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A B S T R A C T   

The interaction of economic agents is one of the most important elements in economic analyses. 
Social interactions on subjective outcomes, behavior, or decisions, are inherently difficult to 
identify and estimate because these variables are prone to misclassification errors. This paper puts 
forth a binary choice model with misclassification and social interactions to rectify the misclas
sification problems in social interactions studies. We achieve the identification of the conditional 
choice probability of the latent dependent variable by the technique of repeated measurements 
and a monotonicity condition. We construct the complete likelihood function from the two 
repeated measurements and propose a nested pseudo likelihood algorithm for estimation. Con
sistency and asymptotic normality results are shown for the proposed estimation method. We 
illustrate the finite sample performance of the model and the estimation method by three Monte 
Carlo experiments and an application to the study of peer effects among students in their attitudes 
towards learning.   

1. Introduction 

Models with strategic interactions; e.g., peer effects, competitive effects, etc., have been estimated across many fields in economics, 
including financial economics, industrial organization, labor economics, and socioeconomics. Much of the existing empirical work has 
taken the behavior and decisions data as accurately measured; however, behavior and decisions data usually suffer from measurement 
errors when drawn from surveys. When modeling strategic interactions, peers’/competitors’ decisions enter utility/profit functions, 
which lead to a simultaneous equation system of conditional choice probabilities. With mismeasured decision variables, the simul
taneity of a strategic interactions study naturally raises problems from both the left and right (Hausman, 2001). In this paper, we 
propose a binary choice model with misclassification and social interactions and use the model to analyze the peer effects among 
students in their attitudes towards learning. We rectify the biases due to misclassification errors by using a tool with two repeated 
measurements and a monotonicity condition. We find both significant overreporting and underreporting in attitude and recover the 
hidden peer effects among students in their attitudes towards learning. 

Measurement errors prevail in the survey data for economics analyses. There are four sources of measurement errors: mistakes 
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made during the cognitive processes of answering survey questions; social desirability for some answers; essential survey conditions; 
and applicability of findings to the measurement of economic phenomena [see Bound et al. (2001) for details]. For continuous mis
measured variables, there are methods of decomposition (Hu and Schennach, 2008; Li and Vuong, 1998; Schennach, 2004) and 
auxiliary data (Carroll et al., 2010; Chen et al., 2005; Ridder and Moffitt, 2007) to deal with the measurement errors in nonlinear 
models. Decision variables possess discreteness and are sometimes dichotomous. A discrete measurement error is also called a 
misclassification error. Typically, discrete decision variables require nonlinear techniques that are different from those deployed in 
linear models. Econometricians have devoted increasing attention to the magnitude and consequences of measurement errors in 
nonlinear models; see details in Chen et al. (2011), Schennach (2016), Hu (2017) and references therein. 

A major development of solutions to misclassification errors is on the right-hand side with few exceptions; for examples, see 
Hausman et al. (1998), Lewbel (2000) and Meyer and Mittag (2017) for binary choice models; Hsiao and Sun (1998) for multinomial 
models; Abrevaya and Hausman (1999) for duration models; and Li et al. (2003), Cameron et al. (2004) for count models. In the 
continuous setting, Lewbel (1996) and De Nadai and Lewbel (2016) investigate the measurement errors on both sides of the regression. 
Unlike in linear models where measurement errors occurring on the left-hand side cause only efficiency loss, there is a sizable 
distortion in the econometric analysis of nonlinear models with misclassification errors on the dependent variable. This paper attempts 
to study a case where there are misclassification errors on both sides of the regression due to the simultaneity of strategic interactions 
(static simultaneous game). 

In the last three decades, tremendous attention was paid to social interactions and peer effects1 among economic agents in many 
fields; e.g., education, production adoption, information diffusion, financial decisions, word of mouth, etc. Scholars propose many 
mechanisms to understand the peer effects; such as social image concern and signaling mechanism (Breza and Chandrasekhar, 2019; 
Bursztyn et al., 2019; Bursztyn and Jensen, 2015; 2017); mutual insurance (De Giorgi and Pellizzari, 2013); social learning (Bandura 
and Walters, 1977; Bursztyn et al., 2014; Cai et al., 2009; Moretti, 2011); and social utility (Brock and Durlauf, 2001a; Bursztyn et al., 
2014; Gilchrist and Sands, 2016). 

Brock and Durlauf (2001a,b) pioneer the discrete choice analysis with social interactions (discrete game). Brock and Durlauf 
(2001a, 2007) provide a novel equilibrium characterization of the discrete game and the identification strategies for unique equi
librium and multiple equilibria. For more discussion on the identification of discrete choice with social interactions and the linear 
social interactions model, see Blume et al. (2011); Durlauf and Ioannides (2010) and Blume et al. (2015). This paper generalizes to the 
case where there are misclassification errors in the binary dependent variable on the left and peers’ binary decisions in the social utility 
on the right. We denote the model as the binary choice with misclassification and social interactions. 

The binary choice with misclassification and social interactions is modeled through a simultaneous game played on an 
exogenously-given large social network. Exogenous network setting prevails in peer effects studies, either in the linear-in-mean 
model.2 or in the discrete choice model with social interactions3 There is a growing literature on the econometrics of dynamic 
network formation; e.g., Christakis et al. (2010), Graham (2015), Graham (2016), Graham (2017), Leung (2015), Menzel (2017), 
Chandrasekhar and Jackson (2016), Mele (2017), de Paula et al. (2018), Sheng (2020), Badev (2021). We focus on the simultaneous 
game played on an exogenous network and do not study the network formation issue. For more discussion of games played on net
works, see Bramoullé and Kranton (2016). 

We obtain the identification of the true model, which is the conditional distribution of the latent true decision variable, through the 
technique of two repeated measurements and a monotonicity condition. We extend the likelihood-like algorithm [the nested pseudo 
likelihood (NPL) estimation] from Aguirregabiria and Mira (2007) (dynamic game) and Lin and Xu (2017) (social interactions) and 
apply it to our model with a homogeneous misclassification condition. We establish the asymptotic properties of the NPL estimator and 
illustrate its finite sample performance with Monte Carlo studies and an application to peer effects in attitude. 

The paper unfolds as follows. Section 2 introduces the binary choice model with misclassification and social interactions. Section 3 
provides theoretical results on the identification of the conditional distribution of the latent variable and the structural parameter. We 
then demonstrate the nested pseudo likelihood (NPL) estimation strategy in Section 4. Two Monte Carlo experiments are conducted in 
Section 5 to illustrate the finite sample performance of the model and the NPL algorithm. Section 6 presents results on the peer effects 
among students in their attitudes towards learning. The last section concludes. Proofs are rendered in Section Appendix A. 

2. Binary choice with misclassification and social interactions 

There are n individuals, I = {1,…,n}, located (socially) in a single exogenously-given large social network. Each individual i is 
associated with a group of friends, Fi. Let Fij = 1 denote that individual i considers j as a best friend and friendships are taken exog
enously. The friendship is not necessarily reciprocal; i.e., Fij ∕= Fji is allowed. We denote Fii = 0 by convention. Therefore, the friends set 
is Fi = {j ∈ I : Fij = 1}. Denote Ni as the number of friends of individual i, i.e., Ni = #Fi. 

Individuals make binary choices {Y∗
i ∈ {0,1}}i∈I simultaneously. The interactions transit through the directed link, Fij, which 

1 We use “social interactions” and “peer effects” interchangeably.  
2 See Manski (1993), Manski (2000), Lee (2007), Graham (2008), Bramoullé et al. (2009), Calvó-Armengol et al. (2009), Lee et al. (2010), Lin 

(2010), Liu and Lee (2010), Goldsmith-Pinkham and Imbens (2013), Bramoullé et al. (2014), Dahl et al. (2014), Blume et al. (2015), Eraslan and 
Tang (2017), Hoshino (2019), Johnsson and Moon (2021), Lin and Tang (2021) to name only a few,  

3 See Brock and Durlauf (2001a, 2007), Card and Giuliano (2013), Lee et al. (2014), Song (2014), Menzel (2016), Li and Zhao (2016), Canen et al. 
(2017), Lin and Xu (2017), Yang and Lee (2017), Xu (2018), Liu (2019), to mention but a few. 
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means that individuals take into account the choices of their friends when they make decisions. Though individuals, rather than 
friends, do not directly deliver peer effects, the transitions through friendships render indirect effects over the network. For example, in 
the peer effects in attitude study, Y∗

i = 1 means that student i has a positive attitude towards learning. Here we use Y∗
i to denote the true 

latent choice of individual i. We will use Y1i, and Y2i for the reported measurements of the latent variable. Following the standard 
binary choice literature (McFadden, 1974; Train, 2009), we normalize the utility of choosing Y∗

i = 0 as 0. We specify the latent utility 
of Y∗

i = 1 as 

Ui
(
Y∗
− i,Xi,Fi, εi

)
= X′

iβ +
α
Ni

∑

j∈Fi

Y∗
j − εi, (2.1)  

where Xi ∈ X is a d × 1 vector representing the demographic characteristics4, Y∗
− i are the choices of others, and εi is the private utility 

shock. The utility of individual i has three components: the deterministic part from demographics, X′
iβ; the deterministic social utility 

from the average choice of friends (peer effects), α
Ni

∑
j∈Fi

Y∗
j ; and a private utility shock, εi. α captures the peer effects from friends. 

