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This paper considers identification and estimation of a general nonlinear errors-in-variables (EIV) model
using two samples. Both samples consist of a dependent variable, some error-free covariates, and an
error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily
correlated with the latent true values, and neither sample contains an accurate measurement of the corre-
sponding true variable. We assume that the regression model of interest – the conditional distribution of the
dependent variable given the latent true covariate and the error-free covariates – is the same in both samples,
but the distributions of the latent true covariates vary with observed error-free discrete covariates. We first
show that the general latent nonlinear model is nonparametrically identified using the two samples when
both could have nonclassical errors, without either instrumental variables or independence between the two
samples. When the two samples are independent and the nonlinear regression model is parameterised, we
propose sieve quasi maximum likelihood estimation (Q-MLE) for the parameter of interest, and establish
its root-n consistency and asymptotic normality under possible misspecification, and its semiparametric
efficiency under correct specification, with easily estimated standard errors. A Monte Carlo simulation and
a data application are presented to show the power of the approach.

Keywords: data combination; measurement error; misspecified parametric latent model; nonclassi-
cal measurement error; nonlinear errors-in-variables model; nonparametric identification; sieve quasi
likelihood

1. Introduction

Measurement error problems are frequently encountered by researchers conducting empirical
studies in the social and natural sciences. A measurement error is called classical if it is indepen-
dent of the latent true values; otherwise, it is called nonclassical. There have been many studies
on identification and estimation of linear, nonlinear, and even nonparametric models with clas-
sical measurement errors, see, e.g. (Cheng and Van Ness 1999; Carroll, Ruppert, Stefanski, and
Crainiceanu 2006) for detailed reviews. However, numerous validation studies in survey data sets
indicate that the errors in self-reported variables, such as earnings, are typically correlated with
the true values, and hence, are nonclassical (Bound, Brown, and Mathiowetz 2001).

*Corresponding author. Email: carroll@stat.tamu.edu

ISSN 1048-5252 print/ISSN 1029-0311 online
© American Statistical Association and Taylor & Francis 2010
DOI: 10.1080/10485250902874688
http://www.informaworld.com



380 R.J. Carroll et al.

In this work, we study the identification and estimation of possibly nonclassical, nonlinear
measurement error models when (a) there are no validation data, i.e. no data where the error-prone
covariate is known exactly, (b) there is no knowledge of the measurement error distribution,; and (c)
there is no instrumental variable. As far as we know, this is the first paper to allow identification
and estimation in the absence of knowledge about the measurement error distribution, of an
instrumental variable and of validation data. Of course, some assumptions must be made, and our
assumptions include that (i) there are two data sets with the same distribution for the response given
the true covariates; (ii) the measurement error is nondifferential; (iii) there is a discrete-valued
covariate that is not exogenous and that the distribution of the error-prone covariate given the
discrete covariate differs in the two data sets, and (iv) some linear integral operators are invertible.

1.1. Identification

In Section 2, we show that by combining two samples the distributions of the latent nonlinear
regression model, the measurement error model, and the model for the error-prone covariate are
all nonparametrically identified. We assume that each sample consists of a dependent variable
(Y ), some error-free covariates (W ), and only one measurement of the error-ridden covariate (X).
In both samples, the measurement error has an unknown distribution and could be arbitrarily
correlated with the latent true value (X∗), and neither sample contains an accurate measurement
of the corresponding true variable. We assume that the latent model of interest, fY |X∗,W , the
conditional distribution of the dependent variable given the latent true covariate and the error-free
covariates, is the same in both samples, but the marginal distributions of the latent true variables
differ across some contrasting subsamples indexed by W , which may be different geographic
areas, age groups, or other observed demographic characteristics.

There are currently three broad identification methods for general nonparametric nonlinear
errors-in-variables (EIV) models. The first imposes parametric restrictions on measurement error
distributions (Fan 1991; Liang, Härdle, and Carroll 1999; Hong and Tamer 2003). The second
assumes the existence of instrumental variables (IV), such as a repeated measurement of the
mismeasured covariates, that do not enter the latent model of interest but do contain information
on how to recover features of latent true variables (Hausman, Ichimura, Newey, and Powell 1991;
Li and Vuong 1998; Li 2002; Carroll, Ruppert, Crainiceanu, Tosteson, and Karagas 2004, Wang
2004; Zinde-Walsh 2007; Hu and Schennach 2008). The third approach is to combine two samples
in which one sample also contains an accurate measurement of the latent true variable (Carroll
and Wand 1991; Lee and Sepanski 1995; Chen, Hong, and Tamer 2005). Additional references
and discussions about these existing methods can be found in a recent survey by Chen, Hong, and
Nekipelov (2007).

Our identification strategy differs from all the existing ones. In particular, we do not require
an IV excluded from the latent model of interest, and all the variables in our samples may be
included in the model. Also, neither of our two samples contains an accurate measurement of the
latent true variable.

1.2. Estimation and inference

Our identification result allows for fully nonparametric EIV models and also allows for two
correlated samples. However, in most empirical applications, the latent models of interest are
parametric nonlinear models, and the two samples are regarded as independent. In Section 3, we
tackle the question of how to do practical estimation and inference in the case that the distribution
of the response given the true predictors is specified parametrically (could be misspecified),
but that the measurement error model and the model for the error-prone covariate are
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nonparametric. We propose a two-sample sieve quasi-maximum likelihood estimator (Q-MLE) of
all the unknown finite- and infinite-dimensional model parameters, and establish its consistency.
Under possible misspecification of the latent parametric model, we establish the root-n asymptotic
normality of the sieve Q-MLE of the finite-dimensional parameters, as well as its semiparametric
efficiency under correct specification. Easily computed standard errors are also provided.

1.3. Outline

Section 2 establishes the nonparametric identification of the latent model of interest, fY |X∗,W , using
two samples with (possibly) nonclassical errors. Section 3 presents the two-sample sieve Q-MLE
for a possibly misspecified parametric latent model. Section 4 provides a Monte Carlo study, and
Section 5 contains an empirical illustration. In Section 4, we describe the development of a device
for checking the assumption that the regression model is the same in the two samples, based on the
work of Huang, Stefanski, and Davidian (2006). We apply this method to the empirical example
in Section 5, showing that the assumptions seem reasonable in the context. The appendix contains
technical arguments.

A long version of this paper is available at http://www.stat.tamu.edu/ftp/pub/rjcarroll/2009.
papers.directory/CCH_Long.pdf. It contains additional identification results for the case of
discrete random variables, a second empirical example and proofs of the asymptotic normality of
our sieve estimator.

2. Nonparametric identification

In this paper, fA|B denotes the conditional density of A given B, while fA denotes the density of
A. We assume the existence of two samples. One sample (sometimes called a primary sample) is a
random sample from (X, W, Y ), in which X is a mismeasured X∗, and another sample (sometimes
called an auxiliary sample) is a random sample from (Xa, Wa, Ya), in which Xa is a mismeasured
X∗

a . These two samples could be correlated and could have different joint distributions.
We are interested in identifying a latent probability model: fY |X∗,W (y|x∗, w), in which Y is

a continuous dependent variable, X∗ is an unobserved (latent) continuous regressor subject to a
possibly nonclassical measurement error, X is observed in place of X∗, and W is an accurately
measured discrete covariate, e.g. subpopulations with different demographic characteristics, such
as marital status, race, gender, profession, and geographic location.

Suppose the supports of X, X∗, Y, and W are X ⊆ R, X ∗ ⊆ R, Y ⊆ R, and W =
{w1, w2, . . . , wJ } with J ≥ 2, respectively. We assume the following:

Assumption 2.1 (i) fY,X,X∗,W (y, x, x∗, w) is positive, bounded on its support Y × X × X ∗ ×
W , and is continuous in (y, x, x∗) ∈ Y × X × X ∗; (ii) fX|X∗,W,Y (x|x∗, w, y) = fX|X∗(x|x∗) on
X × X ∗ × W × Y .

Assumption 2.2 (i) fYa,Xa,X∗
a ,Wa

(y, x, x∗, w) is positive, bounded on its support Y × Xa × X ∗ ×
W , and is continuous in (y, x, x∗) ∈ Y × Xa × X ∗; (ii) fXa |X∗

a ,Wa,Ya
(x|x∗, w, y) = fXa |X∗

a
(x|x∗)

on Xa × X ∗ × W × Y .

