
interval Mean quant quant Mean quant quant Mean quant quant

Ctrunc = 1
Ignoring 0.4770 0.3415 0.6347 −0�9523 −1�1503 −0�8012 0.4923 0.4029 0.6102

meas. error
True x∗ 1.0098 0.7921 1.2146 −1�0073 −1�2015 −0�8354 0.5175 0.4245 0.6288
Deconvolution 1.0597 0.6574 1.6053 −1�0206 −1�3003 −0�8277 0.5320 0.4290 0.6645
Ctrunc = 1�2
Ignoring 0.4871 0.3239 0.6403 −0�9576 −1�2062 −0�7361 0.4900 0.3753 0.6079

meas. error
True x∗ 1.0279 0.8137 1.2628 −1�0190 −1�2642 −0�8236 0.5190 0.4054 0.6310
Deconvolution 1.0539 0.6095 1.5066 −1�0340 −1�3144 −0�7681 0.5283 0.4026 0.6963
Ctrunc = 4
Ignoring 0.4655 0.3109 0.6168 −0�9580 −1�1946 −0�7629 0.4819 0.3801 0.5975

meas. error
True x∗ 0.9810 0.7855 1.2255 −1�0126 −1�2571 −0�8002 0.5103 0.4154 0.6189
Deconvolution 1.0067 0.6411 1.3323 −1�0343 −1�3389 −0�7949 0.5137 0.4033 0.6720

reduces the bias caused by the measurement error with a larger variance
due to the nonparametric estimation. Figures 1 and 2 show the normal
probability plots of the deconvolution estimates �̂1 and �̂2 with Ctrunc = 4.
The figures imply that the empirical distributions of the estimates are

FIGURE 1 Normal probability plot of 100 deconvolution estimates �̂1 with Ctrunc = 4.
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FIGURE 2 Normal probability plot of 100 deconvolution estimates �̂2 with Ctrunc = 4.

very close to a normal except in the tail area. The results show that
the deconvolution estimator performs well when the error distribution is
range-restricted.

6. CONCLUSION

We reconsider Taupin’s (2001) INLR estimator. We conclude that if
we are prepared to restrict the distribution of the measurement error
to the class of range restricted distributions, then weak smoothness
assumptions suffice to ensure

√
n consistency of the estimator. Moreover,

we can expand the support with the sample size and still have a consistent
and asymptotically normal estimator, be it with a somewhat slower rate
of convergence, that may still be acceptable. Therefore, semiparametric
estimators with a nonparametric deconvolution estimator as a first stage
can be applied if the model is not in the class considered by Taupin, if we
are prepared to make relatively weak assumptions on the distribution of
the measurement error.

The result of this note also applies to other semiparametric estimators
that have a first-stage nonparametric deconvolution estimator, e.g.,
Hu and Ridder’s (2003) estimator for nonlinear parametric models with a
mismeasured covariate.
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APPENDIX

Proof of Theorem 1. We give the proof for k = 0. We use integration by
parts twice to obtain

�v(t) =
∫ U

L
e itx fv(x)dx

= 1
it

[
fv(U )e itU − fv(L)e itL −

∫ U

L
e itx f ′

v (x)dx
]

= 1
it

[
fv(U )e itU − fv(L)e itL − 1

it

(
f ′
v (U )e itU − f ′

v (L)e
itL −

∫ U

L
e itx f ′′

v (x)dx
)]
�

Hence

|�v(t)| ≥ 1
|t |

∣∣∣∣
∣∣∣∣
(
fv(U ) − 1

it
f ′
v (U )

)
e itU −

(
fv(L) − 1

it
f ′
v (L)

)
e itL

∣∣∣∣
−

∣∣∣∣ 1it
∫ U

L
e itx f ′′

v (x)dx
∣∣∣∣
∣∣∣∣� (5)

The first term in absolute value on the right-hand side is bounded from
below by

∣∣∣∣
(
fv(U ) − 1

it
f ′
v (U )

)
e itU −

(
fv(L) − 1

it
f ′
v (L)

)
e itL

∣∣∣∣
≥

∣∣∣∣
∣∣∣∣
(
fv(U ) − 1

it
f ′
v (U )

)
e itU

∣∣∣∣ −
∣∣∣∣
(
fv(L) − 1

it
f ′
v (L)

)
e itL

∣∣∣∣
∣∣∣∣

=
∣∣∣∣∣∣
√
fv(U )2 +

(
1
t
f ′
v (U )

)2

−
√
fv(L)2 +

(
1
t
f ′
v (L)

)2
∣∣∣∣∣∣ � (6)

If |t | → ∞ the lower bound in (6) converges to |fv(U ) − fv(L)| > 0, so that
there are a t1 (that depends on L,U ) and C1 < 1 such that (6) is greater
than C1|fv(U ) − fv(L)| for t ≥ t1.