Denote μ = (β′, α)′. 
To complete the setting for the model, we further specify the information structure. Let In ≡ ({Xi}i∈I , {Fi}i∈I ) be the public in

formation set including all demographic characteristics and friendship information.5 The private utility shock εi is only known to 
individual i. Therefore, we consider an incomplete information structure in the Bayesian game and individuals form beliefs on the 
choices of their friends.6 The decision rule is: 

Y∗
i = 1

{

X′
iβ +

α
Ni

∑

j∈Fi

E
(

Y∗
j

⃒
⃒
⃒In, εi

)
− εi ≥ 0

}

, (2.2)  

where the incomplete information structure is presented by the conditional expectation (belief). Individuals make choices based on the 
belief of their peers’ choices and not on their friends’ actual choices. A similar setting can be found in Brock and Durlauf (2001a), 
Brock and Durlauf (2001b), Ioannides (2006), Durlauf and Ioannides (2010), Lin and Xu (2017), Xu (2018), Jackson et al. (2020) and 
Lin (2021). 

2.1. Bayesian Nash equilibrium 

With an incomplete information structure, we consider the Bayesian Nash equilibrium (BNE) of the Bayesian game. To characterize 
the equilibrium, we make the following assumptions on the random utility terms. 

Assumption 1. The private random utility terms εi’s are i.i.d. across individuals and conform to the standard Logistic distribution. εi 
is independent from In. 

Remark 1. Assumption 1 is fairly standard in the discrete game model literature (Bajari et al., 2010). As a matter of fact, Assumption 
1 provides a closed-form expression for individuals’ conditional choice probabilities in terms of friends’ choice probabilities and 

streamlines the belief term; i.e., E(Y∗
j

⃒
⃒
⃒In,εi) = E(Y∗

j

⃒
⃒
⃒In). This is because that given In, the left random term in Y∗

j , εj is independent from 

εi. 

Denote Λ(t) = et

1+et. We define P(Y∗
i = 1

⃒
⃒μ; In) as the equilibrium choice probability of individual i. With E(Y∗

i
⃒
⃒μ; In) = P(Y∗

i =

1
⃒
⃒μ; In), we have 

P
(
Y∗

i = 1
⃒
⃒μ; In

)
= Λ

[

X′
iβ +

α
Ni

∑

j∈Fi

P
(

Y∗
j = 1

⃒
⃒
⃒μ; In

)
]

, i ∈ I , (2.3)  

where P∗
[n] ≡ (P∗

1,…,P∗
n)

′
≡ [P(Y∗

1 = 1
⃒
⃒μ; In),…,P(Y∗

n = 1
⃒
⃒μ; In)]

′ is the equilibrium choice probabilities profile. Eq. (2.3) is a simulta

neous system of equations of P∗
[n]. Let P[n] ≡ (P1,…,Pn)

′ be an arbitrary choice probabilities profile. Define 

4 Xi contains an intercept. We consider a single large network; therefore, the characteristics of the network itself are constant for all individuals 
and are absorbed in the intercept term. Our model can also be brought to multiple networks including network characteristics as there is variation 
across networks. The identification strategy is similar to the one using between-group variation in linear-in-mean models, as seen in Graham (2008).  

5 The usage of all demographics and friendships as public information is for the tractability of the equilibrium, as we will see below.  
6 The importance of an incomplete information structure is well documented in the discrete game literature; see Brock and Durlauf (2001a,b), 

Bajari et al. (2010); Lin and Xu (2017) and Xu (2018) for social interactions/peer effects studies; Seim (2006) and Sweeting (2009) for competition 
in industrial organization; Aradillas-Lopez (2010, 2012), Tang (2010), de Paula and Tang (2012) and Xu (2014) for estimation and inference of the 
static games; and Aguirregabiria and Mira (2002, 2007), Pesendorfer and Schmidt-Dengler (2008) and Arcidiacono et al. (2016)for dynamic games. 
We would like to refer interested readers to the global game literature with an incomplete information structure; e.g., Morris and Shin (2003). 
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Γi
(
μ;P[n], In

)
≡ Λ

(

X′
iβ +

α
Ni

∑

j∈Fi

Pj

)

(2.4)  

The equilibrium choice probability profile P∗
[n] defined in Eq. (2.3) is then a fixed point of 

Γ
(
μ;P[n], In

)
≡
(
Γ1
(
μ;P[n], In

)
,…,Γn

(
μ;P[n], In

))′
= P[n].

We make the following assumptions to achieve the uniqueness of the BNE for the identification of conditional choice probabilities from 
the data. 

Assumption 2. There is an upper bound, M > 0, for the number of friends; i.e., Ni ≤ M for i ∈ I for all n ≥ 1. 

Remark 2. Assumption 2 excludes some specific networks, such as the star network. In social networks, it is feasible to limit the 
number of friends as human beings do not have infinite efforts to maintain too many friendships. Furthermore, we here use the directed 
network, and only out-degree delivers peer effects. One individual is reasonably influenced by a limited number of influencers. 
Assumption 2 leads to a sparse network in our model as n increases. With a sparse network, we could identify the conditional dis
tribution of (Y1i,Y2i) and then of Y∗

i . To identify the joint conditional distribution of (Y1i,Y2i), we look for possible many j’s (increasing 
but slower than n) whose characteristics and network positions are the same as i’s. Taking the average of all these (Y1j,Y2j) gives the 
empirical conditional distribution. The sparsity enables us to draw n subnetworks, which have limited overlap, i.e., when the distance 
of two subnetworks is large enough, they are nearly independent. This feature establishes the network decaying dependence condition 
of the model, which provides support for feasible inference. We defer the illustration of the network decaying dependence condition 
after the result of the unique BNE. 

Assumption 3. The strength of interactions is moderate; i.e., 0 ≤ α < 4. 

Remark 3. In the literature concerning interaction games, a similar assumption is denoted as the Moderate Social Influence (MSI) 
condition for uniqueness; see Glaeser and Scheinkman (2003) and Horst and Scheinkman (2006, 2009). In the literature of discrete 
choice with social interactions, Brock and Durlauf (2001a,b), Lin and Xu (2017), Xu (2018), Liu (2019) and Jackson et al. (2020) 
employ a similar condition to characterize the uniqueness of the BNE in the Bayesian game. Assumption 3 restricts the size of in
teractions along individuals’ choices. This size restriction is similar to the stationarity condition in the autoregressive model; e.g., in an 
AR(1) model, the dependence parameter is within ( − 1,1). The time series analysis is one dimensional and our social interactions 
analysis is multiple-dimensional such that each friend of an individual provides one dimension. Similar to the existence of explosive 
time series, there are exceptions with dominant peer effects. Examples include tipping (Gladwell, 2000; Granovetter, 1978; Schelling, 
1971) or rush into the market (Anderson et al., 2017; Park and Smith, 2008). In the peer effects in attitude study in Section 6, this 
condition is feasible so that peer effects would not be dominant in a school environment. There is also literature to work with multiple 
equilibria by partial identification technique; e.g., Li and Zhao (2016) construct moments inequalities based on subnetworks for partial 
identification analysis. For more discussion on multiple equilibria and partial identification, see Tamer (2003), Ciliberto and Tamer 
(2009), Tamer (2010) and de Paula (2013). The upper bound, 4, comes from the Logistic distribution of the private utility terms. For a 
standard normal distribution in Probit-type models, we should change the upper bound to 

̅̅̅̅̅̅
2π

√
. In general, 0 ≤ α < 1/supfε(⋅) is 

required to establish uniqueness; see Horst and Scheinkman (2006) for more details. 

Lemma 1. With Assumptions 1 to 3, there exists a unique pure strategy Bayesian Nash equilibrium for the Bayesian game, represented in 
Equation  (2.3). 

Proof. See Appendix A.□ 

Assumptions 3 is the key to establish the uniqueness of the BNE. The MSI condition restricts the interactions between an in
dividual’s conditional choice probability and friends’ conditional choice probabilities. Combined with the parametric logistic 
assumption over the random utility shock [Λ(⋅) ⋅ [1 − Λ(⋅)] ≤ 1/4], the MSI condition guarantees that the best response function is 
contractive–see details in Eq. (A.1). Lemma 1 establishes the uniqueness of the Bayesian Nash equilibrium. The uniqueness ensures that 
the conditional distributions of repeated measurements are identified from the data. Another option for the equilibrium character
ization is to assume that the data comes from one single equilibrium; see Bajari et al. (2010). The uniqueness based on Assumption 3 
has the advantage that we can impose the restriction in our estimation strategy to ensure that the data is from the unique equilibrium. 