Assumptions 2.1(ii) and 2.2(ii) assume that measurement errors in both samples are nondiffer-
ential. In such cases, X and Xa are surrogates for X∗ and X∗

a , respectively.

Assumption 2.3 (i) fYa |X∗
a ,Wa

(y|x∗, w) = fY |X∗,W (y|x∗, w) on Y × X ∗ × W; (ii) fY |X∗,W=w

changes with w.
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Assumption 2.3(i) assumes that the latent structural probability model is the same in both
samples, which is a reasonable stability assumption.

Assumption 2.4 (i)
∫

fXa |X∗
a
(x|x∗)h(x∗) dx∗ = 0 for all x ∈ X for all bounded function h

implies that h ≡ 0; (ii) Assumption A.1 in the appendix holds.

Assumption 2.4(i) says that the measurement error distribution of Xa given X∗
a is not patholog-

ical, which is commonly imposed in general deconvolution problems (Bissantz, Hohage, Munk,
and Ruymgaart 2007). Assumption 2.4(i) is the bounded completeness of the conditional density
fX∗

a |Xa
(Mattner 1993). When Xa and X∗

a are discrete, Assumption 2.4(i) requires that the support
of Xa is not smaller than that of X∗

a .
Define

k
ij

X∗
a
(x∗) ≡ fX∗

a |Wj
(x∗)fX∗|Wi

(x∗)
fX∗|Wj

(x∗)fX∗
a |Wi

(x∗)
for x∗ ∈ X ∗. (1)

Assumption 2.5 For any x∗
1 �= x∗

2 , there exist i, j ∈ {1, 2, . . . , J }, such that k
ij

X∗
a
(x∗

1 ) �= k
ij

X∗
a
(x∗

2 )

and supx∗∈X ∗ k
ij

X∗
a
(x∗) < ∞.

Note that the subsets W1, W2, . . . , WJ ⊂ W do not need to be collectively exhaustive. We
may only consider those subsets in W in which Assumption 2.5 holds. Since the indices i, j are
exchangeable, the condition supx∗∈X ∗ k

ij

X∗
a
(x∗) < ∞ may be replaced by infx∗∈X ∗ k

ij

X∗
a
(x∗) > 0.

Assumption 2.5 implies that the two samples are not random samples from the same population,
nor are they derived by splitting a single random sample into two. In addition, the distributions
of X∗ given W and X∗

a given Wa are not identical.

Assumption 2.6 One of the following holds for all x∗ ∈ X ∗ : (i) (mean)
∫

xfXa |X∗
a
(x|x∗) dx =

x∗ or (ii) (mode) arg max
x

fXa |X∗
a
(x|x∗) = x∗ or (iii) (quantile) there is an γ ∈ (0, 1) such that

inf{z : ∫ z

−∞ fXa |X∗
a
(x|x∗) dx ≥ γ } = x∗.

Assumption 2.6 says that the surrogate Xa is targeted for the true X∗
a . Specifically, either the

mean, mode or a fixed quantile of the distribution of Xa given X∗
a is equal to X∗

a . This condition
is not required in the primary data set.

We obtain the following nonparametric identification result.

Theorem 2.1 Suppose Assumptions 2.1–2.6 hold, and the Assumption A.1 in the appendix also
holds. Then, the densities fX,W,Y and fXa,Wa,Ya

uniquely determine fY |X∗,W , fX|X∗ , fXa |X∗
a
, fX∗|Wj

and fX∗
a |Wj

.

The identification theorem does not require that the two samples are independent of each other.

2.1. A simple example

More complex examples, both simulated and real data-based, are given in Sections 4 and 5.
Suppose that W and Wa are binary. Suppose further that given (X∗, W), Y is normally distributed
with mean β0 + β1X

∗ and variance σ 2
ε , and also in the auxiliary sample. This is Assumption 2.3.

Next suppose that measurement error is nondifferential (Assumptions 2.1(ii) and 2.2(ii)), and
that given (X∗, W), the observed surrogate X has mean X∗ and variance σ 2

u , while in the auxiliary
sample, Xa given (X∗

a, Wa) has mean X∗
a and variance σ 2

ua , i.e. different measurement error
variances. This satisfies Assumption 2.6 with mean ‘targeting’ in the auxiliary data set.
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Finally, suppose that X∗ given W has mean μx independent of W , with variance σ 2
x , but that

X∗
a given Wa has mean α0 + α1W and variance σ 2

xa . This satisfies Assumption 2.5 if either α1 �= 0
or σ 2

x �= σ 2
xa .

Theorem 2.1 now asserts that if the measurement error does not have a pathological distribution,
Assumption 2.4, then all the parameters listed are identified from the observed data, as are the
unspecified distributions. For example, if α1 �= 0, E(Ya|Wa = 1) − E(Ya|Wa = 0) = β1α1 and
E(Xa|Wa = 1) − E(Xa|Wa = 0) = α1, so that β1 is readily identified.

2.2. What does nonparametric identification tell us?

We believe that our identification result is of real practical importance, see below.
Under our assumptions, the point is that all aspects of the problem can be identified: regression

model, measurement error model, and latent variable model. Crucially, this says that whatever
one’s favorite paradigm, be it parametric, semiparametric, or nonparametric, be it Bayesian or
frequentist, consistent estimation is possible. If one were Bayesian, then our result suggests that
inference will not depend crucially upon the prior.

This opens up many different avenues for the construction of estimators of the regression
function. At the most parametric level, it assures us that fully parametric models are identified and
likelihood inference can proceed in the usual fashion. The result also tells us that if the regression
model is semiparametric, but the measurement error model and the latent variable model are
parametric, then we can still expect consistent and efficient estimation from semiparametric profile
approaches.

In Section 3, we pursue one of the many variants of estimation and inference that our identifi-
cation result makes possible. Specifically, in our theory we consider the case that the regression
model is specified parametrically, but the measurement error and latent variable models are non-
parametric. However, the power of the identification result is that we can do many other things.
For example, in one of the empirical illustrations described in Section 5.1, we consider a paramet-
ric mean regression function but with the distribution of the deviations from the mean modeled
nonparametrically: the identification result says that this approach too is consistent.

3. Sieve quasi likelihood estimation

Our identification result is very general and does not require the two samples to be independent.
Nevertheless, for many applications, it is reasonable to assume that there are two random samples
{Xi, Wi, Yi}ni=1 and {Xaj , Waj , Yaj }na

j=1, that are mutually independent.
Theorem 2.1 says that the densities fY |X∗,W , fX|X∗ , fX∗|W , fXa |X∗

a
, and fX∗

a |Wa
are nonpara-

metrically identified under Assumptions 2.1–2.6. Nevertheless, in empirical studies, we typically
have either a semiparametric or a parametric specification of the conditional density fY |X∗,W as
the model of interest. In this section, we treat the other densities fX|X∗ , fX∗|W , fXa |X∗

a
, and fX∗

a |Wa

as unknown nuisance functions, but consider a parametrically specified conditional density of Y

given (X∗, W):

{g(y|x∗, w; θ) : θ ∈ �}, � a compact subset of R
dθ , 1 ≤ dθ < ∞.

Define

θ0 ≡ arg max
θ∈�

∫
log{g(y|x∗, w; θ)}fY |X∗,W (y|x∗, w) dy.

The latent parametric model is correctly specified if g(y|x∗, w; θ0) = fY |X∗,W (y|x∗, w), and θ0 is
called true parameter value; otherwise it is misspecified, and θ0 is called the pseudo-true parameter.



384 R.J. Carroll et al.

Let α0 ≡ (θT
0 , f01, f01a, f02, f02a)

T ≡ (θT
0 , fX|X∗ , fXa |X∗

a
, fX∗|W, fX∗

a |Wa
)T denote the true

parameter values, in which θ0 is really ‘pseudo-true’ when the parametric model g(y|x∗, w; θ)

is incorrectly specified for the unknown true density fY |X∗,W . We first introduce a sieve MLE
estimator α̂ for α0, and in later subsections establish the asymptotic normality of θ̂ .

3.1. Sieve likelihood under possible misspecification

Briefly, in the sieve method, we model the nonparametric densities for X given X∗ and X∗ given
W via finite dimensional parametric representations, where this dimension increases with the
sample size. A similar thing is done in the auxiliary sample. A good analogy is nonparametric
regression, where the mean function is often modeled by a B-spline basis with the number of
knots increasing with the sample size.