The second term in absolute value on the right-hand side of (5) is
bounded from above by

∣∣∣∣ 1it
∫ U

L
e itx f ′′

v (x)dx
∣∣∣∣ ≤ 1

|t |
∫ U

L
|f ′′
v (x)|dx ,
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and this upper bound converges to 0 if |t | → ∞. Therefore, there is a t2
(that depends on L,U ) such that for t ≥ t2∣∣∣∣ 1it

∫ U

L
e itx f ′′

v (x)dx
∣∣∣∣ ≤ C1

2
|fv(U ) − fv(L)|

so that for t ≥ t0 = max
t1, t2�

|�v(t)| ≥ C0

|t | |fv(U ) − fv(L)|

with C0 = C1/2.
For the upper bound, we have

|�v(t)| ≤ 1
|t |

(∣∣∣∣
(
fv(U ) − 1

it
f ′
v (U )

)
e itU

∣∣∣∣ +
∣∣∣∣
(
fv(L) − 1

it
f ′
v (L)

)
e itL

∣∣∣∣
+

∣∣∣∣ 1it
∫ U

L
e itx f ′′

v (x)dx
∣∣∣∣
)

≤ 1
|t |

(
fv(U ) + 1

|t | |f
′
v (U )| + fv(L) + 1

|t | |f
′
v (L)| + 1

|t |
∫ U

L
|f ′′
v (x)|dx

)

≤ C1(fv(U ) + fv(L))
|t |

if |t | ≥ t0, where if necessary we increase the t0 we used earlier.
For the case that k ≥ 1, the same method of proof applies after k + 2

integrations by parts. �

Proof of Corollary 1. Consider the lower bound in (6) with Un ,Ln

substituted for U ,L, and Tn for t . Under the assumptions

fvn (Un)
2 +

(
1
Tn

f ′
vn (Un)

)2

> fvn (Ln)
2 +

(
1
Tn

f ′
vn (Ln)

)2

for n sufficiently large. Hence the expression is bounded from below by

fvn (Un)


1 −

√(
fvn (Ln)

fvn (Un)

)2

+
(

f ′
vn (Ln)

Tnfvn (Un)

)2

 �

Note that f ′
vn (Un) → 0, f ′

vn (Ln) → 0, and Tnfvn (Un) → ∞ as n → ∞.
Under the assumptions this lower bound is larger than

1
Tn

∫ ∞

−∞
f ′′
v (x)dx
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for n sufficiently large, so that∣∣∣∣
∣∣∣∣
(
fvn (Un) − 1

iTn
f ′
vn (Un)

)
e iTnUn −

(
fvn (Ln) − 1

iTn
f ′
vn (Ln)

)
e iTnLn

∣∣∣∣
−

∣∣∣∣ 1
iTn

∫ Un

Ln

e iTnx f ′′
vn (x)dx

∣∣∣∣
∣∣∣∣

≥ fvn (Un)


1−

√(
fvn (Ln)

fvn (Un)

)2

+
(

f ′
vn (Ln)

Tnfvn (Un)

)2

− 1
fvn (Un)Tn

∫ ∞

−∞
f ′′
v (x)dx




≥ Cfvn (Un),

and the result follows. �

Proof of Theorem 2. We first establish the rate of uniform convergence
of the empirical characteristic function. This lemma corrects a result in
Lemma 1 in Horowitz and Markatou (1996, p. 163).

Lemma 1. Let �̂v(t) = ∫ ∞
−∞ e itvdFn(v) be the empirical characteristic function of

a random sample v1, � � � , vn from a distribution with cdf F and with E(|v|) < ∞.
For 0 < � < 1

2 , let Tn = o
((

n
logn

)�)
. Then

sup
|t |≤Tn

∣∣�̂v(t) − �v(t)
∣∣ = o(�n) a.s. (7)

with �n = O
(( logn

n

) 1
2−�)

, i.e., the rate of convergence is at most
( logn

n

) 1
2−�

.

Proof. Consider the parametric class of functions �n = 
e itx ||t | ≤ Tn�.
The first step, is to find the L1 covering number of �n . Because e itx =
cos(tx) + i sin(tx), we need covers of �1n = 
cos(tx)||t | ≤ Tn� and 
�2n =
sin(tx)||t | ≤ Tn�. Because | cos(t2x) − cos(t1x)| ≤ |x ||t2 − t1| and E(|x |)<∞,
an �

2E(|x |) cover (with respect to the L1 norm) of �1n is obtained from an �
2

cover of 
t ||t | ≤ Tn� by choosing tk , k = 1, � � � ,K arbitrarily from the distinct
covering sets, where K is the smallest integer larger than 2Tn

�
. Because

| sin(t2x) − sin(t1x)| ≤ |x ||t2 − t1|, the functions sin(tkx), k = 1, � � � ,K are an
�
2E(|x |) cover of �2n . Hence cos(tkx) + i sin(tkx), k = 1, � � � ,K is an �E(|x |)
cover of �n , and we conclude that

�1(�,P ,�n) ≤ A
Tn

�
(8)

with P an arbitrary probability measure such that E(|x |) < ∞ and A> 0,
a constant that does not depend on n. The next step is to apply an
argument in Pollard (1984). With �n = 1 for all n and �n = ��n , Eqs. (30)
and (31) in Pollard (1984, p. 31) are valid for �1(�,P ,�n) defined above.



On Deconvolution 381

Hence we have as in Pollard’s proof using his (31)

Pr
(

sup
|t |≤Tn

|�̂(t) − �(t)| > 2�n

)
≤ 2A

(
�n

Tn

)−1

exp
(

− 1
128

n�2
n

)

+ Pr
(

sup
|t |≤Tn

�̂(2t) > 64
)
� (9)

The second term on the right-hand side is obviously 0. The first term on
the right-hand side is bounded by

2A�−1exp
(
log

(
Tn

�n

)
− 1

128
n�2�2n

)
� (10)

The restrictions on �n and Tn imply that Tn
�n

= o
(√

n
logn

)
, and hence

log
(
Tn
�n

) − 1
2 logn → −∞. The same restrictions imply that n�2n

logn → ∞. The
result now follows from the Borel–Cantelli lemma. �

In Lemma 1 we can choose Tn = O
((

n
logn

)�)
, but the rate of convergence

is then at most
( logn

n

) 1
2−�−�

for an arbitrary � > 0, i.e., strictly less than the
rate of convergence in Lemma 1. In the sequel, we prefer this choice of Tn

because it suggests how the sequence of Tn should be chosen proportionally
to

(
n

logn

)�
.

