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a b s t r a c t

This paper proposes a new approach to the identification and estimation of production
functions. It extends the literature on the structural estimation of production functions,
which dates back to the seminal work of Olley and Pakes (1996), by relaxing the scalar-
unobservable assumption about the proxy variables. The key additional assumption
needed in the identification argument is the existence of two conditionally independent
proxy variables. The proposed generalized method of moment (GMM) estimator is
flexible and straightforward to apply. The method is applied to study how rapidly firms
in the Chilean food-product industry adjust their inputs in response to shocks to their
productivity.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The literature on the structural estimation of production functions addresses two main problems: the simultaneity
bias and sample selection. Both problems are caused by the unobserved productivity in production functions. Olley
and Pakes (1996) (hereafter OP), in their seminal paper, suggest using investment as a proxy variable to control for
the latent productivity. Their key insight is that if productivity, a scalar random variable, is the only unobserved factor
affecting investment (i.e., the scalar-unobservable assumption), and investment is, ceteris paribus, a strictly monotonic
function of the latent productivity (i.e, the monotonicity assumption), then one can consistently estimate the structural
parameters in the production function by using a nonparametric function of investment and other covariates to control
for the latent productivity. OP’s approach and the later extensions of it have been widely applied in the IO and trade
literature (e.g., Pavcnik (2002), Bernard et al. (2003), Javorcik (2004), Aw et al. (2008)). Building on the insights from
the literature, this paper proposes a new approach to identifying and estimating production functions while relaxing the
scalar-unobservable assumption. We focus on dealing with the simultaneity bias, following Levinsohn and Petrin (2003)
and Ackerberg et al. (2015).

Important discussions and extensions of the OP’s method include Levinsohn and Petrin (2003) (hereafter LP), Ackerberg
et al. (2015) (hereafter ACF), among others. LP argue that static inputs, such as material and energy, may be better
proxy variables for productivity because the primitive conditions that ensure the monotonicity condition for these proxy
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variables are easier to come by, and that they are normally much less lumpy and have fewer observations of zero.
ACF point out an important identification problem with estimating the coefficient of the labor input in the first step
of OP/LP’s procedure. In particular, if the labor demand, like investment/intermediate inputs, is also a function of capital
and productivity but of no other unobserved factors, then, after controlling for capital and productivity perfectly by a
nonparametric function of capital and the proxy variable, there would be no independent variations in the labor input
left to identify the coefficient of labor in the OP/LP’s first step.

Though the scalar-unobservable assumption is a key to the above methods, it has been a concern since OP’s original
paper (p.1265). LP also point out that a major criterion in selecting their proxy variable is the avoidance of inputs that
could be subject to the influence of other unobserved factors (LP, p.326). In general, some other unobserved factors, such
as supply disruptions, optimization errors and measurement errors, could also affect the observed investment and inputs.
If these other unobserved factors were important in practice, the OP/LP/ACF procedures might not fully control for the
latent productivity.1 Furthermore, the scalar-unobservable assumption also forces us to give up some important sources
of identification. This problem manifests itself most clearly through the identification problem, as ACF point out, in the
estimation of the labor coefficient in LP’s first step. Although researchers may not run into such an identification problem
in practice, to maintain logical consistency, one does not want both to use the additional sources of variations in the
labor input – due to cost shocks, for example – to identify the labor coefficient in OP/LP’s first step and to exploit the
scalar-unobservable assumption to use the investment or an intermediate input as a perfect proxy variable for the latent
productivity. Related to this issue, Bond and Söderbom (2005) point out the difficulty of identifying the coefficients of
fully flexible inputs when there are no variations in input prices across firms; they suggest that one may use stochastic
input adjustment costs to help identify the input coefficients. The authors argue that with stochastic adjustment costs it
is better to use the instrumental variable methods, as in Blundell and Bond (2000), to estimate production functions since
the model of OP and LP would be misspecified if the stochastic input adjustment costs were present.

We propose a new method in this paper to identify and estimate production functions, allowing the proxy variables to
be affected by other unobserved factors in addition to the latent productivity. The idea of our method is as follows: because
researchers normally have multiple proxy variables such as intermediate inputs and investment available for productivity,
we may be able to find two such proxy variables that, conditional on productivity (and other covariates), are independent
of each other in some reasonable cases. Then, we may intuitively view these two proxy variables as two contaminated
measures of productivity, such that we may use one proxy variable as the instrument for the other contaminated measure
of productivity to fully control for the latent productivity in the estimation of production functions. Hu and Schennach
(2008) establish the corresponding identification results for a general class of nonclassical measurement-error models.
In this paper, we apply their results to show that production functions can be identified in many important cases, even
when the proxy variables do not satisfy the scalar-unobservable assumption.

Two key conditions are needed for our identification of production functions. The first one is the conditional
independence condition alluded to above, and the second is an injectivity condition that may be viewed as a generalization
of the monotonicity condition of OP/LP after relaxing the scalar-unobservable assumption. As will be discussed in detail
later, the conditions are reasonable in some important cases.

Our identification argument provides the foundation for alternative estimation methods that do not rely on the scalar-
unobservable assumption about the proxy variables. A semiparametric maximum likelihood estimation (MLE) method
follows directly from our identification result. The MLE method is feasible but harder to implement in practice than the
methods of OP/LP, due to the functional nuisance parameters involved in the estimation. As a more practical alternative
to the MLE method, we propose a GMM estimation approach, based on the same general identification idea of using two
proxy variables for the latent productivity. To derive the GMM estimator, we impose several moment restrictions that
are related to, but not implied by, the conditional independence condition mentioned above. Our GMM estimator may
be viewed as an extension of the IV approach (Blundell and Bond, 2000) in that we do not restrict the AR(1) process for
productivity transition to be linear.

To illustrate our GMM estimation method, we first compare its performance to those of the existing methods in Monte
Carlo studies. The results show the robustness of our method – but not of the existing ones discussed above – against
the existence of additional unobserved factors affecting the proxy variables. We then apply our method to the Chilean
manufacturing data, as used by LP, to investigate how rapidly firms adjust the various inputs in response to the latest
shocks to productivity. The empirical analysis shows that firms adjust the material input quickly to fit the latest level of
productivity, but they are considerably slower in adjusting the labor and capital inputs, suggesting significant frictions in
the corresponding input markets. The empirical results also help explain the differences in the estimates of production
functions using the various methods.

The rest of the paper proceeds as follows. Section 2 shows the identification of production functions in a model that
relaxes the scalar-unobservable assumption. Section 3 first proposes new estimation methods based on our identification
result and compares our methods to the existing ones using simulated data. Section 4 applies our method to the Chilean
manufacturing-industry census data. Section 5 concludes.

1 Closely related to the literature, Imbens and Newey (2009) use the conditional CDF of the input given some instrumental variables, such as cost
shocks, as the control variable for the latent productivity. But as Imbens (2007) points out, such an approach cannot correct all the simultaneity
bias if the input demand is also affected by other unobservables besides the latent productivity.



Y. Hu, G. Huang and Y. Sasaki / Journal of Econometrics 215 (2020) 375–398 377

2. Model and identification

In this section, we study the identification of production functions assuming that each observed intermediate input
(and investment) is affected by another unobservable factor in addition to productivity. In the following, we first outline
the main idea of our identification strategy; then, we set up a standard model of gross-output production function and
show its identification. To save space, we defer our review and discussion of the related literature to the online appendix,
and refer readers to Ackerberg et al. (2007) and Ackerberg et al. (2015) for comprehensive reviews of the related literature.

Our main identification idea is to simultaneously use two proxy variables for productivity in the estimation of
production functions. The two proxy variables can be thought of as two contaminated measures of the latent productivity.
Intuitively, although one cannot directly invert the demand function of a proxy variable to fully control for the latent
productivity, due to the presence of additional unobserved factors affecting the variable, we can use the other proxy
variable as an instrument for the first one. Given this perspective of the model, we can employ the identification result
from Hu and Schennach (2008) for nonclassical measurement-error models to show the identification of parameters in
the production function. To illustrate the crux of our identification argument, suppose that we are interested in estimating
the structural parameters β in the following equation of yt ,

yt = W1tβ + ωt + ηt , (1)

where W1t is a vector of observed variables; and ωt and ηt are unobserved scalar random variables. And suppose that
we have two proxy variables for the latent variable ωt : xt and zt , such that 1) the three dependent variables (yt , zt , xt)
are independent of each other conditional on ωt and Wt = (W1t ,W2t ) (W2t indicates other covariates relevant to xt
and zt )—i.e., f (yt |ωt , zt , xt ,Wt) = f (yt |ωt ,Wt) and g (zt |ωt , xt ,Wt) = g (zt |ωt ,Wt), where f (.) and g(.) are conditional
density functions; and 2) the integral operators defined by f (yt |ωt ,Wt ) and h(ωt |xt ,Wt ) are injective for any given Wt ,2
and g(zt |ωt ,Wt ) satisfies a mild technical assumption (to be clarified later). Then, it can be shown that the conditional
density of f (yt |ωt ,Wt), as well as g (zt |ωt ,Wt) and h (ωt |xt ,Wt), are identified through the following equation based on
the observed conditional density of f (yt , zt |xt ,Wt)

3:

f (yt , zt |xt ,Wt)

=

∫
∞

−∞

f (yt |ωt ,Wt) g (zt |ωt ,Wt) h (ωt |xt ,Wt) dωt .

As a result, the structural parameters β are identified given that f (yt |Wt , ωt) is identified.
Note that we impose the injectivity assumption on the integral operator defined by the conditional density related to

one of the two proxy variables, and require the conditional density related to the other proxy variable to satisfy only a
mild technical condition. We normally can find two such proxy variables in applications as we discuss in detail below.

2.1. Model

We assume that the general underlying structural framework is the same as that described by Olley and Pakes (1996),
and follow the tradition of using uppercase letters to denote levels and lowercase letters to denote the logarithms of
levels. We focus on the following Cobb–Douglas gross-output production function4:

yt = βllt + βkkt + βmmt + βuut + ωt + ηt , (2)

where yt , lt , kt ,mt and ut are, respectively, the logarithms of the output and the inputs of labor, capital, material and
energy; ωt is the logarithm of the latent productivity that subsumes the constant and is serially correlated; and ηt is the
residual term with E (ηt |lt , kt ,mt , ut , ωt) = 0. The functional form assumption is made here for the ease of demonstration.
The identification result that we show in the following applies equally well to other common forms of production
functions. Our interest here is to identify and estimate (βl, βk, βm, βu), given that ωt is correlated with (lt , kt ,mt , ut)

but is not observed by the econometrician. For productivity ωt , let E (ωt |It−1) be the prediction of ωt based on It−1, the
information available in period t−1, and ξt = ωt −E (ωt |It−1) is the prediction error. In the following, we assume that ωt
follows an exogenous first-order Markov process, such that E (ωt |It−1) = E (ωt |ωt−1). We define ρ (ωt−1) ≡ E (ωt |ωt−1).
The more general case of ωt following a controlled Markov process can be treated similarly as long as the control variable
is observed.

The timing assumptions about the input decisions determine the appropriate arguments to be included in the input
demand functions. In applications, these assumptions should be made to suit the specific industries under analysis. To be

2 For a conditional density function f (x|z), the corresponding integral operator is defined as follows: Lx|z (h (.)) (x) =
∫
f (x|z) h (z) dz.

3 The equation is a result of the total law of probability and the conditional independence assumption.
4 Gandhi et al. (2013) provides some compelling motivations for researchers to focus on gross-output, as opposed to value-added, production

functions. We focus on the Cobb–Douglas production function in the paper because of its importance and popularity in applications. One may
adapt our identification and estimation framework without much difficulty if one chooses to work with alternative production functions (e.g., CES
production functions).
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specific, we assume that decisions about inputs of lt , mt and ut are made simultaneously in period t after observing ωt
and kt , and that kt is determined in period t − 1 without observing the period-t innovation, ξt , of productivity.

More specifically, let the optimal choices of lt , mt and ut for a firm be determined as the solution to the following
profit-maximization problem:

max
Lt ,Mt ,Ut

E exp(ηt ) exp(ωt )L
βl
t Kβk

t Mβm
t Uβu

t − (pltLt + pmtMt + putUt) ,

where the expectation is taken with respect to ηt ; (plt , pmt , put ) are the input prices of Lt ,Mt and Ut respectively; and the
output price is normalized to be 1 per unit. This problem yields linear reduced-form input choice rules, for x = l,m, u, as
follows:

xt = αx0 + αxkkt + αxωωt + ptαxp,

where pt = (plt , pmt , put ) and αxp is a vector of the corresponding parameters. The reduced-form parameters (αx0, αxk, αxω,
αxp) are functions of (βl, βk, βm, βu) and E exp(ηt ). Following the literature, we call lt , mt and ut static inputs (except when
we consider lt being determined in period t − 1).

