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variable and some regressors, including a mismeasured binary regressor. We
provide identification of the nonparametric regression model containing this misclassified dichotomous
regressor. We obtain identification without parameterizations or instruments, by assuming the model error
isn't skewed.
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1. Motivation

We provide identification of a nonparametric regressionmodel with
a dichotomous regressor subject to misclassification error. The available
sample information consists of a dependent variable and a set of
regressors, one of which is binary and error-ridden with mis-
classification error that has unknown distribution. Our identification
strategy does not parameterize any regression or distribution functions,
and does not require additional sample information such as instru-
mental variables, repeated measurements, or an auxiliary sample. Our
main identifying assumption is that the regressionmodel error has zero
conditional thirdmoment. The results include a closed-form solution for
the unknown distributions and the regression function.

Dichotomous (binary) variables, such as union status, smoking
behavior, and having a college degree or not, are involved in many
economicmodels. Measurement errors in dichotomous variables take the
formofmisclassification errors, i.e., some observationswhere the variable
is actually a onemay bemisclassified as a zero, and vice versa. A common
source ofmisclassification errors is self-reporting,where peoplemay have
, yhu@jhu.edu (Y. Hu),

l rights reserved.
psychological or economic incentives tomisreport dichotomous variables
(see Bound et al. (2001) for a survey).Misclassificationmayalso arise from
ordinary coding or reporting errors, e.g., Kane et al. (1999) report
substantial classification errors in both self-reports and transcript reports
of educational attainment. Unlike ordinary mismeasured regressors,
misclassified regressors cannot possess the properties of classically mis-
measured variables, inparticular, classification errors are not independent
of the underlying true regressor, and are in general not mean zero.

As with ordinary mismeasured regressors, estimated regressions
with a misclassified regressor are inconsistent, and the latent true
regression model based just on conditionally mean zero model errors
is generally not identified in the presence of a misclassified regressor.
To identify the latent model, we must either impose additional
assumptions or possess additional sample information. One popular
additional assumption is to assume the measurement error distribu-
tion belong to some parametric family. Additional sample information
often used to obtain identification includes an instrumental variable or
a repeated measurement in the same sample, or a secondary sample.
See, e.g., Carroll et al. (2006), and Chen et al. (2007) for detailed recent
reviews on existing approaches to measurement error problems.

In this note we obtain identificationwithout parameterizing errors
and without auxiliary information like instrumental variables,
repeated measurements, or a secondary sample. A related result is
Chen et al. (2008). We show here that, given some mild regularity
conditions, a nonparametric mean regression with a misclassified
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binary regressor is identified (and can be solved in closed form) if the
latent regression error has zero conditional thirdmoment, aswould be
the case if the regression errorwere symmetric.We also briefly discuss
how simple estimators might be constructed based on our identifica-
tion method.

2. Identification

We are interested in a regression model as follows:

Y ¼ m XT;Wð Þ þ g; E gjXT;Wð Þ ¼ 0 ð2:1Þ

where Y is the dependent variable, X⁎∈X={0, 1} is the dichotomous
regressor subject tomisclassificationerror, andW is anerror-free covariate
vector. We are interested in the nonparametric identification of the
regression functionm(). The regression errorηneednot be independent of
the regressors X⁎ andW, so we have conditional density functions

fYjXT;W yjxT;wð Þ ¼ fgjXT;W y�m xT;wð ÞjxT;wð Þ: ð2:2Þ

In a random sample, we observe (X, Y, W)∈X×Y×W, where X is a
proxy or a mismeasured version of X⁎. We assume

Assumption 2.1. fY|X⁎,W,X(y|x⁎,w,x)= fY|X⁎,W(y|x⁎,w) for all (x,x⁎,y,
w)∈X×X×Y×W.

This assumption implies that the measurement error in X is
independent of the dependent variable Y conditional on the true value
X⁎ and the covariate W, and so X is independent of the regression error
η conditional onX⁎ andW. This is analogous to the classical measurement
error assumption of having the measurement error independent of the
regression model error. This assumption may be problematic in applica-
tionswhere the same individualwho provides the source ofmisclassifica-
tion by supplyingX also helps determine the outcome Y, however, this is a
standard assumption in the literature of mismeasured and misclassified
regressors. See, e.g., Li (2002), Schennach (2004), Mahajan (2006), Lewbel
(2007a) and Hu (2006).

