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Abstract

This note considers the identification of a nonparametric regression model with an unobserved 0–1 dichotomous regressor.
The sample consists of a dependent variable and a 0–1 dichotomous proxy of the unobserved regressor. We obtain nonparametric
identification of every element in the model as a closed-form function of the observed moments or densities. Our identification
strategy does not require any additional sample information, such as instrumental variables or a secondary sample. The closed-
form solution may be used to construct estimators of the unknowns.
c© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Binary variables are widely used in statistical studies. Just drawing from economics, some well known examples
include employment status, union status, and education level (diploma or not). When a model containing such
variables is estimated, one major concern is that these variables may be subject to reporting errors. For example,
self-reported smoking behavior may not be accurate because an individual may not want others to know that he or she
smokes. Ignoring such reporting errors in regressors generally leads to inconsistent model estimates.

A well known strategy for dealing with such misreporting or misclassification errors in binary variables is to use a
secondary measurement or an instrumental variable. See Aigner (1973), or more recently Mahajan (2006) and Lewbel
(2007). Such additional sample information can yield parametric or nonparametric identification of the latent model.
Without additional sample information, one usually can only identify bounds on features of the model, as in Klepper
(1988) and Bollinger (1996). In contrast, we provide full nonparametric identification without using additional sample
information.
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We consider the nonparametric regression model

Y = m
(
X∗

)
+ η, E[η|X∗

] = 0 (1.1)

where Y is a scalar dependent variable, X∗ is a 0–1 dichotomous regressor, and η is the regression error. The variables
X∗ and η are not observed. We observe a random sample of Y and a 0–1 dichotomous scalar X , where X is a proxy
of the unobserved X∗.

Define m j = m( j) for j = 0, 1. Note that since X∗ is binary, identifying the function m (X∗) is equivalent to
identifying the constants m0 and m1. We could alternatively define a = m0 and b = m1 − a and without loss of
generality rewrite the model as Y = a + bX∗

+ η. In addition to identifying m0 and m1 or equivalently a and b, we
also identify the conditional distributions of Y (and hence η) conditional on X∗ and the probability mass function of
X given X∗. As we note later, our results readily extend to the case of Y = m (X∗, W ) + η where W is a vector of
additional regressors that are observed without error.

Our identification relies on some assumptions regarding the regression model instead of on additional sample
information. The key assumption is that the first three moments of the regression error are independent of the latent
regressor. We show that the latent regression function is nonparametrically identified as a known function of observed
moments. Our identification is constructive in the sense that it can directly lead to a consistent estimator. Other
examples of obtaining identification in measurement error models without additional sample information include
exploiting model restrictions as in Huwang and Hwang (2002) or the use of higher moment error restrictions as
in Lewbel (1997) and Erickson and Whited (2002).

This note is organized as follows: Section 2 provides the main identification results and Section 3 summarizes the
note and discusses extensions. All the proofs are in the Appendix.

2. Nonparametric identification

We now show how to obtain identification of the regression model (1.1). We first assume

Assumption 2.1. X ⊥ η|X∗.

This assumption implies that the measurement error X − X∗ is independent of the dependent variable Y conditional on
the true value X∗. Define m j = m( j) for j = 0, 1. Assumption 2.1 implies that the relationship between the observed
density and the latent ones becomes

fY |X (y| j) = fX∗|X (0| j) fη|X∗(y − m0|0) + fX∗|X (1| j) fη|X∗(y − m1|1) for j = 0, 1. (2.1)

This equation implies that the observed density fY |X (y| j) is a mixture of two conditional densities fη|X∗(y − m0|0)

and fη|X∗(y − m1|1). Note that we are using f to denote either a probability density function or a probability mass
function, so since X and X∗ are discrete, fX∗|X (1|0) is equivalent to Pr (X∗

= 1|X = 0) for example.
Given that E[η|X∗

] = 0, we then obtain the ordering of m j from that of observed µ j ≡ E(Y |X = j) under the
following assumption:

Assumption 2.2. (i) µ1 > µ0; (ii) fX∗|X (1|0) + fX∗|X (0|1) < 1.

Assumption 2.2(i) is not restrictive because one can always redefine X as 1 − X if needed. Assumption 2.2(ii) reveals
the ordering of m1 and m0, by making it the same as that of µ1 and µ0 because

1 − fX∗|X (1|0) − fX∗|X (0|1) =
µ1 − µ0

m1 − m0
,

so m1 ≥ µ1 > µ0 ≥ m0. Assumption 2.2(ii) says that the sum of misclassification probabilities is less than 1, meaning
that, on average, the observations X are more accurate predictions of X∗ than pure guesses. See Lewbel (2007) for
further discussion of this assumption.