As an important extension of the literature, we let the observed static inputs be determined, for x = l,m, u, as follows:

xt = αx0 + αxkkt + αxωωt + ϵxt , (3)

where ϵxt is a scalar random variable. The inclusion of ϵxt relaxes the scalar-unobservable assumption maintained by
the previous papers (e.g. OP, LP and ACF) in the literature. In practice, ϵxt can capture ptαxp if the input prices are firm-
specific and not observed by researchers, and/or other factors that cause the observed inputs to deviate from their optimal
levels.5 We defer more detailed discussions of possible empirical interpretations of ϵxt to Section 2.4.1. In our identification
argument, we use the following expression of xt+1:

xt+1 = αx0 + αxkkt+1 + αxωρ(ωt ) + αxωξt+1 + ϵxt+1, (4)

connecting xt+1 with ωt .
It is worth noting that the optimal input demand functions derived from the first-order conditions are just natural

candidates that we extend to illustrate how we may allow the input demand functions to depend on more than a single
unobservable. It is straightforward to extend our identification and estimation to allow more flexible specifications. In
particular, we can allow the following more flexible specifications for the static inputs:

xt = µxt (kt , ωt ) + ϵxt ,

where µxt (kt , ωt ) are polynomials of kt and ωt . We can also extend our methods easily to the cases in which lt depends
on lt−1 or lt is determined in period t − 1.6

The data-generating process for the investment It is somewhat different from those of the above static inputs.7 In
practice, we often observe a significant portion of the firms in the data making no investment in physical capital in some
periods. To account for the fact that there are a lot of zero observations for investment, we model investment as a censored
variable as follows:

I∗t = ιt (ωt , kt , ζt)
It = I∗t × 1

(
I∗t ≥ 0

)
,

where It is the observed investment; I∗t is a latent index variable; and ζt captures unobservable factors, other than ωt ,
that affect investment. The observed investment data are censored at zero.

To complete the model, let capital accumulate according to the following equation:

Kt = κ(Kt−1, It−1, νt−1), (5)

where νt−1 captures other factors affecting the capital accumulation process. As we explain later, by breaking the
deterministic linear relationship between Kt and (Kt−1, It−1), the specification in (5) allows us to use It as one of the proxy
variables for ωt in identification. In practice, νt−1 can capture 1) lagged investments when some investments take more
than one period to become productive capital (as argued by the influential paper of Kydland and Prescott (1982)); and 2)
other factors that affect capital accumulation and/or depreciation. Our data show that the firm-level capital accumulation
is a nuanced process and thus the above flexible specification in Eq. (5) seems appropriate.

It is worth noting that a common equation for the capital accumulation process, as specified by the papers that we
discussed above, is Kt = (1− δ)Kt−1 + It−1, where δ is a depreciation factor.8 However, this capital accumulation equation

5 We can simply add ptαxp back to Eq. (3) in cases in which researchers do observe firm-specific input prices.
6 As will become clear later, the only adjustment that we need for these two cases is to include lt+1 in the equations of mt+1 and ut+1 .
7 The optimal investment is determined as the solution to firms’ dynamic profit optimization problems (Olley and Pakes, 1996), which we omit

here to avoid unnecessarily restricting us to a particular model specification.
8 This equation for capital accumulation or some variant of it is also often used in constructing the capital stock through the perpetual inventory

method.
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seems better interpreted as a parsimonious specification for clarifying the timing assumption of Kt being determined in
period t − 1, instead of a literal linear relationship between Kt and (Kt−1, It−1). Given that different types of capital goods
depreciate at different rates, the linear capital-accumulation equation does not hold for the firm-level total capital stock
and investment, even if one assumes it for each type of capital good.

Our specification of the capital accumulation seems appropriate for most applications. Given the nuanced processes
of capital accumulation and depreciation, our specification is appropriate naturally for applications for which the data
on capital stock is directly available. Noting that Kt indicates the firm-level total capital stock, our specification in (5)
is also valid for applications in which different types of capital goods depreciate at different rates. If the capital stock
is constructed by using the perpetual inventory method with the linear capital-accumulation equation and the same
depreciation rate is assumed for different types of capital goods, then we may define the It−1 in Eq. (5) as the investment
in one type of capital good (e.g., building, machinery or vehicles) instead of the firm-level total investment (while Kt (and
Kt−1) is still defined as the firm-level total capital stock).

Lastly, we assume that ηt , αxωξt+1 + ϵxt+1, ζt (where x = m, u) are mutually independent conditional on (ωt , lt , kt ,mt ,

ut ), and that ηt y νt |(ωt , lt , kt ,mt , ut ).

2.2. Identification

In the following, we base our identification discussion on three endogenous variables, (yt ,mt+1, It), all of which depend
on the unobserved productivity ωt , in addition to the control variables and error terms. Let Wt ≡ (lt , kt ,mt , ut , kt+1)
indicate the vector of control variables. We begin our identification argument by listing the conditions that we need to
prove identification.

Condition 1 (Conditional Independence). f (yt |mt+1, It , ωt ,Wt) = f (yt |ωt ,Wt), and g (It |mt+1, ωt ,Wt) = g (It |ωt ,Wt), for
all Wt , where f and g are conditional density functions.

Condition 2 (Injectivity). (i) ηt y ωt |Wt , and (αmωξt+1 + ϵmt+1) y ωt |Wt ; (ii) ρ(ωt ) = E(ωt+1|ωt ) is strictly monotonic in
ωt ; and (iii) conditional characteristic functions of f (yt |ωt ,Wt ) and h(ωt |mt+1,Wt ) do not vanish on the real line.

The first equality in Condition 1 states that mt+1 and It do not provide information about yt beyond what is
already contained in ωt . The second equality in Condition 1 says that the two proxy variables are independent of each
other, conditional on ωt and other control variables. The conditional independence assumptions follow from our model
assumption that ηt , αmωξt+1 + ϵmt+1 and ζt are mutually independent conditional on (ωt , lt , kt ,mt , ut ), and they can
be thought of intuitively as similar to the exclusion restrictions in the instrumental variable (IV) method. As a direct
application of Proposition 2.4 in D’Haultfoeuille (2011), Condition 2 guarantees that the integral operators defined by
f (yt |ωt ,Wt ) and h(ωt |mt+1,Wt ) are invertible. The injectivity assumption plays a role in our identification similar to
that of the rank condition in the IV method. We also need the following two technical conditions for our identification.

Condition 3 (Distinctive Eigenvalues). for any given Wt and any ωt ̸= ω̃t , there exists a set A such that g (It |ωt ,Wt) ̸=

g (It |ω̃t ,Wt) for all It ∈ A and Pr (A) > 0.

Condition 4 (Normalization). E (yt − βllt − βkkt − βmmt − βuut |ωt , lt , kt ,mt , ut) = ωt ; that is, E(ηt |ωt , lt , kt ,mt , ut ) = 0.

Condition 3 is a relatively mild condition — it requires only that, ceteris paribus, any change in a firm’s productivity has
to lead to some change in the distribution of the firm’s investment decisions. The condition guarantees that we can always
find distinctive eigenvalues and, consequently, different eigenfunctions in the spectral decomposition that we employ in
the proof of our identification. It is also worth noting that condition 3 is feasible given the flexible capital accumulation
process specified in (5). If we assumed Kt = (1 − δ)Kt−1 + It−1, It would be completely determined by kt and kt+1 (both
of which are in Wt ).9 Condition 4 will be used to pin down the eigenfunctions for each given ωt , which follows directly
from our model assumption in Eq. (2). We will discuss the practical validity of the four conditions later in this section.

Given Condition 1, we have:

f (yt , It |mt+1,Wt)

=

∫
f (yt |It ,mt+1, ωt ,Wt) g (It |mt+1, ωt ,Wt) h (ωt |mt+1,Wt) dωt

=

∫
f (yt |ωt , lt , kt ,mt , ut) g (It |ωt ,Wt) h (ωt |mt+1,Wt) dωt ,

9 Meanwhile, as we often observe several different types of investments, such as building, machinery and vehicles, one may use one of the
different types of investments as a proxy variable so that Condition 3 is feasible even if one assumes Kt = (1 − δ)Kt−1 + It−1 .
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where the first equality follows by the law of total probability; and the second equality follows from the conditional inde-
pendence condition and our model assumption that ηt and νt are mutually independent conditional on (ωt , lt , kt ,mt , ut ).
Copying the above equation for easier reference, we have:

f (yt , It |mt+1,Wt) =

∫
f (yt |ωt , lt , kt ,mt , ut) g (It |ωt ,Wt) h (ωt |mt+1,Wt) dωt . (6)

Now, the identification question is whether we can identify the latent conditional densities on the right-hand side
of Eq. (6), especially f (yt |ωt , lt , kt ,mt , ut), given the observed conditional density of f (yt , It |mt+1,Wt).

Given the conditions above, Theorem 1 in Hu and Schennach (2008) can be applied to show that the latent densities
f (yt |ωt , lt , kt ,mt , ut), g (It |ωt ,Wt), and h (ωt |mt+1,Wt) are identified.10 In the following, we sketch the main idea of the
proof of the identification to help make the key identification sources more transparent. We omit the control variables
(Wt ) in the proof for simpler notations. First, we define an integral operator based on a conditional density.

Definition 1. Let F (X ) and F (Z) be spaces of functions defined on the domains of X and Z respectively. Then, define
the integral operator Lx|z based on the conditional density function f (x|z) as:[

Lx|zg
]
(x) =

∫
Z
f (x|z) g (z) dz,

where the operator Lx|z maps a function g (z) in F (Z) into a function in F (X ).

Now Eq. (6) can be equivalently written in corresponding integral operators as:

LI;y|m = Ly|ω∆I;ωLω|m, (7)

where LI;y|m is defined similarly to Ly|m with f (y|m) replaced by f (I, y|m) for a given I , and where ∆I;ω is a ‘‘diagonal
operator’’ mapping a function h (ω) to f (I|ω) h (ω). Meanwhile, by integrating both sides of Eq. (7) with respect to I , we
get Ly|m = Ly|ωLω|m, which is equivalent to:

Lω|m = L−1
y|ωLy|m.

Next, we substitute the above expression of Lω|m into (7) and rearrange the operators based on observable densities to
the left-hand side, and we get:

LI;y|mL−1
y|m = Ly|ω∆I;ωL−1

y|ω. (8)

The inverse of Ly|m used in the above equation can be shown to exist because Ly|ω and Lm|ω are invertible.
Eq. (8) means that LI;y|mL−1

y|m admits an eigenvalue–eigenfunction decomposition. The left-hand-side operator based on
observed conditional densities is decomposed to obtain f (y|ω, .), and g (I|ω, .), the latent conditional densities of interest.
Theorem XV.4.5 in Dunford and Schwartz (1971) can be used to show that the decomposition is unique given that the
operators are defined with the density functions.

Lastly, Conditions 3 and 4 together ensure the uniqueness of the ordering and indexing of the eigenvalues and
eigenfunctions. By Condition 3, the eigenvalue g(I|ω, .) is distinct for distinct values of ω. With Condition 4, we uniquely
determine both f (y|ω, .) and g(I|ω, .), by ordering them according to E(yt − βllt − βkkt − βmmt − βuut |ωt , lt , kt ,mt , ut ).

The following Lemma summarizes our main result on the identification of f (yt |ωt , lt , kt ,mt , ut).

Lemma 1. Suppose that, for any fixed Wt , the joint density of (yt , It ,mt+1, ωt ) conditional on Wt is bounded, and all marginal
and conditional densities are also bounded. Then, under Conditions 1–4, the observed conditional density of f (yt , It |mt+1,Wt)

uniquely determines the latent conditional densities of f (yt |ωt , lt , kt ,mt , ut), g (It |ωt ,Wt) and h (ωt |mt+1,Wt).

Proof. The assumption of bounded densities corresponds to the Assumption 1 in Hu and Schennach (2008). Conditions
1–4 correspond to their Assumptions 2–5. Our theorem follows as a direct application of their Theorem 1. □

The independence and injectivity conditions play important roles in the above identification proof. The independence
assumptions help reduce the dimensionality of the latent conditional densities to make the spectral decomposition
possible. The injectivity assumptions ensure that the integration operators are invertible. This role played by the injectivity
condition bears some similarity to that of the rank conditions for the IV method in the classical linear regression models.

Given the identification of the conditional densities and the assumptions of ηt y ωt |(lt , kt ,mt , ut) and E(ηt |ωt , lt , kt ,
mt , ut ) = 0, the conditional density of ηt , fηt |(lt ,kt ,mt ,ut ), and the structural parameters, (βl, βk, βm, βu), in the production
function are identified given enough variations in (lt , kt ,mt , ut). We summarize the identification results in the following
Theorem.

10 Hu and Schennach’s theorem is stated without control variables. We can define, for example, ỹt ≡ yt − βllt − βkkt − βmmt − βuut , such that
their identification results can be applied directly given that (βl, βk, βm, βu) are identified from the variations in lt , kt ,mt and ut in the data.
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Theorem 1. Let Vt ≡ (lt , kt ,mt , ut )′ and β ≡ (βl, βk, βm, βu)′. Suppose that E(VtV ′
t ) is nonsingular, then under

Conditions 1–4, the observed conditional density f (yt , It |mt+1,Wt) uniquely determines (βl, βk, βm, βu), together with
fηt |(ωt ,lt ,kt ,mt ,ut ), g(It |ωt ,Wt ) and h(ωt |mt+1,Wt ) from the following equation:

f (yt , It |mt+1,Wt) (9)

=

∫
∞

−∞

fηt |(ωt ,lt ,kt ,mt ,ut ) (yt − βllt − βkkt − βmmt − βuut − ωt) ×

g (It |ωt ,Wt) × h (ωt |mt+1,Wt) dωt .