Proof of Theorem 2. Given that |��(t)| > 0, we have

sup
x∗∈�∗

∣∣ĝx∗(x∗) − gx∗(x∗)
∣∣ ≤ sup

x∗∈�∗

∣∣∣∣ 1
2�

∫
e−itx∗

(
�̂x(t) − �x(t)

��(t)

)
K ∗

n (t)dt
∣∣∣∣

+ sup
x∗∈�∗

∣∣∣∣ 1
2�

∫
e−itx∗

�x∗(t) �1 − K ∗
n (t)�dt

∣∣∣∣� (11)
We consider the first term on the right-hand side, the variance term, that is
bounded by

sup
|t |≤Tn

∣∣�̂x(t) − �x(t)
∣∣ 1
2�

∫ Tn

−Tn

1
|��(t)|dt � (12)

Hence (12) is a.s. bounded by

O
(

Tn

inf|t |≤Tn |��(t)|
(
logn
n

) 1
2−�−�)

= O
(
T k+2

n

(
logn
n

) 1
2−�−�)

(13)

= O
((

logn
n

) 1
2−(k+3)�−�)

, (14)



382 Y. Hu and G. Ridder

where Tn = O
((

n
logn

)�)
and 0 < � < 1

2 . The first equality is due to
Theorem 1 and the assumption that the distribution of � is range restricted
of order k.

Next we consider the second term on the right-hand side of (11) which
is the bias term. Because K is a kernel of order q , we have by a Taylor
series expansion of the density of x∗

1
2�

∫
e−itx∗

�x∗(t)[1 − K ∗
n (t)]dt = gx∗(x∗) −

∫
K (z)gx∗

(
x∗ − z

Tn

)
dz

= T −q
n

(
g (q)
x∗ (x̃∗)

∫
zqK (z)dz

)
,

where x̃∗ is between x∗ and x∗ − z
Tn
. The last equality is due to the

assumption that the density of x∗ is q times differentiable, and the qth
derivative is continuous and bounded on �∗. Therefore, the bias term is
O(T −q

n ). The results follow. �

Proof of Corollary 2. In (13) we substitute the lower bound of
Corollary 1 (and k = 0) to obtain the result. �

Proof of Theorem 3. Sufficient for weak consistency of the estimator is
that

mn(�) = 1
n

n∑
i=1

w(xi)
(
yi −

∫
�∗

h(x∗, �)
g�(xi − x∗)

gx(xi)
ĝx∗(x∗)dx∗

)

p→ Ex

[
w(x)

∫
�∗
(h(x∗, �0) − h(x∗, �))g (x∗ | x)dx∗

]
≡ m(�, �0)

uniformly for � ∈ 	. We have

mn(�) − m(�, �0) = 1
n

n∑
i=1

(
w(xi)yi − Ex

[
w(x)

∫
�∗

h(x∗, �0)g (x∗ | x)dx∗
])

− 1
n

n∑
i=1

w(xi)
∫
�∗
h(x∗, �)

g�(xi − x∗)
gx(xi)

(ĝx∗(x∗) − gx∗(x∗))dx∗

−
(
1
n

n∑
i=1

w(xi)
∫
�∗

h(x∗, �)g (x∗ | xi)dx∗

− Ex

[
w(x)

∫
�∗

h(x∗, �)g (x∗ | x)dx∗
])

≡A1 +A2 +A3�

The term A2 involves the deconvolution estimator of the density of x∗.
Obviously, A1 converges to 0 in probability. For A3, we have by the uniform
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weak law of large numbers that it converges to 0 in probability uniformly
for � ∈ 	, if

Ex

[
sup
�∈	

∣∣∣∣w(x)
∫
�∗

h(x∗, �)g (x∗ | x)dx∗
∣∣∣∣
]
< ∞,

which holds if w is is bounded on � and h(x∗, �) is bounded on �∗ × 	.
We now consider A2

sup
�∈	

|A2| = sup
�∈	

∣∣∣∣ 1n
n∑

i=1

w(xi)
∫
�∗

h(x∗, �)
g�(xi − x∗)

gx(xi)
(ĝx∗(x∗) − gx∗(x∗))dx∗

∣∣∣∣
≤ sup

x∗∈�∗

∣∣∣∣ĝx∗(x∗) − gx∗(x∗)
∣∣∣∣ sup

�∈	

∣∣∣∣ 1n
n∑

i=1

w(xi)
∫
�∗
h(x∗, �)

g�(xi − x∗)
gx(xi)

dx∗
∣∣∣∣�

By Theorem 2, supx∗∈�∗ |ĝx∗(x∗) − gx∗(x∗)| is op(1). Since gx is bounded away
from zero on � and the functions w, h are bounded on � and �∗ × 	,
respectively, the second term is bounded by C