Of course, we need to impose some mild smoothness restrictions on the unknown densities.
To do this, for concreteness we consider the widely used Hölder space of functions. Let ξ =
(ξ1, ξ2)

T ∈ R
2, a = (a1, a2)

T, and ∇ah(ξ) ≡ (∂a1+a2h(ξ1, ξ2))/∂ξ
a1
1 ∂ξ

a2
2 denote the (a1 + a2)th

derivative. Let ‖ · ‖E denote the Euclidean norm. Let V ⊆ R
2 and γ be the largest integer satisfying

γ > γ . The Hölder space �γ (V) of order γ > 0 is a space of functions h : V 
→ R, such that the
first γ derivatives are continuous and bounded, and the γ th derivative is Hölder continuous with the
exponent γ − γ ∈ (0, 1]. We define a Hölder ball as �

γ
c (V) ≡ {h ∈ �γ (V) : ‖h‖�γ ≤ c < ∞},

in which

‖h‖�γ ≡ max
a1+a2≤γ

sup
ξ

|∇ah(ξ)| + max
a1+a2=γ

sup
ξ �=ξ ′

|∇ah(ξ) − ∇ah(ξ ′)|
(‖ξ − ξ ′‖E)γ−γ

< ∞.

The space of possible densities of X given X∗ and of Xa given X∗
a are assumed to be in

F1 = {f1(·|·) ∈ �γ1
c (X × X ∗) : f1(·|x∗) is a positive density function for all x∗ ∈ X ∗},

F1a =
{

f1a(·|·) ∈ �
γ1a
c (Xa × X ∗) : Assumption 2.6 holds,

f1a(·|x∗) is a positive density function for all x∗ ∈ X ∗

}
,

respectively. Also, the densities of X∗ given W and of X∗
a given Wa are assumed to be in

F2 =
{

f2(·|w), f2a(·|w) ∈ �
γ2
c (X ∗) : Assumption 2.5 holds,

f2(·|w), f2a(·|w) are positive density functions for all w ∈ W

}
.

We introduce a dummy random variable S, with S = 1 indicating the primary sample and S = 0
indicating the auxiliary sample. Then we have the combined sample{

ZT
i ≡ (SiXi, SiWi, SiYi, Si, (1 − Si)Xi, (1 − Si)Wi, (1 − Si)Yi)

}n+na

i=1

such that {Xi, Wi, Yi, Si = 1}ni=1 is the primary sample and {Xi, Wi, Yi, Si = 0}n+na

i=n+1 is the aux-
iliary sample. Denote p ≡ Pr(Si = 1) ∈ (0, 1). Denote A = � × F1 × F1a × F2 × F2 as the
parameter space. The log-joint likelihood for α ≡ (θT, f1, f1a, f2, f2a)

T ∈ A is given by

n+na∑
i=1

{Si log[p × f (Xi, Wi, Yi |Si = 1; α)] + (1 − Si) log[(1 − p) × f (Xi, Wi, Yi |Si = 0; α)]}

= n log(p) + na log{(1 − p)} +
n+na∑
i=1

�(Zi; α),
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in which

�(Zi; α) ≡ Si�p(Zi; θ, f1, f2) + (1 − Si)�a(Zi; f1a, f2a),

�p(Zi; θ, f1, f2) = log

{∫
f1(Xi |x∗)g(Yi |x∗, Wi; θ)f2(x

∗|Wi) dx∗
}

+ log fW(Wi),

�a(Zi; f1a, f2a) = log

{∫
f1a(Xi |x∗

a )g(Yi |x∗
a , Wi; θ)f2a(x

∗
a |Wi) dx∗

a

}
+ log{fWa

(Wi)}.

Let E(·) denote the expectation with respect to the underlying true data generating process for Zi .
To stress that our combined data set consists of two samples, sometimes we let Zpi = (Xi, Wi, Yi)

T

denote the ith observation in the primary data set, and Zaj = (Xaj , Waj , Yaj )
T denote j th

observation in the auxiliary data set. Then

α0 = arg sup
α∈A

E[�(Zi; α)] = arg sup
α∈A

[pE{�p(Zpi; θ, f1, f2)} + (1 − p)E{�a(Zaj ; f1a, f2a)}].

Let An = � × Fn
1 × Fn

1a × Fn
2 × Fn

2 be a sieve space for A = � × F1 × F1a × F2 × F2,
which is a sequence of approximating spaces that are dense in A under some pseudo-metric. The
two-sample sieve quasi- MLE α̂n = (θ̂T, f̂1, f̂1a, f̂2, f̂2a)

T ∈ An for α0 ∈ A is defined as

α̂n = arg max
α∈An

n+na∑
i=1

�(Zi; α) = arg max
α∈An

⎡⎣ n∑
i=1

�p(Zpi; θ, f1, f2) +
na∑

j=1

�a(Zaj ; f1a, f2a)

⎤⎦.

We shall use finite-dimensional sieve spaces since they are easier to implement. For j = 1, 1a, 2,
let p

kj,n

j (·) be a kj,n × 1−vector of known basis functions, such as power series, splines, Fourier
series, wavelets, Hermite polynomials, etc. In the simulation study and real data examples we
have used linear sieves to directly approximate unknown densities:

Fn
1 =

{
f1(x|x∗) = p

k1,n

1 (x, x∗)Tβ1 ∈ F1

}
, Fn

1a =
{
f1a(xa|x∗

a ) = p
k1a,n

1a (xa, x
∗
a )Tβ1a ∈ F1a

}
,

Fn
2 =

⎧⎨⎩f2(x
∗|w) =

J∑
j=1

I (w = wj)p
k2,n

2 (x∗)Tβ2j ∈ F2

⎫⎬⎭ ,

as well as linear sieves to approximate square root of densities:

Fn
1 = {f1(x|x∗) = [pk1,n

1 (x, x∗)Tβ1]2 ∈ F1},
Fn

1a =
{
f1a(xa|x∗

a ) = [pk1a,n

1a (xa, x
∗
a )Tβ1a]2 ∈ F1a

}
,

Fn
2 =

⎧⎨⎩f2(x
∗|w) =

⎡⎣ J∑
j=1

I (w = wj)p
k2,n

2 (x∗)Tβ2j

⎤⎦2

∈ F2

⎫⎬⎭.

The results of our simulation study and real data examples are not sensitive to these different
choices of sieves spaces. See Section 3.5 for detailed discussion of implementation.

Consistency of the nonparametric components: Here we impose some conditions that imply
consistency of the sieve estimator α̂n = (θ̂T, f̂1, f̂1a, f̂2, f̂2a)

T.

Assumption 3.1 (i) All the assumptions in Theorem 2.1 hold; (ii) fX|X∗(·|·) ∈ F1 with
γ1 > 1; (iii) fXa |X∗

a
(·|·) ∈ F1a with γ1a > 1; (iv) fX∗|W(·|w), fX∗

a |Wa
(·|w) ∈ F2 with γ2 > 1/2

for all w ∈ W .
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Assumption 3.2 (i) {Xi, Wi, Yi}ni=1 and {Xaj , Waj , Yaj }na

j=1 are i.i.d and independent of each
other. limn→∞ n/(n + na) = p ∈ (0, 1); (ii) g(y|x∗, w; θ) is continuous in θ ∈ �, and �

is a compact subset of R
dθ ; (iii) θ0 ∈ � is the unique maximiser of

∫ [log g(y|x∗, w; θ)]
fY |X∗,W (y|x∗, w) dy over θ ∈ �.

Define a norm on A as: ‖α‖s = ‖θ‖E + ‖f1‖∞,ω1 + ‖f1a‖∞,ω1a
+ ‖f2‖∞,ω2 + ‖f2a‖∞,ω2 in

which ‖h‖∞,ωj
≡ supξ |h(ξ)ωj (ξ)| with ωj(ξ) = (1 + ‖ξ‖2

E)−ςj /2, ςj > 0 for j = 1, 1a, 2. We
assume each of X , Xa , X ∗ is R, and

Assumption 3.3 (i) −∞ < E[�(Zi; α0)] < ∞, E[�(Zi; α)] is upper semicontinuous on A
under the metric ‖ · ‖s; (ii) there is a finite κ > 0 and a random variable U(Zi) with E{U(Zi)} <

∞ such that supα∈An:‖α−α0‖s≤δ |�(Zi; α) − �(Zi; α0)| ≤ δκU(Zi).