Proof. The identification of f (yt |ωt , lt , kt ,mt , ut) implies the identification of E(yt |ωt , lt , kt ,mt , ut ). Meanwhile, our model
has that yt = βllt + βkkt + βmmt + βuut + ωt + ηt . Hence, we have E(yt |0, lt , kt ,mt , ut ) = V ′

tβ . Given that E(VtV ′
t ) is

nonsingular by assumption, we get β = (E(VtV ′
t ))

−1E(E(yt |0, lt , kt ,mt , ut )Vt ). With E(VtV ′
t ) directly identified from data,

β is identified.
Meanwhile, we have:

fηt |(ωt ,lt ,kt ,mt ,ut ) (η̃) = f (yt = βllt + βkkt + βmmt + βuut + ωt + η̃|ωt , lt , kt ,mt , ut) ,

for any given η̃ and (ωt , lt , kt ,mt , ut ). Since yt and ηt share the same domain of the entire real line, the above equation
identifies fηt |(ωt ,lt ,kt ,mt ,ut ). □

It is worth noting that the above identification arguments can also be made with (yt , It ,mt+1) replaced by (yt , It , ut+1)

or (yt , It , yt+1). However, we cannot make the same identification argument with (yt ,mt+1, ut+1), because the residual
errors of both static inputs depend on ξt+1 (Eq. (4)), directly contradicting Condition 1. We cannot make the same
identification argument with (yt , It ,mt ) either, because, in such a case, we cannot identify the coefficients of mt and
kt in the production function due to collinearity.11

2.3. Extension

As an extension of the above identification result, we can allow ωt to be endogenously determined. This extension is
important for applications in which it is essential to assume that firms actively spend resources to improve productivity.
For example, Doraszelski and Jaumandreu (2013) show that it is important to account for firms’ R&D investment in
explaining the evolution of firms’ productivity in the Spanish manufacturing industry.12

Our method can conveniently accommodate the case of productivity following a controlled first-order Markov process.
Specifically, suppose that the control variable affecting the process of ωt is determined in the following way:

rt = R (ωt , kt) + ϱt ,

where rt is the R&D spending in period t (or some other control variable affecting the evolution of productivity),13 and ϱt
captures other unobserved factors affecting rt . Under the alternative assumption, we have E (ωt+1|It) = E (ωt+1|ωt , rt).
Given that R&D spending is observed, our identification arguments above can be largely replicated as long as we replace
the term E (ωt+1|ωt) in the mt+1 equations with E (ωt+1|ωt , rt).

2.4. Discussion

We have shown above that the identification of production functions can be achieved even if we allow for additional
unobservables in determining the proxy variables. In the following, we discuss the practical validity of the underlying
conditions in order to assess the applicability of the above identification results for estimation. We discuss the key
conditions in turn, assuming that the general underlying structural framework is the same as described in Olley and
Pakes (1996).

11 This is easy to check in the case with linear demand function for mt . We can solve the mt equation for ωt as a function of mt , kt and ϵmt ,
and substitute it into the production function. Then, we can see that the coefficients of mt and kt in the production function cannot be separately
identified from the coefficients of kt and ωt in the mt equation.
12 Doraszelski and Jaumandreu (2013) propose an alternative method to use a static input, as suggested by LP, to proxy for productivity in their
estimation of production functions. Their key insight is that, for some commonly used parametric production functions, one can easily solve for
the optimal demand function for a static input and, thus, can get an explicit expression for the inverse function to back out the productivity. This
observation, together with data on firm specific input costs, allows them to get around the identification problem, as pointed out by ACF, with LP’s
approach.
13 rt can also be other firm activities, such as exporting experience (De Loecker, 2010), that affect firms’ productivity.
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2.4.1. The conditional independence assumption
The conditional independence assumption can be equivalently stated through the residuals in the corresponding

equations. For example, the assumption of mutual independence among yt , It and mt+1 is equivalent to the assump-
tion of mutual independence, conditional on the observable covariates, among the corresponding residual errors—
i.e., ηt , ζt , αmωξt+1 +ϵmt+1. Whether it is reasonable to assume that the residual terms are mutually independent depends
on the factors that they capture. The residual error of the output equation, ηt , may capture, for example, unanticipated
technology shocks, such as the number of defective products and machine breakdowns, and/or measurement error
of the output. And the residual errors in the equation of intermediate inputs and investment could be results of
supply disruptions, optimization errors, idiosyncratic cost shocks, measurement errors, etc. In the following, we discuss
the conditional independence assumption for the main types of unobserved factors. We focus our discussion on the
assumption of ηt , ζt and ϵmt+1 being mutually independent, assuming that ξt+1 is independent of (ηt , ζt ) (which seems
reasonable given typical interpretations of ηt and the possible interpretations of ζt that we discuss below).

Optimization error. The conditional independence assumption seems reasonable if the residual errors in the equations
of mt+1 and It are mainly optimization errors. Because mt+1 is a static input without dynamic implications (ACF), we
expect no dependence between a firm’s decisions on mt+1 and It . Furthermore, firms probably do not often observe their
optimization errors; and if they find such an error, they are likely to respond by adjusting the inputs instead of their
investment decisions. Thus, it seems reasonable to assume that the optimization errors in mt+1 and It are independent
of each other, no matter whether the optimization error in mt+1 is independent across time or serially correlated.
Meanwhile, the optimization errors of both mt+1 and It are unlikely to be related to the unanticipated technology shock
or measurement errors of the output. Therefore, with ζt , ϵmt+1 being optimization errors, it seems reasonable to assume
that ηt , ζt and ϵmt+1 are mutually independent.14

Unobserved idiosyncratic cost shocks. Unobserved firm-level idiosyncratic cost shocks for static inputs can be important in
some applications. In this case, the residual error in the mt+1 equation can capture the idiosyncratic cost shocks for static
inputs. Our model assumptions and identification conditions would still hold in this case if the cost shocks do not affect
firms’ investment decisions or enter ηt , the residual error of the output equation. Thus, for this case, our identification
requires that the idiosyncratic cost shocks are independent across time and data on the actual inputs are available to
researchers.

Measurement error. Measurement errors in the output, inputs and investment can arise in a number of ways. They can be
caused simply by recording errors and/or by researchers’ imperfect ways of computing the actual output/inputs/invest-
ment. For example, measurement errors in inputs can arise when we observe only the expenditures on the inputs, but
not the actual inputs, and the input prices vary across firms; the measurement error in the capital input can arise due
to the imperfect ways that we use to deal with capital stock depreciation and aggregating different types of capital
inputs.15 In addition, as LP point out, some intermediate inputs – such as materials and fuels – may be storable, and,
thus, measurement errors can occur if the econometrician can observe only the new purchases of such inputs instead of
the actual usage of them.

The conditional independence assumption may still hold for (yt , It ,mt+1) if the residual errors capture only measure-
ment errors that are independent across time. In this case, the residual error in the production function equation, ηt , can
capture measurement errors in the output as well as in the inputs, which seem unlikely to be related to the measurement
error in It . Suppose that the conditional independence conditions continue to hold despite the measurement errors in the
inputs, what we identify through Eq. (6) is f (yt |kt , lt ,mt , ut , ωt ) (and, thus, E(yt |kt , lt ,mt , ut , ωt )) with (kt , lt ,mt , ut ) being
the observed inputs instead of the actual inputs as in the structural production functions.

Thus, although our identification argument still holds if the mutually independent measurement errors are limited to
the output or investment, it is not sufficient for the case with measurement errors in the input variables. The measurement
errors in the input variables bias the estimates of their coefficients toward zero. Meanwhile, as we show in the next
section, we may deal with the measurement errors in the inputs by incorporating instruments for the mismeasured inputs
into our flexible GMM estimation method, assuming that the measurement errors in the inputs are independent across
time.

In summary, the conditional independence assumption seems reasonable for (yt , It ,mt+1) in many important cases.
We get similar conclusions if there are multiple intermediate inputs or if we replace (yt , It ,mt+1) with (yt , It , ut+1) or
(yt , It , yt+1). In practice, researchers should pay close attention to the interpretations of the residual errors when assessing
the validity of the assumptions.

14 Gandhi et al. (2013) propose a method for identifying and estimating production functions by exploiting the first-order conditions in firms’
static profit-optimization problems. Our paper complements theirs in providing an alternative method for applications in which firms’ optimization
errors might be important.
15 We thank one of the referees for pointing out these important issues. Note that our identification works for the case in which the firm-specific
input prices are missing but the actual inputs (instead the expenditures on the inputs) are available.
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2.4.2. The injectivity assumption
The part (i) of condition 2 can be restrictive. For example, the distribution of ξt+1 may depend on ωt , because we have

only E(ξt+1|ωt ) = 0 in our model. However, the conditioning on the covariates Wt makes the requirement less restrictive,
because it allows the distributions (and hence, for example, the variances) of ηt and (αmωξt+1 + ϵmt+1) to depend on the
covariates Wt .

The part (ii) requirement of ρ(ωt ) being strictly monotonic says that a higher productivity today leads to a higher
expected productivity tomorrow, which seems reasonable. In the case of mt+1 = µmt+1(kt+1, ωt+1)+ ϵmt+1 with µmt+1(.)
being nonlinear, we also require that µmt+1(kt+1, ωt+1), equivalently E(mt+1|kt+1, ωt+1), is strictly monotonic in ωt+1 for
any given kt+1. The condition is, in practice, less restrictive than the assumption of mt+1 being strictly monotonic in ωt+1
for any given kt+1.

The part (iii) is a technical assumption, which is equivalent to the conditional characteristic functions of ηt and
αmωξt+1 + ϵmt+1, residual errors in the yt and mt+1 equations respectively, being nonvanishing on the real line. These
conditions seem reasonable given that yt and mt+1 are continuous variables.

It is worth noting that condition 2 is sufficient, but not necessary, to ensure the injectivity of the corresponding integral
operators. Unfortunately, we are not aware of weaker primitive conditions that can guarantee the injectivity that we need
in our identification proof.

2.4.3. The distinctive eigenvalues and the normalization
The distinctive eigenvalue condition requires that, for any fixed Wt and ω̄t ̸= ω̃t , ι(ω̄t ,Wt , ζt ) and ι(ω̃t ,Wt , ζt ) have

different distributions. This condition is relatively mild, because all it requires is that, ceteris paribus, any change in a
firm’s productivity has to lead to some change in the distribution of the firm’s investment decisions. A sufficient, but not
necessary, condition that implies the distinctive eigenvalue condition is E(It |ωt ,Wt ) being strictly increasing in ωt for any
given Wt (which is less restrictive than requiring that It itself being strictly increasing in ωt for any given Wt ). Lastly, the
normalization assumption of E(ηt |ωt , lt , kt ,mt , ut ) = 0 is standard in the literature.

3. Estimation

In light of the identification results above, one possible method of estimating the production function in Eq. (2) is
Maximum Likelihood Estimation (MLE). Due to the presence of many functional nuisance parameters, the MLE approach
is feasible but harder to implement in practice than the methods of OP/LP/ACF. We briefly describe the MLE approach
in the online appendix, and refer interested readers to an earlier version of this paper (Huang and Hu, 2011) for more
details on the approach. Our focus in this section will be on a straightforward GMM estimator that we propose. The GMM
estimator is based on the same identification idea of using two proxy variables for the latent productivity, although the
moment conditions that we use to derive the GMM estimator do not follow directly from the identification conditions
introduced in Section 2.2.

Let us first rewrite the gross-output Cobb–Douglas production function in logs as:

ỹt (β) = ωt + ηt , (10)

where β = (βl, βk, βm, βu)′ and ỹt (β) ≡ yt − (βllt + βkkt + βmmt + βuut ). Likewise, we write the reduced-form demand
functions for the static inputs of x = m and u in logs as:

x̃t+1(αx) = αxωωt+1 + ϵxt+1, (11)

where αx = (αx0, αxk)′ and x̃t+1(αx) ≡ xt+1 − (αx0 + αxkkt+1).
Assume that the productivity ωt transitions according to the following AR(1) process:

ωt = ρ(ωt−1) + ξt =

P∑
p=1

ρpω
p
t−1 + ξt . (12)

Furthermore, we require the following moment conditions to derive our GMM estimator.

Condition 5. The following moment independence conditions:

E
((

ϵxt+1
ξt+1

)
|ωt , z̃td

)
= 0, (13)

E(ηq
t |ωt , z̃td) = E(ηq

t ), q = 1, . . . , P, (14)

are satisfied for z̃td = It , lt , kt ,mt , and ut .
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The moment conditions in (13) imply that E(αxωξt+1 + ϵxt+1|ωt , z̃td) = 0, for z̃td = It , lt , kt ,mt , and ut , which is a
condition that we use directly in deriving our GMM estimator and is similar to the moment condition (2.12) in Wooldridge
(2009). In the following, we use the moment conditions in (13) and (14) to derive our GMM estimator.