∫ ∞
−∞ g�(�)d� for a constant

0 ≤ C < ∞. Therefore, we have

sup
�∈	

|A2| p→ 0� �

Proof of Theorem 4. Expanding (1) around �0 we have for some �̄ =
��̂ + (1 − �)�0, 0 ≤ � ≤ 1

1√
n

n∑
i=1

w(xi)
(
yi −

∫
�∗

h(x∗, �0)
g�(xi − x∗)

gx(xi)
ĝx∗(x∗)dx∗

)

− 1
n

n∑
i=1

w(xi)
∫
�∗


h(x∗, �̄)

�′

g�(xi − x∗)
gx(xi)

ĝx∗(x∗)dx∗√n(�̂ − �0) = 0�

Define

B1 = 1√
n

n∑
i=1

w(xi)
(
yi −

∫
�∗

h(x∗, �0)
g�(xi − x∗)

gx(xi)
ĝx∗(x∗)dx∗

)

and

B2 = 1
n

n∑
i=1

w(xi)
∫
�∗


h(x∗, �̄)

�′

g�(xi − x∗)
gx(xi)

ĝx∗(x∗)dx∗�

We consider first B2, and we show that

B2
p→ E

[
w(x)

∫
�∗


h(x∗, �0)

�′ g (x∗ | x)dx∗

]
�
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We have

B2 − E
[
w(x)

∫
�∗


h(x∗, �0)

�′ g (x∗ | x)dx∗

]

= 1
n

n∑
i=1

w(xi)
∫
�∗

(

h(x∗, �̄)


�′ − 
h(x∗, �0)

�′

)
g�(xi − x∗)

gx(xi)
ĝx∗(x∗)dx∗

+ 1
n

n∑
i=1

w(xi)
∫
�∗


h(x∗, �0)

�′

g�(xi − x∗)
gx(xi)

(
ĝx∗(x∗) − gx∗(x∗)

)
dx∗

+ 1
n

n∑
i=1

w(xi)
∫
�∗


h(x∗, �0)

�′ g (x∗ | xi)dx∗

− E
[
w(x)

∫
�∗


h(x∗, �0)

�′ g (x∗ | x)dx∗

]
≡ C1 + C2 + C3�

For C1 we have, because assumption (ii) and dominated convergence
imply that

∫
�∗


h(x∗,�)

�′

g�(xi−x∗)
gx (xi )

ĝx∗(x∗)dx∗ is continuous in �, that for all � > 0,
there is � > 0 such that

|�̄ − �0| ≤ �

⇒
∣∣∣∣ 1n

n∑
i=1

w(xi)
∫
�∗

(

h(x∗, �̄)


�′ − 
h(x∗, �0)

�′

)
g�(xi − x∗)

gx(xi)
ĝx∗(x∗)dx∗

∣∣∣∣ ≤ ��

Because �̄
p→ �0 we have that C1

p→ 0 by a uniform law of large numbers.
Also C3

p→ 0. The term C2
p→ 0 due to the uniform convergence of ĝx∗ .

Next, we consider B1. We write

B1 = 1√
n

n∑
i=1

w(xi)
(
yi −

∫
�∗

h(x∗, �0)g (x∗ | xi)dx∗
)

− 1√
n

n∑
i=1

w(xi)
∫
�∗
h(x∗, �0)

g�(xi − x∗)
gx(xi)

(ĝx∗(x∗) − gx∗(x∗))dx∗ ≡ D1 − D2

with D1 the moment condition after substitution of the population density
of x∗ and D2 the correction term that accounts for the fact that this density
is estimated. Because D1 is obviously Op(1), the rate of convergence of the
INLR estimator is determined by the rate of convergence of D2. This is the
main point of Taupin’s (2001) result.
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For D2 we have

D2 = 1√
n

n∑
i=1

w(xi)
∫
�∗

h(x∗, �0)
g�(xi − x∗)

gx(xi)
(ĝx∗(x∗) − g̃x∗(x∗))dx∗

+ 1√
n

n∑
i=1

w(xi)
∫
�∗
h(x∗, �0)

g�(xi − x∗)
gx(xi)

(g̃x∗(x∗) − gx∗(x∗))dx∗ = E1 + E2,

where

g̃x∗(x∗) = 1
2�

∫ ∞

−∞
e−itx∗ �x(t)

��(t)
K ∗

n (t)dt �

In the proof of Theorem 2, we showed that

sup
x∗∈�∗

|g̃x∗(x∗) − gx∗(x∗)| ≤ CT −q
n

with q the order of the kernel. Now by assumptions (ii)–(iv) of Theorem 3

∣∣∣∣ 1√
n

n∑
i=1

w(xi)
∫
�∗

h(x∗, �0)
g�(xi − x∗)

gx(xi)
dx∗

∣∣∣∣
≤ C

∣∣∣∣ 1√
n

n∑
i=1

∫ U

L
h(xi − �, �0)g�(�)d�

∣∣∣∣ ≤ C
√
n

so that E2 is bounded by

C
√
nT −q

n � (15)

Finally, we consider E1. We can express it as a U -statistic

E1 = 1
n
√
n

n∑
i=1

n∑
j=1

∫ ∞

−∞

c∗(xi , t , �0)
��(t)

(e itxj − �x(t))K ∗
n (t)dt (16)

with

c(x , x∗, �) = w(x)h(x∗, �)
g�(x − x∗)

gx(x)
c∗(x , t , �) = 1

2�

∫
�∗

e−itx∗
c(x , x∗, �)dx∗,

i.e., c∗ is a partial Fourier transform of c with respect to x∗. The projection
is (x̃ and x have the same distribution)

1√
n

n∑
i=1

∫ ∞

−∞

E[c∗(x̃ , t , �0)]
��(t)

(e itxi − �x(t))K ∗
n (t)dt
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with variance

E
[( ∫ ∞

−∞

E[c∗(x̃ , t , �0)]
��(t)

(e itx − �x(t))K ∗
n (t)dt

)2]
�

We will show that the variance is always finite if the distribution of the
measurement error is range-restricted.