Assumption 3.4 (i) p
k2,n

2 (·) is a k2,n × 1 – vector of spline wavelet basis functions on R, and for

j = 1, 1a, p
kj,n

j (·, ·) is a kj,n × 1 – vector of tensor product of spline wavelet basis functions on
R

2; (ii) min{k1,n, k1a,n, k2,n} → ∞ and max{k1,n, k1a,n, k2,n}/n → 0.

The following consistency lemma is a direct application of (Chen 2007, Theorem 3.1 (or
Remark 3.3)); hence, we omit its proof.

Lemma 3.1 Under Assumptions 3.1–3.4, we have ‖α̂n − α0‖s = op(1).

3.2. Asymptotic normality under possible misspecification

We show that the two-sample sieve quasi MLE θ̂n is asymptotically normally distributed around
θ0, regardless of whether the latent parametric model g(y|x∗, w; θ0) is correctly specified or not.
The technical details are given in a longer version of the paper available from the first author.

Theorem 3.1 Suppose that Assumptions of Lemma 3.1, and Assumptions A.2–A.10 in the

Appendix hold. Then
√

n + na(θ̂n − θ0)
d→ N(0, V −1∗ I∗V −1∗ ), with V∗ defined in Equation (A9)

and I∗ given by Equation (A11) in the appendix.

3.3. Semiparametric efficiency under correct specification

When g(y|x∗, w; θ0) correctly specifies the true unknown conditional density fY |X∗,W (y|x∗, w),
then I∗ = V∗ becomes the semiparametric information bound for θ0, and our above estimator
θ̂n becomes semiparametrically efficient for θ0. Specifically, by combining our Theorem 3.1 and
(Shen 1997, Theorem 4), we immediately obtain the following:

Theorem 3.2 Suppose that g(y|x∗, w; θ0) = fY |X∗,W (y|x∗, w), and that all the assumptions of
Theorem 3.1 hold. Then the sieve MLE θ̂n is semiparametrically efficient, and

√
n + na(θ̂n −

θ0)
d→ N(0, I−1∗ ).

3.4. Estimation of standard error and confidence region

There are two ways of consistently estimating the asymptotic covariance matrix of the two-sample
sieve Q-MLE θ̂n. The first is to use the definitions of V∗ and I∗ (see Equations (A9) and (A11) in the
appendix), but to replace expectations by sample averages and to replace unknown parameters by
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their sieve estimates. This is asymptotically equivalent to using the sieve Q-MLE approximation
as if it were a parametric model. Applying Theorem 5.1 of (Ai and Chen 2007) gives a consistent
estimate of the asymptotic variance of θ̂n. Alternatively, applying Theorem B of (Chen, Linton,
and Van Keilegom 2003), we know that the standard bootstrap also provides consistent estimates
of confidence regions. We implemented both in the real data example.

3.5. Computation

There are many ways to compute the sieve estimators, and many ways to parameterise them.
In our original implementations in the simulation study and the real data examples, we simply
took a finite-dimensional linear sieve basis to directly approximate the densities without impos-
ing constraints. In this version, for the simulation and the first real-data example, we use the
linear sieve to approximate squared root of densities and we impose all the constraints. It is
nice to see that the results are virtually the same for our sieve MLEs using these two kinds
of sieves.

Here is a parameterisation that adheres to the ideas that densities are positive and integrate to
one, and also that there is mean targeting. With W discrete, to estimate fX∗|W(x∗|W) we used

the approximation fX∗|W(x∗|W = w) = {∑k2,n

k=1 γk(w)qk(x
∗)}2, where qk(x

∗) is an orthonormal
series with

∫
qk(x)qj (x) dx = δjk , the Dirac delta function. This result is a density function as long

as
∑k2,n

k=1 γ 2
k (w) = 1, a restriction that is easily handled. A similar form is used for fX∗

a |W(x∗
a |W).

To estimate fX,X∗(x, x∗), we used the approximation fX,X∗(x, x∗) = {∑Jn

j=1

∑Kn

k=1 γjkpj (x −
x∗)qk(x

∗)}2, where again the series {pj (·)} and {qk(·)} are orthonormal. The result is easily
seen to be a density function if

∑Jn

j=1

∑Kn

k=1 γ 2
jk = 1. This means that fX∗(x∗) =∑Jn

j=1

∑Kn

k=1∑Kn

�=1 γjkγj�qk(x
∗)q�(x

∗), from which fX|X∗(x|x∗) is readily derived.
More difficult is the targeting Assumption 2.6, that is applied to (Xa, X

∗
a). Here we

use the same form for the density as for that of (X, X∗), and we consider mean tar-
geting, i.e. E(Xa|X∗

a) = X∗
a . Let the Hermite orthogonal series be defined as H0(x) = 1,

H1(x) = 2x and Hn=1(x) = 2xH)n(x) − 2nHn−1(x), and define pn(x) = Hn(x) exp(−x2/2)

(2nn!π1/2)−1/2. Then {pn(·)} is an orthogonal series of the type required, with the
property that

∫
xpn(s)pm(x) dx = {(n + 1)/2}1/2I (m = n + 1) + (n/2)1/2I (m = n − 1). Let

Q = {q1(x
∗
a ), . . . , qKn

(x∗
a )}�, P = {p1(xa − x∗

a ), . . . , pJn
(xa − x∗

a )}�, and let B = (γjk). Then
f (xa, x

∗
a ) = (P �BQ)2 = Q�B�PP �BQ. We require for mean targeting that, for every x∗

a ,
0 = ∫ (xa − x∗

a )f (xa − x∗
a ) dxa , which means 0 = B� ∫ (xa − x∗

a )PP � dxaB. However, the lat-
ter is B�SB, where S has all zeros except that its (k, k + 1) and (k + 1, k) components equal
(k + 1)1/2 for k = 1, . . . , Kn − 1. The restriction 0 = B�SB is readily achieved, e.g. for Jn = 5,
Kn = 4, set B∗ = diag(1, 0, 1, 0, 1)B, then B�∗ SB∗ = 0 by algebra.

In applications, the sieve MLE method needs to choose the order of the sieve terms. Our
experience is that the estimation of the finite-dimensional parameters θ are not very sensitive to
the order of sieves. Of course if one cares about estimation of nonparametric density functions,
then one could apply either the AIC or the generalised cross-validation.

4. Simulation and comparisons

4.1. The simulation study

This is the first paper to show nonparametric identifiability in the context of two samples, and the
first to derive an estimator of the parametric part with no assumptions made about the distribution
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of the measurement error or the latent variable. In this section, we are going to compare five
estimators, as follows.

• The naive parametric model that ignores measurement error entirely.
• Our sieve MLE with no assumptions made about the distribution of the measurement error or

the latent variable.
• A correctly specified fully parametric model for all components, with a parametric MLE.
• A fully parametric model with the measurement error model misspecified.
• A fully parametric model with the measurement error model misspecified and the latent variable

model also misspecified.

The simulation will give some numerical experience into the cost of being nonparametric, and
also the gain in robustness for being nonparametric.

The true response model is fY |X∗,W (y|x∗, w; θ0) = φ{y − m(x∗, w; θ0)}, where φ(·) is the
standard normal density, θ = (θ1, θ2, θ3)

T, θ0 = (1, 1, 1)T, and

m(x∗, w; θ) = θ1x
∗ + θ2x

∗w + θ3(x
∗2w + x∗w2)/2,

in which w ∈ {−1, 0, 1}. We have two independent random samples, {Xi, Wi, Yi}ni=1 and
{Xaj , Waj , Yaj }na

j=1, with a larger sample size (n = 1500, na = 1000) and with a smaller sam-
ple size (n = 300, na = 200). In the primary sample, we let Pr(W = 1) = Pr(W = 0) = 1/3,
the unknown true conditional density fX∗|W be the standard normal density φ(x∗), and the mis-
measured value X be X = 0.1X∗ + 0.6e−0.1X∗

ε with ε ∼ N(0, 1), i.e. multiplicative measurement
error. In the auxiliary sample, we generate Wa in the same way as that for W in the primary sample,
and the unknown true conditional density fX∗

a |Wa
according to

fX∗
a |Wa

(x∗
a |wa) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ(x∗
a ) for wa = −1,

1

0.5
φ

(
1

0.5
x∗

a

)
for wa = 0,

1

0.95
φ

(
1

0.95
x∗

a − 0.25

)
for wa = 1.