Let us denote z̃t ≡ (It , lt , kt ,mt , ut ). Then, by (10), (11), (12), (13) and (14), we have that, for p = 1, . . . , P ,

cov(ỹt (β)p, z̃t ) =

p∑
q=1

(
p
q

)
E(ηp−q

t )cov(ωq
t , z̃t ), (15)

and cov(x̃t+1(αx), z̃t ) =

P∑
q=1

ϕqcov(ω
q
t , z̃t ), (16)

where ϕq = αxωρq for each q = 1, . . . , P . We note that, because E(ηt ) = 0, for the cases of P = 1 or P = 2, (15) can be
simply written as

cov(ỹt (β)p, z̃t ) = cov(ωp
t , z̃t ), for p = 1, 2,

which can be substituted into (16) to obtain moment restrictions of the following form:

E
[

z̃t
(
x̃t+1(αx) −

∑P
p=1 ϕpỹt (β)p

) ]
= 0, for P ≤ 2

for any proxy x = m or u. Taking these moment conditions to the GMM framework provides an estimate of θ =

(α′
x, αxω, β ′, ϕ1, . . . , ϕP )′.
In cases of P > 2, (15) can still be explicitly solved for cov(ωq

t , z̃t ) for each q = 1, . . . , P . Note that Eq. (15) can be
written in matrix form as follows:⎛⎜⎜⎝

cov(ỹt (β), z̃t )
cov(ỹt (β)2, z̃t )

...

cov(ỹt (β)P , z̃t )

⎞⎟⎟⎠ = M(t, P)

⎛⎜⎜⎝
cov(ωt , z̃t )
cov(ω2

t , z̃t )
...

cov(ωP
t , z̃t )

⎞⎟⎟⎠ ,

where M(t, P) is a P × P lower triangular matrix defined as follows:

M(t, P) =

⎛⎜⎜⎜⎝
1(2

1

)
E[ηt ] 1
...

...
. . .(P

1

)
E[ηP−1

t ]
(P
2

)
E[ηP−2

t ] · · · 1

⎞⎟⎟⎟⎠ . (17)

Since its diagonal elements are all non-zero, M(t, P) is invertible. Let M(t, P)−1 denote the inverse of M(t, P), and let
[M(t, P)−1

](q,p) denote its (q, p)-th element. Then, we can solve for cov(ωq
t , z̃t ) as follows:

cov(ωq
t , z̃t ) =

P∑
p=1

[M(t, P)−1
](q,p)cov(ỹt (β)p, z̃t ) for each q = 1, . . . , P .

The above solution can be substituted into Eq. (16) to obtain moment restrictions with the following form:

E
[

z̃t
(
x̃t+1(αx) −

∑P
p=1 ϕ̃pỹt (β)p

) ]
= 0, (18)

for any proxy x = m or u and instrument vector z̃t , where ϕ̃p :=
∑P

q=1 ϕq[M(t, P)−1
](q,p) for p = 1, . . . , P . Taking the

moment condition in (18) to the GMM framework provides an estimate of θ = (α′
x, αxω, β ′, ϕ̃1, . . . , ϕ̃P )′. The following

are a few examples of the relationship between the scaled AR parameters ϕp = αxωρp and the reduced-form parameters
ϕ̃p:

1. P = 1: ϕ̃1 = ϕ1.
2. P = 2: (ϕ̃1, ϕ̃2) = (ϕ1, ϕ2).
3. P = 3: (ϕ̃1, ϕ̃2, ϕ̃3) = (ϕ1 − 3σ 2

ηt
ϕ3, ϕ2, ϕ3).

We make three observations here about the GMM estimator that we derive above. First, in deriving the moment
restrictions above, although we need the additional moment-independence condition in (14), we make no use of the
conditional independence assumptions of ηt y ωt |Wt and (αxωξt+1 + ϵxt+1) y ωt |Wt (which are part of Condition 2 we
used in proving identification in Section 2). The mean-independence assumptions in (13) are standard in the literature.
We test the robustness of our estimation method to minor violations of condition (14) through Monte Carlo experiments.
Second, under the alternative assumption of the labor input being determined one period before the static inputs, we
need simply include lt+1 in the xt+1 (with x = m or u) equation and add lt+1 to z̃t , the vector of instruments, in the
estimation by GMM. Lastly, the above estimation method may be viewed as an extension of the IV approach (Blundell
and Bond, 2000) in that we do not restrict the AR(1) process for productivity transition to be linear.
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3.1. Extensions

A convenient feature of the above GMM approach is that we can add moment conditions if doing so improves statistical
power. We get moment conditions similar to Eq. (18) if we replace (yt , It ,mt+1) with (yt , It , yt+1). To improve efficiency, we
may add the moment restrictions based on yt+1 in our estimation, given the following mean-independence condition16:

Condition 6. E
(
ξt+1 + ηt+1|ωt , z̃td

)
= 0 holds for z̃td = It , lt , kt ,mt , and ut .

Recall that z̃t ≡ (It , lt , kt ,mt , ut ). Then, we can use the following augmented set of moment restrictions in estimation:

E

⎡⎣ z̃t
(
ỹt+1(αx) −

∑P
p=1 α−1

xω ϕ̃pỹt (β)p
)

z̃t
(
x̃t+1(αx) −

∑P
p=1 ϕ̃pỹt (β)p

) ⎤⎦ = 0,

where ϕ̃p :=
∑P

q=1 ϕq[M(t, P)−1
](q,p).

Furthermore, if one is concerned about classical measurement errors in the inputs and the measurement errors are
independent across time, we may replace the mis-measured inputs with their one-period lagged values in z̃t to get
consistent estimates of the production-function parameters.17 For example, suppose that the main concern is classical
measurement errors in the material input. Let mt denote the observed material input, which measures the actual material
input m∗

t with error—that is, mt = m∗
t + ϵ̃mt , where ϵ̃mt is the measurement error.18 In this case, maintaining all our

original notations, we would have both the residual error ϵmt in the mt equation and ηt in the yt equation (partly) capture
the measurement error ϵ̃mt . As a result, the moment conditions in (14) and the covariance equation (15) do not hold if
z̃t includes mt . However, if the measurement error in mt is independent across time, then the moment conditions in
(13) and (14) and the covariance equations (15) and (16) would hold if we replace the mt in z̃t with mt−1. Thus, we may
estimate the model parameters using the following moment conditions:

E
[

z̃t
(
x̃t+1(αx) −

∑P
p=1 ϕ̃pỹt (β)p

) ]
= 0,

where z̃t = (It , lt , kt ,mt−1, ut ) (instead of z̃t = (It , lt , kt ,mt , ut )).19
Lastly, the above estimation method can also be extended to accommodate the following first-order controlled Markov

process for productivity:

ωt+1 =

P∑
p=1

ρ1pω
p
t +

P∑
p=1

ρ2pr
p
t +

P∑
p=1

P∑
q=1

ρ3pqω
p
t r

q
t + ξt+1,

where rt is the firm’s expenditure on research and development (R&D) in period t . In this case, we have:

cov
(
x̃t+1(αx), z̃t

)
= αxω

P∑
p=1

ρ1pcov
(
ω

p
t , z̃t

)
+ αxω

P∑
p=1

ρ2pcov
(
rpt , z̃t

)
+

αxω

P∑
p=1

P∑
q=1

ρ3pqcov
(
ω

p
t r

q
t , z̃t

)
.

(19)

Suppose that E(ηq
t |ωt , z̃t , rt ) = E(ηq

t ), for q = 1, . . . , P . Then, for any given p, q ≤ P , we have:

cov
(
ỹt (β)pr

q
t , z̃t

)
=

p∑
j=0

(
p
j

)
E

(
η
p−j
t

)
cov

(
ω

j
t r

q
t , z̃t

)
.

We can solve the above equation for cov
(
ω

p
t r

q
t , z̃t

)
as follows:

cov
(
ω

p
t r

q
t , z̃t

)
=

P∑
j=1

[
M (t, P)−1]

(p,j)

(
cov

(
ỹt (β)jr

q
t
)
− E

(
ηj) cov (

rqt , z̃t
))

,

16 The mean-Independence condition is common in the literature (e.g., condition (2.12) in Wooldridge (2009)).
17 il Kim et al. (2016) allow for measurement errors in the inputs in the method they propose for estimating production functions within the
modeling framework of Olley and Pakes (1996) and Levinsohn and Petrin (2003). Their method combines sieve MLE in the first step and GMM as
in Wooldridge (2009) in the second step.
18 We get the specification of measurement error if, for example, we observe log(MtPmt ) but not log(Mt ).
19 It is worth emphasizing here that replacing the mis-measured inputs in z̃t with their lagged values would not work if the measurement errors
in the inputs are serially correlated.
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where M (t, P) is just the invertible matrix defined above in (17). In addition, recall that cov
(
ω

p
t , z̃t

)
=∑P

q=1

[
M (t, P)−1]

(p,q) cov
(
ỹt (β)q, z̃t

)
. Substituting the solutions for cov

(
ω

p
t r

q
t , z̃t

)
and cov

(
ω

p
t , z̃t

)
into Eq. (19), we get:

cov
(
x̃t+1(αx), z̃t

)
=

P∑
q=1

ρ̃1qcov
(
ỹt (β)q, z̃t

)
+

P∑
q=1

ρ̃2qcov
(
rqt , z̃t

)
+

P∑
j=1

P∑
q=1

ρ̃3jqcov
(
ỹt (β)jr

q
t , z̃t

)
,

where

ρ̃1q = αxω

P∑
p=1

ρ1p
[
M (t, P)−1]

(p,q) ,

ρ̃2q = αxω

⎛⎝ρ2q −

P∑
p=1

ρ3pq

P∑
j=1

[
M (t, P)−1]

(p,j) E
(
ηj)⎞⎠ ,

ρ̃3jq = αxω

P∑
p=1

ρ3pq
[
M (t, P)−1]

(p,j) .

Then, we can transform the above covariance equality into the following moment condition:

E

⎛⎝z̃t

⎛⎝x̃t+1(αx) −

P∑
q=1

ρ̃1qỹt (β)q −

P∑
q=1

ρ̃2qr
q
t −

P∑
j=1

P∑
q=1

ρ̃3jqỹt (β)jr
q
t

⎞⎠⎞⎠ = 0,

which we can use to estimate the production-function parameters in the GMM framework if we observe rt .

3.2. The GMM estimator and its asymptotic properties

We prove the asymptotic properties of our GMM estimator in the subsection. The moment restrictions (18) may be
written as E[gt (θ )], where

gt (θ ) = z̃t

⎛⎝x̃t+1(αx) −

P∑
p=1

ϕ̃pỹt (β)p

⎞⎠
For a suitable weighting matrix Ŵ , the generalized method of moments (GMM) estimator θ̂ for the true parameter vector
θ0 is defined by

θ̂ = argmin
θ∈Θ

1
2
En[gt (θ )]′ŴEn[gt (θ )]

where En denotes the cross-sectional sample mean operator. The variance of
√
n(θ̂ − θ0) is approximated by

V̂ = (Ĝ′Ŵ Ĝ)−1Ĝ′Ŵ Σ̂Ŵ Ĝ(Ĝ′Ŵ Ĝ)−1

where Ĝ = En[Dθgt (θ̂ )] is an estimator for G = E[Dθgt (θ0)] and Σ̂ = En[gt (θ̂ )gt (θ̂ )′] is an estimator for Σ̂ =

E[gt (θ0)gt (θ0)′]. To guarantee that the GMM estimator and its variance estimator behave well in large sample, we make
the following assumption.

Assumption 1. (i) The sample is i.i.d. (ii) Ŵ
p

→ W , which is positive definite. (iii) θ0 is in the interior of Θ , which is
compact. (iv) z̃t , xt+1, and kt+1 have bounded second moments, and yt , lt , kt , mt , and ut have bounded 2P-th moments.
(v) z̃t , xt+1, and kt+1 have bounded fourth moments, and yt , lt , kt , mt , and ut have bounded 4P-th moments.

Theorem 2. If Assumption 1 (i), (ii), (iii), (iv) is satisfied, then the following result holds:
(I) θ̂

p
→ θ0.

If Assumption 1 (i), (ii), (iii), (v) is satisfied, then the following results hold:
(II)

√
n(θ̂ − θ0)

d
→ N(0, (G′WG)−1G′WΣWG(G′WG)−1); and

(III) V̂
p

→ (G′WG)−1G′WΣWG(G′WG)−1.
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Proof. We prove the theorem by checking the conditions of Newey and McFadden (NM, 1994).
(I) The identification and Assumption 1(ii) satisfy condition (i) of Theorem 2.6 in NM. Assumption 1(iii) satisfies

condition (ii) of Theorem 2.6 in NM. The functional form of our gt and Assumption 1(iii) satisfy condition (iii) of Theorem
2.6 in NM. By Hölder’s inequality, the functional form of our gt and Assumption 1(iii), (iv) satisfy condition (iv) of Theorem
2.6 in NM. Therefore, θ̂

p
→ θ0 by Theorem 2.6 in NM.

(II) Assumption 1(iii) satisfies condition (i) of Theorem 3.4 in NM. The functional form of our gt and Assumption 1(iii)
satisfy condition (ii) of Theorem 3.4 in NM. By Hölder’s inequality, the functional form of our gt and Assumption 1(iii),
(v) satisfy conditions (iii) and (iv) of Theorem 3.4 in NM. The identification and Assumption 1(ii) satisfy condition (v) of
Theorem 3.4 in NM. Therefore,

√
n(θ̂ − θ0)

d
→ N(0, (G′WG)−1G′WΣWG(G′WG)−1) by Theorem 3.4 in NM.

(III) By Hölder’s inequality, the functional form of our gt and Assumption 1(iii), (v) satisfy the condition of Theorem
4.5 in NM in addition to those of Theorem 3.4 in NM. □

For convenience of readers, we present the estimation and inference procedure based on the above theory as an
algorithm.

Algorithm 1.