2.2. Misclassification 

Our Bayesian game builds on the binary latent choices {Y∗
i }i∈I , which are prone to misclassification errors. de Paula (2017) points 

out the importance of the measurement error issue in network studies. It is well accepted that misclassification induces problems of 
analysis and interpretation. In the binary choice with misclassification and social interactions, the simultaneity of social interactions 
raises misclassification errors on the left and on the right. There are several ways to deal with the misclassification problem: repeated 
measurements, validation data, instrumental variables, etc. Mahajan (2006) resorts to using an instrumental variable for identification 
of a nonparametric model with the presence of misclassified regressor. Hu (2008) provides a general framework for the identification 
and estimation of the misclassification problem with repeated measurements. For the misclassification on the dependent variable, 
Lewbel (2000) establishes the identification of the model with misclassification on the left using an instrument variable (exogenous 
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shifter). Hausman et al. (1998) propose a partial maximum likelihood estimator to handle a misclassified response variable. In this 
paper, we resort to repeated measurements and a monotonicity condition for identification and estimation. 

3. Closed-form identification 

In this paper, we adopt a technique of two repeated measurements and a monotonicity condition to identify the true conditional 
distribution of the latent choice variable and the structural parameter. In general, we could derive identification and estimation results 
with three repeated measurements. However, it is difficult to obtain three clean repeated measurements of the same latent status. To fit 
the empirical study, we replace the third measurement with a monotonicity condition. 

3.1. Two measurements and a monotonicity condition 

In this section, we provide closed-form identification of the conditional choice probability of the latent variable using two mea
surements, (Y1i,Y2i), and a monotonicity condition. In some scenarios, theory or information provides monotonicity that individuals do 
not overreport or underreport the latent status. Without loss of generality, we take the monotonicity that individuals do not under
report the latent status, i.e., P(Y1i = 0

⃒
⃒Y∗

i = 1,μ,In) = P(Y2i = 0
⃒
⃒Y∗

i = 1,μ,In) = 0. We further impose the conditional independence 
assumption. 

Assumption 4. (i) (Y1i,Y2i) are jointly independent conditional on Y∗
i and In, 

Y1i⊥Y2i |
(
Y∗

i , In
)
. (3.1)  

(ii) (Y1i,Y2i) are cross-sectionally independent given In. 

Remark 4. Assumptions 4 is standard in the nonlinear measurement error literature (Hu, 2008; Hu, 2017; Hu and Schennach, 2008; 
Li, 2002; Li and Hsiao, 2004; Li and Vuong, 1998; Mahajan, 2006; Schennach, 2016; and references therein). Assumption 4 means that 
the repeated measurements provide no extra useful information other than those embedded in the true latent choices and charac
teristics. After controlling the true latent variables and public information, the data collection processes for the two repeated mea
surements are independent. 

A second condition is technical: the conditional probability of (Y1i,Y2i) at (0,0), P(Y1i = 0,Y2i = 0|μ,In), is positive. This term is in 
the denominators of our closed-form formulas for identification. 

Assumption 5. P(Y1i = 0,Y2i = 0|μ, In) > 0 for all realizations of In. 

Further, a monotonicity condition precludes underreporting, i.e., the measurements cannot take the value of 0 if the latent binary 
regressand is 1. 

Assumption 6. P(Y1i = 0
⃒
⃒Y∗

i = 1, μ, In) = P(Y2i = 0
⃒
⃒Y∗

i = 1, μ, In) = 0 for i ∈ I and any realization of In. 

Note that if there is no overreporting in an application, the monotonicity condition holds after we switch what 0 and 1 each 
represent for the latent binary regressands and measurements. 

Proposition 1. Given Assumptions 4–6, there is a closed-form identification of P(Y∗
i = 0

⃒
⃒ μ, In) and 

P(Y∗
i = 1

⃒
⃒ μ, In)[= 1 − P(Y∗

i = 0
⃒
⃒ μ, In)] : 

P
(
Y∗

i = 0
⃒
⃒μ, In

)
=

PY2i (0) ⋅ PY1i (0)
PY1i ,Y2i (0, 0)

,

where PY1i ,Y2i (j, k) is the jointly conditional choice probability of (Y1i,Y2i) at (j, k), j,k ∈ {0,1}. All proofs are relegated to Appendix A. 

We then take P(Y∗
i = 1

⃒
⃒μ, In) as known for the next step identification of the structural parameter. 

3.2. Identification of the structural parameter, μ 

For the equilibrium presented in Eq. (2.3), the identification of μ is standard in a constructive way. As shown in the first step 
identification, P(Y∗

i = 1
⃒
⃒μ, In), i ∈ I is identified from the observables. From Eq. (2.3), we have 

Ξ(In) ≡ log
[
P
(
Y∗

i = 1
⃒
⃒μ, In

)]
− log

[
P
(
Y∗

i = 0
⃒
⃒μ; In

)]
= X′

iβ +
α
Ni

∑

j∈Fi

P
(

Y∗
j = 1

⃒
⃒
⃒In

)
, i ∈ I (3.2) 

We make the following rank condition assumption to achieve identification. 

Assumption 7. E

[(

X′
i,

∑
j∈Fi

P(Y∗
j =1|In)

Ni

)
′ ×

(

X′
i,

∑
j∈Fi

P(Y∗
j =1|In)

Ni

)]

is with full rank d + 1 for all n sufficiently large. 

Remark 5. Assumption 7 requires no perfect collinearity of 
(

X′
i,

∑
j∈Fi

P(Y∗
j =1|In)

NFi

)

. This assumption is essentially a full rank con
dition. As is pointed out in Bajari et al. (2010), it is other individuals’ exclusive payoff shifters that induce independent variations 
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in individual i’s beliefs, which render the rank condition meaningful. The variation in the friends sets makes the peer effects term 
with enough variation and mitigates or solves the perfect collinearity issue. The BNE profile is determined through the fixed point 
and therefore implicitly by the In and the distribution of the ε. Furthermore, there is a variation in friends sets, which prevents the 

perfect collinearity/multiplicity problem between the peer effect covariate, 
∑

j∈Fi
P(Y∗

j =1|In)

Ni
, and the demographic characteristics, Xi. 

It is worth pointing out that the expectation operator is for Xi,Yi. The network information, Fi, i ∈ I is taken exogenously and thus 
does not enter the expectation operator. 

With Assumption 7, we have identified μ as 

μ = E

⎡

⎣

⎛

⎝X′
i,

∑
j∈Fi

P
(

Y∗
j = 1

⃒
⃒
⃒In

)

Ni

⎞

⎠

′

×

⎛

⎝X′
i,

∑
j∈Fi

P
(

Y∗
j = 1

⃒
⃒
⃒In

)

Ni

⎞

⎠

⎤

⎦

− 1

× E

⎡

⎣

⎛

⎝X′
i,

∑
j∈Fi

P
(

Y∗
j = 1

⃒
⃒
⃒In

)

Ni

⎞

⎠

′

× Ξ(In)

⎤

⎦ (3.3)  

4. Estimation strategy 

The identification in Section 3 is for the population and it takes P(Y1i,Y2i|In) as identified from the observables. However, the 
nonparametric estimation of the joint conditional distribution is infeasible due to the large dimension of In. To avoid such a problem, 
we adopt a sequential algorithm, the Nested Pseudo Likelihood (NPL) method, to estimate the structural parameter. This method is first 
introduced by Aguirregabiria and Mira (2002, 2007) for dynamic discrete choice models and dynamic games. Lin and Xu (2017) 
extend the method to social interactions studies. We suppress the parameter μ in the conditional choice probabilities when there is no 
ambiguity. Before we proceed to the details of the NPL estimator, we make the following simplifying assumption: 

Assumption 8. The misclassification probabilities satisfy 

P
(
Y1i = 1

⃒
⃒Y∗

i = 0, In
)

= P
(
Y1i = 1

⃒
⃒Y∗

i = 0
)
= γ ∈ [0, 1],

P
(
Y2i = 1

⃒
⃒Y∗

i = 0, In
)

= P
(
Y2i = 1

⃒
⃒Y∗

i = 0
)
= δ ∈ [0, 1].

Remark 6. Assumptions 8 reduces the number of unknowns in the misclassification probabilities. This assumption is introduced to 
make the empirical analysis feasible given the sample size and the complexity of social network analysis. We can relax this assumption 
by parameterization over some observed covariates with richer data. Similar constant misclassification probabilities assumption can be 
found in Copas (1988), Hausman et al. (1998), Neuhaus (2002), Ramalho (2002). See Carroll et al. (2006) for more details. 