A sufficient condition for a finite variance is that∣∣∣∣
∫ ∞

−∞

Ex̃ [c∗(x̃ , t , �0)]
��(t)

(e itx − �x(t))K ∗
n (t)dt

∣∣∣∣
=

∣∣∣∣Ex̃

[ ∫ ∞

−∞

c∗(x̃ , t , �0)
��(t)

(e itx − �x(t))K ∗
n (t)dt

]∣∣∣∣ ≤ M < ∞

for all x ∈ � . Define

�(�, x) = h(x − �, �0)g�(�) �∗(t , x) =
∫ U

L
e it��(�, x)d� G(x) = w(x)

gx(x)

Then ∣∣∣∣Ex̃

[ ∫ ∞

−∞

c∗(x̃ , t , �0)
��(t)

(e itx − �x(t))K ∗
n (t)dt

]∣∣∣∣
=

∣∣∣∣Ex̃

[
G(x̃)

∫ ∞

−∞

�∗(t , x̃)
��(t)

e−it x̃(e itx − �x(t))K ∗
n (t)dt

]∣∣∣∣
≤

∣∣∣∣Ex̃

[
G(x̃)

∫ ∞

−∞

�∗(t , x̃)
��(t)

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣
+

∣∣∣∣Ex̃

[
G(x̃)

∫ ∞

−∞

�∗(t , x̃)
��(t)

e−it x̃�x(t)K ∗
n (t)dt

]∣∣∣∣� (17)

We consider the final term on the right-hand side first. Consider

∣∣∣∣
∫ ∞

−∞

�∗(t , x̃)
��(t)

e−it x̃�x(t)K ∗
n (t)dt

∣∣∣∣ ≤
∫ Tn

−Tn

|�∗(t , x̃)||�x∗(t)|dt �

Now

|�∗(t , x)| ≤
∫ U

L
|h(x − �, �0)|g�(�)d�, (18)

which is bounded because h(x∗, �0) is bounded on �∗.
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The final step is to show that the first term on the right-hand side
of (17) is bounded on � . Define the function (of t)

r (t , x̃) = �∗(t , x̃)
��(t)

�

We take two steps: (i) we expand the function r (t , x) up to 1
(it)2 , (ii) we

show that the terms up to 1
it have a finite integral.

(i) Expansion of r (t , x)
If we partially integrate both numerator and denominator two times,

we obtain, using the notation f (x)|UL = f (U ) − f (L)

r (t , x)

= e it��(�, x)|UL − 1
it

(
e it��′(�, x)|UL

) + 1
(it)2

(
e it��′′(�, x)|UL − ∫ U

L e it��′′′(�, x)d�
)

e it�g�(�)|UL − 1
it

(
e it�g ′

�(�)|UL
) + 1

(it)2

(
e it�g ′′

� (�)|UL − ∫ U
L e it�g ′′′

� (�)d�
) �

This suffices if the distribution of � is range-restricted of order 0. If the
distribution is range-restricted of order k, we need to apply partial
integration k + 3 times. The proof is similar for this case with some obvious
changes.

Using the identity

A
B

= A′ + (A − A′)
B ′ + (B − B ′)

= A′

B ′ + 1
B
(A − A′) − A′

B ′B
(B − B ′)

with

A′ = e it��(�, x)|UL − 1
it

(
e it��′(�, x)|UL

)
B ′ = e it�g�(�)|UL − 1

it

(
e it�g ′

�(�)|UL
)
,

we have

r (t , x) = A′

B ′ +
[

1
it��(t)

(
e it��′′(�, x)|UL −

∫ U

L
e it��′′′(�, x)d�

)

− 1
it��(t)

A′

B ′

(
e it�g ′′

� (�)|UL −
∫ U

L
e it�g ′′′

� (�)d�
)]

1
(it)2

�

The next step is to use the identity

A′

B ′ = A′′ + (A′ − A′′)
B ′′ + (B ′ − B ′′)

= A′′

B ′′ + 1
B ′′ (A

′ − A′′) − A′′

(B ′′)2
(B ′ − B ′′)

+ A′′

B ′(B ′′)2
(B ′ − B ′′)2 − 1

B ′′B ′ (A
′ − A′′)(B ′ − B ′′)
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with

A′′ = e it��(�, x)|UL
B ′′ = e it�g�(�)|UL

to write

A′

B ′ = e it��(�, x)|UL
e it�g�(�)|UL

+
((

e it��(�, x)|UL
)(
e it�g ′

�(�)|UL
)

(
e it�g�(�)|UL

)2 − e it��′(�, x)|UL
e it�g�(�)|UL

)
1
it

+
(
e it��(�, x)|UL

B ′

(
e it�g ′

�(�)|UL
)2

(
e it�g�(�)|UL

)2 −
(
e it�g ′

�(�)|UL
)(
e it��′(�, x)|UL

)
(
e it�g�(�)|UL

)
B ′

)
1

(it)2
�

Substitution gives the following expansion

r (t , x) = �1(t , x) + �2(t , x)
1
it

+ �3(t , x)
1

(it)2
(19)

with

�1(t , x) = e itU �(U , x) − e itL�(L, x)
e itU g�(U ) − e itLg�(L)