We let the mismeasured value Xa be Xa = X∗
a + 0.5e−0.1X∗

a ν with ν ∼ N(0, 1), which implies that
x∗

a is the mode of the conditional density fXa |X∗
a
(·|x∗

a ). The simulation was repeated 1000 times.

We used the simple sieve expression [pk1,n

1 (x1, x2)
Tβ1]2 = [∑Jn

j=0

∑Kn

k=0 γjkpj (x1 −
x2)qk(x2)]2 to approximate fX|X∗(x1|x2) and fXa |X∗

a
(x1|x2), with k1,n = (Jn + 1)(Kn + 1), Jn =

5, Kn = 3. We also use [pk2,n

2 (x∗)Tβ2(w)]2 = [∑k2,n

k=1γk(w)qk(x
∗)]2 to approximate fX∗|Wj =w and

fX∗
a |Wj =w with Wj = −1, 0, 1 and k2,n = 4. The sieve bases {pj (·)} and {qk(·)} are Hermite poly-

nomials bases, and we also impose the integration to one and the mean targeting constraints as
described in Section 3.5.

For the parametric model with incorrectly specified measurement error distribution, we
computed the parametric MLE when it was assumed that the measurement errors in the pri-
mary and auxiliary samples were homoscedastic with standard deviations 0.6079 and 0.6202,
respectively. For the parametric model with measurement error and latent variable models misspec-
ified, we did the following. Define (γ, γ1a, γ2a, γ3a, γ4a) = (1.0, 1.0, 2.0, 1.05, 0.25), and define
ϕ(x) = exp{x − exp(x)}. Then set fX∗|W(X∗|W ; γ ) = γ ϕ{γX∗}, and for Wa = (−1, 0, 1), set
fX∗

a |Wa
(X∗

a |Wa; γa) = γ1aϕ(γ1aX
∗
a), γ2aϕ(γ2aX

∗
a) and γ3aϕ(γ3aX

∗
a − γ4a), respectively.

The simulation results are shown in Tables 1 and 2, illustrating larger and smaller sample sizes,
and show what one might expect. First, accounting for measurement error matters: the 2-sample
sieve MLE has a much smaller bias and MSE than the estimator ignoring measurement error.
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Table 1. Simulation results (n = 1500, na = 1000, reps = 1000).

True value of θ θ1 = 1 θ2 = 1 θ3 = 1

Ignoring measurement error
Mean estimate 0.179 0.305 0.579
Standard error 0.084 0.118 0.195
Root MSE 0.825 0.705 0.464

2-sample sieve MLE
Mean estimate 1.021 1.013 1.007
Standard error 0.209 0.182 0.200
Root MSE 0.210 0.182 0.200

Correctly specified parametric model
Mean estimate 0.921 1.055 0.968
Standard error 0.053 0.068 0.087
Root MSE 0.095 0.088 0.093

Parametric model with misspecified measurement error distribution
Mean estimate 1.429 1.382 1.427
Standard error 0.138 0.127 0.256
Root MSE 0.451 0.402 0.498

Parametric model with measurement error and latent variable models misspecified
Mean estimate 1.127 1.472 1.522
Standard error 0.124 0.161 0.296
Root MSE 0.178 0.498 0.600

Table 2. Simulation results (n = 300, na = 200, reps = 1000).

True value of θ θ1 = 1 θ2 = 1 θ3 = 1

Ignoring measurement error
Mean estimate 0.181 0.312 0.576
Standard error 0.191 0.269 0.420
Root MSE 0.841 0.739 0.596

2-sample sieve MLE
Mean estimate 1.017 1.052 1.084
Standard error 0.351 0.278 0.777
Root MSE 0.351 0.283 0.781

Correctly specified parametric model
Mean estimate 0.966 1.135 1.115
Standard error 0.130 0.156 0.203
Root MSE 0.134 0.206 0.233

Parametric model with misspecified measurement error distribution
Mean estimate 1.547 1.532 1.659
Standard error 0.270 0.271 0.514
Root MSE 0.610 0.597 0.836

Parametric model with measurement error and latent variable models misspecified
Mean estimate 1.179 1.601 1.822
Standard error 0.301 0.323 0.596
Root MSE 0.350 0.682 1.015

Second, there are substantial costs for being nonparametric: compared to a correctly specified
parametric model, 2-sample sieve MLE is simply more variable, a not very surprising result.
Third, there are costs for model misspecification of either the measurement error distribution or
the distribution for (X∗, X∗

a).
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4.2. Testing Assumption 2.3

Huang et al. (2006) develop a method that can allow the testing of assumptions about latent
variable distributions in measurement error models. Here we show that a modification of their
basic idea is capable of detecting violations of Assumption 2.3.

We performed 500 simulations of the following experiment. For the main data set we
had n = 1000, W = (W1, W2), where W1 = Bernoulli(0.5) and W2 = Bernoulli(0.3) are inde-
pendent of one another, X∗ = W1 + W2 + N(0, 0.25), X = X∗ + N(0, 0.25) and finally Y =
1.5X∗ + 0.3W1 + 0.7W2 + N(0, 0.01). For the auxiliary data set, we had na = 1000, Wa =
(W1a, W2a), where W1a = Bernoulli(0.3) and W2a = Bernoulli(0.7) are independent of one
another, X∗ = 1.5W1 + 0.5W2 + N(0, 0.25), X = X∗ + N(0, 0.25) and finally Y = 0.5X∗ +
1.3W1 + 1.7W2 + N(0, 0.01). Note thatAssumption 2.3 is violated because the regression models
are very different.

The fitting method was as follows. We assumed that Assumption 2.3 holds and the homoscedas-
tic model that has E(Y |X∗, W) = β0 + β1X

∗ + β2W1 + β3W2. In addition, we assumed that the
distribution of X∗ given W had different means and variances depending on the four levels of W .
The same thing but with different parameters was assumed for the distribution of X∗

a given Wa .
We also assumed that the measurement error in X and Xa was additive and homoscedastic but
with possibly different variances. Maximum likelihood, which is also method of moments in this
context, was used to fit the simulated data sets.

Following Huang et al. (2006), for each of the 500 simulated data sets, we computed a perturbed
data set. Specifically, we added to both X and Xa normal random variables with mean zero and
variance 0.25, and then we refit the perturbed data. The idea of Huang et al. (2006) is that if we
assumed that the model is actually true, then adding additional measurement error will increase
variability that will not generate any bias. Conversely, if the assumed model is false, then perturbing
the data by adding additional measurement error will cause a bias.

The results were as follows. For β1, the mean difference between the original and perturbed
estimates was −0.16 with a standard deviation 0.02, and thus an effect size of −8.38. For β2, the
mean difference between the original and perturbed estimates was 0.17 with a standard deviation
0.03, and thus an effect size of 5.04. For β3, the mean difference between the original and
perturbed estimates was 0.14 with a standard deviation 0.03, and thus an effect size of 4.75.
Clearly, this calculation shows that the Huang et al. (2006) method can detect serious departures
from Assumption 2.3.

5. Real data example

5.1. Background and analysis

As an illustrative example, we consider two nutritional epidemiology data sets, the eating at
America’s table study (EATS, Subar et al. (2001)) and the observing protein and energy nutrition
study (OPEN, Kipnis et al. (2003)). In both studies, the response Y is the log(1.0 + the amount
of beta-carotene from foods as measured by a food frequency questionnaire). In addition, X is
the log(1.0 + the amount of beta-carotene from foods as measured by a 24-h recall). We also
observed two categorical variables W , namely gender and whether the person was > 50 years of
age. Here X∗ is the individual’s true long-term transformed beta-carotene intake as measured by
a hypothetical infinite number of 24-h recalls. The sample sizes for EATS and OPEN were 965
and 481, respectively.