Define P∗
i ≡ P(Y∗

i = 1
⃒
⃒In) and P∗

[n] ≡ (P∗
1,…,P∗

n)
′. We now have the structural parameter, θ ≡ (γ, δ, μ′)′, and 

P(Y1i = 1|In) = P
(
Y1i = 1

⃒
⃒Y∗

i = 1, In
)
P
(
Y∗

i = 1
⃒
⃒In
)
+ P

(
Y1i = 1

⃒
⃒Y∗

i = 0, In
)
P
(
Y∗

i = 0
⃒
⃒In
)

= 1 ⋅ P
(
Y∗

i = 1
⃒
⃒In
)
+ γ
[
1 − P

(
Y∗

i = 1
⃒
⃒In
)]

= γ + (1 − γ)P
(
Y∗

i = 1
⃒
⃒In
)
= γ + (1 − γ)P∗

i

P(Y2i = 1|In) = P
(
Y2i = 1

⃒
⃒Y∗

i = 1, In
)
P
(
Y∗

i = 1
⃒
⃒In
)
+ P

(
Y2i = 1

⃒
⃒Y∗

i = 0, In
)
P
(
Y∗

i = 0
⃒
⃒In
)

= 1 ⋅ P
(
Y∗

i = 1
⃒
⃒In
)
+ δ
[
1 − P

(
Y∗

i = 1
⃒
⃒In
)]

= δ + (1 − δ)P
(
Y∗

i = 1
⃒
⃒In
)
= δ + (1 − δ)P∗

i

(4.1) 

Our log likelihood function is formulated by the observed conditional distribution function f(Y1i,Y2i|In; θ). With Eq. (4.1), we have 
the log-likelihood function:7 

L

(
θ,P∗

[n]

)
≡

1
n

∑

i∈I

{

Y1ilog

[

γ + (1 − γ)Γi

(
μ;P∗

[n], In

)
]

+ (1 − Y1i)log

[

1 − γ − (1 − γ)Γi

(
μ;P∗

[n], In

)
]

+Y2ilog
[
δ + (1 − δ)Γi

(
μ;P∗

[n], In

)]
+ (1 − Y2i)log

[
1 − δ − (1 − δ)Γi

(
μ;P∗

[n], In

)]}
(4.2) 

We first introduce the MLE to motivate the NPL estimation method. 

θ̂MLE = argmax
θ∈Θ

L
(
θ,P[n]

)
s.t. P[n] = Γ

(
μ;P[n], In

)
. (4.3)  

For a small number of players, we can implement the MLE method by the nested fixed point (NFP) algorithm (Rust, 1987), which 
repeatedly solves all of the fixed points of P = Γ(μ; P, In) for each candidate parameter value. As n becomes large, the NFP algorithm for 
the MLE is computationally intensive to solve the n − dimensional fixed points for each candidate value of θ and obtain the optimal θ̂ 

7 Here we construct a complete likelihood function based on two measurements: Y1, and Y2. Hausman et al. (1998) use either Y1, or Y2 to 
construct partial likelihood function. 
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with a maximized log-likelihood function. To address the computational burden, we adopt the Nested Pseudo Likelihood estimation 
method, which swaps the order of the NFP algorithm. 

The equilibrium choice probabilities profile is solved through iterated steps. Therefore, in this section, we suppress the public 
information In; i.e., P[n] = Γ(θ; P[n]). We make similar assumptions as in Aguirregabiria and Mira (2007), Kasahara and Shimotsu (2012) 
and Lin and Xu (2017). Define the pseudo log-likelihood function as 

L
(
θ,P[n]

)
=

1
n

∑

i∈I

L i
(
θ,P[n]

)

≡
1
n
∑

i∈I

Y1ilog
[
γ + (1 − γ)Γi

(
μ;P[n], In

)]
+ (1 − Y1i)log

[
1 − γ − (1 − γ)Γi

(
μ;P[n], In

)]

+Y2ilog
[
δ + (1 − δ)Γi

(
μ;P[n], In

)]
+ (1 − Y2i)log

[
1 − δ − (1 − δ)Γi

(
μ;P[n], In

)]
,

(4.4)  

where P[n] = (P1,…,Pn) is not necessarily the true equilibrium choice probabilities profile. We illustrate the NPL algorithm below 

Initiation: Obtain an initial guess of choice probabilities profile, e.g., Logit regression without social interactions, denoted by P̂
(0)
[n] . 

Iteration: Given P̂
(K)
[n] , we obtain the K+ 1th estimate, θ̂(K+1) = argmax

θ∈Θ
L (θ, P̂

(K)
[n] ) and update the choice probabilities profile by 

P̂
(K+1)
[n] = Γ(μ̂(K+1); P̂

(K)
[n] , In). 

Termination: Iterate until the difference between two consecutive P[n] estimates is sufficiently small, say, when ‖ P̂
(K+1)
[n] −

P̂
(K)
[n] ‖< tol with some preset tolerance. Set the NPL estimates as θ̂ = θ̂(K+1) and P̂[n] = P̂

(K+1)
[n] . 

It is computationally feasible that we do not actually calculate the BNE choice probabilities profile but instead adopt a recursive 
method starting from reasonable guesses of probability values. The NPL method is a sequential version of the extremum estimation. It 
augments the maximum likelihood estimation with an equilibrium condition and mitigates the dimensionality issue when calculating 
the conditional choice probabilities. The computational cost of NPL is moderate with the contraction mapping property of the Bayesian 
game derived from the bounded degree and the moderate social influence conditions. 

4.1. Consistency and asymptotic normality of the NPL estimator 

Let Θ and P n be the support sets of θ and P[n], respectively. Let 

L 0
(
θ,P[n]

)
≡ E

[
L i
(
θ,P[n]

)]
,

θ̃n
(
P[n]
)
≡ arg max

θ∈Θ
L 0
(
θ,P[n]

)
; ϕ0

(
P[n]
)
≡ Γ

(
θ̃0
(
P[n]
)
,P[n]

)
;

θ̃0
(
P[n]
)
≡ arg max

θ∈Θ
L
(
θ,P[n]

)
; ϕn

(
P[n]
)
≡ Γ

(
θ̃n
(
P[n]
)
,P[n]

)
;

The conditional choice probabilities profile in the Bayesian game with n players is a function of the true parameter θ0 and the public 
information set In. Our asymptotic analysis draws on the fact that the number of players in the large network goes to infinity. Thus, we 
are considering a growing single network with some stable growing mechanisms. Define a sequence of NPL fixed points sets as 
Λ0n ≡ {(θ,P[n]) ∈ (Θ,P n) : θ= θ̃0(P[n]),P[n] = ϕ0n(P[n])} and the NPL fixed points set of sample size n as Λn ≡ {(θ,P[n]) ∈ (Θ,P [n]) : θ =

θ̃n(P[n]), P[n] = ϕn(P[n])}. Let θNPL be the maximizer of L 0(θ0, P∗
[n]). Let N denote a closed neighborhood of (θ0, P∗

[n]). The first order 
condition for the NPL estimation is 

∂L
(
θ,P[n]

)

∂θ
|(θ,P[n])=(θ̂NPL ,P̂NPL)

= 0. (4.5)  

This first order condition is similar to that for dynamic game (Aguirregabiria and Mira, 2007). 

Assumption 9. (i) Θ is compact, θ0 is an interior point of Θ, and P n is a compact and convex subset of (0, 1)n; (ii) (θ0,P∗
[n]) is an 

isolated population NPL fixed point; i.e., there is an open ball around it that does not contain any other element of Λ0n; (iii) the operator 
ϕ0(P) − P has a nonsingular Jacobian matrix at P∗

[n]; (iv) there exist non-singular matrices V1(θ0) and V2(θ0) such that 

E

[∂2
L

(
θ0,P∗

[n]

)

∂θ∂θ′ +
∂2

L

(
θ0,P∗

[n]

)

∂θ∂P′ ⋅
[

I −
(∂Γ

(
P∗
[n]; θ0

)

∂P

)
′
]
− 1

⋅
∂Γ
(

P∗
[n]; θ0

)

∂θ′

⃒
⃒
⃒
⃒
⃒
In

]

→
p

V1(θ0),

E

[∂L i

(
θ0,P∗

[n]

)

∂θ

∂L i

(
θ0,P∗

[n]

)

∂θ′

⃒
⃒
⃒
⃒In

]

→
p

V2(θ0)

Moreover, V1(θ0) is negative definite. 
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Remark 7. Assumption 9(i) is standard for asymptotic analysis in the literature (see Newey and McFadden, 1994). Assumption 9(ii) 
is an identification assumption to use the NPL algorithm. It is straightforward to show that θ0 = θ̃0(P∗

[n]) solves argmax
θ∈Θ

L 0(θ, P∗
[n]). 

Without Assumption 9(ii), argmax
θ∈Θ

L 0(θ,P∗
[n]) might admit multiple solutions and each of these represents a fixed point of the NPL 

algorithm. It is worth noting here (θ, P[n]) is the fixed point of the NPL algorithm. It differs from the fixed point solution of the best 
response functions, i.e., P∗

[n] is the fixed point solution of P[n] = Γ(μ; P[n], In) and it varies on different realizations of the conditional set 

In. We are not able to find more primitive condition to assure this point. Assumption 9(iii) assures that the matrix I −
(∂Γ(P∗

[n];θ0)

∂P

)
′ is 

invertible and thus there exists a sample nested pseudo likelihood fixed point (estimate) close to (θ0, P∗
[n]). Assumption 9 (iv) is a 

high-level condition for non-singular limiting matrices as n goes to infinity. This condition requires that adding more individuals 
(growing network) would not change the interactions pattern in the network. The sparsity of the network originated from Assumption 
2 implies that the CCPs P∗

[n] enter the social interactions term of individual i through 1
Ni

∑
j∈Fi

P∗
j which has at most M elements of P∗

[n]. The 
social interactions term, 1

Ni

∑
j∈Fi

P∗
j is bounded in [0,1] and behaves as a standard term, though solved from the fixed point of the 

Bayesian game. Moreover, the non-degeneracy of V1(θ) and V2(θ) requires that all of the determinants of the finite counterparts are 

outside an open ball of zero for all n, which is a rank condition. It is worth pointing out here ∂
2L (θ0 ,P∗)

∂θ∂P′ ⋅
[
I −
(

∂Γ(P∗;θ0)
∂P

)
′
]
− 1 ⋅ ∂Γ(P∗ ;θ0)

∂θ′ is a 

(dx +3) × (dx +3) matrix. 

