
Economics Letters 105 (2009) 256–260

Contents lists available at ScienceDirect

Economics Letters

j ourna l homepage: www.e lsev ie r.com/ locate /eco le t
Bounding the effect of a dichotomous regressor with arbitrary measurement errors

Ping Deng a,1, Yingyao Hu b,⁎
a Department of Economics, Nanchang Institute of Technology, 289 Tianxiang Avenue, Nanchang HI-Tech Development Zone, Nanchang, Jiangxi 330099, China
b Department of Economics, Johns Hopkins University, 440 Mergenthaler Hall, 3400 North Charles Street, Baltimore, MD 21218, United States
⁎ Corresponding author. Tel.: +1 410 516 7610; fax:
E-mail addresses: dengping1010@msn.com (P. Deng

1 Tel.: +86 791 2126289; fax: +86 791 2126288.

0165-1765/$ – see front matter © 2009 Elsevier B.V. A
doi:10.1016/j.econlet.2009.08.009
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 15 October 2007
Received in revised form 25 July 2009
Accepted 13 August 2009
Available online 25 August 2009

Keywords:
Arbitrary measurement error
Misclassification
Bounds
Dichotomous variable

JEL classification:
C2
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1. Introduction

Measurement errors in survey samples have been discussed in
many theoretical and empirical studies (see, e.g., Bound et al. (2001)
and Chen et al. (2007) for a survey). When a variable of interest is
misreported, the misreported values are considered as a proxy of the
latent true values. The identification of the latent model is usually
achieved by imposing restrictions on measurement errors in the
proxy (e.g., Chen et al. (2008) and Lewbel (2007)). For example, the
measurement error is assumed to be independent of the true values
(e.g., Schennach (2004, 2007)), or to have zero mean or zero mode
(e.g., Hu (2008) and Hu and Schennach (2008)). This note considers
the case where measurement errors in the proxy of the latent variable
may be arbitrary. In the extreme case, the proxy may be a white noise
or a constant. In other words, the latent variable of interest is totally
missing in the sense that neither the latent variable itself nor its
informative proxies are observed in the sample. The key identification
question in such a situation then becomeswhether certain restrictions
on the latent model may lead to the identification of the latent model.

We focus on a nonlinear regression model containing a misreported
0–1 dichotomous regressor and other accurately-measured regressors.
The parameter of interest is the effect of the latent dichotomous variable
on the dependent variable. Since the measurement error in the
misreported dichotomous regressormay be arbitrary, the useful sample
+1 410 516 7600.
), yhu@jhu.edu (Y. Hu).
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information only contains the joint distribution of the dependent
variable and other regressors. We also impose all the assumptions on
the regression model in order to handle arbitrary measurement errors.
The key identification assumption is that the third conditional moment
of the regression error is zero. Such an assumption is reasonable when
the regression error has a symmetric distribution. Our main results
suggest that the effect of the latent dichotomous variable may be
boundedaway fromzero using the observedmoments of thedependent
variable conditional on other observed regressors. Such bounds may be
useful to test the significance of the effect of the latent variable on the
dependent variable given an incomplete sample. Bounds on the
conditionalmean of the latent dichotomous regressor are also provided.

This note is organized as follows: Section 2 provides the description
of the model, data structure, and the main results; Section 3 discusses
someproperties of thebounds; Section4 concludes thenote; theproof is
in the Appendix.

2. Main results

Consider a nonlinear regression model

Y = m X⁎;Wð Þ + η; ð1Þ

where Y is the dependent variable, X⁎ is a latent 0–1 dichotomous
regressor and W contains other regressors. In a random sample, we
observe the joint distribution of Y, W, and X, where X is a proxy of X⁎.
Since we allow it to be arbitrary, the measurement error in the proxy X
may be correlated with Y,W, and X⁎. In the extreme case, Xmay just be
a constant or a white noise. Therefore, our identification results have to
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be based on the sample information from the joint distribution of Y and
W. In other words, we only need a sample of (Y,W).

Our assumptions are imposed on the latent model in Eq. (1) as
follows:

Assumption 1. E(η|X⁎, W)=0;

Assumption 2. E(η2|X⁎, W)=E(η2|W);

Assumption 3. E(η3|W)=0.