1. Compute the first-step estimate θ̂I = argminθ∈Θ En[gt (θ )]′En[gt (θ )].
2. Compute the estimated variance matrix Σ̂I = En[gt (θ̂I )gt (θ̂I )′]
3. Compute the second-step estimate θ̂II = argminθ∈Θ En[gt (θ )]′Σ̂−1

I En[gt (θ )].
4. Compute the estimated second-step variance matrix V̂II = (Ĝ′

IIΣ̂
−1
I ĜII )−1 Ĝ′

IIΣ̂
−1
I Σ̂IIΣ̂

−1
I ĜII (Ĝ′

IIΣ̂
−1
I ĜII )−1, where

ĜII = En[Dθgt (θ̂II )] and Σ̂II = En[gt (θ̂II )gt (θ̂II )′].
5. Report estimation and inference results based on θ̂II and V̂II .

3.3. Monte Carlo experiments

We consider the following data-generating process (DGP) for simulating data. The gross-output Cobb–Douglas produc-
tion function in logs is given by

yt = βllt + βkkt + βmmt + βuut + ωt + ηt , ηt ∼ N(0, s2η),

where (βl, βk, βm, βu) = (0.4, 0.3, 0.2, 0.1), and sη = 1. The productivity level ωt follows a linear AR(1) process

ωt+1 = ρ1ωt + ξt+1, ξt+1 ∼ N(0, s2ξ ),

where ρ1 = 1.00 and sξ = 0.05. The capital accumulates according to the following law of motion:

Kt+1 = (1 − δ)Kt + 0.5It + 0.5It−1,

where δ = 0.1 and the reduced-form investment policy is specified as:

log(It ) = −0.02kt − 0.01it−1 + 1.00ωt + ζt , ζ ∼ N(0, s2ζ ),

for sζ = 1.00. The optimal static input choices are determined as the solution to the profit-maximization problem:

max
Lt ,Mt ,Ut

E exp(ηt ) exp(ωt )L
βl
t Kβk

t Mβm
t Uβu

t − (plLt + pmMt + puUt) ,

where the input prices (pl, pm, pu) = (0.3, 0.2, 0.1). Then, we get linear reduced-form input choice rules as in (11). For
xt = mt for example, it holds with the reduced-form parameters αmk =

βk
1−βl−βm−βu

and αmω =
1

1−βl−βm−βu
. Thus, the

scaled AR parameter takes the value of ϕ1 =
ρ1

1−βl−βm−βu
= 3 1

3 . We will refer to the DGP described here later as the
baseline DGP when differentiating DGPs that deviate from it.

To avoid arbitrary initial conditions, we simulate the above model for ten periods and use the last two periods to
estimate the parameters (following ACF). Estimation results with xt+1 = mt+1 based on 2,500 simulated random samples
are reported in Table 1. Similarly, Table 2 shows estimation results with xt+1 = yt+1, and Table 3 shows results using both
mt+1 and yt+1. The latter two settings allow us to directly identify the AR parameter ρ1 instead of only the reduced-form
parameters ϕ̃1(= ϕ1) (as in the first setting). The difference is because ωt+1 enters the yt+1 equation directly, but enters
the mt+1 equation linearly as αmωωt+1.

The estimates in Tables 1–3 show that we can obtain consistent estimates using the moment conditions based on either
(yt , It ,mt+1) or (yt , It , yt+1); and using moment conditions based on (yt , It ,mt+1, yt+1) produces consistent estimates with
smaller variances than either of the two prior cases (and we get essentially the same results when we use higher-order
polynomials for ρ(ωt )). Overall, all these simulation results show the effectiveness of our estimation strategies.20

20 Note that the 95% coverage is still about 3% away even at n = 8000 in Table 1, but the number is approaching the nominal coverage probability
95% as the sample size increases, consistently with the asymptotic theory. A similar comment applies to Table 3, even though the 95% coverage
converges to 95% faster. These findings suggest that we need a very large sample for the asymptotic normal distribution to provide a precise
approximation.
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Table 1
Monte Carlo results with xt+1 = mt+1 .
N P βl βm βu βk ϕ̃1

True 0.400 0.200 0.100 0.300 3.333

1000 1 Simulation Mean 0.364 0.164 0.064 0.405 3.227
Simulation St. Dev. (0.070) (0.070) (0.070) (0.249) (1.898)
Theoretical St. Err. [0.087] [0.087] [0.087] [0.271] [3.243]
Simulation RMSE (0.079) (0.079) (0.079) (0.270) (1.901)
Simulation 95% Cover 0.999 0.997 0.999 0.994 0.941

2000 1 Simulation Mean 0.382 0.182 0.082 0.354 3.535
Simulation St. Dev. (0.054) (0.053) (0.054) (0.182) (1.794)
Theoretical St. Err. [0.061] [0.061] [0.061] [0.191] [2.293]
Simulation RMSE (0.057) (0.056) (0.057) (0.190) (1.806)
Simulated 95% Cover 0.996 0.998 0.997 0.992 0.934

4000 1 Simulation Mean 0.393 0.193 0.093 0.321 3.677
Simulation St. Dev. (0.041) (0.041) (0.041) (0.132) (1.544)
Theoretical St. Err. [0.043] [0.043] [0.043] [0.135] [1.622]
Simulation RMSE (0.042) (0.042) (0.041) (0.133) (1.582)
Simulation 95% Cover 0.994 0.995 0.994 0.986 0.927

8000 1 Simulation Mean 0.397 0.198 0.097 0.308 3.597
Simulation St. Dev. (0.030) (0.030) (0.030) (0.094) (1.211)
Theoretical St. Err. [0.031] [0.031] [0.031] [0.096] [1.147]
Simulation RMSE (0.030) (0.030) (0.030) (0.094) (1.240)
Simulation 95% Cover 0.986 0.983 0.982 0.978 0.935

Table 2
Monte Carlo results with the xt+1 = yt+1 .
N P βl βm βu βk φ1

True 0.400 0.200 0.100 0.300 1.000

1000 1 Simulation Mean 0.400 0.199 0.099 0.313 1.002
Simulation St. Dev. (0.044) (0.044) (0.044) (0.231) (0.036)
Theoretical St. Err. [0.043] [0.043] [0.043] [0.205] [0.025]
Simulation RMSE (0.044) (0.044) (0.044) (0.231) (0.037)
Simulation 95% Cover 0.926 0.923 0.929 0.934 0.926

2000 1 Simulation Mean 0.400 0.200 0.100 0.304 1.003
Simulation St. Dev. (0.032) (0.032) (0.031) (0.153) (0.022)
Theoretical St. Err. [0.030] [0.030] [0.030] [0.145] [0.018]
Simulation RMSE (0.032) (0.032) (0.031) (0.153) (0.022)
Simulation 95% Cover 0.916 0.920 0.922 0.945 0.922

4000 1 Simulation Mean 0.400 0.200 0.101 0.302 1.001
Simulation St. Dev. (0.022) (0.022) (0.022) (0.107) (0.014)
Theoretical St. Err. [0.021] [0.021] [0.021] [0.102] [0.012]
Simulation RMSE (0.022) (0.022) (0.022) (0.107) (0.015)
Simulation 95% Cover 0.933 0.930 0.932 0.942 0.925

8000 1 Simulation Mean 0.400 0.200 0.100 0.304 1.000
Simulation St. Dev. (0.015) (0.016) (0.016) (0.073) (0.009)
Theoretical St. Err. [0.015] [0.015] [0.015] [0.072] [0.009]
Simulation RMSE (0.015) (0.016) (0.016) (0.073) (0.009)
Simulation 95% Cover 0.944 0.941 0.939 0.952 0.942

We next compare our estimates with those produced using existing methods, including the ordinary least squares (OLS)
method and the GMM method proposed by Wooldridge (2009) (which efficiently implements the estimation strategy of
OP and LP).21 Table 4 reports the estimates, based on the same simulated data as above, using the methods of OLS,
Wooldridge’s (W), LP’s and ours (HHS). The OLS estimates have the largest root mean square errors (RMSEs), which do
not diminish with sample size. Wooldridge’s and LP’s methods reduce the RMSEs relative to OLS, but the RMSEs do not
decrease with sample size either. The estimates of OLS, Wooldridge’s and LP’s show upward bias for the coefficients
of static inputs, (lt ,mt , ut ), and OLS (Wooldridge’s and LP’s) estimates show downward (small upward) biases for the
coefficient of capital, kt . In contrast, the RMSEs of our estimates diminish toward zero with sample size.22 The RMSEs
of the estimates of OLS and Wooldridge’s change little as the sample size increases, because the standard deviations are

21 As in our method, we use x = m as a proxy. Polynomial control function of degree three is employed—i.e., γ ′ct =

(γ00, γ10, γ01, γ20, γ11, γ02, γ30, γ22, γ12, γ03)(1, kt ,mt , k2t , ktmt ,m2
t , k

3
t , k

2
t mt , ktm2

t ,m
3
t )

′ . Following Wooldridge (2009), we use the restrictions
E[(1, lt , ut , lt−1, ut−1, ct , ct−1)′(ỹ(β) − γ ′ct )] = 0 and E[(1, kt , lt−1, ut−1, ct−1)′(ỹ(β) − ρ0 − ρ1γ

′ct−1)] = 0. The two-step GMM is used for estimation.
22 For the estimates in Table 1, the

√
N convergence rate for large samples does not seem to start until N = 4000.
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Table 3
Monte Carlo results with both mt+1 and yt+1 .
N P βl βm βu βk φ1 φ2 φ3

True 0.400 0.200 0.100 0.300 1.000 0.000 0.000

1000 1 Mean 0.388 0.187 0.088 0.338 1.000
St. Dev. (0.041) (0.041) (0.041) (0.160) (0.027)
RMSE (0.043) (0.043) (0.043) (0.164) (0.027)
95% Cover 0.915 0.918 0.911 0.930 0.937

2000 1 Mean 0.393 0.192 0.093 0.325 0.999
St. Dev. (0.030) (0.030) (0.030) (0.113) (0.019)
RMSE (0.030) (0.031) (0.031) (0.116) (0.019)
95% Cover 0.917 0.911 0.916 0.929 0.934

4000 1 Mean 0.397 0.197 0.097 0.307 1.000
St. Dev. (0.021) (0.021) (0.021) (0.077) (0.013)
RMSE (0.021) (0.021) (0.021) (0.077) (0.013)
95% Cover 0.922 0.927 0.925 0.943 0.939

8000 1 Mean 0.398 0.198 0.098 0.306 1.000
St. Dev. (0.014) (0.014) (0.014) (0.054) (0.009)
RMSE (0.014) (0.015) (0.014) (0.054) (0.009)
95% Cover 0.935 0.936 0.941 0.943 0.942

1000 2 Mean 0.385 0.182 0.084 0.350 1.000 −0.000
St. Dev. (0.038) (0.040) (0.039) (0.156) (0.043) (0.029)
RMSE (0.041) (0.044) (0.043) (0.164) (0.043) (0.029)
95% Cover 0.932 0.920 0.920 0.934 0.951 0.989

2000 2 Mean 0.390 0.189 0.090 0.334 0.999 0.000
St. Dev. (0.028) (0.028) (0.028) (0.112) (0.021) (0.013)
RMSE (0.030) (0.031) (0.030) (0.117) (0.021) (0.013)
95% Cover 0.940 0.930 0.939 0.925 0.946 0.982

4000 2 Mean 0.396 0.195 0.096 0.313 1.000 0.000
St. Dev. (0.021) (0.021) (0.021) (0.078) (0.014) (0.008)
RMSE (0.021) (0.021) (0.021) (0.079) (0.014) (0.008)
95% Cover 0.933 0.932 0.930 0.941 0.949 0.978

8000 2 Mean 0.398 0.198 0.098 0.306 1.000 0.000
St. Dev. (0.015) (0.014) (0.014) (0.055) (0.009) (0.005)
RMSE (0.015) (0.015) (0.015) (0.055) (0.009) (0.005)
95% Cover 0.931 0.931 0.938 0.937 0.950 0.974

1000 3 Mean 0.385 0.184 0.085 0.354 1.000 −0.000 −0.000
St. Dev. (0.036) (0.036) (0.036) (0.163) (0.113) (0.025) (0.038)
RMSE (0.039) (0.040) (0.039) (0.171) (0.113) (0.025) (0.038)
95% Cover 0.935 0.944 0.939 0.922 0.952 0.990 0.993

2000 3 Mean 0.391 0.190 0.091 0.329 1.000 −0.000 0.000
St. Dev. (0.027) (0.028) (0.027) (0.111) (0.076) (0.014) (0.026)
RMSE (0.028) (0.029) (0.029) (0.115) (0.076) (0.014) (0.026)
95% Cover 0.937 0.930 0.941 0.931 0.949 0.983 0.994

4000 3 Mean 0.395 0.194 0.095 0.316 1.000 −0.000 −0.000
St. Dev. (0.020) (0.020) (0.020) (0.078) (0.045) (0.008) (0.014)
RMSE (0.021) (0.021) (0.021) (0.079) (0.045) (0.008) (0.014)
95% Cover 0.940 0.932 0.936 0.940 0.955 0.974 0.987

8000 3 Mean 0.398 0.198 0.098 0.306 0.999 −0.000 0.000
St. Dev. (0.014) (0.014) (0.014) (0.053) (0.032) (0.006) (0.009)
RMSE (0.014) (0.014) (0.014) (0.053) (0.032) (0.006) (0.009)
95% Cover 0.947 0.948 0.942 0.956 0.950 0.972 0.984

significantly smaller than the magnitude of the biases and RMSEs are dominated by the persistent biases in the estimates.
Therefore, in the case in which the scalar-unobservable assumption is violated, the methods of OP/LP/Wooldridge reduce
biases in the estimates but do not eliminate them, whereas our method is able to produce consistent estimates by
exploiting two proxy variables.