By construction, the relationship between the observed density
and the latent ones are as follows:

fYjX;W yjx;wð Þ ¼
X
xT

fYjXT;W;X yjxT;w; xð ÞfXTjX;W xTjx;wð Þ

¼
X
xT

fgjXT;W y�m xT;wð ÞjxT;wð ÞfXTjX;W xTjx;wð Þ: ð2:3Þ

Using the fact that X and X⁎ are 0–1 dichotomous, define the
following simplifying notation: m0(w)=m(0, w), m1(w)=m(1, w), μ0
(w)=E(Y|X=0, w), μ1(w)=E(Y|X=1, w), p(w)= fX⁎|X,W(1|0, w), and q(w)=
fX⁎|X,W(0|1, w). Eq. (2.3) is then equivalent to

fYjX;W yj0;wð Þ
fYjX;W yj1;wð Þ

� �
¼ 1� p wð Þ p wð Þ

q wð Þ 1� q wð Þ
� �

fgjXT;W y�m0 wð Þj0;wð Þ
fgjXT;W y�m1 wð Þj1;wð Þ

� �
: ð2:4Þ

Since fη|X⁎,W has zero mean, we obtain

A0 wð Þ ¼ 1� p wð Þð Þm0 wð Þ þ p wð Þm1 wð Þ and A1 wð Þ
¼ q wð Þm0 wð Þ þ 1� q wð Þð Þm1 wð Þ: ð2:5Þ

Assume

Assumption 2.2. m1(w)≠m0(w) for all w∈W.
This assumption means that X⁎ has a nonzero effect on the

conditional mean of Y, and so is a relevant explanatory variable, given
W. We may now solve Eq. (2.5) for p(w) and q(w), yielding

p wð Þ ¼ A0 wð Þ �m0 wð Þ
m1 wð Þ �m0 wð Þ and q wð Þ ¼ m1 wð Þ � A1 wð Þ

m1 wð Þ �m0 wð Þ ð2:6Þ
Without loss of generality, we assume,

Assumption 2.3. for all w∈W, (i) μ1(w)Nμ0(w); (ii) p(w)+q(w)b1.
Assumption 2.3(i) is not restrictive because one can always

redefine X as 1−X if needed. Assumption 2.3(ii) implies that the
ordering of m1(w) and m0(w) is the same as that of μ1(w) and μ0(w)
because 1� p wð Þ � q wð Þ ¼ A1 wð Þ � A0 wð Þ

m1 wð Þ �m0 wð Þ. The intuition of Assumption 2.3

(ii) is that the total misclassification probability is not too large so that
μ1(w)Nμ0(w) implies m1(w)Nm0(w) (see, e.g., Lewbel, 2007a) for a
further discussion of this assumption). In summary, we have

m1ðwÞzA1ðwÞNA0ðwÞzm0ðwÞ:

The condition p(w)+q(w)≠1 also guarantees that the matrix
1� p wð Þ p wð Þ
q wð Þ 1� q wð Þ

� �
in Eq. (2.4) is invertible. If we then plug into Eq. (2.4)

the expressions for p(w) and q(w) in Eq. (2.6), we obtain for j=0,1

fgjXT;W ðy�mjðwÞjj;wÞ ¼ A1ðwÞ �mjðwÞ
A1ðwÞ � A0ðwÞ fYjX;W ðyj0;wÞ

þmjðwÞ � A0ðwÞ
A1ðwÞ � A0ðwÞ fYjX;W ðyj1;wÞ: ð2:7Þ

Eq. (2.7) is our vehicle for identification. Given any information
about the distribution of the regression error η, Eq. (2.7) provides the
link between that information and the unknowns m0(w) and m1(w),
along with the observable density fY|X,W and observable conditional
means μ0(w) and μ1(w). The specific assumption about η that we use
to obtain identification is this:

Assumption 2.4. E(η3|X⁎, W)=0.
A sufficient though much stronger than necessary condition for this

assumption to hold is that fη|X⁎,W be symmetric for each x⁎∈X and
w∈W. Notice that the regression model error η need not be
independent of the regressors X⁎,W, and in particular our assumptions
permit η to have heteroskedasticity of completely unknown form.