Assumption 10. (i) The family {L i(θ, P[n]) : θ ∈ Θ} is a Vapnik-Cernonenkis class of functions; (ii)the class {L i(theta,P[n], y)} is 
Donsker with respect to the distribution of Xi for y = 1 or 0 with a square-integrable function; (iii) E[

⃒
⃒L i(θ, P[n], y)

⃒
⃒I] and 

⃒
⃒E[L i(θ, P[n],1)

− L i(θ,P[n],0)
⃒
⃒I]
⃒
⃒ are bounded by a constant. 

Theorem 1. Suppose Assumptions 1–10 hold, θ̂NPL is consistent and 
̅̅̅
n

√
(θ̂NPL − θ0)→d

N (0,VNPL), (4.6)  

where VNPL = V− 1
1 (θ0)V2(θ0)V

′− 1
1 (θ0). 

Proof. See Appendix A□ 

The NPL estimator has the same convergent rate as the MLE (implemented by the NFXP algorithm). It has a different asymptotic 

variance than the MLE that an additional term E
[

∂2
L (θ0 ,P∗

[n] )

∂θ∂P′ ⋅
[
I −
(∂Γ(P∗

[n] ;θ0)

∂P

)
′
]
− 1 ⋅

∂Γ(P∗
[n] ;θ0)

∂θ′ |In

]

coming from the equilibrium condition 

shows in V1. A similar result can be seen in the seminal work of Menzel (2016) for games with many players where he shows that the 
limiting distribution of players’ choices and characteristics is equivalent to a single-agent discrete choice problem that is augmented by 
an aggregate equilibrium condition. Menzel (2016) establishes a conditional central limit theorem for a moment-based estimator in 
games with many players where both the number of games and number of players in each game go to infinity. 

The local convergence of the NPL algorithm is ensured by the local contraction condition established in Aguirregabiria and Mira 
(2002) for a single agent dynamic discrete choice problem and in Kasahara and Shimotsu (2012) for dynamic games. Our Lemma 1 
under Assumption 1, 2, 3 establishes the contraction mapping condition of the BNE. Another condition for the convergence of NPL is 
that the initial starting point needs to be in the neighborhood of the true parameter. Thus, NPL algorithm converges to a consistent 
estimator in our binary choice with misclassification and social interactions. In our Monte Carlo experiments and the empirical 
application, we choose the initial starting value of the parameter as the combination of the Logit regression on the covariate parameter 
(β) and different points for those misclassification parameters (γ,δ) and the peer effects parameter (α). We notice similar convergence 
results as those seen in the literature (Aguirregabiria and Mira, 2007; Kasahara and Shimotsu, 2012; Lin and Xu, 2017). An analog 
estimator for the variance is 

V̂ NPL = V̂
− 1
1 (θ̂NPL)V̂ 2(θ̂NPL)V̂

′− 1
1 (θ̂NPL),

where 

V̂ 1(θ̂NPL) =
∂2

L (θ̂NPL, P̂NPL)

∂θ∂θ′ +
∂2

L (θ̂NPL, P̂NPL)

∂θ∂P′

[

I −
(

∂Γ(P̂NPL, θ̂NPL)

∂P

)′]− 1∂Γ(P̂NPL, θ̂NPL)

∂θ′  

and 

V̂ 2(θ̂NPL) =
1
n
∑

i∈I

∂L i(θ̂NPL, P̂NPL)

∂θ
∂L i(θ̂NPL, P̂NPL)

∂θ′ .

5. Monte Carlo experiments 

The Monte Carlo experiments are designed to mimic the peer effects in attitude study in Section 6. We conduct three Monte Carlo 
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experiments to investigate the finite sample performance of the model and the NPL algorithm. The Monte Carlo designs have three 
covariates: X1 is drawn from a standard normal distribution, X2 is drawn from a uniform distribution U[ −

̅̅̅
3

√
,
̅̅̅
3

√
], and X3 is drawn 

from a discrete distribution taking values from { − 1,1} with equal probability 12. X1,X2, and X3 have a mean of 0 and a variance of 1. 
We generate a random network with a maximum number of friends at 10 (the same as in the Add Health dataset). Each individual i has a 
degree independently drawn from Ni ∈ {0,1,…,10} with equal probabilities. Then, we randomly choose Ni of the other n − 1 in
dividuals for this individual to have as friends. The network is thus directed, in that j can influence i without requiring (but not 
precluding) that i influence j in return. The example can also be done with any other network, but this simplifies the code. We then 
solve fixed points with known parameter values for E(Y∗

i
⃒
⃒In), i ∈ I . The latent dependent variable is given by 

Y∗
i = 1

{

β0 + β1Xi1 + β2Xi2 + β3Xi3 +
α
Ni

∑

j∈Fi

E
(

Y∗
j

⃒
⃒
⃒In

)
− εi ≥ 0

}

, (5.1)  

where εi is drawn from a standard logistic distribution. β is set to be (− 1, 1, − 1,1) for all three experiments. We let α = 1 in all ex
periments. Two observed measurements, Y1i, and Y2i are generated with misclassification probabilities, (γ, δ) = (0.1,0.1), (0.2,0.2)
and (0.4,0.4) in three experiments, respectively. 

We generate 1,000 samples of pseudo-random numbers with n ∈ {500, 1,000, 2,000}. We denote θ̂ = (γ̂, δ̂, β̂, α̂) as the NPL es
timates with misclassification correction (2M model) and μ̃1 = (β̃1, α̃1), μ̃2 = (β̃2, α̃2) as the NPL estimates without misclassification 
correction; i.e., taking Y1 or Y2 as the truly observed binary choice (proxy method, denoted as M1 and M2 models), respectively. We 
report the average biases and the mean square errors of our misclassification corrected estimates in Tables 1, 3 and 5 and of non- 
corrected estimates in Tables 2, 4, and 6. We report the average correlations between the true latent variable Y∗

i and the condi
tional choice probabilities from the 2M, M1, and M2 models in Table 7. 

The NPL estimators with a misclassification correction converge to the true parameter at the 
̅̅̅
n

√
rate, while those without a 

misclassification correction (proxy method) do not converge even when studying such a large sample size. The results demonstrate the 
good finite sample performance of the NPL algorithm for the binary choice model with misclassification and social interactions. 

6. Peer effects in attitude 

Students live in two distinct social worlds: the hierarchical world with adults and the egalitarian world with peers. The former 
introduces students to the society as new members and the latter helps students develop skills like negotiation, cooperation, and so on. 
Students interact with peers in many different activities; e.g., studying together, attending sports clubs, conducting delinquent be
haviors, etc. Among these spillovers, the peer effects in education have received considerable attention in the literature; see more 
details in Epple and Romano (2011), Sacerdote (2011) and Bursztyn and Jensen (2017). When it comes to the learning spillover, 
scholars emphasize the achievements of students, e.g. Hoxby (2000), Zimmerman (2003) and Calvó-Armengol et al. (2009) to name 
only a few. However, in the context of education, students have partial control over the outcomes and the simple production function is 
difficult to illustrate the process from inputs to the outcomes. 

There are two main factors determining students’ achievements: ability and attitude8. Ability is the physical or mental power to do 
something and is usually unobserved. The unobserved ability causes endogeneity problems in many studies; e.g., return to schooling. A 
proxy or IV approach is adopted to handle the unobserved ability in a cross-sectional setting. Arcidiacono et al. (2012) treat ability as 
the unobserved heterogeneity in the panel data model and remove this unobserved heterogeneity by standard approaches in panel data 
models with fixed effects. Fruehwirth (2014) deploys a specific relationship between achievement and the ability to investigate the 
“black box”. Generally, genetics and learning shape ability, and people do not make conscious choices on ability. 

Attitude towards learning is the way of thinking or feeling about studying and educational aspirations. Typically, attitude is re
flected in a student’s behavior and originates from the student’s choices. Peer effects demonstrate the interconnection among students 
on choices; e.g., whether one makes tremendous efforts in the study, exercises, smokes, drinks, etc. For learning spillover, peer effects 
play a role in the chosen attitude rather than in one’s final achievements. Thus, the investigation on peer effects in attitude is 
interesting, however, attitude is subjective and difficult to measure. In the National Longitudinal Study of Adolescent Health (Add Health) 
dataset, we obtain several measurements9 in the survey regarding the attitudes of students. Attitudes regarding questions are socially 
and personally sensitive and students tend to misreport. This feature raises the issue of misclassification errors. 

Using both in-school and at-home surveys, we obtain two repeated measurements for attitude from the question, “Skipped school 
without an excuse” in the in-school and at-home surveys. We estimate the peer effects in attitude with our method to rectify potential 
misclassification errors and compare the results to those obtained when each of the two measurements is used as a proxy of the latent 
attitude. 