Assumption 2.3. E
(
ηk

|X∗
)

= E
(
ηk

)
for k = 2, 3.
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For identification we only require restrictions on two moments of η in this assumption, because we only need to solve
for two unknowns, m0 and m1. A sufficient condition for Assumption 2.3 is that η be independent of X∗, which
is stronger than necessary because it makes the assumption hold for all k. For k = 2, Assumption 2.3 says that
the model errors are homoskedastic, and for k = 3 the assumption is that the error distributions conditional on X∗

have the same skewness. A sufficient condition for k = 3 in Assumption 2.3 is symmetry of η|X∗, which would
make E

(
ηk

|X∗
)

= 0 for all odd k. Properties like homoskedasticity and symmetry, or more generally independence,
naturally arise in some contexts; for example, these are common assumptions regarding measurement errors (in this
case, η would be interpreted as measurement error in Y ), or they may arise when errors are unobserved factors that
are unrelated to the dichotomy given by X∗.

Identification could also be obtained using alternative restrictions on η|X∗ including possible restrictions such as
quantiles or modes instead of moments. For example, one of the moments in Assumption 2.3 might be replaced with
assuming that the density fη|X∗=0 has zero median. Eq. (2.1) would then imply that

0.5 =
µ1 − m0

µ1 − µ0

∫ m0

−∞

fY |X=0(y)dy +
m0 − µ0

µ1 − µ0

∫ m0

−∞

fY |X=1(y)dy

which may uniquely identify m0 under some testable assumptions. An advantage of Assumption 2.3 over alternative
restrictions on η|X∗ is that we obtain a closed-form solution for m0 and m1 (see Chen et al. (2007) for the general
case).

Define v j ≡ E
[(

Y − µ j
)2

|X = j
]
, s j ≡ E

[(
Y − µ j

)3
|X = j

]
,

C1 ≡

(
v1 + µ2

1

)
−

(
v0 + µ2

0

)
µ1 − µ0

, C2 ≡
1
2

(µ1 − µ0)
2
+

3
2

(
v1 − v0

µ1 − µ0

)2

−
s1 − s0

µ1 − µ0
.

We leave the detailed proof to the appendix and present the results as follows:

Theorem 2.1. Suppose that Eq. (1.1), Assumptions 2.1–2.3 hold. Then the density fY |X uniquely determines fY |X∗

and fX∗|X . To be specific, we have

m0 =
1
2

C1 −

√
1
2

C2, m1 =
1
2

C1 +

√
1
2

C2,

fX∗|X (1|0) =
µ0 −

1
2 C1

√
2C2

−
1
2
, fX∗|X (0|1) =

1
2 C1 − µ1

√
2C2

−
1
2
,

and

fY |X∗= j (y) =
µ1 − m j

µ1 − µ0
fY |X=0(y) +

m j − µ0

µ1 − µ0
fY |X=1(y).

3. Summary and extensions

This note provides a closed-form identification solution for every element in a regression model with a mismeasured
dichotomous regressor. Our identification does not use any additional sample information. The key identification
assumption is that the first three moments of the regression error are independent of the latent regressor. When such a
restriction on the latent model is reasonable in an application, our results suggest that one does not need a secondary
measurement or an instrumental variable to identify the latent model. The closed-form solution may directly lead to a
consistent estimator.

As noted in the introduction, with a binary X∗ our model is equivalent to Y = a + bX∗
+ η. It may be possible to

extend our method of identification to this linear model, or to other models such as polynomials, with more general
distributions of X∗. Our assumptions would not suffice for identification of a linear model with arbitrary distribution
with X∗ ((Reiersol, 1950) provides a counterexample), but related identification results for linear and polynomial
models with continuous regressors based on error moment restrictions exist in the literature, e.g., Lewbel (1997)
and Erickson and Whited (2002).
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Although we only consider the case where these is a single regressor X∗, the extension to

Y = m
(
X∗, W

)
+ η, E[η|X∗, W ] = 0

where W is an additional vector of observed error-free covariates is immediate because our assumptions and
identification results for model (1.1) can all be restated as conditional upon W .

Appendix. Mathematical proofs

Proof (Theorem 2.1). First, we introduce notation as follows: for j = 0, 1

m j = m ( j) , µ j = E(Y |X = j),

v j = E
[(

Y − µ j
)2

|X = j
]
, s j = E

[(
Y − µ j

)3
|X = j

]
,

p = fX∗|X (1|0) , q = fX∗|X (0|1) , fY |X= j (y) = fY |X (y| j).