Let ϕ denote the characteristic function and

/gjXT¼j;wðtÞ ¼
R
eitgfgjXT;W ðgj j;wÞdg

/Y jX¼j;wðtÞ ¼
R
eityfYjX;W ðyj j;wÞdy:

Then Eq. (2.7) implies that for any real t

ln eitmj wð Þ/gjXT¼j;w tð Þ
� �
¼ ln

A1 wð Þ �mj wð Þ
A1 wð Þ � A0 wð Þ /Y jX¼0;w tð Þ þmj wð Þ � A0 wð Þ

A1 wð Þ � A0 wð Þ /Y jX¼1;w tð Þ
� �

:

ð2:8Þ
Notice that

A
3

At3
ln eitmj wð Þ/gjXT¼j;w tð Þ
� �

jt¼0 ¼ A
3

At3
ln /gjXT¼j;w tð Þjt¼0

¼ �iE g3jXT ¼ j;W ¼ w
� �

:

Assumption 2.4 therefore implies that for j=0,1

G mj wð Þ� � ¼ 0; ð2:9Þ

where

G zð Þui
A
3

At3
ln

A1 wð Þ � z
A1 wð Þ � A0 wð Þ/Y jX¼0;w tð Þ þ z� A0 wð Þ

A1 wð Þ � A0 wð Þ/Y jX¼1;w tð Þ
� �

jt¼0:

This equation shows that the unknowns m0(w) and m1(w) are two
roots of the cubic function G(•) in Eq. (2.9). Suppose the three roots of
this equation are ra(w)≤rb(w)≤ rc(w). In fact, we have

ra wð ÞVm0 wð ÞVA0 wð ÞbA1 wð ÞVm1 wð ÞVrc wð Þ;
which implies bounds on m0(w) and m1(w). To obtain point identi-
fication ofmj(w), we need to be able to uniquely define which roots of
the cubic function G(•) correspond to m0(w) and m1(w). This is
provided by the following assumption.
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Assumption 2.5. Assume

E Y � A0 wð Þð Þ3jX ¼ 0;W ¼ w
h i

z0zE Y � A1 wð Þð Þ3jX ¼ 1;W ¼ w
h i

and, when an equality with X= j holds, assume dG zð Þ
dz

jz¼Aj wð ÞN0.
It follows from Assumption 2.5 that

ra wð ÞVA0 wð Þbrb wð ÞbA1 wð ÞVrc wð Þ:

Since m0(w)≤μ0(w)bμ1(w)≤m1(w), we then have point identifica-
tion by m0(w)= ra(w) and m1(w)= rc(w). Note that Assumption 2.5 is
directly testable from the data. Based on the definition of skewness of
a distribution and μ0(w)bE(Y|W=w)bμ1(w), Assumption 2.5 implies
that the distributions fY|X,W(y|1, w) and fY|X,W(y|0, w) are skewed
towards the unconditional mean E(Y|W=w) compared with each
conditional mean. An analogous result is Lewbel (1997), who obtains
identification in a classical measurement error context without
auxiliary data exploiting skewness in a different way.

Notice that Assumption 2.4 implies that E[(Y−m0(w))3|X=0,
W=w]=0 and E[(Y−m1(w))3|X=1, W=w]=0. Assumption 2.5 then
implies

E Y � A0 wð Þð Þ3jX ¼ 0;W ¼ w
h i

zE Y �m0 wð Þð Þ3jX ¼ 0;W ¼ w
h i

and

E Y � A1 wð Þð Þ3jX ¼ 1;W ¼ w
h i

VE Y �m1 wð Þð Þ3jX ¼ 1;W ¼ w
h i

:

The third moments on the left-hand sides are observed from the
data and the right-hand sides contain the latent third moments. We
may treat the third moments E[(Y−µj(w))3|X= j, W=w] as a naive
estimator of the true moments E[(Y−mj(w))3|X= j, W=w]. Assump-
tion 2.4 implies that the latent third moments are known to be zero.
Assumption 2.5 implies that the sign of the bias of the naive
estimator is different in two subsamples corresponding to X=0 and
X=1.

We leave the detailed proof to the Appendix and summarize the
result as follows:

Theorem 2.1. Suppose that Assumptions 2.1–2.5 hold in Eq. (2.1).
Then, the density fY,X,W uniquely determines fY|X⁎,W and fX⁎,X,W.

Identification of the distributions fY|X⁎,W and fX⁎,X,W by Theorem 2.1
immediately implies that the regression function m(X⁎, W), the
conditional distribution of the regression error, fη|X⁎,W, and the
conditional distribution of the misclassification error (the difference
between X and X⁎) are all identified.

3. Conclusions and possible estimators

We have shown that a nonparametric regression model containing
a dichotomous misclassified regressor can be identified without any
auxiliary data like instruments, repeated measurements, or a
secondary sample (such as validation data), and without any
parametric restrictions. The only identifying assumptions are some
regularity conditions and the assumption that the regression model
error has zero conditional skewness.

We have focused on identification, so we conclude by briefly
describing how estimators might be constructed based on our
identification method. One possibility would be to substitute
consistent estimators of the conditional means μj(w) and character-
istic functions ϕY|X,w(t) into Eq. (2.9), and solve the resulting cubic
equation for estimates of mj(w). Another possibility is to observe that,
based on the proof of our main theorem, the identifying equations can
be written in terms of conditional mean zero expectations as

E Y � Aj wð Þ� �
I X ¼ jð ÞjW ¼ w

� � ¼ 0;

E Y2 � tj wð Þ� �
I X ¼ jð ÞjW ¼ w

� � ¼ 0;

E Y3 � jj wð Þ� �
I X ¼ jð ÞjW ¼ w

� � ¼ 0;

E
2mj Wð Þ3�3

t1 wð Þ � t0 wð Þ
A1 wð Þ � A0 wð Þmj Wð Þ2

�3t0 wð ÞA1 wð Þ � 3t1 wð ÞA0 wð Þ þ j0 wð Þ � j1 wð Þ
A1 wð Þ � A0 wð Þ mj Wð Þ þ A1 wð Þj0 wð Þ � A0 wð Þj1 wð Þ

A1 wð Þ � A0 wð Þ jW ¼ w

0
BBB@

1
CCCA ¼ 0:

ð2:10Þ

See the Appendix, particularly Eq. (A.6). We might then apply
Ai and Chen (2003) to these conditional moments to obtain sieve
estimates of mj(w), μj(w), υj(w), and κj(w). Alternatively, the local
GMM estimator of Lewbel (2007b) could be employed. If w is discrete
or empty, or if these functions of w are finitely parameterized, then
these estimators could be reduced to ordinary GMM.

Appendix A

Proof (Theorem 2.1). First, we introduce notations as follows: for
j=0,1, mj (w)=m (j, w), µj (w)=E(Y|X= j, W=w), p (w)= fX⁎|X,W (1|0, w), q
(w)= fX⁎|X,W (0|1, w), υj (w)=E(Y2|X= j, W=w), and κj (w)=E(Y3|X= j,
W=w).We start the proof with Eq. (2.3), which is equivalent to

fY jX;W yj0;wð Þ
fY jX;W yj1;wð Þ

� �
¼ 1� p wð Þ p wð Þ

q wð Þ 1� q wð Þ
� �

fgjXT;W y�m0 wð Þj0;wð Þ
fgjXT;W y�m1 wð Þj1;wð Þ

 !
:

ðA:1Þ
Assumption 2.4 implies that fη|X⁎,W has zero mean. Therefore, we

have

A0 wð Þ ¼ 1� p wð Þð Þm0 wð Þ þ p wð Þm1 wð Þ;
A1 wð Þ ¼ q wð Þm0 wð Þ þ 1� q wð Þð Þm1 wð Þ:

By Assumption 2.2, we may solve for p(w) and q(w) as follows:

p wð Þ ¼ A0 wð Þ �m0 wð Þ
m1 wð Þ �m0 wð Þ and q wð Þ ¼ m1 wð Þ � A1 wð Þ

m1 wð Þ �m0 wð Þ : ðA:2Þ

We also have 1� p wð Þ � q wð Þ ¼ A1 wð Þ�A0 wð Þ
m1 wð Þ�m0 wð Þ. As discussed before, As-

sumption 2.3 implies thatm1(w)≥µ1(w)Nµ0(w)≥m0(w) and

fgjXT;W y�m0 wð Þj0;wð Þ
fgjXT;W y�m1 wð Þj1;wð Þ

� �
¼ 1

1� p wð Þ � q wð Þ
1� q wð Þ �p wð Þ
�q wð Þ 1� p wð Þ

� �
fYjX;W yj0;wð Þ
fYjX;W yj1;wð Þ

 !
:

Plug-in the expression of p(w) and q(w) in Eq. (A.2), we have

fgjXT;W y�mj wð Þjj;w� � ¼ A1 wð Þ �mj wð Þ
A1 wð Þ � A0 wð Þ fYjX;W yj0;wð Þ

þmj wð Þ � A0 wð Þ
A1 wð Þ � A0 wð Þ fYjX;W yj1;wð Þ: ðA:3Þ

Let / denote the characteristic function, /η|X⁎ = j,w(t)= ∫ eitηfη|X⁎,W(η|
j, w)dη, and /Y|X = j,w(t)= ∫ eityfY|X,W(y| j, w)dy. Eq. (A.3) implies that for
any real t

eitmj wð Þ/gjXT¼j;w tð Þ¼ A1 wð Þ �mj wð Þ
A1 wð Þ � A0 wð Þ /YjX¼0;w tð Þþmj wð Þ � A0 wð Þ

A1 wð Þ � A0 wð Þ /Y jX¼1;w tð Þ:

We then consider the log transform

ln eitmj wð Þ/gjXT¼j;w tð Þ
� �

¼ ln
A1 wð Þ �mj wð Þ
A1 wð Þ � A0 wð Þ /YjX¼0;w tð Þ þmj wð Þ � A0 wð Þ

A1 wð Þ � A0 wð Þ /Y jX¼1;w tð Þ
� �

ðA:4Þ
Assumption 2.4 implies that for j=0, 1

0 ¼ i
A
3

At3
ln

A1 wð Þ �mj wð Þ
A1 wð Þ � A0 wð Þ /Y jX¼0;w tð Þ þmj wð Þ � A0 wð Þ

A1 wð Þ � A0 wð Þ /Y jX¼1;w tð Þ
� �

jt¼0:

ðA:5Þ
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When t=0, we have /Y|X,W(0)=1, A

At
/YjX¼j;w 0ð Þ ¼ iAj, A

2

At2
/YjX¼j;w 0ð Þ ¼

�tj, and A
3

At3
/YjX¼j 0ð Þ ¼ �ijj. Furthermore, Eq. (A.5) impliesG(mj)=0where

G zð Þu2z3 � 3
t1 wð Þ � t0 wð Þ
A1 wð Þ � A0 wð Þ z

2 ðA:6Þ
�3t0 wð ÞA1 wð Þ � 3t1 wð ÞA0 wð Þ þ j0 wð Þ � j1 wð Þ
A1 wð Þ � A0 wð Þ zþ A1 wð Þj0 wð Þ � A0 wð Þj1 wð Þ

A1 wð Þ � A0 wð Þ :

This cubic equation has two real rootsm0(w) andm1(w), and has all
real coefficients. Therefore its third root is also real. Suppose the three
roots are ra(w)≤rb(w)≤rc(w) for each given w. Since m0 (w)≠m1(w), we
will never have ra(w)=rb(w)=rc(w). If the second largest of the three
roots is between µ0(w) and µ1(w), i.e., µ0(w)brb(w)bµ1(w), then we
know the largest root rc(w) equals m1(w) and the smallest root ra(w)
equalsm0(w) becausem1(w)≥µ1(w)Nµ0 (w)≥m0(w). Given the shape of
the cubic function, we know

G zð Þ
b0 if z b ra wð Þ
N0 if ra wð Þ b z b rb wð Þ
b0 if rb wð Þ b z b rc wð Þ
N0 if rc wð Þ b z

:

8>><
>>:
That means the second largest of the three roots rb is between

µ0(w) and µ1(w) if G(µ1(w))b0 and G(µ0(w))N0. It is tedious but
straightforward to show that G(µ1(w)) =E[(Y−µ1(w))3|X=1, W=w]
and G(µ0(w))=E[(Y−µ0(w))3|X=0, W=w]. Therefore, Assumption 2.5
implies that G(µ1(w))≤0 and G(µ0(w))≥0. Given the graph of the
cubic function G(•), if G(µ1(w))b0, then µ1(w)bm1(w) implies that
m1(w) equals the largest of the three roots. When G(µ0(w))N0, then
m0(w)bµ0(w) implies that m0(w) equals the smallest of the three
roots.

In case E[(Y−µ1(w))3|X=1, W=w]=0, i.e., G(µ1(w))=0, µ1(w) is a
root of G(•). Given the graph of the cubic function G(•), we know

dG zð Þ
dz

z0 at z ¼ ra wð Þ
V0 at z ¼ rb wð Þ
z0 at z ¼ rc wð Þ

:

8<
:

That means the condition dG zð Þ
dz

jz¼A1 wð ÞN0 guarantees that µ1(w) is
the largest root and equal to m1(w). If E[(Y−µ0(w))3|X=0, W=w]=0,
i.e. G(µ0(w)) =0, µ0(w) is a root of G(•). The condition dG zð Þ

dz
jz¼A0 wð ÞN0

guarantees that µ0(w) is the smallest root and equal to m0(w). In
summary, Assumption 2.5 guarantees that m0(w) and m1(w) can be
identified out of the three directly estimable roots.

After we have identified m0(w) and m1(w), p(w) and q(w) (or fX⁎|X,
W) are identified fromEq. (A.2), and the density fη|X⁎,W (or fY|X⁎,W) is also
identified from Eq. (A.3). Since X and W are observed in the data,
identification of fX⁎|X,W implies that of fX⁎,X,W. Thus, we have identified
the latent densities fY|X⁎,W and fX⁎,X,W from the observed density fY,X,W
under Assumptions 2.1–2.5. □
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