With EATS as the primary study and OPEN as the auxiliary study, the assumption of nondiffer-
ential measurement error in the 24 h recalls (Assumptions 2.1(ii) and 2.2(ii))) is standard in this
context. Both studies took place in the United States, and thus the stability Assumptions 2.3(i) and
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2.6 also seem reasonable. The main difference between EATS and OPEN is that the former was a
national study, while the latter took place in the relatively affluent Montgomery County Maryland.
Thus, one would expect the distributions of X∗ given W and X∗

a given Wa to be different, and of
course one would expect that the distribution of true transformed beta-carotene intake will depend
on gender and age. Thus, assumption 2.5 seems reasonable in this context. Indeed, for those aged
under 50, Wilcoxon rank tests comparing the two transformed 24-h recalls between the two data
sets are statistically significant both for men and for women. Within OPEN, the Wilcoxon rank test
is also statistically significant when comparing genders or when comparing age categories, while
no such differences are observed for EATS. However, in EATS the 24-h recalls for women had
more statistically significant variability than those for men, using a Wilcoxon test on the absolute
differences from the means.

The data are {Yij , Xij , Wij } for j = 1, 2, where j = 1 is the primary sample, EATS, and j = 2 is
the auxiliary sample, OPEN. Here Wij = (Wij1, Wij2) is the gender (male = 0) and age (> 50 = 1)
of the individual. The latent model of interest is

Yij = θ4 + θ1X
∗
ij + θ2Wij1 + θ3Wij2 + εij , Xij = X∗

ij + Uij , (2)

where εij is assumed to be independent of the true regressors (X∗
ij , Wij1, Wij2).

We consider four estimators for θ = (θ1, θ2, θ3, θ4)
T.

• The naive OLS estimator with measurement errors ignored.
• A parametric maximum likelihood estimator under the additionalAssumptions: εij = N(0, σ 2

ε ),
Uij = N(0, σ 2

u ), X∗
i1 = a0 + a1Wij1 + a2Wij2 + νi1, and X∗

i2 = b0 + b1Wij1 + b2Wij2 + νi2,
with νij = N(0, σ 2

ν,j ). Note that for this parametric MLE, the measurement error status is
assumed to not depend on j .

• The sieve MLE under the additional restriction that the latent model of interest is Equation (2)
with εij = Normal(0, σ 2

ε ).
• The sieve MLE with no assumptions about the distribution of εij .

To compute the third and the fourth estimators, we use the same set up as in the simulation
study. In addition, to approximate fε(ε) we used Hermite polynomials with k3,n = 3 to compute
the fourth sieve MLE.

We also implemented 500 bootstraps by resampling (Y, X, W) within each population. The
results are given in Table 3. We see that the measurement errors cause significant attenuation

Table 3. Estimates and Bootstrap analysis of the OPEN and EATS data sets.

θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

Naive OLS 2-S SMLE w/normal reg. err.

Estimate 0.242 0.084 0.037 −0.046 0.500 0.076 0.032 0.423
Boot mean 0.242 0.083 0.035 −0.044 0.618 0.080 0.035 0.317
Boot median 0.242 0.083 0.033 −0.043 0.555 0.078 0.037 0.348
Boot s.e. 0.019 0.040 0.040 0.034 0.236 0.042 0.047 0.286
Boot 95% CI 0.204 0.007 −0.039 −0.121 0.254 −0.005 −0.061 −0.287

0.284 0.161 0.122 0.017 1.176 0.162 0.133 0.846

Parametric MLE 2-sample sieve MLE

Estimate 0.461 0.131 −0.019 −0.073 0.780 0.067 −0.024 −0.058
Boot mean 0.485 0.135 −0.027 −0.074 0.714 0.120 0.080 −0.067
Boot median 0.466 0.132 −0.021 −0.073 0.761 0.119 0.078 −0.066
Boot s.e. 0.194 0.061 0.064 0.045 0.312 0.129 0.121 0.082
Boot 95% CI 0.292 0.041 −0.211 −0.181 0.101 −0.115 −0.185 −0.223

1.179 0.288 0.078 0.002 1.263 0.374 0.328 0.097
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in the estimation of θ1. The corrected estimators have much greater variability than the naive
estimator, with variability increasing as assumptions are relaxed.

In Figure 1, we plot the sieve estimated density functions for the measurement error models
in EATS and OPEN, as well as the density functions for the latent covariates. The measurement
error density estimates are rough, as expected from the deconvolution literature, but they appear
somewhat vaguely centered at the true value of the latent variable and clearly depend upon it, the
latter being the point of most interest. The latent variable density estimates are easier to visualise
because W and Wa have only four levels: there is more skewness in the EATS data than in the
OPEN data.

5.2. Testing Assumption 2.3

We used the same idea as in Section 4.2 to test whether the distribution of the response given the
true covariates is the same in the two samples.

Figure 1. Analysis of the nutrition data set. Left side: sieve estimated measurement error density. Right side: sieve
estimated latent variable density.
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From our analysis, the measurement error variances for OPEN and EATS were estimated
as approximately 0.3 and 0.6. We generated 500 data sets where we replaced X in EATS by
X + N(0.0, 0.5) and we replaced Xa in OPEN by Xa + N(0.0, 0.3). We fit the same method
of moments estimation as in Section 4.2 but applied to these perturbed data sets. If the model
assumption fails, then we would expect to see statistically significant bias.

The results were as follows. For β1, the mean difference between the original and perturbed
estimates was 0.035 with a standard deviation 0.035. For β2, the mean difference between the
original and perturbed estimates was 0.01 with a standard deviation 0.014. For β3, the mean
difference between the original and perturbed estimates was 0.01 with a standard deviation 0.015.
It appears then that whileAssumption 2.3 may be violated in this example, the size of that violation
is not likely to be large.

We also refit the data using our sieve-based approach, which makes no assumptions that the mea-
surement errors are homoscedastic, with similar results. That is, in all cases, the mean difference
between the original and perturbed estimates were much smaller than the standard deviation of
those differences, indicating once again that the evidence that our assumptions are badly violated
is weak.

6. Summary

In the absence of knowledge about the measurement error distribution or an instrumental variable
such as a replicate, the use of two samples to correct for the effects of measurement error is well
established in the literature. One basic assumption in this approach is that the underlying regression
function is the same in the two samples. However, all published papers have assumed that the
latent variable X∗ is measured exactly in one of the two samples. Our paper does not require such
validation data, and is thus the first paper to allow estimation in the absence of knowledge about
the measurement error distribution, of an instrumental variable and of validation data.

We note two points. First, we have used the terms ‘primary’ and ‘auxiliary samples’, but of
course these can be interchanged. Second, if W is continuous, our results hold, but different
methods of proof are required.

We have provided very general conditions ensuring identifiability: essentially, we require that
the distribution of X∗ depends on exactly measured covariates, and that this distribution varies in
some way across the two data sets.

Finally, in the presence of a parametric regression model, we have provided a sieve quasi-MLE
approach to estimation, with the measurement error distribution and the distribution of the latent
variable remaining nonparametric. We derived asymptotic theory when the presumed regression
model is incorrectly or correctly specified. Simulations and two examples show that our method
has good performance despite the generality of the approach.

A long version of this paper is available at http://www.stat.tamu.edu/ftp/pub/rjcarroll/2009.
papers.directory/CCH_Long.pdf. It contains more detailed identification results, a second
empirical example, and proofs of the asymptotic normality of our sieve estimator.
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Appendix A. Mathematical Proofs

A1. Identification

Let L2(X ) denote the space of functions with
∫
X |h(x)|2 dx < ∞. Define the integral operator LX|X∗ : L2(X ∗) →

L2(X ) as

{LX|X∗h}(x) =
∫

X∗
fX|X∗ (x|x∗)h(x∗) dx∗ for any h ∈ L2(X ∗), x ∈ X .
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Denote Wj = {wj } for j = 1, . . . , J and define the following operators for the primary sample

LX,Y |Wj
: L2(Y) → L2(X ), (LX,Y |Wj

h)(x) =
∫

fX,Y |W (x, u|wj )h(u) du,

LY |X∗,Wj
: L2(Y) → L2(X ∗), (LY |X∗,Wj

h)(x∗) =
∫

fY |X∗,Wj
(u|x∗)h(u) du,

LX∗|Wj
: L2(X ∗) → L2(X ∗), (LX∗|Wj

h)(x∗) = fX∗|Wj
(x∗)h(x∗).

Similarly, we may define LY,X|Wj
: L2(X ) → L2(Y). We define the operators LXa |X∗

a
: L2(X ∗) → L2(Xa), LXa,Ya |Wj

:
Lp(Y) → L2(Xa), LYa |X∗

a ,Wj
: L2(Y) → L2(X ∗), LX∗

a |Wj
: L2(X ∗) → L2(X ∗), and LYa,Xa |Wj

: L2(Xa) → L2(Y)

for the auxiliary sample in the same way. Notice that the operators LX∗|Wj
and LX∗

a |Wj
are diagonal operators, and the

operators LX,Y |Wj
and LXa,Ya |Wj

are observed from the data.