Assumption 1 is a standard normalization condition of a nonlinear
regression model. Assumption 2 requires that the variance of the
regression error is the same for different values of X⁎ conditional on
other regressors W. This condition is a generalization of the
homoscadasticity assumption in the classic regression model. For
different values of W, the variance of the regression error may still be
different. Assumption 3 is the key assumption in this paper. It is
implied by a stronger condition E(η3|X⁎, W)=0. Its popular sufficient
condition is that the distribution of the regression error η conditional
on the regressors X⁎ and W is symmetric. On the one hand, such a
symmetric regression error is a generalization of the normal
regression error in the classic regression model. On the other hand,
empirical evidences may support such a symmetry assumption. For
example, the wage distribution is shown to be close to a log normal
distribution. Therefore, the regression error would have a symmetric
distribution when the log wage is the dependent variable.

The unknown parameters of interest include the effectmΔ(w) of the
latent dichotomous variable X⁎ and its mean p(w) defined as follows:

mΔ wð Þ = m 1;wð Þ− m 0;wð Þ;
p wð Þ = Pr X⁎ = 1 jW = wð Þ:

The observables used in the identification contain the first three
conditional moments of the dependent variable:

μY jW wð Þ = E Y jW = wð Þ;
σY jW wð Þ = E Y−μY jW Wð Þ

h i2 jW=w
� �� �1=2

;

υY jW wð Þ = E Y−μY jW Wð Þ
h i3 jW=w
� �� �1=3

:

In addition, we define

τ wð Þ = υY jW wð Þ
σY jW wð Þ

 !6

:

We show in the Appendix that the observables and the unknowns
are associated as follows:

σ2
Y jW wð Þzp wð Þ 1− p wð Þð Þm2

Δ wð Þ; ð2Þ

and

υ3
Y jW wð Þ = p wð Þ 1− p wð Þð Þ 1− 2p wð Þð Þm3

Δ wð Þ: ð3Þ

Notice that

E X⁎−p wð Þ½ �3 jW = w
� �

= p wð Þ 1− p wð Þð Þ 1− 2p wð Þð Þ:

Eq. (2) is derived from the fact that the variance of the regression
error is nonnegative. The intuition of Eq. (3) is that the observed
skewness of Y conditional on W is related to that of the latent
dichotomous variable X⁎ and the effect of interest mΔ(w). Since the
regression error has a zero third moment and the distribution of a
dichotomous variable only has one parameter, i.e., its mean, a nonzero
observed skewness υY|W3 (w) may provide informative bounds on the
effect of interest mΔ(w). We summarize the main results as follows:

Theorem 1. Suppose that Assumptions 1–3 hold. We have

1. if υY|W(w)≠0, then p(w) and mΔ(w) are bounded as follows:

p wð Það0;
1
2

− 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ wð Þ

4 + τ wð Þ

s � [ ½12 +
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ wð Þ

4 + τ wð Þ

s
;1Þ

and

jmΔ wð Þ jzC wð Þ jυY jW wð Þ j ;

where

C wð Þ = τ wð Þ−1=6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 + τ wð Þp

> C0 if τ wð Þa 2;∞ð Þ
C0 if τ wð Þa 0;2ð �

	

with C0 = 6
ffiffiffi
3

p� �1=3≈2:182. These bounds are sharp. Moreover,

sign mΔ wð Þf g = sign υY jW wð Þ
n o

× sign
1
2

− p wð Þ
	 


:

2. if υY|W(w)=0, then either p wð Þa 0; 1
2
;1

n o
or mΔ(w)=0 holds.

Proof. See the Appendix. □

First of all, the condition υY|W(w)=0 is directly testable from the
data. Second, When υY|W (w)≠0, this theorem suggests that the effect
of the latent variable mΔ(w) may be bounded away from zero. That
means we may be able to test whether the variable X⁎ has a significant
effect on the dependent variable Y even if X⁎ or its proxies are not
observed. Third, the sign of the effect may be determined if we know
whether the probability of X⁎=1 is larger than a half or not. For
example, suppose X⁎=1 stands for the union participation. If we know
from another source that less than half of the population of interest are
unionmembers for a given valuew. Then the sign of the effectmΔ(w) is
the same as υY|W(w). In fact, the probability of X⁎=1 is bounded away
from a half, which may make it relatively easy to determine the sign
of 1