(20)

�2(t , x) =
(
e itU �(U , x) − e itL�(L, x)

)(
e itU g ′

�(U ) − e itLg ′
�(L)

)
(
e itU g�(U ) − e itLg�(L)

)2
− e itU �′(U , x) − e itL�′(L, x)

e itU g�(U ) − e itLg�(L)
(21)

�3(t , x) = 1
it��(t)

(
e itU �′′(U , x) − e itL�′′(L, x) −

∫ U

L
e it��′′′(�, x)d�

)

− 1
it��(t)

e itU �(U , x) − e itL�(L, x) − 1
it

(
e itU �′(U , x) − e itL�′(L, x)

)
e itU g�(U ) − e itLg�(L) − 1

it

(
e itU g ′

�(U ) − e itLg ′
�(L)

)
�

(
e itU g ′′

� (U ) − e itLg ′′
� (L) −

∫ U

L
e it�g ′′′

� (�)d�
)

+ e itU �(U , x) − e itL�(L, x)
e itU g�(U ) − e itLg�(L) − 1

it

(
e itU g ′

�(U ) − e itLg ′
�(L)

)
·
(
e itU g ′

�(U ) − e itLg ′
�(L)

)2
(
e itU g�(U ) − e itLg�(L)

)2
−

(
e itU g ′

�(U ) − e itLg ′
�(L)

)(
e itU �′(U , x) − e itL�′(L, x)

)
(
e itU g�(U ) − e itLg�(L)

)(
e itU g�(U ) − e itLg�(L) − 1

it

(
e itU g ′

�(U ) − e itLg ′
�(L)

)) � (22)
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Note that �1 and �2 are well defined because

∣∣e itU g�(U ) − e itLg�(L)
∣∣ ≥ ∣∣g�(U ) − g�(L)

∣∣ > 0�

If t is sufficiently large, say |t | ≥ t0, then by the same argument∣∣∣∣e itU g�(U ) − e itLg�(L) − 1
it

(
e itU g ′

�(U ) − e itLg ′
�(L)

)∣∣∣∣
≥

∣∣∣∣∣∣e itU g�(U ) − e itLg�(L)
∣∣ − 1

|t |
∣∣(e itU g ′

�(U ) − e itLg ′
�(L)

)∣∣∣∣∣∣ > 0�

Also all numerators in �3 are bounded in t , x , if h(x∗, �0) and g� have three
absolutely integrable derivatives, so that

|�3(t , x)| ≤ M < ∞

on � and for |t | ≥ t0.

(ii) Finiteness of the integral
We consider ∣∣∣∣Ex̃

[
G(x̃)

∫ ∞

−∞

�∗(t , x̃)
��(t)

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣�
We have ∣∣∣∣Ex̃

[
G(x̃)

∫ ∞

−∞

�∗(t , x̃)
��(t)

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣
≤ Ex̃

[
|G(x̃)|

∫
0≤|t |≤t0

∣∣∣∣�∗(t , x̃)
��(t)

∣∣∣∣|K ∗
n (t)|dt

]

+
∣∣∣∣Ex̃

[
G(x̃)

∫
t0≤|t |<∞

�∗(t , x̃)
��(t)

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣�
The first term on the right-hand side is finite if r (t , x) is bounded in t
(see above) and x which holds if h(x∗, �0) is bounded in x∗.

We show that the second term is finite by substitution of the expansion
in (i) which gives∣∣∣∣Ex̃

[
G(x̃)

∫
t0≤|t |<∞

�∗(t , x̃)
��(t)

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣
≤

∣∣∣∣Ex̃

[
G(x̃)

∫
t0≤|t |<∞

�1(t , x̃)e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣
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+
∣∣∣∣Ex̃

[
G(x̃)

∫
t0≤|t |<∞

1
it
�2(t , x̃)e it(x−x̃)K ∗

n (t)dt
]∣∣∣∣

+
∣∣∣∣Ex̃

[
G(x̃)

∫
t0≤|t |<∞

1
(it)2

�3(t , x̃)e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣� (23)

The final term is bounded by

CEx̃

[|G(x̃)|] ∫
t0≤|t |<∞

1
|t |2 |K

∗
n (t)|dt < ∞,

so that we only need to consider the first two terms on the right-hand side.
Substitution of �(�, x) in �1 gives

�1(t , x) =
h(x − U , �0) − e it(L−U ) g�(L)

g�(U )
h(x − L, �0)

1 − e it(L−U ) g�(L)
g�(U )

,

and substitution of this expression in the relevant term in (23) gives

∣∣∣∣Ex̃

[
G(x̃)

∫
t0≤|t |<∞

h(x̃ − U , �0) − e it(L−U ) g�(L)
g�(U )

h(x̃ − L, �0)

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣
≤

∣∣∣∣Ex̃

[
G(x̃)h(x̃ − U , �0)

∫
t0≤|t |<∞

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣
+

∣∣∣∣Ex̃

[
G(x̃)h(x̃ − L, �0)

∫
t0≤|t |<∞

e it(L−U ) g�(L)
g�(U )

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣, (24)
without loss of generality we assume that

g�(L)
g�(U )