Assumption A.1 (i) LX,Y |Wj
has a right-inverse (denoted as A = (LX,Y |Wj

)−1), i.e. LX,Y |Wj
A = I. (ii) LXa,Ya |Wj

has
a right-inverse.

AssumptionA.1(i) is equivalent to saying that the adjoint operator of LX,Y |Wj
has a left-inverse, i.e. LY,X|Wj

is injective,

i.e. the set {h ∈ L2(X ) : LY,X|Wj
h = 0} = {0}.

Proof of Theorem 2.1 Under Assumption 2.1,

fX,W,Y (x, w, y) =
∫

X∗
fX|X∗ (x|x∗)fX∗,W,Y (x∗, w, y) dx∗ for all x, w, y. (A1)

For each value wj of W, Assumptions 2.1–2.3 imply that

fX,Y |W (x, y|wj ) =
∫

fX|X∗ (x|x∗)fY |X∗,W (y|x∗, wj )fX∗|Wj
(x∗) dx∗, (A2)

fXa,Ya |Wa (x, y|wj ) =
∫

fXa |X∗
a
(x|x∗)fY |X∗,W (y|x∗, wj )fX∗

a |Wj
(x∗) dx∗ (A3)

By Equation (A2) and the definition of the operators, we have, for any function h ∈ L2(Y),

(LX,Y |Wj
h)(x) =

∫
fX,Y |Wj

(x, u|wj )h(u) du

=
∫ (∫

fX|X∗ (x|x∗)fY |X∗,W (u|x∗, wj )fX∗|Wj
(x∗) dx∗

)
h(u) du

=
∫

fX|X∗ (x|x∗)fX∗|Wj
(x∗)

(∫
fY |X∗,W (u|x∗, wj )h(u) du

)
dx∗

=
∫

fX|X∗ (x|x∗)fX∗|Wj
(x∗)(LY |X∗,Wj

h)(x∗) dx∗

=
∫

fX|X∗ (x|x∗)(LX∗|Wj
LY |X∗,Wj

h)(x∗) dx∗

= (LX|X∗LX∗|Wj
LY |X∗,Wj

h)(x).

This means we have the operator equivalence

LX,Y |Wj
= LX|X∗LX∗|Wj

LY |X∗,Wj
(A4)

in the primary sample. Similarly, we have in the auxiliary sample,

LXa,Ya |Wj
= LXa |X∗

a
LX∗

a |Wj
LY |X∗,Wj

. (A5)

note that the left-hand sides of Equations (A4) and (A5) are observed. Assumptions 2.4 and A.1 imply that all the operators
involved in Equations (A4) and (A5) are invertible. Hence

LXa,Ya |Wj
L−1

X,Y |Wj
= LXa |X∗

a
LX∗

a |Wj
L−1

X∗|Wj
L−1

X|X∗ . (A6)

This equation holds for all Wi and Wj . We may then eliminate LX|X∗ to have

L
ij

Xa,Xa
≡ (LXa,Ya |Wj

L−1
X,Y |Wj

)(LXa,Ya |Wi
L−1

X,Y |Wi
)−1 = LXa |X∗

a
L

ij

X∗
a
L−1

Xa |X∗
a
. (A7)

The operator L
ij

Xa,Xa
on the left-hand side is observed for all i and j . An important observation is that the operator L

ij

X∗
a

≡
(LX∗

a |Wj
L−1

X∗|Wj
LX∗|Wi

L−1
X∗

a |Wi
) : L2(X ∗) → L2(X ∗) is a diagonal operator defined as (L

ij

X∗
a
h)(x∗) ≡ k

ij

X∗
a
(x∗)h(x∗) with
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k
ij

X∗
a
(x∗) defined in Equation (1). Equation (A7) implies a diagonalisation of an observed operator L

ij

Xa,Xa
. An eigenvalue

of L
ij

Xa,Xa
equalskij

X∗
a
(x∗) for a value of x∗, which corresponds to an eigenfunction fXa |X∗

a
(·|x∗).

We now show the identification of fXa |X∗
a

and k
ij

X∗
a
(x∗). First, we require the operator L

ij

Xa,Xa
to be bounded so that

the diagonal decomposition may be unique (Dunford and Schwartz 1971, Theorem XV.4.3.5, p. 1939). Equation (A7)
implies that the operator L

ij

Xa,Xa
has the same spectrum as the diagonal operator L

ij

X∗
a
. Since an operator is bounded by

the largest element of its spectrum, Assumption 2.5 guarantees that the operator L
ij

Xa,Xa
is bounded. Second, although

it implies a diagonalisation of the operator L
ij

Xa,Xa
, Equation (A7) does not guarantee distinctive eigenvalues. However,

such ambiguity can be eliminated by noting that the observed operators L
ij

Xa,Xa
for all i, j share the same eigenfunctions

fXa |X∗
a
(·|x∗). Assumption 2.5 guarantees that, for any two different eigenfunctions fXa |X∗

a
(·|x∗

1 ) and fXa |X∗
a
(·|x∗

2 ), one
can always find two subsets Wj and Wi such that the two different eigenfunctions correspond to two different eigenvalues

k
ij

X∗
a
(x∗

1 ) and k
ij

X∗
a
(x∗

2 ) and, therefore, are identified. �

The third ambiguity is that, for a given value of x∗, an eigenfunction fXa |X∗
a
(·|x∗) times a constant is still an

eigenfunction corresponding to x∗. This ambiguity is eliminated by noting that
∫

fXa |X∗
a
(x|x∗) dx = 1 for all x∗.

Fourth, in order to fully identify each eigenfunction, i.e. fXa |X∗
a
, we need to identify the exact value of x∗ in each

eigenfunction fXa |X∗
a
(·|x∗). However, note that assumption 2.6 identifies the exact value of x∗ for each eigenfunction

fXa |X∗
a
(·|x∗).

After fully identifying the density function fXa |X∗
a
, we now show that the density of interest fY |X∗,W and fX|X∗

are also identified. By Equation (A3), we have fXa,Ya |Wa = LXa |X∗
a
fYa,X∗

a |Wa
. By the injectivity of operator LXa |X∗

a
,

the joint density fYa,X∗
a |Wa

may be identified as follows: fYa,X∗
a |Wa

= L−1
Xa |X∗

a
fXa,Ya |Wa . Assumption 2.3 implies that

fYa |X∗
a ,Wa

= fY |X∗,W so that we may identify fY |X∗,W through

fY |X∗,W (y|x∗, w) = fYa,X∗
a |Wa

(y, x∗|w)∫
fYa,X∗

a |Wa
(y, x∗|w) dy

for all x∗ and w.

By equation (A4) and the injectivity of the identified operator LY |X∗,Wj
, we have

LX|X∗LX∗|Wj
= LX,Y |Wj

L−1
Y |X∗,Wj

. (A8)

The left-hand side of Equation (A8) equals an operator with the kernel function fX,X∗|W=wj
≡ fX|X∗fX∗|W=wj

. Since
the right-hand side of Equation (A8) has been identified, the kernel fX,X∗|W=wj

on the left-hand side is also identified.
We may then identify fX|X∗ through

fX|X∗ (x|x∗) = fX,X∗|W=wj
(x, x∗)∫

fX,X∗|W=wj
(x, x∗) dx

for all x∗ ∈ X ∗.

A2. Conditions and asymptotic normality of sieve Q-MLE

A2.1. Rates of convergence

Given consistency Lemma 3.1, we can restrict our attention to a shrinking ‖ · ‖s -neighborhood around α0. Let A0s ≡ {α ∈
A : ‖α − α0‖s = o(1), ‖α‖s ≤ c0 < c} and A0sn ≡ {α ∈ An : ‖α − α0‖s = o(1), ‖α‖s ≤ c0 < c}. We assume that both
A0s and A0sn are convex parameter spaces, and that �(Zi ; α + τv) is twice continuously differentiable at τ = 0 for almost
all Zi and any direction v ∈ A0s .