8 Scholars also work on the “effort”, which to some extent is the “realization” of attitude. In this paper, we use attitude as the “choice” variable. 
For investigation on “effort” in field experiment studies, see Bursztyn and Jensen (2015) and Bursztyn et al. (2019).  

9 Measurement means it contains the majority of the information of the latent variable, but there is an error. 
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Table 1 
Experiment I.  

True Parameters: θ0 = (0.1,0.1; − 1,1, − 1,1;1)

Average Bias 

n γ̂NPL δ̂NPL β̂NPL α̂NPL 

500 -0.002 -0.002 -0.048 0.039 -0.031 0.035 0.032 
1,000 -0.001 -0.002 -0.015 0.018 -0.010 0.009 0.014 
2,000 0.000 0.001 -0.009 0.010 -0.009 0.010 -0.007 

Mean Square Errors 

500 0.002 0.002 0.141 0.043 0.043 0.040 0.432 
1,000 0.001 0.001 0.067 0.017 0.018 0.017 0.234 
2,000 0.000 0.001 0.030 0.009 0.008 0.008 0.108  

Table 2 
Experiment I: Non-Correction.  

True Parameters: θ0 = (0.1,0.1; − 1,1, − 1,1;1)

Average Bias 

n β̃1 α̃1 β̃2 α̃2 

500 0.441 -0.219 0.222 -0.215 -0.223 0.437 -0.219 0.221 -0.217 -0.207 
1,000 0.451 -0.224 0.225 -0.224 -0.228 0.449 -0.222 0.225 -0.223 -0.222 
2,000 0.455 -0.229 0.226 -0.221 -0.242 0.457 -0.231 0.228 -0.222 -0.243 

Mean Square Errors 

500 0.255 0.062 0.063 0.059 0.323 0.252 0.063 0.063 0.059 0.332 
1,000 0.236 0.057 0.058 0.056 0.212 0.236 0.056 0.057 0.056 0.213 
2,000 0.223 0.056 0.054 0.052 0.134 0.225 0.057 0.055 0.052 0.137  

Table 3 
Experiment II.  

True Parameters: θ0 = (0.2,0.2; − 1,1, − 1,1;1)

Average Bias 

n γ̂NPL δ̂NPL β̂NPL α̂NPL 

500 -0.005 -0.004 -0.061 0.037 -0.037 0.033 0.073 
1,000 -0.002 -0.002 -0.019 0.019 -0.021 0.017 -0.001 
2,000 -0.002 -0.001 -0.006 0.007 -0.007 0.010 -0.005 

Mean Square Errors 

500 0.003 0.003 0.182 0.048 0.050 0.048 0.531 
1,000 0.001 0.001 0.083 0.023 0.021 0.020 0.264 
2,000 0.001 0.001 0.039 0.010 0.010 0.010 0.128  

Table 5 
Experiment III.  

True Parameters: θ0 = (0.4,0.4; − 1,1, − 1,1;1)

Average Bias 

n γ̂NPL δ̂NPL β̂NPL α̂NPL 

500 -0.007 -0.006 -0.075 0.062 -0.052 0.053 0.067 
1,000 -0.002 -0.002 -0.026 0.036 -0.031 0.030 -0.011 
2,000 0.000 -0.001 -0.017 0.017 -0.015 0.016 -0.006 

Mean Square Errors 

500 0.004 0.004 0.306 0.085 0.080 0.075 0.725 
1,000 0.002 0.002 0.130 0.034 0.033 0.031 0.362 
2,000 0.001 0.001 0.067 0.015 0.015 0.015 0.202  
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6.1. The add health data 

The National Longitudinal Study of Adolescent Health (Add Health) is a longitudinal study of a nationally representative sample of 
adolescents in grades 7-12 in the United States during the 1994-95 school year for the first wave. The study also contains Wave II, III, 
and IV data, which are collected in 1995-1996, 2001-2002, and 2008 (Harris et al., 2009). Add Health combines longitudinal survey 
data on respondents’ social and economic features with contextual data on family, friendships, and peer groups. In this paper, we use 
the data from Wave I. 

In the Add Health dataset, each student can nominate at most five male friends and at most five female friends, from which we 
construct the network with direct links [{Fij}

n
i,j=1]. Note that although students have at most 10 outlinks, they may have more than 10 

inlinks. In Wave I, there are both in-school and at-home questionnaires, which generate multiple measurements for the attitude 
variable. The Add Health dataset also includes questionnaires for demographic characteristics such as age, parents’ education, race 
information, gender, etc. 

As students, not only their achievements but also their attitudes toward learning are important. Attitude is a vague and subjective 
concept. Thus the study of attitude exhibits misclassification problems. Fortunately, the Add Health dataset contains repeated mea
surements of students’ attitudes. There is a question, “During the past twelve months, how often did you skip school without an 
excuse?” in the in-school survey. In the at-home survey, there is a question “During this school year how many times {HAVE YOU 
SKIPPED/DID YOU SKIP} school for a full day without an excuse?”. We take the answer for the at-home question as Y1 and the answer 
for the in-school question as Y2. We take the answer “never” as a “positive” attitude and all other answers as “negative” attitudes. Here, 
Y1 and Y2 are obvious measurements for the same question related to the student’s attitude. This provides enough data for the 
identification of the conditional distribution of the latent attitude in our first step identification. In the Add Health dataset, there is also 
a question regarding excused absences which is not a good measurement of the latent attitude since excuses generate a lot of noise. 

Table 4 
Experiment II: Non-Correction.  

True Parameters: θ0 = (0.2,0.2; − 1,1, − 1,1;1)

Average Bias 

n β̃1 α̃1 β̃2 α̃2 

500 0.787 -0.363 0.359 -0.354 -0.355 0.792 -0.365 0.358 -0.356 -0.362 
1,000 0.814 -0.369 0.361 -0.355 -0.407 0.807 -0.365 0.360 -0.357 -0.392 
2,000 0.810 -0.369 0.361 -0.355 -0.399 0.819 -0.369 0.364 -0.355 -0.414 

Mean Square Errors 

500 0.677 0.144 0.141 0.137 0.347 0.693 0.145 0.139 0.138 0.376 
1,000 0.695 0.142 0.137 0.131 0.291 0.685 0.140 0.135 0.133 0.283 
2,000 0.673 0.139 0.133 0.128 0.229 0.688 0.139 0.135 0.129 0.240  

Table 6 
Experiment III: Non-Correction.  

True Parameters: θ0 = (0.4,0.4; − 1,1, − 1,1;1)

Average Bias 

n β̃1 α̃1 β̃2 α̃2 

500 1.408 -0.532 0.520 -0.515 -0.565 1.419 -0.530 0.522 -0.511 -0.577 
1,000 1.443 -0.532 0.521 -0.515 -0.630 1.446 -0.531 0.527 -0.514 -0.633 
2,000 1.446 -0.533 0.527 -0.517 -0.633 1.438 -0.535 0.523 -0.516 -0.623 

Mean Square Errors 

500 2.045 0.295 0.281 0.277 0.475 2.080 0.291 0.284 0.272 0.494 
1,000 2.116 0.289 0.277 0.270 0.483 2.123 0.287 0.283 0.269 0.483 
2,000 2.110 0.286 0.281 0.270 0.454 2.089 0.289 0.277 0.269 0.441  

Table 7 
Prediction Power in 2M, M1 and M2 Models.   

Experiment I Experiment II Experiment III 

n 2M M1 M2 2M M1 M2 2M M1 M2 

500 0.595 0.590 0.590 0.593 0.581 0.580 0.590 0.559 0.558 
1,000 0.592 0.587 0.587 0.593 0.582 0.581 0.592 0.561 0.561 
2,000 0.592 0.588 0.588 0.592 0.581 0.581 0.591 0.562 0.562  
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It is worth pointing out that the answers in the survey are ordered discrete and it is feasible to generalize the model to allow for 
ordered discrete choices (Greene and Hensher, 2010). We can obtain similar identification results by extending the arguments used in 
Hu (2008) for the ordered discrete covariates. In this paper, we focus on binary outcomes and ordered discrete choice is deferred to 
future research. 

We consider the sister schools No. 77 and No. 177 for our analysis10. These two schools contain the largest single connected school 
network in the Add Health dataset. After data management, we obtain 1,173 students in the sample. For these students, the number that 
Y1 = Y2 is 801. This implies that these two measurements capture the main information of the latent attitude, but there are noises in 
each of them. Table 8 summarizes the statistics of the demographic characteristics and the attitude variables. More than half of the 
students leave school without an excuse at least once in the year. The attitude measurement from the at-home questionnaire regarding 
skipping school without excuse has a little less “positive” than the measurement obtained from the in-school questionnaire; 45.0 
percent versus 47.1 percent, respectively. 

6.2. The hidden peer effects in attitude 

When it comes to the peer effects in attitude, we have three options to back out the interaction parameter. We can either take Y1 or 
Y2 as the true latent attitude to estimate the binary choice with social interactions without misclassification correction (Proxy method, 
Model M1, and M2), or we adopt the full information from two repeated measurements to rectify the misclassification errors (2M 
model). 