Recall that we impose the moment restriction (14) for our GMM estimator, which is not used in the existing methods of
production function estimation. To examine how our estimator behaves under a violation of this condition, and compare
the bias of our estimator with those of the existing methods, we simulate data using a DGP that is the same as the baseline
DGP above, except that η is now generated heterosketastically according to ηt ∼ N(0, s2η(1+ (ωt/2)2)). Such a DGP entails
a violation of the moment restriction (14). Table 5 reports the estimates using the methods of OLS, Wooldridge’s (W), LP’s
and ours (HHS). The biases of our estimator are significantly smaller than those of the OLS, Wooldridge’s and LP’s, showing
evidence that our estimator still performs better than the existing estimators even under a violation of the assumption
(14).
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Table 4
A comparison of Monte Carlo results across the ordinary least squares (OLS), the method of Wooldridge (W) with polynomial control function of
degree three, the method of Levinsohn and Petrin (LP) with polynomial control function of degree three, and our method (HHS) for the case of
P = 1 copied from Table 3.

N βl βm βu βk βl βm βu βk

True 0.400 0.200 0.100 0.300 0.400 0.200 0.100 0.300

OLS 1000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.014) (0.014) (0.014) (0.045)
RMSE (0.090) (0.090) (0.090) (0.165)
95% Cover 0.000 0.000 0.000 0.000

OLS 2000 Mean 0.489 0.289 0.188 0.143
St. Dev. (0.010) (0.010) (0.010) (0.032)
RMSE (0.090) (0.089) (0.089) (0.160)
95% Cover 0.000 0.000 0.000 0.000

OLS 4000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.007) (0.007) (0.007) (0.022)
RMSE (0.089) (0.089) (0.089) (0.159)
95% Cover 0.000 0.000 0.000 0.000

OLS 8000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.005) (0.005) (0.005) (0.016)
RMSE (0.089) (0.089) (0.089) (0.159)
95% Cover 0.000 0.000 0.000 0.000

W 1000 Mean 0.445 0.248 0.147 0.292 LP 0.487 0.233 0.188 0.322
St. Dev. (0.009) (0.017) (0.016) (0.103) (0.010) (0.055) (0.010) (0.285)
RMSE (0.046) (0.051) (0.049) (0.103) (0.088) (0.064) (0.088) (0.286)
95% Cover 0.006 0.000 0.001 0.003 – — – –

W 2000 Mean 0.444 0.247 0.146 0.301 LP 0.487 0.233 0.188 0.299
St. Dev. (0.006) (0.015) (0.012) (0.078) (0.007) (0.036) (0.007) (0.232)
RMSE (0.045) (0.049) (0.047) (0.078) (0.088) (0.049) (0.088) (0.232)
95% Cover 0.002 0.000 0.000 0.001 – — – –

W 4000 Mean 0.445 0.245 0.144 0.310 LP 0.488 0.236 0.188 0.308
St. Dev. (0.003) (0.009) (0.006) (0.041) (0.005) (0.022) (0.005) (0.169)
RMSE (0.045) (0.046) (0.045) (0.042) (0.088) (0.042) (0.088) (0.169)
95% Cover 0.000 0.000 0.000 0.000 – — – –

W 8000 Mean 0.445 0.245 0.144 0.314 LP 0.487 0.237 0.188 0.313
St. Dev. (0.001) (0.003) (0.003) (0.016) (0.004) (0.014) (0.004) (0.120)
RMSE (0.045) (0.045) (0.044) (0.022) (0.088) (0.040) (0.088) (0.121)
95% Cover 0.000 0.000 0.000 0.000 – — – –

HHS 1000 Mean 0.388 0.187 0.088 0.338
St. Dev. (0.041) (0.041) (0.041) (0.160)
RMSE (0.043) (0.043) (0.043) (0.164)
95% Cover 0.915 0.918 0.911 0.930

HHS 2000 Mean 0.393 0.192 0.093 0.325
St. Dev. (0.030) (0.030) (0.030) (0.113)
RMSE (0.030) (0.031) (0.031) (0.116)
95% Cover 0.917 0.911 0.916 0.929

HHS 4000 Mean 0.397 0.197 0.097 0.307
St. Dev. (0.021) (0.021) (0.021) (0.077)
RMSE (0.021) (0.021) (0.021) (0.077)
95% Cover 0.922 0.927 0.925 0.943

HHS 8000 Mean 0.398 0.198 0.098 0.306
St. Dev. (0.014) (0.014) (0.014) (0.054)
RMSE (0.014) (0.015) (0.014) (0.054)
95% Cover 0.935 0.936 0.941 0.943

We next illustrate our method for the case with a nonlinear transition equation for the productivity ωt . In particular,
let us modify the baseline DGP by assuming the following quadratic AR(1) process for productivity:

ωt+1 = ρ1ωt + ρ2ω
2
t + ξt+1, ξt+1 ∼ N(0, s2ξ ),

where ρ1 = 1.000, ρ2 = −0.025, and sξ = 0.050. We simulate the model similarly for ten periods and use the last
two periods for estimation. Table 6 reports the estimates using moment conditions based on (yt , It ,mt+1, yt+1). It shows
that the estimates assuming P = 1 have persistent biases even under a large sample, whereas those with P = 2, 3 have
biases vanishing as the sample size increases. Although the biases in the case with P = 1 are in the same direction as OLS
estimates, the magnitude of the biases is significantly smaller than those of the OLS estimates. Note that, due to the bias
caused by the mis-specification of P = 1, the root-mean-square error (RMSE) (unlike the standard deviation) does not
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Table 5
Monte Carlo results under heteroskedasticity, ηt ∼ N(0, s2η(1 + (ωt/2)2)).

N βl βm βu βk βl βm βu βk

True 0.400 0.200 0.100 0.300 0.400 0.200 0.100 0.300

OLS 1000 Mean 0.489 0.289 0.189 0.144
St. Dev. (0.018) (0.018) (0.018) (0.062)
RMSE (0.090) (0.090) (0.091) (0.168)
95% Cover 0.000 0.000 0.000 0.004

OLS 2000 Mean 0.489 0.289 0.188 0.141
St. Dev. (0.013) (0.013) (0.013) (0.044)
RMSE (0.090) (0.090) (0.089) (0.165)
95% Cover 0.000 0.000 0.000 0.000

OLS 4000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.009) (0.009) (0.009) (0.031)
RMSE (0.089) (0.089) (0.089) (0.161)
95% Cover 0.000 0.000 0.000 0.000

OLS 8000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.006) (0.006) (0.006) (0.022)
RMSE (0.089) (0.089) (0.089) (0.160)
95% Cover 0.000 0.000 0.000 0.000

W 1000 Mean 0.445 0.247 0.146 0.301 LP 0.487 0.241 0.187 0.455
St. Dev. (0.005) (0.015) (0.014) (0.086) (0.013) (0.089) (0.013) (0.428)
RMSE (0.045) (0.049) (0.048) (0.086) (0.088) (0.098) (0.088) (0.456)
95% Cover 0.017 0.002 0.002 0.002 – — – –

W 2000 Mean 0.445 0.246 0.145 0.310 LP 0.487 0.236 0.188 0.350
St. Dev. (0.003) (0.010) (0.009) (0.052) (0.009) (0.059) (0.009) (0.317)
RMSE (0.045) (0.047) (0.046) (0.053) (0.088) (0.069) (0.088) (0.321)
95% Cover 0.005 0.000 0.000 0.0004 – — – –

W 4000 Mean 0.445 0.245 0.144 0.314 LP 0.487 0.233 0.188 0.320
St. Dev. (0.001) (0.003) (0.002) (0.012) (0.006) (0.038) (0.006) (0.249)
RMSE (0.045) (0.045) (0.044) (0.019) (0.088) (0.050) (0.088) (0.250)
95% Cover 0.000 0.000 0.000 0.000 – — – –

W 8000 Mean 0.445 0.245 0.144 0.315 LP 0.488 0.235 0.187 0.303
St. Dev. (0.001) (0.001) (0.001) (0.000) (0.004) (0.023) (0.004) (0.198)
RMSE (0.045) (0.045) (0.044) (0.015) (0.088) (0.042) (0.087) (0.198)
95% Cover 0.000 0.000 0.000 0.000 – — – –

HHS 1000 Mean 0.375 0.174 0.074 0.382
St. Dev. (0.055) (0.055) (0.055) (0.212)
RMSE (0.060) (0.061) (0.061) (0.228)
95% Cover 0.901 0.888 0.894 0.923

HHS 2000 Mean 0.387 0.186 0.087 0.340
St. Dev. (0.040) (0.041) (0.040) (0.148)
RMSE (0.042) (0.043) (0.042) (0.153)
95% Cover 0.906 0.903 0.909 0.928

HHS 4000 Mean 0.394 0.193 0.093 0.320
St. Dev. (0.029) (0.029) (0.030) (0.104)
RMSE (0.030) (0.030) (0.030) (0.106)
95% Cover 0.906 0.913 0.896 0.931

HHS 8000 Mean 0.397 0.197 0.097 0.311
St. Dev. (0.020) (0.020) (0.020) (0.072)
RMSE (0.020) (0.020) (0.020) (0.073)
95% Cover 0.918 0.921 0.920 0.939

converge at the rate of
√
N and the coverage probability of the ‘‘95% confidence intervals" does not approach the nominal

value of 95%. Hence, with a sufficiently flexible specification for ρ(ωt ) = E(ωt+1|ωt ), our method produces consistent
estimates; and, even with a linear specification for ρ(ωt ), our method still helps reduce bias in the estimates relative to
the OLS estimates.

Lastly, the baseline DGP focuses on the unit-root process for the productivity, but our method does not rely on the
unit-root process. To demonstrate the robustness of our method against alternative AR(1) specifications, we present
Monte Carlo simulation results under sub-unit-root AR(1) process of the transition of the productivity. Specifically, we set
ρ1 = 0.95, as opposed to ρ1 = 1.00 as in the baseline DGP. Table 7 reports the estimates. The estimates demonstrate the
consistency of our GMM estimator under this alternative DGP, showing that our method does not rely on the unit root
assumption for the productivity transition process.
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Table 6
Monte Carlo results with both mt+1 and yt+1 for a quadratic AR(1) process of the transition of productivity, where the model with P = 1 is
mis-specified.
N P βl βm βu βk φ1 φ2 φ3

True 0.400 0.200 0.100 0.300 1.000 −0.025 0.000

1000 1 Mis-specified Mean 0.410 0.208 0.109 0.313 1.056
St. Dev. (0.036) (0.036) (0.036) (0.177) (0.028)
RMSE (0.037) (0.037) (0.037) (0.178) (0.062)
95% Cover 0.905 0.914 0.905 0.911 0.352

2000 1 Mis-specified Mean 0.419 0.218 0.119 0.276 1.057
St. Dev. (0.024) (0.025) (0.025) (0.123) (0.020)
RMSE (0.031) (0.031) (0.031) (0.125) (0.061)
95% Cover 0.842 0.843 0.840 0.909 0.149

4000 1 Mis-specified Mean 0.422 0.222 0.123 0.260 1.057
St. Dev. (0.017) (0.017) (0.017) (0.083) (0.015)
RMSE (0.028) (0.028) (0.028) (0.093) (0.059)
95% Cover 0.694 0.696 0.692 0.898 0.034

8000 1 Mis-specified Mean 0.424 0.224 0.124 0.254 1.056
St. Dev. (0.012) (0.012) (0.012) (0.061) (0.011)
RMSE (0.027) (0.027) (0.027) (0.076) (0.058)
95% Cover 0.474 0.462 0.451 0.835 0.003

1000 2 Mean 0.382 0.182 0.083 0.357 0.998 −0.024
St. Dev. (0.042) (0.043) (0.042) (0.168) (0.046) (0.021)
RMSE (0.046) (0.047) (0.045) (0.177) (0.046) (0.021)
95% Cover 0.914 0.914 0.918 0.918 0.938 0.795

2000 2 Mean 0.389 0.188 0.089 0.343 0.999 −0.024
St. Dev. (0.032) (0.032) (0.031) (0.123) (0.028) (0.012)
RMSE (0.034) (0.034) (0.033) (0.130) (0.028) (0.012)
95% Cover 0.906 0.909 0.918 0.912 0.935 0.806

4000 2 Mean 0.394 0.194 0.095 0.324 1.000 −0.024
St. Dev. (0.022) (0.022) (0.022) (0.084) (0.018) (0.007)
RMSE (0.023) (0.023) (0.023) (0.087) (0.018) (0.007)
95% Cover 0.916 0.930 0.918 0.926 0.934 0.853

8000 2 Mean 0.397 0.196 0.096 0.319 1.000 −0.024
St. Dev. (0.015) (0.015) (0.015) (0.057) (0.012) (0.005)
RMSE (0.016) (0.016) (0.016) (0.060) (0.012) (0.005)
95% Cover 0.932 0.929 0.933 0.930 0.932 0.866