We start the proof with Eq. (2.1), which is equivalent to(
fY |X (y|0)

fY |X (y|1)

)
=

(
fX∗|X (0|0) fX∗|X (1|0)

fX∗|X (0|1) fX∗|X (1|1)

) (
fη|X∗=0(y − m0)

fη|X∗=1(y − m1)

)
. (A.1)

Using the notation above, we have(
fY |X=0(y)

fY |X=1(y)

)
=

(
1 − p p

q 1 − q

) (
fη|X∗=0(y − m0)

fη|X∗=1(y − m1)

)
.

Since E[η|X∗
] = 0, we have

µ0 = (1 − p) m0 + pm1 and µ1 = qm0 + (1 − q) m1.

We may solve for p and q as follows:

p =
µ0 − m0

m1 − m0
and q =

m1 − µ1

m1 − m0
. (A.2)

We also have

1 − p − q = 1 −

(
m1 − m0 + µ0 − µ1

m1 − m0

)
=

µ1 − µ0

m1 − m0
.

Assumption 2.2 implies that

m1 ≥ µ1 > µ0 ≥ m0.

and (
fη|X∗=0(y − m0)

fη|X∗=1(y − m1)

)
=

1
1 − p − q

(
1 − q −p
−q 1 − p

) (
fY |X=0(y)

fY |X=1(y)

)
.

Plugging the expressions for p and q into Eq. (A.2), we have

−p

1 − p − q
=

m0 − µ0

µ1 − µ0
,

−q

1 − p − q
=

µ1 − m1

µ1 − µ0
,

1 − p

1 − p − q
= 1 −

−q

1 − p − q
,

1 − q

1 − p − q
= 1 −

−p

1 − p − q
,

and (
fη|X∗=0(y − m0)

fη|X∗=1(y − m1)

)
=

1 −
m0 − µ0

µ1 − µ0

m0 − µ0

µ1 − µ0
µ1 − m1

µ1 − µ0
1 −

µ1 − m1

µ1 − µ0

 (
fY |X=0(y)

fY |X=1(y)

)
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=


µ1 − m0

µ1 − µ0

m0 − µ0

µ1 − µ0
µ1 − m1

µ1 − µ0

m1 − µ0

µ1 − µ0

 (
fY |X=0(y)

fY |X=1(y)

)
.

In other words, we have for j = 0, 1

fη|X∗= j (y) =
µ1 − m j

µ1 − µ0
fY |X=0(y + m j ) +

m j − µ0

µ1 − µ0
fY |X=1(y + m j ). (A.3)

In summary, fX∗|X (or p and q) and fη|X∗ are identified if we can identify m0 and m1. Next, we show that m0 and m1
are indeed identified. By Assumption 2.3, we have E

(
ηk

|X∗
)

= E
(
ηk

)
for k = 2, 3. For k = 2, we consider

v1 = E
[(

m(X∗) − µ1
)2

|X = 1
]

+ E
(
η2

)
= E

[
m(X∗)2

|X = 1
]

− µ2
1 + E

(
η2

)
= qm2

0 + (1 − q) m2
1 − µ2

1 + E
(
η2

)
.

Similarly, we have

v0 = (1 − p) m2
0 + pm2

1 − µ2
0 + E

(
η2

)
.

We eliminate E
(
η2

)
to obtain

(1 − p) m2
0 + pm2

1 −

(
v0 + µ2

0

)
= qm2

0 + (1 − q) m2
1 −

(
v1 + µ2

1

)
.

That is(
v1 + µ2

1

)
−

(
v0 + µ2

0

)
= (1 − p − q)

(
m2

1 − m2
0

)
.

We have shown that

1 − p − q =
µ1 − µ0

m1 − m0
.

Thus, m1 and m0 satisfy the following linear equation:

m1 + m0 =

(
v1 + µ2

1

)
−

(
v0 + µ2

0

)
µ1 − µ0

≡ C1.

This means that we need one more restriction to identify m1 and m0. We consider

s1 = E
[
(Y − µ1)

3
|X = 1

]
= E

[(
m

(
X∗

)
− µ1

)3
|X = 1

]
+ E

[
η3

]
= q (m0 − µ1)

3
+ (1 − q) (m1 − µ1)

3
+ E

[
η3

]
and

s0 = (1 − p) (m0 − µ0)
3
+ p (m1 − µ0)

3
+ E

[
η3

]
.

We eliminate E
(
η3

)
in the two equations above to obtain

(1 − p) (m0 − µ0)
3
+ p (m1 − µ0)

3
− s0 = q (m0 − µ1)

3
+ (1 − q) (m1 − µ1)

3
− s1.