< 1�

Now consider the first term on the right-hand side of (24) that is
bounded by

∣∣∣∣Ex̃

[
G(x̃)h(x̃ − U , �0)

∫
0≤|t |≤t0

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣
+

∣∣∣∣Ex̃

[
G(x̃)h(x̃ − U , �0)

∫ ∞

−∞

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣� (25)
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Because

1

1 − g�(L)
g�(U )

e it(L−U )
=

∞∑
j=0

(
g�(L)
g�(U )

)j

e it(L−U )j ,

the first term of (25) is bounded by (if Tn > t0)

∞∑
j=0

(
g�(L)
g�(U )

)j ∣∣∣∣
∫
0≤|t |≤t0

e it(x−x̃)+it(L−U )K ∗
(

t
Tn

)
dt

∣∣∣∣ ≤ t0
1 − g�(L)

g�(U )

< ∞

because K ∗(t) = 1 if |t | ≤ 1.
For the second term of (25), we note that

�z(t) ≡
1 − g�(L)

g�(U )

1 − g�(L)
g�(U )

e it(L−U )

is the characteristic function of a discrete random variable z with

Pr(z = (L − U )j) =
(
1 − g�(L)

g�(U )

)(
g�(L)
g�(U )

)j

for j = 0, 1, � � � . Hence

∫ ∞

−∞

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)K ∗
n (t)dt

= 2�

1 − g�(L)
g�(U )

1
2�

∫ ∞

−∞
e it(x−x̃)�z(t)K ∗

n (t)dt �

Because the density corresponding to K ∗
n (t) is TnK (Tnv), this is equal to

2�

1 − g�(L)
g�(U )

∞∑
j=0

TnK (Tn(x̃ − x − (L − U )j))
(
g�(L)
g�(U )

)j

Hence∣∣∣∣Ex̃

[
G(x̃)h(x̃ − U , �0)

∫ ∞

−∞

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)K ∗
n (t)dt

]∣∣∣∣
≤ C

∞∑
j=0

(
g�(L)
g�(U )

)j ∣∣Ex̃

[
G(x̃)h(x̃ − U , �0)TnK (Tn(x̃ − x − (L − U )j))

]∣∣�
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Finally, for w = Tn(x̃ − x − (L − U )j)

|Ex̃

[
G(x̃)h(x̃ − U , �0)TnK (Tn(x̃ − x − (L − U )j))

]|
=

∣∣∣∣
∫

G
(
w
Tn

+ x + (L − U )j
)
h
(
w
Tn

+ x + (L − U )j − U , �0

)

· K (w)gx

(
w
Tn

+ x + (L − U )j
)
dw

∣∣∣∣
≤ C

∫ ∞

−∞
|K (w)|dw < ∞�

Using

e it(L−U ) g�(L)
g�(U )

1 − e it(L−U ) g�(L)
g�(U )

=
∞∑
j=1

(
g�(L)
g�(U )

)j

e it(L−U )j ,

we use the same proof to show that the second term on the right-hand side
of (24) is finite.

Finally, we consider the second term on the right-hand side of (23).
First, we have

�2(t , x) =
(
h(x − U , �0) − e it(L−U ) g�(L)

g�(U )
h(x − L, �0)

)( g ′
�(U )−e it(L−U )g ′

�(L)
g�(U )

)
(
1 − e it(L−U ) g�(L)

g�(U )

)2

−
h(x−U ,�0)g ′

�(U )−e it(L−U )h(x−L,�0)g ′
�(L)

g�(U )

1 − e it(L−U ) g�(L)
g�(U )

+
h ′(x − U , �0) − e it(L−U ) g�(L)

g�(U )

× h ′(x − L, �0)

1 − e it(L−U ) g�(L)
g�(U )

�

Substitution gives the bound∣∣∣∣∣∣Ex̃


G(x̃)

∫
t0≤|t |<∞

(
h(x̃ − U , �0) − e it(L−U ) g�(L)

g�(U )
h(x̃ − L, �0)

)( g ′
�(U )−e it(L−U )g ′

�(L)
g�(U )

)
(
1 − e it(L−U ) g�(L)

g�(U )

)2
× e it(x−x̃)

it
K ∗

n (t)dt
]∣∣∣∣

+
∣∣∣∣Ex̃

[
G(x̃)

∫
t0≤|t |<∞

h(x̃−U ,�0)g ′
�(U )−e it(L−U )h(x̃−L,�0)g ′

�(L)
g�(U )

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)

it
K ∗

n (t)dt
]∣∣∣∣

+
∣∣∣∣Ex̃

[
G(x̃)

∫
t0≤|t |<∞

h ′(x̃ − U , �0) − e it(L−U ) g�(L)
g�(U )

h ′(x̃ − L, �0)

1 − e it(L−U ) g�(L)
g�(U )

× e it(x−x̃)

it
K ∗

n (t)dt
]∣∣∣∣� (26)



On Deconvolution 393

We show that the final term of (26) is bounded (in x). It is bounded by∣∣∣∣Ex̃

[
G(x̃)h ′(x̃ − U , �0)

∫
t0≤|t |<∞

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)

it
K ∗

n (t)dt
]∣∣∣∣

+
∣∣∣∣Ex̃

[
G(x̃)

g�(L)
g�(U )

h ′(x − L, �0)
∫
t0≤|t |<∞

1

1 − e it(L−U ) g�(L)
g�(U )

× e it(x−x̃)+it(L−U )

it
K ∗

n (t)dt
]∣∣∣∣� (27)