1000 3 Mean 0.389 0.186 0.088 0.344 0.993 −0.025 0.000
St. Dev. (0.028) (0.029) (0.028) (0.137) (0.050) (0.036) (0.007)
RMSE (0.030) (0.032) (0.031) (0.144) (0.051) (0.036) (0.007)
95% Cover 0.980 0.972 0.975 0.961 0.976 0.930 1.000

2000 3 Mean 0.393 0.193 0.094 0.326 0.997 −0.023 0.000
St. Dev. (0.021) (0.021) (0.021) (0.097) (0.029) (0.018) (0.003)
RMSE (0.022) (0.023) (0.022) (0.101) (0.029) (0.018) (0.003)
95% Cover 0.978 0.984 0.977 0.963 0.962 0.919 0.999

4000 3 Mean 0.395 0.195 0.095 0.319 1.001 −0.022 0.000
St. Dev. (0.016) (0.016) (0.016) (0.070) (0.017) (0.009) (0.002)
RMSE (0.017) (0.017) (0.017) (0.072) (0.017) (0.010) (0.002)
95% Cover 0.976 0.972 0.975 0.964 0.958 0.898 0.996

8000 3 Mean 0.397 0.197 0.097 0.313 1.001 −0.022 0.000
St. Dev. (0.012) (0.011) (0.011) (0.049) (0.011) (0.007) (0.001)
RMSE (0.012) (0.012) (0.012) (0.051) (0.011) (0.007) (0.001)
95% Cover 0.976 0.978 0.976 0.960 0.952 0.881 0.977

4. Empirical application: the input decisions and productivity shocks

In the following, we apply our method to the Chilean manufacturing data that LP use in their paper. We first present our
estimates to illustrate the performance of our method with real data. Then, we study empirically how quickly firms adjust
their inputs in response to the latest changes in their productivity. The analysis helps us to understand how efficiently
firms in the industry operate and to identify potential frictions in the input markets. Methodologically, the analysis can
provide guidance for choosing proxies for the latent productivity and help explain differences in the estimates using
various methods.
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Table 7
Monte Carlo results with both mt+1 and yt+1 for a sub-unit-root AR(1) process of the transition of productivity.
N P βl βm βu βk φ1 φ2 φ3

True 0.400 0.200 0.100 0.300 0.950 0.000 0.000

1000 1 Mean 0.391 0.190 0.090 0.346 0.950
St. Dev. (0.037) (0.037) (0.037) (0.163) (0.042)
RMSE (0.038) (0.039) (0.038) (0.169) (0.042)
95% Cover 0.891 0.899 0.900 0.913 0.900

2000 1 Mean 0.396 0.195 0.095 0.320 0.951
St. Dev. (0.026) (0.026) (0.026) (0.110) (0.031)
RMSE (0.026) (0.026) (0.026) (0.112) (0.031)
95% Cover 0.912 0.910 0.915 0.926 0.911

4000 1 Mean 0.398 0.197 0.098 0.312 0.950
St. Dev. (0.018) (0.018) (0.018) (0.075) (0.020)
RMSE (0.018) (0.019) (0.018) (0.076) (0.020)
95% Cover 0.918 0.926 0.931 0.932 0.939

8000 1 Mean 0.398 0.198 0.098 0.307 0.949
St. Dev. (0.012) (0.012) (0.012) (0.051) (0.014)
RMSE (0.012) (0.012) (0.013) (0.052) (0.014)
95% Cover 0.943 0.941 0.942 0.946 0.944

1000 2 Mean 0.385 0.184 0.085 0.355 0.926 −0.005
St. Dev. (0.037) (0.038) (0.037) (0.158) (0.106) (0.091)
RMSE (0.040) (0.041) (0.040) (0.167) (0.108) (0.091)
95% Cover 0.922 0.916 0.926 0.924 0.937 0.940

2000 2 Mean 0.392 0.191 0.092 0.326 0.940 −0.001
St. Dev. (0.026) (0.026) (0.026) (0.105) (0.046) (0.042)
RMSE (0.027) (0.028) (0.027) (0.108) (0.047) (0.042)
95% Cover 0.935 0.935 0.931 0.938 0.942 0.936

4000 2 Mean 0.396 0.195 0.097 0.312 0.944 0.000
St. Dev. (0.018) (0.019) (0.018) (0.073) (0.024) (0.024)
RMSE (0.019) (0.019) (0.019) (0.074) (0.025) (0.024)
95% Cover 0.934 0.937 0.937 0.947 0.947 0.948

8000 2 Mean 0.398 0.198 0.098 0.307 0.947 0.001
St. Dev. (0.013) (0.013) (0.013) (0.050) (0.015) (0.015)
RMSE (0.013) (0.013) (0.013) (0.050) (0.015) (0.015)
95% Cover 0.940 0.941 0.940 0.953 0.950 0.944

1000 3 Mean 0.384 0.183 0.085 0.372 0.973 −0.008 −0.019
St. Dev. (0.034) (0.034) (0.034) (0.171) (0.382) (0.081) (0.173)
RMSE (0.037) (0.038) (0.038) (0.185) (0.382) (0.081) (0.174)
95% Cover 0.948 0.947 0.945 0.934 0.974 0.957 0.9744

2000 3 Mean 0.392 0.190 0.092 0.333 0.957 −0.002 −0.007
St. Dev. (0.024) (0.024) (0.024) (0.111) (0.272) (0.037) (0.131)
RMSE (0.025) (0.026) (0.025) (0.115) (0.272) (0.037) (0.132)
95% Cover 0.962 0.956 0.960 0.944 0.968 0.952 0.969

4000 3 Mean 0.396 0.195 0.096 0.315 0.951 −0.000 −0.002
St. Dev. (0.017) (0.017) (0.018) (0.076) (0.185) (0.023) (0.092)
RMSE (0.018) (0.018) (0.018) (0.077) (0.185) (0.023) (0.092)
95% Cover 0.961 0.947 0.948 0.947 0.952 0.936 0.961

8000 3 Mean 0.398 0.197 0.098 0.308 0.946 −0.000 0.002
St. Dev. (0.013) (0.013) (0.013) (0.052) (0.131) (0.015) (0.066)
RMSE (0.013) (0.013) (0.013) (0.053) (0.131) (0.015) (0.066)
95% Cover 0.945 0.940 0.952 0.948 0.946 0.946 0.955

4.1. Estimates of the production function

We apply our estimation method to industry ISIC 311 (the industry of food products), which has the most observations,
in the Chilean manufacturing data. Following LP, we estimate a gross-output production function. The inputs include two
types of labor inputs (high-skill and low-skill, lst and lut , respectively), capital (kt ), material (mt ), electricity (et ) and fuel
(ut ). We use the moment conditions based on (yt , It , xt+1, yt+1), where x is one of the three inputs of (m, e, u), in our
estimation. Following LP (2003), we include fixed effects for the three time periods, 1979–1981, 1982–1983, and 1984–
1986, and we use d1t and d2t to denote time-period dummies for the latter two of the three periods. This setup yields
six structural parameters β = (βlu, βls, βk, βm, βe, βu)′ and two coefficients βd = (βd1 , βd2 )′ of the time dummies (d1t , d

2
t )

for the production function equation (10); five reduced-form parameters in (α′
x, αxω)′ = (αx0, αxk, αxls, αxlu, αxω)′ and two
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Table 8
Estimates of the gross output production function for ISIC 311.

Production Function AR Coefficients

xt+1 P βls βlu βm βe βu βk RTS ϕ̃1 ϕ̃2 ϕ̃3

OLS 0.111 0.231 0.659 0.060 0.002 0.058 1.121
(0.008) (0.009) (0.008) (0.006) (0.004) (0.005) (0.006)

LP 0.051 0.139 0.500 0.085 0.023 0.240 1.037
(0.009) (0.010) (0.078) (0.007) (0.004) (0.053) (0.059)

W-LP 0.067 0.156 0.491 0.066 0.000 0.255 1.035
(m) (0.031) (0.029) (0.091) (0.104) (0.096) (0.049) (0.326)
W-LP 0.076 0.166 0.494 0.079 0.001 0.262 1.077
(e) (0.031) (0.029) (0.091) (0.091) (0.096) (0.049) (0.315)
W-LP 0.058 0.147 0.487 0.066 0.010 0.247 1.015
(u) (0.031) (0.029) (0.090) (0.104) (0.090) (0.049) (0.324)

HHS mt+1 1 0.090 0.209 0.354 0.094 0.033 0.112 0.892 1.008
(1) yt+1 (0.036) (0.033) (0.111) (0.136) (0.123) (0.057) (0.408) (0.027)
HHS mt+1 2 0.077 0.235 0.369 0.101 0.032 0.165 0.978 0.983 0.183
(2) yt+1 (0.038) (0.034) (0.110) (0.136) (0.124) (0.059) (0.413) (0.025) (0.019)
HHS mt+1 3 0.090 0.234 0.368 0.099 0.030 0.141 0.962 1.070 0.115 −0.070
(3) yt+1 (0.038) (0.034) (0.111) (0.137) (0.125) (0.059) (0.414) (0.026) (0.019) (0.022)

HHS et+1 1 0.069 0.219 0.636 0.065 0.015 0.153 1.155 1.068
(4) yt+1 (0.040) (0.037) (0.126) (0.153) (0.138) (0.063) (0.459) (0.022)
HHS et+1 2 0.098 0.207 0.659 0.087 0.022 0.218 1.291 0.943 0.042
(5) yt+1 (0.039) (0.036) (0.128) (0.157) (0.141) (0.062) (0.465) (0.032) (0.034)
HHS et+1 3 0.062 0.205 0.636 0.099 0.030 0.121 1.153 0.855 0.077 0.199
(6) yt+1 (0.038) (0.034) (0.117) (0.143) (0.130) (0.061) (0.432) (0.019) (0.015) (0.013)

HHS ut+1 3 0.071 0.198 0.652 0.118 0.014 0.167 1.220 1.014
(7) yt+1 (0.038) (0.035) (0.122) (0.149) (0.134) (0.060) (0.441) (0.033)
HHS ut+1 3 0.094 0.179 0.673 0.115 0.020 0.304 1.386 0.976 0.036
(8) yt+1 (0.038) (0.035) (0.123) (0.151) (0.136) (0.060) (0.449) (0.030) (0.033)
HHS ut+1 3 0.134 0.215 0.669 0.135 0.031 0.127 1.311 0.642 −0.304 0.510
(9) yt+1 (0.036) (0.033) (0.111) (0.137) (0.125) (0.060) (0.418) (0.023) (0.020) (0.020)

Note: Standard errors in parentheses.

coefficients αxd = (αxd1 , αxd2 )′ of the time dummies (d1t , d
2
t ) for Eq. (11) of xt+1, and P + 1 reduced-form parameters

ϕ̃ = (ϕ̃0, . . . , ϕ̃P ) for the AR(1) transition process of ω.23 Thus, we have a total of 16 + P unknown parameters.
We now describe our estimation procedure. We use the two-step GMM procedure, as described at the end of

Section 3.2, in estimation. Separately for x = m, e, and u, we obtain the following 20 moment restrictions:

E

⎡⎣ z̃t
(
ỹt+1(β ′, β ′

d) −
∑P

p=0 α−1
xω ϕ̃pỹt (β ′, β ′

d)
p
)

z̃t
(
x̃t+1(α′

x, α
′

xd) −
∑P

p=0 ϕ̃pỹt (β ′, β ′

d)
p
) ⎤⎦ = 0, (20)

where z̃t = (1, It , lst , l
u
t , kt ,mt , et , ut , d1t , d

2
t )

′, ỹt ((β ′, β ′

d)
′) = yt − (βlulut +βlslst +βkkt +βmmt +βeet +βuut +βd1d1t +βd2d2t )

and x̃t+1((α′
x, α

′

xd)
′) = xt+1 − (αx0 + αxkkt+1 + αxlslst+1 + αxlulut+1 + αxd1d

1
t+1 + αxd2d

2
t+1). Note that, although we work with

the assumption of the labor inputs being static inputs, we allow them to be possibly dynamic inputs by including the
labor inputs, lst+1 and lut+1, in the xt+1 (x = m, e and u) equations. The vector of instruments z̃t does not include lst+1 and
lut+1, because, under the working assumption, lst+1 and lut+1 are correlated with ξt+1 in the xt+1 equations.

We consider the cases of P = 1, 2, and 3 for the AR(1) process for ω. The standard errors are computed using the
covariance formula of the asymptotic distribution of the two-step GMM procedure. To deal with potential problems of
local optimums, we use 125 different initial points for numerical optimization and report the optimal interior estimates.
More flexible specifications of the AR(1) process (i.e., with P > 3) do not produce any significant changes in the estimates
of the structural parameters.24 In a note on implementing the LP’s estimation procedure, Petrin et al. (2004) (p.116) also
suggest choosing P = 3 for the AR(1) process.

Table 8 presents our estimation results for different choices of xt+1 and P . As a reference, we copy, in the table, the
estimates from Table 3 in LP, for which they use materials as the proxy for productivity. We also report the estimates
using the GMM approach of Wooldridge (2009) and one of the static inputs (mt , et and ut ) as a proxy for productivity
(W-LP). The estimate of return-to-scale (RTS) is computed as the sum of the estimates of all the β coefficients in the
production function.