2
− p wð Þ

n o
. For example, suppose that we know τ(w)=2 from

the data. Then Theorem 1 implies that the probability of X⁎=1 is in
(0, 0.212)∪(0.788, 1). That means we only need to determine whether
the percentage of unionmembership is lower than 21.2% or higher than
78.8%. Finally, if we believe that the probability of X⁎=1 is not equal to
zero, a half, or one, then υY|W(w)=0 implies that the latent regressor X⁎

has no impact on the dependent variable for a given value w. We
summarize the discussion above in the following corollary:

Corollary 1. Suppose that assumptions in Theorem 1 hold and that
p wð Þa 0; 1

2

� �
. Then,

p wð Þaf 0;
1
2

− 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ wð Þ

4 + τ wð Þ

s #
if υY jW wð Þ≠ 0

0;
1
2

� �
if υY jW wð Þ = 0

and

mΔ wð Þ
z C wð ÞυY jW wð Þ if υY jW wð Þ > 0
= 0 if υY jW wð Þ = 0
V C wð ÞυY jW wð Þ if υY jW wð Þ < 0

:

8<
:

Moreover, Theorem 1 also implies that the sign of the effectmΔ(w)
is also useful to determine the range of the probability of X⁎=1. For
example, if X⁎ is the education level in a wage equation, it is
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reasonable to assume the effect of education is positive. Then, the sign
of the observed υY|W(w) may determine whether the probability of
X⁎=1 is larger than a half or not. The results in this case are as
follows:

Corollary 2. Suppose that assumptions in Theorem 1 hold and that
m(1, w)>m(0, w). Then,

p wð Þaf ð0;12−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ wð Þ

4 + τ wð Þ

s � if υY jW wð Þ > 0

0;
1
2
;1

	 

if υY jW wð Þ = 0

1
2

+
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ wð Þ

4 + τ wð Þ

s
;1Þ if υY jW wð Þ < 0

2
4

and

mΔ wð Þ zC wð Þ jυY jW wð Þ j if υY jW wð Þ≠ 0
> 0 if υY jW wð Þ = 0 :

	

3. Discussion

The results in Theorem 1 imply that the structure of the model is
important in terms of finding the correct bounds. For example, we
consider a wage regression model as follows:

lnG = a + bX⁎ + η; ð4Þ

where G is the wage and X⁎ is a 0–1 indicator for the college level
education. For simplicity, we assume that η is independent of X⁎.
Suppose that the regression error η satisfies the assumptions in
Theorem 1. The bounds on a and b then follow.

Now suppose that we use the wage itself instead of the log wage in
the regression model as follows:

G = aV+ bVX⁎ + ηV; ð5Þ

where

aV= eaEeη;
bV= ea eb − 1

� �
Eeη;

ηV= ea + bX⁎

eη − Eeη
� �

:

Notice that bounds on a′ and b′ may still imply bounds on b if η′
satisfies the assumptions in Theorem 1. We then consider Assump-
tions 1–3 with η replaced by η′. Assumption 1 is satisfied by the
definition of η′ and the independence between η and X⁎. However,
Assumption 2 holds only if b=0. Moreover, Assumption 3 is unlikely
to hold with η′ if it holds with η. Following the proof of Theorem 1,
one can show that the only inequality still holds is

Var Gð Þzp 1− pð ÞbV2;

which does not provide any informative bounds on p or b′. Therefore,
the results in Theorem 1 don't hold with Eq. (5) if Eq. (4) satisfies the
assumptions and provides informative bounds. This example implies
that the structure of the model is important in order to obtain the
correct and informative bounds.

Another issue that we want to discuss here is the inference for the
partially identified parameters p and mΔ. There are many studies on
this topic in the last decade (for example, Chernozhukov et al. (2007)
and Beresteanu and Molinari (2008)). Given the length restriction on
this note, we will only refer to Chernozhukov et al. (2007) on this
issue instead of providing a lengthy discussion. We show that the
bounds developed in our note fall into the category discussed in their
paper. Therefore, the inference for the identified set follows from their
results.