The first term of (27) is bounded by∣∣∣∣Ex̃

[
G(x̃)h ′(x̃ − U , �0)

∫
|t |≤t0

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)

it
K ∗

n (t)dt
]∣∣∣∣

+
∣∣∣∣Ex̃

[
G(x̃)h ′(x̃ − U , �0)

∫ ∞

−∞

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)

it
K ∗

n (t)dt
]∣∣∣∣� (28)

The second term of (28) contains the integral

s(x − x̃) ≡
∫ ∞

−∞

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)

it
K ∗

n (t)dt

with derivative

s ′(x − x̃) =
∫ ∞

−∞

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)K ∗
n (t)dt

= 2�

1 − g�(L)
g�(U )

∞∑
j=0

TnK (Tn(x̃ − x − (L − U )j))
(
g�(L)
g�(U )

)j

,

so that

s(x − x̃) = − 2�

1 − g�(L)
g�(U )

∞∑
j=0

H (Tn(x̃ − x − (L − U )j))
(
g�(L)
g�(U )

)j

with H (v) = ∫ v
−∞ K (s)ds the integral of K which is a bounded function.

Hence, the second term on the right-hand side of (28) is bounded by

C
∞∑
j=0

(
g�(L)
g�(U )

)j ∣∣Ex̃

[
G(x̃)h ′(x̃ − U , �0)H (Tn(x̃ − x − (L − U )j))

]∣∣ ≤ M < ∞

because G(x), h ′(x∗, �0),H (v) are all bounded.
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To bound the first term on the right-hand side of (28), we note
that K ∗(t) = ∫ ∞

−∞ e itvK (v)dv = ∫ ∞
−∞ cos(tv)K (v)dv because K is an even

function, so that K ∗ is real and even. This implies that, because sin t
t is even,

cos t
t is odd and K ∗( t

Tn

) = 1 if |t | ≤ Tn

∫
|t |≤t0

1

1 − e it(L−U ) g�(L)
g�(U )

e it(x−x̃)

it
K ∗

n (t)dt

=
∞∑
j=0

(
g�(L)
g�(U )

)j ∫
|t |≤t0

e it(x−x̃)+itj(L−U )

it
K ∗

(
t
Tn

)
dt

=
∞∑
j=0

(
g�(L)
g�(U )

)j ∫
|t |≤t0

sin t(x − x̃ + j(L − U ))

t
dt �

Now∫
|t |≤t0

sin t(x − x̃ + j(L − U ))

t
dt =

∫
|t |≤t0(x−x̃+j(L−U ))

sin t
t

dt ≤ M < ∞,

so that the first term is also a bounded function of x .
The proof that the second term of (27) is bounded is completely

analogous. The same method of proof also applies to the second term on
the right-hand side of (26). For the first term of (26), we note that

�z(t) ≡
(
1 − g�(L)

g�(U )

)2
(
1 − g�(L)

g�(U )
e it(L−U )

)2
is the characteristic function of z = z1 + z2, where z1, z2 are independent
and have the same distribution

Pr(zk = (L − U )j) =
(
1 − g�(L)

g�(U )

)(
g�(L)
g�(U )

)j

for j = 0, 1, � � � and k = 1, 2. Expressing

(
1 − g�(L)

g�(U )

)2
(
1 − g�(L)

g�(U )
e it(L−U )

)2 =
(
1 − g�(L)

g�(U )

)2 ∞∑
j=0

(j + 1)
(
g�(L)
g�(U )

)j

e it(L−U )j ,

we see that the same method of proof can be applied to the first term
of (26). We conclude that the variance is indeed finite. �
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Proof of Corollary 4

In the proof of Corollary 1, we established that for the sequences in
that corollary the c.f. of �n obtained by truncating a distribution with
unbounded support at Ln and Un satisfies

|��n (Tn)| ≥ C
g�n (Un)

Tn
�

We consider

√
ng�n (Un)(�̂ − �)

so that in the proof of Theorem 4 we multiply by g�n (Un) throughout.
The key problem in establishing that the variance of INLR is finite is

with the first term on the right-hand side of (17). This term is bounded by
(we multiply by g�n (Un))

�x̃

[∣∣G(x̃)
∣∣ ∫ Tn

−Tn

|�∗(t , x̃)|
|��n (t)|

dt
]
�

If �n has a truncated normal distribution, then if the truncation points
diverge, the denominator behaves as e− 1

2 t
2
and even if the numerator has

many absolutely integrable derivatives the decrease in the numerator is at
most proportional to t−k . Now if the first three derivatives of �(�, x) are
absolutely integrable, i.e.,∫ ∞

−∞
|�(k)(�, x)|d� < ∞ k = 0, � � � , 3,

then5 ∣∣∣∣
∫ ∞

−∞
e it��(�, x)d�

∣∣∣∣ ≤ C
t 3
,

so that for sufficiently large n

|�∗(t , x)| =
∣∣∣∣
∫ Un

Ln

e it��(�, x)d�
∣∣∣∣ ≤ 2C

t 3
�

This combined with the lower bound on ��n given above, implies that
the integrand (after multiplication by g�n (Un) behaves as t−2 so that the
integral is bounded. Note that because we multiply by g�n (Un), the second

5Note that this upper bound holds under infinite support. The more complicated proof of
Theorem 4 is needed, because there the support is bounded.
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term on the right-hand side of (17) has an asymptotically negligible
contribution to the variance. �
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