23 We include a constant in the transition equation for ω here to make the specification more flexible for the real data.
24 A common practice in applied research is to choose P by increasing it one by one and stopping when further increasing P does not bring
significant changes in the estimates of the structural parameters. Hu and Schennach (2008) (p.206) also suggest similar informal guidelines for
determining the smoothing parameters.
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For each choice of xt+1, the differences in the estimates of the production-function parameters with P = 1, 2 and 3
are small, and the estimates of the ϕ̃2 and ϕ̃3 are also relatively small (except for the case with xt+1 = mt+1 and P = 3).

The main difference in the estimates with the three different choices of xt+1 is in βm and, consequently, in the RTS.
With xt+1 = mt+1, the point estimates of βm range from 0.354 to 0.369, and those of the RTS range from 0.892 to 0.978.
In comparison, with xt+1 = et+1 or ut+1, the point estimates of βm range from 0.636 to 0.673, and those of the RTS range
from 1.153 to 1.386. Meanwhile, our estimates of βe and βu are similar across the different choices of xt+1 and P , and
none of our estimates of the two parameters is statistically significant. A possible explanation for these results is that the
demand for electricity and fuel is determined mainly by the levels of the other inputs – i.e., labor, capital and materials –
but rarely by the latest level of a firm’s productivity. As a result, et+1 and ut+1 make poor proxies for productivity in our
method.

There are also differences between our estimates using mt+1 and LP’s. We focus on comparing with LP’s original
estimates given that the W-LP estimates are close to LP’s original ones. In particular, our estimates of βm and βk (βls and
βlu) are noticeably smaller (larger) than LP’s corresponding estimates, but our point estimates of βe and βu are similar to
those of LP.

As LP point out in Section 2 of their paper, it is generally impossible to sign the simultaneity biases in the OLS estimates
when there are multiple inputs, and the sign of biases depends on how the inputs covary with each other and with the
latent productivity. Their analysis suggests that, without control for firms’ productivity, the estimated coefficients of the
most-variable inputs are likely biased upward, whereas those of the least-variable inputs can be biased downward if the
inputs are positively correlated. Therefore, to better understand the causes of the difference in the estimates using the
various methods, we need to know how variable the different inputs are and how rapidly they adjust with the latest
productivity shocks (Marschak and Andrews, 1944).

The empirical analysis that we present in the following subsection shows that only mt+1, but not et+1 or ut+1, depends,
statistically significantly, on ξt+1 and ξt , the innovations in productivity in the two latest periods. With ξt being a part of
ωt , these findings help explain why et+1 and ut+1 seem poor proxies for ωt in our method, and why only the estimate of
βm, but not those of βe and βu, is significantly inflated in OLS estimation and when we use either et+1 or ut+1 as one of
the proxies for ωt in our method. In addition, we find that neither lst+1 nor lut+1 depends, statistically significantly, on ξt+1
or ξt , showing that the labor inputs adjust considerably more slowly than the material input. Thus, these findings also
offer a potential explanation for the difference between our estimates and LP’s: the estimates of the coefficients of more-
(less-) variable inputs may be biased upward (downward) due to imperfect control of the latent productivity under LP’s
method.

4.2. Inputs and productivity shocks

To study how quickly firms adjust their inputs to the latest changes in their productivity, we note that, for each
period-(t + 1) input zt+1 = lst+1, l

u
t+1, kt+1, mt+1, et+1, and ut+1, we have:

cov(ωt+1, zt+1) = cov(ỹt+1(β), zt+1), (21)

and

cov(ξt+1, zt+1) = cov

⎛⎝ỹt+1(β) −

P∑
p=0

α−1
xω ϕ̃pỹt (β)p, zt+1

⎞⎠ . (22)

Thus, for each input zt+1 = lst+1, l
u
t+1, kt+1, mt+1, et+1, and ut+1, we may estimate cov(ωt+1, zt+1) by cov(ỹt+1(β̂), zt+1) and

cov(ξt+1, zt+1) by cov
(
ỹt+1(β̂) −

∑P
p=0 α̂−1

xω
ˆ̃ϕpỹt (β̂)p, zt+1

)
, where β̂ denotes the vector of estimated production-function

parameters. To account for the effect of estimating β by β̂ on the standard errors of the estimates for these covariances,
we separately add each moment equality for these covariances (Eqs. (21) and (22)) as one additional moment restriction
to the moment conditions in (20) to estimate the covariance together with θ by the two-step GMM. Because using mt+1,
in comparison to et+1 or ut+1, as one of the two proxies for ωt seems to perform better, we let x̃t+1 = m̃t+1 in the moment
restrictions in (20) in our estimation.

Table 9 shows estimates of the covariances. The covariance between productivity ωt+1 and the inputs, shown in part
(A) of the table, is significantly positive for all inputs under all the different specifications of P . This shows that each input
choice is affected, directly or indirectly, by a firm’s current productivity. On the other hand, the covariances between
technological innovation ξt+1 and the inputs, shown in part (B) of the table, are all positive, but statistically insignificant,
for all the cases of P that we consider. Among them, the covariance between ξt+1 and material input mt+1 is closer to
being statistically significantly positive. To gain statistical power, we reestimate the covariances by using the longer panel
data (1979–1996) available, along with biennial time fixed effects. We report the results in part (C) of the table. With the
increase in sample size, we find a statistically significant and positive covariance between ξt+1 and mt+1, but not between
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Table 9
The covariance between ωt+1 (ξt+1) and inputs.
(A) Covariance between technology ωt+1 and each input: 1979–1986

P Cov(ωt+1, lst+1) Cov(ωt+1, lut+1) Cov(ωt+1,mt+1) Cov(ωt+1, et+1) Cov(ωt+1, ut+1) Cov(ωt+1, kt+1)

1 0.260*** 0.264*** 0.511*** 0.406*** 0.302*** 0.233***
(0.022) (0.022) (0.015) (0.013) (0.013) (0.015)

2 0.182*** 0.196*** 0.422*** 0.328*** 0.207*** 0.207***
(0.023) (0.024) (0.016) (0.014) (0.014) (0.015)

3 0.232*** 0.257*** 0.474*** 0.360*** 0.255*** 0.192***
(0.022) (0.023) (0.016) (0.014) (0.014) (0.015)

(B) Covariance between technological innovation ξt+1 and each input: 1979–1986

P Cov(ξt+1, lst+1) Cov(ξt+1, lut+1) Cov(ξt+1,mt+1) Cov(ξt+1, et+1) Cov(ξt+1, ut+1) Cov(ξt+1, kt+1)

1 0.004 0.009 0.039 0.021 0.011 −0.001
(0.058) (0.071) (0.038) (0.033) (0.033) (0.049)

2 −0.005 0.003 0.025 0.005 −0.000 −0.018
(0.062) (0.076) (0.039) (0.035) (0.035) (0.048)

3 −0.003 0.006 0.037 0.014 0.006 −0.008
(0.061) (0.076) (0.039) (0.035) (0.035) (0.050)

(C) Covariance between technological innovation ξt+1 and each input: 1979–1996

P Cov(ξt+1, lst+1) Cov(ξt+1, lut+1) Cov(ξt+1,mt+1) Cov(ξt+1, et+1) Cov(ξt+1, ut+1) Cov(ξt+1, kt+1)

1 −0.010 −0.018 0.043** 0.019 −0.013 −0.031
(0.027) (0.029) (0.018) (0.016) (0.015) (0.019)

2 −0.017 −0.009 0.045** 0.017 −0.015 −0.037*
(0.026) (0.029) (0.018) (0.015) (0.015) (0.019)

3 −0.017 −0.009 0.036* 0.016 −0.015 −0.020
(0.027) (0.030) (0.019) (0.016) (0.015) (0.020)

Note: (1) Standard errors in parentheses; (2) ∗ p < 0.1, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01.

ξt+1 and any other input. These results show that only the material input m adjusts in response to the latest innovation in
productivity. The other inputs, including the two types of labor inputs, adjust more slowly to changes in productivity.25

To further analyze how inputs adjust with productivity, we also estimate cov(ωt , zt+1) by cov(ỹt (β̂), zt+1) and
cov(ξt , zt+1) by cov

(
ỹt (β̂) −

∑P
p=0 α̂−1

mω
ˆ̃ϕpỹt−1(β̂)p, zt+1

)
, for each input zt+1 = lst+1, l

u
t+1, kt+1, mt+1, et+1, and ut+1. The

analysis of these covariances also help explain the differences in our estimates under different choices of xt+1. Estimation
and computation of standard errors follow the same procedure as above. Table 10 reports the estimates of the covariances.

The covariance between the one-period lag productivity ωt and each input, shown in part (A) of the table, is
significantly positive for all the specifications of P that we consider. The covariance between lag technological innovation
ξt and the inputs, shown in part (B) of the table, is significantly positive for the material input mt+1 for the cases of
P = 2, 3, but it is statistically insignificant for all the other inputs. To gain statistical power, we again reestimate the
covariances by using the longer panel (1979–1996) available, along with biennial time fixed effects. We report the results
in part (C) of the table. With the increase in sample size, we obtain qualitatively the same results as those with the
shorter panel, except that the positive covariance between the lag technological innovation ξt and material input mt+1 is
statistically significant, at either the 5% or the 10% level, for all three choices of P .

In sum, we find that, although all the inputs show positive covariance with the current and one-period lagged
productivity, only the material input shows statistically significant and positive covariance with the current and one-
period lag productivity shock. This suggests that, although firms generally determine the levels of their inputs in
accordance with their productivity, they rapidly adjust only the material input to the latest change in their productivity.
The slower adjustments of the labor inputs are likely due to frictions in the labor market: hiring and firing costs may
prevent firms from adjusting their labor inputs rapidly to respond to shocks to their productivity. Meanwhile, the
adjustment in the capital input is also slow, which is not surprising given the time needed to put new capital in place.
Therefore, in light of these findings, policies that aim to reduce the frictions in the labor markets have the potential to
improve efficiency in the industry.

5. Conclusions

In this paper we propose a new approach for structural identification and estimation of production functions, relaxing
the well-known scalar-unobservable assumption maintained by the existing methods of OP/LP/ACF. The new approach is
more robust when there are important unobservables in addition to the latent productivity. It also frees up some important

25 The covariance between ξt+1 and kt+1 is negative and statistically significant at the 5% level for the case of P = 2. The negative correlation
may be due to a nonlinear relationship between ω and k.
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Table 10
The covariance between ωt (ξt ) and inputs.
(A) Covariance between lag technology ωt and each input: 1979–1986

P Cov(ωt , lst+1) Cov(ωt , lut+1) Cov(ωt ,mt+1) Cov(ωt , et+1) Cov(ωt , ut+1) Cov(ωt , kt+1)

1 0.337*** 0.308*** 0.614*** 0.492*** 0.404*** 0.406***
(0.023) (0.025) (0.015) (0.015) (0.014) (0.016)

2 0.096*** 0.156*** 0.313*** 0.274*** 0.076*** 0.028
(0.035) (0.030) (0.023) (0.018) (0.022) (0.025)

3 0.087*** 0.095*** 0.309*** 0.233*** 0.118*** 0.053***
(0.030) (0.030) (0.020) (0.017) (0.018) (0.018)

(B) Covariance between lag technological innovation ξt and each input: 1979–1986

P Cov(ξt , lst+1) Cov(ξt , lut+1) Cov(ξt ,mt+1) Cov(ξt , et+1) Cov(ξt , ut+1) Cov(ξt , kt+1)

1 0.002 0.013 0.048 0.013 0.003 −0.002
(0.057) (0.057) (0.037) (0.033) (0.032) (0.034)

2 0.010 0.020 0.069** 0.026 0.009 −0.006
(0.056) (0.056) (0.035) (0.032) (0.031) (0.034)

3 −0.004 0.012 0.056* 0.023 −0.002 −0.006
(0.051) (0.052) (0.034) (0.027) (0.024) (0.034)

(C) Covariance between lag technological innovation ξt and each input: 1979–1996

P Cov(ξt , lst+1) Cov(ξt , lut+1) Cov(ξt ,mt+1) Cov(ξt , et+1) Cov(ξt , ut+1) Cov(ξt , kt+1)

1 −0.014 −0.014 0.066*** −0.001 −0.029 −0.033
(0.030) (0.032) (0.018) (0.018) (0.019) (0.018)

2 −0.009 −0.004 0.050** 0.009 −0.011 −0.032
(0.033) (0.034) (0.020) (0.019) (0.020) (0.019)

3 −0.021 −0.011 0.038* −0.014 −0.025 −0.055***
(0.034) (0.036) (0.021) (0.019) (0.021) (0.020)

Note: (1) Standard errors in parentheses; (2) ∗ p < 0.1, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01.

identification sources that were not applicable under the scalar-unobservable assumption. We introduce a straightforward
GMM procedure for estimating structural parameters in production functions, following our identification results. The
estimation procedure is straightforward to apply and can be adjusted to allow for potential measurement errors in the
input variables as long as the measurement errors are independent across time.

We apply our method to studying how rapidly firms respond in their input decisions to the latest changes in their
productivity. Based on the estimates of the covariances between the inputs and the latest shocks to productivity, we find
that firms are quick to adjust the material input, but much slower to adjust the labor and capital inputs.

It worth pointing out that, although our method does not produce point estimates of firm-level productivity, its
applicability does not seem significantly limited by the issue. For example, it can be used to essentially replicate OP’s
empirical analysis of deregulation’s effects in the telecommunications equipment industry. In view of the large number
of applications based on the previous methods, we believe that our contribution to this literature can be of value to future
studies of various issues centered around firm productivity and production functions.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.05.024.
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