For simplicity, we consider a regression model without constant
and covariates as follows:

Y = mΔ X⁎ − pð Þ + η:

As shown in the proof of Theorem 1, the partially identified set is
characterized by

E p 1− pð Þm2
Δ − Y2

h i
V0;

E p 1− pð Þ 1− 2pð Þm3
Δ − Y3

h i
= 0:

Define θ=(p,mΔ)TaΘ. The corresponding moment-inequality restric-
tions take the form

E mi θð Þ½ �V0;

where

mi θð Þ =
p 1− pð Þm2

Δ − Y2
i

p 1− pð Þ 1− 2pð Þm3
Δ − Y3

i

−p 1− pð Þ 1− 2pð Þm3
Δ + Y3

i

0
BB@

1
CCA:

The identified set is then ΘI={θ a Θ: E[mi(θ)]≤0}. As shown in
Chernozhukov et al. (2007), the set ΘI can be characterized as the set
of minimizers of the criterion

Q θð Þ = kE mi θð Þ½ �VW1=2 θð Þk2þ;

where ||x||+=||max(x,0)|| and W(θ) is a continuous and diagonal
matrix with strictly positive diagonal elements for each θaΘ.
Therefore, inference on ΘI may be achieved from the empirical analog
of Q as follows:

Qn θð Þ = kEn mi θð Þ½ �VW1 = 2
n θð Þk2þ;

where En mi θð Þ½ � = 1
n

Xn
t = 1

mt θð Þ and Wn(θ) is a consistent estimate
of W(θ). The consistent estimate of ΘI they proposed takes the form
of a contour set of level c, i.e., Cn(c)={θaΘ: anQn (θ)≤c}, where an
is a normalizing sequence. The set Cn(c) may also be a confidence
region for ΘI in the sense that limn→∞ P(ΘI p Cn(c))=α for a specified
confidence level α.

Furthermore, the bounds may degenerate when υY|W (and
therefore τ) is arbitrarily close to 0 so that the bounds on p, i.e.,

pað0;12 − 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ

4 + τ

r � [ ½12 +
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ

4 + τ

r
;1Þ;

becomes less informative. One can imagine that when υY|W (and
therefore τ) is very close to zero the confidence region will be very
likely to contain 1

2
, which makes the confidence region uninformative.

Theoretically, we may let υY|W converge to zero as the sample size
goes to infinity. In that case, the confidence sets on p converge to the
uninformative (0,1) and those on mΔ(w) converge to (0, +∞). With a
real data set, the estimate of υY|W(w) is unlikely to be exactly equal to
0. We may obtain informative bounds if we can reject the null
hypothesis that υY|W=0. But when we can't reject the null, the
confidence region may not be very informative or useful but it does
not degenerate as long as the estimate of υY|W is not zero.
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4. Conclusion

This note considers a nonlinear regression model containing a 0–1
dichotomous variable when it is misreported with arbitrary measure-
ment errors. Informative bounds are provided on the effect of the latent
true regressor on the dependent variable. We impose all the assump-
tions on the latentmodel instead of themeasurement error distribution.
In other words, our results provide useful bounds even if the
misreported values of the latent regressor are a white noise or a
constant. The results imply that certain information on the latentmodel
may be useful for the identification of the parameter of interest even if
the measurement error is extremely severe. It would be interesting to
extend such results to a more general measurement error model.

Appendix

Proof. (Theorem 1) By the definitions of υY|W(w), mΔ(W), and p
(w), the regression model may be written as

Y − μY jW wð Þ
� �

= mΔ Wð Þ X⁎ − p wð Þð Þ + η:

For simplicity, we omit the argument w when it doesn't cause any
confusion.

Given the definitions of σY|W(w) and υY|W(w), we then consider
the second and the third moments of Y conditional on W as follows:

σ2
Y jW = p 1− pð Þm2

Δ + E η2 jW = w
� �

ð6Þ

and

υ3
Y jW = p 1− pð Þ 1− 2pð Þm3

Δ + E η3 jW = w
� �

:

Assumption 3 then leads to

υ3
Y jW = p 1− pð Þ 1− 2pð Þm3

Δ: ð7Þ

When υY|W≠0, Eq. (7) implies that the sign of mΔ satisfies

sign mΔf g = sign υY jW
n o

× sign
1
2

− p
	 


:

The next step is to use Eqs. (6) and (7) to derive bounds on p and
mΔ. It is obvious that Eq. (7) implies that pa {0,1,1/2} ormΔ=0when
υY|W=0. We then focus on the case where υY|W≠0, which implies
that p is not equal to 0,1, or 1/2 and

mΔ =
1

p 1−pð Þ 1−2pð Þ
� �1=3

υY jW : ð8Þ

The bounds on p are implied by the condition E(η2|W=w)≥0
through Eq. (6) as follows:

σ2
Y jWzp 1− pð Þm2

Δ:

Eliminating mΔ using Eq. (8) leads to

1−2pð Þ2
p 1− pð Þ z

υY jW
σY jW

 !6

≡τ;

which implies 1
4 + τ

− p + p2z0. Therefore, we have paSp with

1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

τ
r

1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

τ
r

Sp = ð0;2 −
2 4 + τ� [ ½2 +

2 4 + τ
;1Þ:
The bounds on mΔ are then determined by the behavior of the
function p(1−p) (1−2p) over the set Sp derived above. Define g(p)=
p(1− p) (1−2p). Note that d

dp
g pð Þ = 1− 6p + 6p2. Therefore,

d
dp
g p0ð Þ = 0 leads to p0 = 1

2
F 1

2

ffiffi
1
3

q
. That means for pa[0,1]

g
1
2

+
1
2

ffiffiffi
1
3

r !
V g pð Þ V g

1
2

− 1
2

ffiffiffi
1
3

r !
;

where g 1
2
+ 1

2

ffiffi
1
3

q� �
= −

ffiffiffi
3

p

18
and g 1

2
− 1

2

ffiffi
1
3

q� �
=

ffiffiffi
3

p

18
. In other words, we

have j 1
g pð Þ jz6

ffiffiffi
3

p
for pa[0,1] and

jmΔ jzC0 jυY jW j

withC0 = 6
ffiffiffi
3

p� �1=3
. However, we have to consider the casewhere the

minimizer or the maximizer 1
2
F 1

2

ffiffi
1
3

q
may not be in the set Sp. Notice

that
ffiffiffiffiffiffiffiffi

τ
4 + τ

q
>

ffiffi
1
3

q
if and only if τ>2. Therefore, we have

jmΔ jzC jυY jW j ;

where

C = C1 if τ > 2
C0 if τV2

	

with C1 = g 1
2
−1

2

ffiffiffiffiffiffiffiffi
τ

4 + τ

q� �h i−1=3
= τ−1=6 ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 + τ
p

:

Furthermore, the bounds generated in this procedure are sharp
because there exists a possible value of unobservable, i.e., E(η2|
W=w), to support any p and mΔ in the feasible region, including the
bounds themselves, given the observables σY|W and υY|W. In other
words, the sharpness of the bounds on p and mΔ can be shown by
finding possible values of the unobservable which lead to given values
of p and mΔ in the feasible region.

Next, we show the bounds on p are sharp. Suppose that for a given
σY|W and υY|W we pick a p̃ such that Theorem 1(1) holds, i.e.,

~pað0;12 − 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ

4 + τ

r � [ ½12 +
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ

4 + τ

r
;1Þ:

The value of corresponding mΔ is then

mΔ =
υ3
Y jW

~p 1−~pð Þ 1−2~pð Þ

 !1=3

;

which is guaranteed to satisfy the bounds onmΔ. The unobserved E(η2|
W=w) then equals

E η2 jW = w
� �

= σ2
Y jW − ~p 1− ~pð Þm2

Δ:

The derivation of the bounds guarantees that the right hand side is
nonnegative.

The sharpness of the bounds onmΔ can be shown in a similar way.
Suppose that for a given σY|W and υY|W we pick an m̃Δ such that
Theorem 1(1) holds, i.e.,

j~mΔ jzC wð Þ jυY jW j ;

where

−1=6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip	

C wð Þ = τ 4 + τ wð Þ > C0 if τa 2;∞ð Þ

C0 if τa 0;2ð � :
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The value of p is then a root of

p 1− pð Þ 1− 2pð Þ− υ3
Y jW
~m3
Δ

= 0:

We may pick any one of the three roots, which must satisfy the
bounds on p. The value of E(η2|W=w) is equal to

E η2 jW = w
� �

= σ2
Y jW − p 1− pð Þ ~m2

Δ:

Again, the derivation of the bounds guarantees that the right hand
side is nonnegative. Therefore, the bounds on p andmΔ are sharp. The
detailed algebraic derivation in the discussion above is straightfor-
ward but tedious, and therefore, is omitted. A similar and detailed
proof can be found in Hu (2006). □
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