We define the pathwise first and second derivatives of the sieve loglikelihood in the direction v as

d�(Zi ; α)

dα
[v] ≡ d�(Zi ; α + τv)

dτ

∣∣∣∣
τ=0

; d2�(Zi ; α)

dαdαT
[v, v] ≡ d2�(Zi ; α + τv)

dτ 2

∣∣∣∣
τ=0

.

Following Ai and Chen (2007), for any α1, α2 ∈ A0s , we define a pseudo metric ‖ · ‖2 as

‖α1 − α2‖2 ≡
√

−E

(
d2�(Zi ; α0)

dαdαT
[α1 − α2, α1 − α2]

)
.

We show that α̂n converges to α0 at a rate faster than n−1/4 under the pseudo metric ‖ · ‖2 and the following assumptions:

Assumption A.2 (i) ςj > γj for j = 1, 1a, 2; (ii) max{k−γ1/2
1,n , k

−γ1a/2
1a,n , k

−γ2
2,n } = o([n + na]−1/4).
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Assumption A.3 (i) A0s is convex at α0 and θ0 ∈ int (�); (ii) �(Zi ; α) is twice continuously pathwise differentiable
with respect to α ∈ A0s , and log g(y|x∗, w; θ) is twice continuously differentiable at θ0.

Assumption A.4

sup
α̃∈A0s

sup
α∈A0sn

∣∣∣∣d�(Zi ; α̃)

dα

[
α − α0

‖α − α0‖s

]∣∣∣∣ ≤ U(Zi)

for a random variable U(Zi) with E{[U(Zi)]2} < ∞.

Assumption A.5

(i) sup
v∈A0s :‖v‖s=1

−E

(
d2�(Zi ; α0)

dαdαT
[v, v]

)
≤ C < ∞;

(ii) uniformly over α̃ ∈ A0s and α ∈ A0sn, we have

−E

(
d2�(Zi ; α̃)

dαdαT
[α − α0, α − α0]

)
= ‖α − α0‖2

2 × {1 + o(1)}.

The assumptions are straightforward and standard. The following convergence rate theorem is a direct application of
(Shen and Wong 1994, Theorem 3.2) to the local parameter space A0s and the local sieve space A0sn; hence, we omit its
proof.

Theorem A.1 Let γ ≡ min{γ1/2, γ1a/2, γ2} > 1/2. Under assumptions 3.1–A.5, if k1,n = O([n + na]1/(γ1+1)), k1a,n =
O([n + na]1/(γ1a+1)), and k2,n = O([n + na]1/(2γ2+1)), then

‖α̂n − α0‖2 = OP ([n + na]−γ /(2γ+1)) = oP ([n + na]−1/4).

A2.2. Conditions for asymptotic normality

We also define an inner product corresponding to the pseudo metric ‖ · ‖2:

〈v1, v2〉2 ≡ −E

[
d2�(Zi ; α0)

dαdαT
[v1, v2]

]
,

where

d2�(Zi ; α0)

dαdαT
[v1, v2] ≡ d2�(Zi ; α0 + τ1v1 + τ2v2)

dτ1 dτ2
|τ1=τ2=0.

Let V denote the closure of the linear span of A−{α0} under the metric ‖ · ‖2. Then (V, ‖ · ‖2) is a Hilbert space and we can
represent V = R

dθ × U with U ≡ F1 × F1a × F2 × F2 − {(f01, f01a, f02, f02a)}. Let h = (f1, f1a, f2, f2a) denote all
the unknown densities. The pathwise first derivative can be written as

d�(Zi ; α0)

dα
[α − α0] = d�(Zi ; α0)

dθT
(θ − θ0) + d�(Z; α0)

dh
[h − h0]

=
(

d�(Zi ; α0)

dθT
− d�(Z; α0)

dh
[μ]
)

(θ − θ0),

with h − h0 ≡ −μ × (θ − θ0), and in which

d�(Z; α0)

dh
[h − h0] = d�(Z; θ0, h0(1 − τ) + τh)

dτ
|τ=0

= d�(Zi ; α0)

df1
[f1 − f01] + d�(Zi ; α0)

df1a

[f1a − f01a]

+ d�(Zi ; α0)

df2
[f2 − f02] + d�(Zi ; α0)

df2a

[f2a − f02a].

Note that

E

(
d2�(Zi ; α0)

dαdαT
[α − α0, α − α0]

)
= (θ − θ0)

TE

(
d2�(Zi ; α0)

dθdθT
− 2

d2�(Z; α0)

dθdhT
[μ] + d2�(Z; α0)

dh dhT
[μ, μ]

)
(θ − θ0),
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with h − h0 ≡ −μ × (θ − θ0), and in which

d2�(Z; α0)

dθdhT
[h − h0] = d(∂�(Z; θ0, h0(1 − τ) + τh)/∂θ)

dτ
|τ=0,

d2�(Z; α0)

dh dhT
[h − h0, h − h0] = d2�(Z; θ0, h0(1 − τ) + τh)

dτ 2
|τ=0.

For each component θk (of θ ), k = 1, . . . , dθ , suppose there exists a μ∗k ∈ U that solves:

μ∗k : inf
μk∈U

E

{
−
(

∂2�(Z; α0)

∂θk∂θk
− 2

d2�(Z; α0)

∂θkdhT
[μk] + d2�(Z; α0)

dh dhT
[μk, μk]

)}
.

Denote μ∗ = (μ∗1, μ∗2, . . . , μ∗dθ ) with each μ∗k ∈ U , and

d�(Z; α0)

dh
[μ∗] =

(
d�(Z; α0)

dh
[μ∗1], . . . , d�(Z; α0)

dh
[μ∗dθ ]

)
,

d2�(Z; α0)

∂θdhT
[μ∗] =

(
d2�(Z; α0)

∂θdh
[μ∗1], . . . , d2�(Z; α0)

∂θdh
[μ∗dθ ]

)
,

d2�(Z; α0)

dh dhT
[μ∗, μ∗] =

⎛⎜⎜⎜⎝
d2�(Z; α0)

dh dhT
[μ∗1, μ∗1] · · · d2�(Z; α0)

dh dhT
[μ∗1, μ∗dθ ]

· · · · · · · · ·
d2�(Z; α0)

dh dhT
[μ∗dθ , μ∗1] · · · d2�(Z; α0)

dh dhT
[μ∗dθ , μ∗dθ ]

⎞⎟⎟⎟⎠.

Also denote

V∗ ≡ −E

(
∂2�(Z; α0)

∂θ∂θT
− 2

d2�(Z; α0)

∂θdhT
[μ∗] + d2�(Z; α0)

dh dhT
[μ∗, μ∗]

)
. (A9)

Now we consider a linear functional of α, which is λTθ for any λ ∈ R
dθ with λ �= 0. Since

sup
α−α0 �=0

|λT(θ − θ0)|2
‖α − α0‖2

2

= sup
θ �=θ0,μ �=0

(θ − θ0)
TλλT(θ − θ0)

(θ − θ0)
TE{−((d2�(Zi ; α0))/(dθdθT) − 2(d2�(Z; α0))/(dθdhT)[μ]

+(d2�(Z; α0))/(dh dhT)[μ, μ])}(θ − θ0)

= λT(V∗)−1λ,

the functional λT(θ − θ0) is bounded if and only if the matrix V∗ is nonsingular.
Suppose that V∗ is nonsingular. For any fixed λ �= 0, denote υ∗ ≡ (v∗

θ , v∗
h) with v∗

θ ≡ (V∗)−1λ and v∗
h ≡ −μ∗ × v∗

θ .
Then the Riesz representation theorem implies: λT(θ − θ0) = 〈υ∗, α − α0〉2 for all α ∈ A. In the longer version of this
paper, we establish the following:

λT(θ̂n − θ0) = 〈υ∗, α̂n − α0〉2 = 1

n + na

n+na∑
i=1

d�(Zi ; α0)

dα
[υ∗] + op{(n + na)

−1/2}. (A10)

Denote N0 = {α ∈ A0s : ‖α − α0‖2 = o([n + na]−1/4)} and N0n = {α ∈ A0sn : ‖α − α0‖2 = o([n + na]−1/4)}. We
impose the following additional conditions for asymptotic normality of sieve quasi MLE θ̂n:

Assumption A.6 μ∗ exists (i.e. μ∗k ∈ U for k = 1, . . . , dθ ), and V∗ is positive-definite.

Assumption A.7 There is a υ∗
n ∈ An−{α0}, such that ