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Abstract. We introduce a new command, robustpf, to estimate parameters of
Cobb–Douglas production functions. The command is robust against two poten-
tial problems. First, it is robust against optimization errors in firms’ input choice,
unobserved idiosyncratic cost shocks, and measurement errors in proxy variables.
In particular, the command relaxes the conventional assumption of scalar unob-
servables. Second, it is also robust against the functional dependence problem of
static input choice, which is known today as a cause of identification failure. The
main method is proposed by Hu, Huang, and Sasaki (2020, Journal of Economet-
rics 215: 375–398).
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1 Introduction
Empirical analysis of production functions is relevant to a wide range of economic fields,
including industrial organization, international trade, macroeconomics, and the eco-
nomics of education. Although production is one of the most primitive components of
economic structures, identification and estimation of production functions from obser-
vational data are known to be delicate and difficult.

Simultaneity in the choice of input factors is one of the major sources of the difficulty
(Marschak and Andrews 1944). To date, a number of solutions have been proposed
to solve this problem. One of the most widely used econometric methods today is
the control function approach proposed by Olley and Pakes (1996) and Levinsohn and
Petrin (2003), which is implemented by the levpet (Petrin et al. 2004) and prodest
(Rovigatti and Mollisi 2018) commands.

The control function approach often uses the investment or an intermediate input
factor as a proxy of productivity. In many instances, however, these proxy variables are
subject to unobserved errors, which may stem from firms’ optimization errors, unob-
served idiosyncratic cost shocks, or measurement errors. While this additional random-
ness imposes more difficulty, Hu, Huang, and Sasaki (2020) show that the production
function parameters may be still identified under this extended setting. This article in-
troduces the robustpf command to implement the robust estimation method proposed
by Hu, Huang, and Sasaki (2020).
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This article is organized as follows. Section 2 discusses a model of production. Sec-
tion 3 reviews Hu, Huang, and Sasaki’s (2020) estimation method. Section 4 describes
the syntax and options for robustpf. Section 5 illustrates the command, using panel
data for Chilean firms. Section 6 concludes.

2 The model of production
We consider the general structural framework like that in Olley and Pakes (1996) and
consider the Cobb–Douglas production function of the form

yt = βkkt + ltβl +mtβm + ωt + ηt (1)

where yt denotes the logarithm of the output, kt denotes the logarithm of the capital
input, lt denotes the row vector of the logarithms of the labor inputs, mt denotes the row
vector of the logarithms of intermediate inputs, ωt denotes the logarithm of the latent
productivity that subsumes the constant term and follows the first-order Markov process
E(ωt|ωt−1) = ρ(ωt−1), and ηt denotes the idiosyncratic shock with E(ηt|kt, lt,mt, ωt) =
0. We are interested in estimating the parameter vector (βk,β

′
l,β

′
m)′ in this model.

The vector lt may include multiple types of labor such as skilled labor lst and unskilled
labor lut , and the vector mt may also include multiple kinds of intermediate input such
as materials m1

t , electricity m2
t , and fuel m3

t .

Each firm makes a decision about the capital input kt in period t−1 before observing
the innovation ωt−E(ωt|ωt−1) in productivity. Specifically, kt follows the law of motion

kt =κ(kt−1, it−1, νt−1)

it =ιt(kt, ωt, ζt)

where it denotes the logarithm of investment and (νt−1, ζt)
′ captures unobserved factors.

Then, each firm makes a decision about the static input (lt,mt)
′ simultaneously in

period t, after observing (kt, ωt)
′ by solving the static optimization problem

max
(lt,mt)

exp (βkkt + ltβl +mtβm + ωt + ηt)− {exp(lt)pl + exp(mt)pm}

where pl and pm denote the vectors of the prices of exp(lt) and exp(mt), respectively.
This static part of the firm’s problem yields the reduced-form input choice rules of the
linear form

xt = αx0 + αxkkt + αxωωt + ptαxp

for each input coordinate x of l and m. This kind of choice rule leads to the func-
tional dependence problem, where the static input xt by construction has no source of
variations freely from the variations of the state variables (kt, ωt)

′ and thus fails the
identification in general (Ackerberg, Caves, and Frazer 2015, sec. 3).

To solve this problem of identification failure, we generalize the above input choice
rule to

xt = αx0 + αxkkt + αxωωt + εxt (2)
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where εxt is a scalar random variable that is unobserved by a researcher. This error
term can be interpreted as a result of the firm’s optimization error, unobserved idiosyn-
cratic cost shocks, and measurement error by a researcher—see Hu, Huang, and Sasaki
(2020, sec. 2.4.1). While this extended input choice rule (2) certainly solves the afore-
mentioned functional dependence problem, the additional unobserved randomness in εxt
may potentially cause the identification problem to be even more difficult. Yet using the
spectral decomposition approach, Hu, Huang, and Sasaki (2020) show that the produc-
tion function parameters (βk,β

′
l,β

′
m)′ may be identified under suitable conditions—in

fact, they show more general nonparametric identification. While we omit the details
of the identification argument here, we refer readers to section 2.2 in Hu, Huang, and
Sasaki (2020). In light of this identification result, we can now consistently estimate
the production function parameters (βk,β

′
l,β

′
m)′. The following section reviews the

estimation method from section 3 of Hu, Huang, and Sasaki (2020).

3 Review of the estimation method
For convenience of writing, we write the Cobb–Douglas production function in loga-
rithms (1) more succinctly as

ỹt(β) = ωt + ηt

where β = (βk,β
′
l,β

′
m)′ and ỹt(β) ≡ yt − (βkkt + ltβl +mtβm). Likewise, we write the

reduced-form demand functions for static input in logarithms (2) as

x̃t+1(αx) = αxωωt+1 + εxt+1

where αx = (αx0, αxk)
′ and x̃t+1(αx) ≡ xt+1−(αx0+αxkkt+1). Let the Markov process

of the productivity ωt be given by the polynomial

ρ(ωt−1) =

P∑
p=1

ρpω
p
t−1

of degree P for some natural number P to be specified by a researcher. Finally, we write
the random vector z̃t ≡ (it, kt, lt,mt)

′ and the reduced-form parameter ϕq = αxωρq for
each q = 1, . . . , P .

Under these notations, Hu, Huang, and Sasaki (2020, sec. 3) derive the moment
restrictions of the form

E
[
z̃t

{
x̃t+1(αx)−

∑P
p=1 ϕpỹt(β)

p
} ]

= 0, for P ≤ 2

for any proxy x. For the case of P > 2, we need to introduce additional notations to
succinctly write moment restrictions. Let

M(t, P ) =


1(

2
1

)
E(ηt) 1
...

...
. . .(

P
1

)
E(ηP−1

t )
(
P
2

)
E(ηP−2

t ) · · · 1





Y. Hu, G. Huang, and Y. Sasaki 89

and ϕ̃p :=
∑P

q=1 ϕq{M(t, P )−1}(q,p) for p = 1, . . . , P . We then have the moment
restrictions of the form

E
[
z̃t

{
x̃t+1(αx)−

∑P
p=1 ϕ̃pỹt(β)

p
} ]

= 0 (3)

for any proxy x. Similarly, we can obtain additional moment restrictions of the form

E
[
z̃t

{
ỹt+1(αx)−

∑P
p=1 α

−1
xω ϕ̃pỹt(β)

p
} ]

= 0 (4)

Now, write the moment restrictions (3) and (4) as E{gt(θ)}, where

gt(θ) =

 z̃t

{
ỹt+1(αx)−

∑P
p=1 α

−1
xω ϕ̃pỹt(β)

p
}

z̃t

{
x̃t+1(αx)−

∑P
p=1 ϕ̃pỹt(β)

p
} 

and θ = (α′
x, αxω,β

′, ϕ̃1, . . . , ϕ̃P )
′. For a suitable weighting matrix Ŵ, the generalized

method of moments (GMM) estimator θ̂ for θ is defined by

θ̂ = argmin
θ∈Θ

1

2
En{gt(θ)}′ŴEn{gt(θ)}

where En denotes the cross-sectional sample mean operator. The robustpf command
uses the identity matrix for the weighting matrix Ŵ in the first step of its GMM esti-
mation and the estimated efficient weighting matrix Ŵ in the second step of its GMM
estimation. As with the usual GMM routines, the robustpf command approximates the
variance of

√
n(θ̂ − θ) by the following:

V̂ =
(
Ĝ′ŴĜ

)−1

Ĝ′ŴΣ̂ŴĜ
(
Ĝ′ŴĜ

)−1

Ĝ = En{Dθgt(θ̂)} is an estimator of G = E{Dθgt(θ0)} and Σ̂ = En{gt(θ̂)gt(θ̂)
′} is

an estimator of Σ = E{gt(θ0)gt(θ0)
′}. Dθ denotes the gradient operator.

Finally, we note that Hu, Huang, and Sasaki (2020) present extensive Monte Carlo
simulation studies in their section 3.3, where they compare the estimation method pro-
posed above against existing alternatives (Olley and Pakes 1996; Levinsohn and Petrin
2003; Wooldridge 2009) under many scenarios. In the following section, we introduce
the robustpf command, which produces θ̂ and V̂ defined above.
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4 The robustpf command
The robustpf command is an e-class command.

4.1 Syntax

The syntax of the robustpf command is as follows.

robustpf depvar
[

if
] [

in
]
, capital(varname) free(varlist) proxy(varname)[

m(varlist) onestep dfp bfgs init_capital(real) init_free(real)
init_m(real)

]
Here depvar denotes the logarithm of the output yt; the capital() option sets the
logarithm of the capital input kt; the free() option sets the logarithms of one or more
types of labor input lt; and the proxy() option sets a proxy variable. Exactly one
depvar, exactly one capital() variable, at least one free() variable, and exactly one
proxy() variable should be included to run the command. For analysis of gross-output
production functions, the logarithms of one or more types of intermediate input mt can
be set with the m() option.

4.2 Options

capital(varname) takes a state input variable, such as capital. capital() is required.

free(varlist) takes free input variables, such as labor. free() is required.

proxy(varname) takes the proxy variable used for estimation of the production function.
proxy() is required.

m(varlist) takes intermediate input variables for estimation of the gross-output pro-
duction function. By default, the command estimates the net-output production
function.

onestep sets an indicator for implementing just one step of the GMM estimation. By
default, two-step efficient GMM estimation is set.

dfp sets an indicator for implementing the Davidon–Fletcher–Powell optimization algo-
rithm. By default, the Newton–Raphson method is set.

bfgs sets an indicator for implementing the Broyden–Fletcher–Goldfarb–Shanno opti-
mization algorithm. By default, the Newton–Raphson method is set.

init_capital(real) sets the initial value of the capital coefficient for an optimization
routine of the GMM estimation. The default is init_capital(0.1).

init_free(real) sets the initial values of the labor coefficients for an optimization
routine of the GMM estimation. The default is init_free(0.1).



Y. Hu, G. Huang, and Y. Sasaki 91

init_m(real) sets the initial values of the intermediate input coefficients for an opti-
mization routine of the GMM estimation. The default is init_m(0.3).

The moment function for GMM estimation is nonlinear. Therefore, we recommend
trying multiple initial values to improve the chance of attaining the globally optimal so-
lution. The value of the objective is stored in e(objective) after running the command
to compare local solutions.

4.3 Stored results

The robustpf command stores the following results in e():

Scalars
e(N) number of firms
e(obs) number of observations
e(T) number of time periods
e(minT) first time period
e(maxT) last time period
e(objective) value of the GMM objective

Macros
e(cmd) robustpf
e(properties) b V

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(br) returns to scale
e(Vr) variance of the returns-to-scale estimator

Functions
e(sample) marks estimation sample

5 Illustration of the command
This section illustrates the robustpf command. We use panel data for Chilean firms,
consisting of food manufacturing plants (ISIC code: 311) from 1981 to 1983. The data
come from the census for plants collected by Chile’s Instituto Nacional de Estadistica.
This panel dataset has been used by many important articles on productivity analysis,
including the seminal article by Levinsohn and Petrin (2003). See Lui (1991) for detailed
descriptions of data construction.

To proceed with analysis, we first load the dataset by the following command line.

. use example_chile

The panel data consist of 994 firms (cross-sectional units) for 7 years (time periods).
This is an unbalanced panel with a total of 5,566 observations. The firm identifier is
stored in the variable named id. The year identifier is stored in the variable named
year. Prior to running the robustpf command, we first set these panel dimensions by
using the xtset command as follows.
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. xtset id year
(output omitted )

For analysis of net output production functions, we include the capital and labor
factors but do not include an intermediate input. A proxy variable is required to control
for the unobserved productivity. Common choices of a proxy variable include the in-
vestment (as in Olley and Pakes [1996]) and an intermediate input (as in Levinsohn and
Petrin [2003]). Suppose that we include the capital k, skilled labor ls, and unskilled
labor lu as factors of production and use the material m() as a proxy for productivity.
Recall that the method implemented by the robustpf command is robust against opti-
mization errors, idiosyncratic cost shocks, and measurement errors in the intermediate
input choice m(). In this setting, the net output production function

yt = βkkt + βls l
s
t + βlu l

u
t + βmmt + ωt + ηt

can be estimated by running

. robustpf y, capital(k) free(ls lu) proxy(m)
Executing robustPF.

GMM: 1st Step Estimation
GMM: 2nd Step Estimation

Unbalanced panel: observations= 2427
Number of cross-sectional observations in the subsample: N= 906
Number of time periods in the subsample: T= 3

minT= 1981
maxT= 1983

Returns to Scale (Std. Err.) = .968857434 (.141584164)

Coefficient Std. err. z P>|z| [95% conf. interval]

k .0816108 .0624612 1.31 0.191 -.040811 .2040326
ls .4015759 .0434777 9.24 0.000 .3163612 .4867905
lu .4856708 .0424599 11.44 0.000 .4024509 .5688906

* robustPF is based on Hu, Y., Huang, G., & Sasaki, Y. (2020): Estimating
Production Functions with Robustness Against Errors in the Proxy Variables.
Journal of Econometrics 215 (2), pp. 375-398.

Output of the robustpf command shows a panel for Chilean firms, consisting of
food manufacturing plants (ISIC code: 311) from 1981 to 1983. Displayed are coefficient
estimates for the capital, skilled labor, and unskilled labor in the net-output production
function, along with their standard errors, z ratios, p-values, and confidence intervals.

Also displayed above the table of the main results is an estimate of the returns
to scale, computed as the sum of the three coefficient values, along with its standard
error. Observe that this net output production function entails a significantly positive
elasticity for each of the two types of labor input and also exhibits constant returns to
scale in the sense that the returns are not significantly different from one.

We next compare these estimation results of robustpf with those of the most popular
alternatives from the existing literature. First, we run the prodest (Rovigatti and
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Mollisi 2018) command to implement an estimation based on the method of Levinsohn
and Petrin (2003)—see also Petrin, Poi, and Levinsohn (2004). Specifically, following
Petrin, Poi, and Levinsohn (2004, sec. 4), but still using the same dataset as above, we
run the following two command lines.

. tsset id year
(output omitted )

. prodest y, free(ls lu) state(k) proxy(m) va met(lp) id(id) t(year)
(output omitted )

Second, we also obtain estimates based on the method of Wooldridge (2009). To this
end, we use the prodest command as follows.

. prodest y, free(ls lu) state(k) proxy(m) va met(wrdg) id(id) t(year)
(output omitted )

Finally, we again run the prodest command, but this time to obtain estimates based
on the method of Levinsohn and Petrin (2003) along with the correction by Ackerberg,
Caves, and Frazer (2015) as follows.

. prodest y, free(ls lu) state(k) proxy(m) va met(lp) acf id(id) t(year)
(output omitted )

The following table compares their estimation results with those of robustpf based on
Hu, Huang, and Sasaki (2020).
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Table 1. Estimation results by the methods of Levinsohn and Petrin (LP, 2003),
Wooldridge (W, 2009), Ackerberg, Caves, and Frazer (ACF, 2015) correction of LP,
and Hu, Huang, and Sasaki (HHS, 2020). The results are based on a panel for Chilean
firms, consisting of food manufacturing plants (ISIC code: 311) from 1981 to 1983.