We report our estimation results in Table 9. The overreporting probabilities are 25.7 percent, and 29.2 percent, respectively. 
Roughly, one-quarter to one-third of students overreport their attitudes in these two measurements when their latent attitudes are 
negative. Students are more likely to be honest at home where there are no peers. 

In Table 9, models without misclassification correction either fail to detect a significant silent rivalry (α̂ = 0 in model M1) or 
underestimate the peer effects (α̂ = 0.477 in model M2). Our 2M model estimates a significant 1.65811 peer effects parameter which is 
three times bigger than the model with the in-school measurement. We also provide results for simple Logit models without simul
taneous peer effects on attitudes towards learning. The results are very similar for demographic covariates, e.g. older students pay 
more attention to their studies as they mature. 

To summarize, we find that the peer effects in attitude are underestimated if we directly use these two measurements as attitudes. 
Our findings confirm our insight into the prevalence of peer effects in attitude among students and support the conclusion in the 
Coleman Report 1966 that “academic achievement was less related to the quality of a student’s school and more related to the social 
composition of the school, the student’s sense of control of his environment and future, the verbal skills of teachers, and the student’s 
family background”. The evidence of overreporting in subjective and sensitive attitude questions suggests that we should take into 
account the potential misclassification issues when investigating the peer effects in attitude. Our investigation has important policy 
implications, such as manipulating peer group influence. 

Besides attitude, there are many other choices of adolescents or/and adults which prone to measurement errors due to a variety of 
reasons. The remedy from repeated measurements helps to pin down the bias generated by measurement errors. Our binary choice 
model with social interactions and misclassification is applicable to any scenario where there are potential misclassification issues and 
strategic interactions. For instance, students may overreport sex behavior or romantic status if they consider it to be cool. Therefore, 
investigation on the peer effects in sex behavior or in romantic status would bear potential misclassification issues and the resulting 
bias in mind. 

7. Conclusion 

In this paper, we propose to correct the potential misclassification error problem of the dependent variables in social interactions 
studies. We provide a closed-form identification result to our model primitives by adopting a technique of two measurements and a 
monotonicity approach. Taking into account the full information embedded in the two measurements and the monotonicity condition, 
we construct a complete likelihood function for the estimation of the structural parameter using the nested pseudo likelihood algo
rithm. We establish asymptotic results for the NPL estimator and illustrate the finite sample performance with Monte Carlo experi
ments and an application to peer effects in attitude towards learning. We find that a significant proportion of students overreport their 
attitudes towards learning. The rectified peer effects is larger than those obtained from the estimates when misclassified attitudes are 
taken as the correctly observed ones. The peer effects in attitude triggers multiplier effects which help improve the performance of 
schools and are meaningful for policy implications. 

10 There was sister school roster for friend nomination in Add Health dataset. This design generated friendships across the sister schools.  
11 Standard errors obtain from the last step MLE with convergence tolerance of NPL algorithm satisfied. As the last step MLE is calculated using the 

near equilibrium choice probabilities, the MLE standard error is very close to the NPL standard error, which is consistent with our simulation results. 
This is a limitation of the paper. We are working on a project to derive bootstrapping standard error for the network generated dependent data. 
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Appendix A. Proofs 

Proof of Lemma 1.. The existence of the BNE is guaranteed by Schauder’s fixed-point theorem and the continuity of Γ(⋅). Consider 
that there are two distinct BNEs: P1 = (P1

1,P1
2,…,P1

n) ∕= (P2
1,P2

2,…,P2
n) = P2. We have: 

⃒
⃒P1

i − P2
i
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⃒ =
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⃒

(A.1)  

where P†

j is the probability between P1
j and P2

j . The third line comes from the Mean Value theorem and the inequality is based on 
Λ(⋅)[1 − Λ(⋅)] ≤ 1

4. Taking maximization over i ∈ I on the left-hand side of Eq. (A.1), we have: 

Table 8 
Summary of Statistics of Key Variables.  

Variable Mean Std. Dev. 

Age 15.882 1.187 
Female 0.497 0.500 
Parents’ Education 5.257 2.459 
White 0.092 0.289 
American Indian 0.049 0.215 
Asian 0.348 0.476 
African American 0.265 0.442 
Hispanic 0.384 0.487 
Others∗ 0.130 0.336 
Attitude(Y1) 0.450 0.498 
Attitude(Y2) 0.471 0.499 

*Some students are associated with more than one race. 

Table 9 
Estimation Results on Silent Rivalry.   

2M M1 M2 Logit models     

Y1 Y2 

Age − 0.445** − 0.348** − 0.201** − 0.350** − 0.199**  
(0.128) (0.056) (0.053) (0.056) (0.053) 

Female − 0.061 0.113 − 0.108 0.111 − 0.083  
(0.164) (0.122) (0.119) (0.121) (0.119) 

Parents’ Education 0.046 0.009 0.029 0.009 0.032  
(0.041) (0.027) (0.026) (0.027) (0.026) 

Hispanic − 0.668** − 0.495** − 0.239 − 0.499** − 0.239  
(0.303) (0.197) (0.192) (0.197) (0.192) 

Asian − 0.265 − 0.097 − 0.160 − 0.099 − 0.121  
(0.259) (0.201) (0.197) (0.199) (0.196) 

African American − 0.154 − 0.085 − 0.123 − 0.090 − 0.141  
(0.254) (0.207) (0.204) (0.207) (0.204) 

Native American − 0.764 − 0.090 − 0.374 − 0.091 − 0.389  
(0.581) (0.288) (0.286) (0.288) (0.286) 

Other 0.230 0.327* − 0.044 0.327 − 0.033  
(0.265) (0.197) (0.193) (0.197) (0.193) 

γ 0.257** – – – –  
(0.071) – – – – 

δ 0.292** – – – –  
(0.067) – – – – 

Peer Effects (α) 1.658** 0.000 0.477* – –  
(0.772) (0.289) (0.276) – – 

Constant 5.776** 5.416** 3.018** 5.464** 3.110**  
(1.639) (0.947) (0.902) (0.936) (0.896) 

a. ** and * for 5% and 10% significance, respectively. c. White students are left for comparison. 
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max
i∈I

|P1
i − P2

i | <max
j∈I

⃒
⃒
⃒P1

j − P2
j

⃒
⃒
⃒,

which is a contradiction. Therefore, we have a unique BNE for the Bayesian game in Eq. (2.3).□ 

Proof of Proposition 1.. Consider a super population with infinite number of individuals, the uniqueness of the Bayesian game 
implies that, for all y1, y2 ∈ {0, 1}, we know P(Y1i = y1,Y2i = y2 | In), i ∈ I are identified from the observables. Define 
PY1i ,Y2i (y1, y2) ≡ P(Y1i = y1,Y2i = y2|μ, In),PY1i |Y∗

i
(y1|y) ≡ P(Y1i = y1

⃒
⃒Y∗

i = y, μ, In),PY2i |Y∗
i
(y2|y) ≡ P(Y2i = y2

⃒
⃒Y∗

i = y, μ, In) and PY∗
i
(y)

≡ P(Y∗
i = y

⃒
⃒μ, I) for y1,y2,y ∈ {0,1}. By the law of total probability, we have 

PY1i ,Y2i (1, 0) =
∑

y∈{0,1}
PY1i |Y∗

i
(1|y) ⋅ PY2i |Y∗

i
(0|y) ⋅ PY∗

i
(y);

PY1i ,Y2i (0, 1) =
∑

y∈{0,1}
PY1i |Y∗

i
(0|y) ⋅ PY2i |Y∗

i
(1|y) ⋅ PY∗

i
(y);

PY1i ,Y2i (0, 0) =
∑

y∈{0,1}
PY1i |Y∗

i
(0|y) ⋅ PY2i |Y∗

i
(0|y) ⋅ PY∗

i
(y).

With the monotonicity condition in Assumption 6, we have 

PY1i ,Y2i (1, 0) = PY1i |Y∗
i
(1|0) ⋅ PY2i |Y∗

i
(0|0) ⋅ PY∗

i
(0);

PY1i ,Y2i (0, 1) = PY1i |Y∗
i
(0|0) ⋅ PY2i |Y∗

i
(1|0) ⋅ PY∗

i
(0);

PY1i ,Y2i (0, 0) = PY1i |Y∗
i
(0|0) ⋅ PY2i |Y∗

i
(0|0) ⋅ PY∗

i
(0).

Simple calculations lead to 

PY1i |Y∗
i
(1|0) =

PY1i ,Y2i (1, 0)
PY1i ,Y2i (0, 0) + PY1i ,Y2i (1, 0)

=
PY1i ,Y2i (1, 0)

PY2i (0)
;

PY2i |Y∗
i
(1|0) =

PY1i ,Y2i (0, 1)
PY1i ,Y2i (0, 0) + PY1i ,Y2i (0, 1)

=
PY1i ,Y2i (0, 1)

PY1i (0)
;

PY∗
i
(0) =

PY2i (0) ⋅ PY1i (0)
PY1i ,Y2i (0, 0)

,

provided that the Assumption 5 is satisfied. The last equation and PY∗
i
(1) = 1 − PY∗

i
(0) give us the closed-form identification.□ 

Proof of Theorem 1.. The proof is similar as that in Aguirregabiria and Mira (2007), Newey and McFadden (1994). With 
Assumption 9(ii), we see that θNPL = θ0. Recall that the pseudo likelihood function is L (θ,P[n]) in the NPL estimation. Define the 
function 

T
(
θ,P[n]

)
≡ max

c∈Θ

{

L 0
(
c,P[n]

)
}

− L 0
(
θ,P[n]

)
.

Because L 0(θ,P[n]) is continuous and Θ × P n is compact, Berge’s maximum theorem establishes that T(θ, P[n]) is a continuous function. 
By construction, T(θ, P[n]) ≥ 0 for any (θ,P[n]). Let E be the set of vectors (θ, P[n]) that are fixed points of the equilibrium mapping Γ, i.e., 

E ≡
{(

θ,P[n]
)
∈ Θ × P n : P[n] = Γ

(
θ;P[n]

)}

Given that Θ × P n is compact and Γ is continuous, E then is a compact set. By definition, the set Λ0n is included in E . Let 
Bϵ(θ0, P∗

[n])= {θ ∈Rd+3:‖ θ − θ0‖ + ‖P[n] − P∗
[n]‖< ϵ} be an arbitrarily small open ball that contains (θ0,P∗

[n]). We then see that BC
ϵ (θ0,P∗

[n])

∩E is also compact. Define the constant 
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∩E
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(
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)
. (A.2)  

When (θ,P[n]) ∈ BC
ϵ (θ0,P∗

[n]), Assumption 9(ii) implies that T(θ, P[n]) ≥ 0 for all θ ∕= θ0. By construction, τ > 0. Define the event 

A ≡
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θ,P[n]
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and 
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L

(
θ,P(n)

)
> L 0

(
θ,P(n)

)
−

τ
2
.

Furthermore, we have L (θ(n), P(n)) ≥ L (θ,P(n)) from the NPL fixed point definition. This is different from the standard argument in the 
literature (e.g. Newey and McFadden, 1994). Therefore, we see that L 0(θ(n), P(n)) > L 0(θ, P(n)) − τ. We then have the following 
derivation: 

A ⇒
{

L 0
(
θ(n),P(n)) > L 0

(
θ,P(n)) − τ for any θ ∈ Θ

}

⇒
{

L 0

(

θ(n),P(n)
)
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θ∈Θ

L 0

(

θ,P(n)
)

− τ
}

⇒
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τ > T
(

θ(n),P(n)
)}

⇒

{

min
(θ,P[n])∈BC

ϵ

(
θ0 ,P∗

[n]

)
∩E

T
(
θ,P[n]

)〉
T

(

θ(n),P(n)

)}

by Equation (A.2)

⇒
{(

θ(n),P(n)) ∈ Bϵ

(
θ0,P∗

[n]

)}

The last induction uses the fact that (θ(n),P(n)) ∈ E . Therefore, Pr(A) ≤ Pr((θ(n),P(n)) ∈ Bϵ(θ0,P∗
[n])). 

The conditional pseudo likelihood function, L (θ, P[n]) is a likelihood function of θ and P[n]. It is defined with an arbitrary choice 
probabilities profile P[n] = (P1,…,Pn). P[n] is not necessarily the equilibrium conditional choice probabilities profile, P∗

[n] and can be any 
arbitrary choice probabilities profile in [0,1]n, e.g., P[n] = (0.5,…,0.5). This is to say that P[n] is not the fixed point solution of P[n] =

Γ(μ;P[n],In). For each observation, i, P[n] boils down to the pseudo social interactions term, 1
Ni

∑
j∈Fi

Pj in Γi(μ; P[n], In) defined in Eq. (2.4). 
By the nature of Pj ∈ [0,1], we have that 1

Ni

∑
j∈Fi

Pj ∈ [0,1]. This term could be taken as a standard bounded covariate. Furthermore, the 
conditional pseudo likelihood function, L (θ,P[n]), is based on the cumulative distribution function of the standard Logistic distribution 
and thus is continuous and differentiable in its parameter. The public information set, In, is taken as an argument in the conditional 
pseudo likelihood function. By the nature of the Logistic CDF, we have that E[L i(θ, P[n])

⃒
⃒In] and 

⃒
⃒E[L i(θ, P[n],Yi = 1)

− Li(θ, P[n],Yi = 0)
⃒
⃒In]
⃒
⃒ continuous in 1

Ni

∑
j∈Fi

Pj. Combining with the invertibility in Assumption 9(iii), boundedness from Assumption 10 
(iii) and VC class from Assumption 10(i), we have all conditions of the conditional law of large number (Theorem 4.1) in Menzel (2016) 
hold. Thus, by the conditional law of large number theorem in Menzel (2016), we have uniform convergence of L (θ, P[n]) to its 
population conditional mean, L 0(θ,P[n]). The uniform convergence of L (θ, P[n]) to L 0(θ,P[n]) implies that Pr(A)→1 as n→∞. Thus, 
Pr((θ(n),P(n)) ∈ Bϵ(θ0,P∗

[n]))→1. The ϵ in Bϵ(θ0, P∗
[n]) is an arbitrarily small constant, so we have: 

sup
(θ(n) ,P[n])∈A

‖θ(n)− θ ‖ + ‖P(n) − P∗
[n]‖=op(1).

where ‖ ⋅ ‖ is the Euclidean norm. From the definition of Λn, we see that θ̂NPL →
p

θ0. Now, we establish the asymptotic normality of the 
NPL estimator. Taking a Taylor expansion over the first order condition in Eq. (4.5) around the true parameter (θ0,P∗

[n]), we have: 

∂L

(
θ0,P∗

[n]

)

∂θ
+

∂2
L (θ+,P+)

∂θ∂θ′ (θ̂NPL − θ0) +
∂2

L (θ+,P+)

∂θ∂P′

(
P̂NPL − P∗

[n]

)
= 0 (A.3)  

where θ+ is between θ̂NPL and θ0 and P+ are between P̂NPL and P∗
[n], respectively. Applying the same stochastic mean value theorem 

between (θ0,P∗
[n]) and (θ̂NPL, P̂NPL) to P̂NPL = Γ(θ̂NPL, P̂NPL) leads to 

[

I −
(

∂Γ(θ− ;P− )

∂P

)
′
](

P̂NPL − P∗
[n]

)

−
∂Γ(θ− ;P− )

∂θ

(

θ̂NPL − θ0

)

= 0, (A.4)  

where θ− is between θ̂NPL and θ0 and P− are between P̂NPL and P∗
[n], respectively. Solving Eq. (A.4) into Eq. (A.3) gives 

∂L

(
θ0,P∗

[n]

)

∂θ
+

∂2
L (θ+,P+)

∂θ∂θ′ (θ̂NPL − θ0) +
∂2

L (θ+,P+)

∂θ∂P′

[

I −
(

∂Γ(θ− ;P− )

∂P

)′]− 1∂Γ(θ− ;P− )

∂θ
(θ̂NPL − θ0) = 0, (A.5)  

From Eq. (A.5), we see that 
[

∂2
L (θ+,P+)

∂θ∂θ′ +
∂2

L (θ+,P+)

∂θ∂P′

[

I −
(

∂Γ(θ− ;P− )

∂P

)
′
]
− 1∂Γ(θ− ;P− )

∂θ

]
̅̅̅
n

√
(θ̂NPL − θ0)

= −
1̅
̅̅
n

√
∑

i∈I

∂L i

(
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[n]

)

∂θ
.

(A.6)  
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By the consistency result of θ̂ and P̂, we have ∂2L (θ+ ,P+)

∂θ∂θ′ +
∂2L (θ+ ,P+)

∂θ∂P′

[

I −
(

∂Γ(θ− ;P− )

∂P

)
′
]
− 1∂Γ(θ− ;P− )

∂θ =
∂2L (θ0 ,P∗

[n] )

∂θ∂θ′ +
∂2L (θ0 ,P∗

[n] )

∂θ∂P′

[
I −

(∂Γ(θ0 ,P∗
[n] )

∂P

)
′
]
− 1∂Γ(θ0 ,P∗

[n] )

∂θ + op(1). Conditional on In, the elements of 
∂2L (θ0 ,P∗

[n] )

∂θ∂θ′ +
∂2L (θ0 ,P∗

[n] )

∂θ∂P′

[
I −
(∂Γ(θ0 ,P∗

[n] )

∂P

)
′
]
− 1∂Γ(θ0 ,P∗

[n] )

∂θ for each observation 

are independent and thus this term converges to its expectation. Conditional on In, (Y1i,Y2i) in 
∂L i(θ0 ,P∗

[n] )

∂θ are independent. Thus 
∂L i(θ0 ,P∗

[n] )

∂θ ’s are conditionally independent. With the Donsker class assumption in Assumption 10(ii), we have all conditions of the 
martingale central limit theorem in Menzel (2016) satisfied, we thus have the asymptotic normality result as below 

̅̅̅
n

√
(θ̂NPL − θ0)→d N(0,VNPL), (A.7)  

where 

VNPL = V − 1
1 (θ0) ⋅ V2(θ0) ⋅ V

′− 1
1 (θ0).

□ 
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