Plugging in the expressions for p and q in Eq. (A.2), we have

− (m1 − µ0) (m0 − µ0) (m1 + m0 − 2µ0) − s0 = − (m1 − µ1) (m0 − µ1) (m1 + m0 − 2µ1) − s1.

Since m1 + m0 = C1, we have

(C1 − m0 − µ0) (m0 − µ0) (C1 − 2µ0) + s0 = (C1 − m0 − µ1) (m0 − µ1) (C1 − 2µ1) + s1,
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that is,

−

(
m2

0 − µ2
0

)
(C1 − 2µ0) + (m0 − µ0) C1 (C1 − 2µ0) + s0

= −

(
m2

0 − µ2
1

)
(C1 − 2µ1) + (m0 − µ1) C1 (C1 − 2µ1) + s1.

Moreover, we have

−2m2
0 (µ1 − µ0) + 2C1 (µ1 − µ0) m0

= µ2
1 (C1 − 2µ1) − µ2

0 (C1 − 2µ0) − µ1C1 (C1 − 2µ1) + µ0C1 (C1 − 2µ0) + s1 − s0

=

(
µ2

1 − µ2
0

)
C1 − 2

(
µ3

1 − µ3
0

)
− (µ1 − µ0) C2

1 + 2
(
µ2

1 − µ2
0

)
C1 + s1 − s0.

Since (µ1 − µ0) > 0, we have

−2m2
0 + 2C1m0 = 3 (µ1 + µ0) C1 − 2

µ3
1 − µ3

0

µ1 − µ0
− C2

1 +
s1 − s0

µ1 − µ0
.

Finally, we have

−2
(

m0 −
1
2

C1

)2

+ C2 = 0

where

C2 =
3
2

C2
1 − 3 (µ1 + µ0) C1 + 2

µ3
1 − µ3

0

µ1 − µ0
−

s1 − s0

µ1 − µ0

=
3
2

[C1 − (µ1 + µ0)]2
−

3
2

(µ1 + µ0)
2
+ 2

(
µ2

1 + µ1µ0 + µ2
0

)
−

s1 − s0

µ1 − µ0

=
3
2

[C1 − (µ1 + µ0)]2
+

1
2

(µ1 − µ0)
2
−

s1 − s0

µ1 − µ0

=
1
2

(µ1 − µ0)
2
+

3
2

(
v1 − v0

µ1 − µ0

)2

−
s1 − s0

µ1 − µ0

s j = E
[(

Y − µ j
)3

|X = j
]

= E
[
Y 3

|X = j
]

− 3E
[
Y 2

|X = j
]
µ j + 3µ3

j − µ3
j

= E
[
Y 3

|X = j
]

− 3E
[
Y 2

|X = j
]
µ j + 2µ3

j

≡ κ j − 3υ jµ j + 2µ3
j ,

C2 =
3
2

C2
1 − 3 (µ1 + µ0) C1 + 2

µ3
1 − µ3

0

µ1 − µ0
−

s1 − s0

µ1 − µ0

=
3
2

C2
1 − 3 (µ1 + µ0) C1 + 2

µ3
1 − µ3

0

µ1 − µ0
−

κ1 − 3υ1µ1 + 2µ3
1 −

(
κ0 − 3υ0µ0 + 2µ3

0

)
µ1 − µ0

=
3
2

C2
1 − 3 (µ1 + µ0) C1 −

κ1 − 3υ1µ1 − (κ0 − 3υ0µ0)

µ1 − µ0

=
3
2

C2
1 − 3 (µ1 + µ0)

υ1 − υ0

µ1 − µ0
+

3υ1µ1 − 3υ0µ0

µ1 − µ0
−

κ1 − κ0

µ1 − µ0

=
3
2

(
υ1 − υ0

µ1 − µ0

)2

− 3
υ0µ1 − υ1µ0

µ1 − µ0
−

κ1 − κ0

µ1 − µ0
.

Notice that we also have

−2
(

m1 −
1
2

C1

)2

+ C2 = 0,
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which implies that m1 and m0 are two roots of this quadratic equation. Since m1 > m0, we have

m0 =
1
2

C1 −

√
1
2

C2, m1 =
1
2

C1 +

√
1
2

C2.

After we have identified m0 and m1, p and q (or fX∗|X ) are identified from Eq. (A.2), and the density fη(or fY |X∗ ) is
also identified from Eq. (A.3). Thus, we have identified the latent densities fY |X∗ and fX∗|X from the observed density
fY |X . �
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