Coefficients Returns Test of constant
Method Command k ls lu to scale returns to scale

LP prodest 0.279 0.132 0.227 0.638 Reject;
(0.016) (0.009) (0.008) (0.032) diminishing returns

W prodest 0.184 0.140 0.228 0.552 Reject;
(0.045) (0.023) (0.020) (0.047) diminishing returns

ACF prodest 0.310 0.385 0.496 1.191 Reject;
(0.018) (0.002) (0.007) (0.010) increasing returns

HHS robustpf 0.082 0.402 0.486 0.969 Fail to reject;
(0.062) (0.043) (0.042) (0.142) constant returns

In the first row of table 1, LP yields small point estimates for both of the two labor
coefficients, ls and lu. Adding up all the three coefficient estimates together yields the
estimated returns to scale of 0.638. This number indicates strongly diminishing returns
to scale. The estimates presented in the second row of table 1, based on W, show a
pattern similar to the LP estimates presented in the first row. This similarity is a natural
outcome because LP and W use the same set of identifying moment restrictions, and
their estimation strategies differ only in that W implements a simultaneous estimation
(to obtain accurate standard errors) of the two-step estimator, while LP implements a
procedural estimation.

In the third row of table 1, the method of LP with the ACF correction yields sub-
stantially larger point estimates for both of the two labor coefficients than those of LP
or W presented in the first two rows. These large differences come from a modified set
of moment restrictions proposed by ACF to circumvent the identification failure of the
LP method due to the functional dependence problem—see ACF (2015, sec. 3). Adding
up all the three coefficient estimates of ACF together yields the estimated returns to
scale of 1.191, which is now larger than 1 and is significantly different from 1. In other
words, the estimates based on the method of ACF imply strongly increasing returns to
scale in contrast to the diminishing returns implied by LP and W.

Finally, we present the estimates based on our proposed robustpf command in
the bottom row of table 1 shown in the output of robustpf on page 92. The point
estimates of the two labor coefficients are similar to those of ACF. On the other hand,
the point estimate of the capital coefficient is smaller than that of ACF. Consequently,
adding up all three coefficient estimates of HHS together yields the estimated returns



Y. Hu, G. Huang, and Y. Sasaki 95

to scale of 0.969, which is not significantly different from 1. Therefore, the estimates
by the robustpf command based on the method of HHS are consistent with constant
returns to scale unlike estimation results of the other three methods. This difference
may be explained by the fact that ACF requires the conventional assumption of scalar
unobservables, while HHS does not require this restriction. Alternatively, this difference
may also stem from the restriction on the input demand function that the method of
HHS uses in addition to the structural restrictions on the output equation.

6 Conclusion
In this article, we introduced a new command, robustpf, that estimates parameters
of Cobb–Douglas production functions with robustness against optimization errors in
firms’ input choice, unobserved idiosyncratic cost shocks, and measurement errors in
proxy variables. The command is based on the method of Hu, Huang, and Sasaki
(2020). As a by-product of introducing and allowing for errors in the static input
choices, the command is also robust against the functional dependence problem, which
Ackerberg, Caves, and Frazer (2015) pointed out as a cause of identification failure
in general. Thus, the robustpf command provides users with robustness against two
potential problems with production function estimation.

In closing this article, we discuss a limitation of the command. The method of
estimation is based on the nonlinear GMM criterion presented in section 3, and thus nu-
merical methods are not guaranteed to find the global optimum. The default algorithm
of the command is the Newton–Raphson method, and section 3.2 presents a couple of al-
ternative options. We recommend that a user run several estimates with different initial
values of optimization by using the options to set initial values presented in section 3.2.
The value of the GMM objective achieved at the local optimum can be retrieved from
e(objective), and a user can compare the optimal criterion values associated with dif-
ferent estimates. This practical inconvenience can be overcome if a global optimization
routine is developed for implementation of robustpf. We leave it for future research.

7 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-1

. net install st0702 (to install program files, if available)

. net get st0702 (to install ancillary files, if available)

The robustpf command also is available on the Statistical Software Components
archive and can be installed directly in Stata with the command

. ssc install robustpf
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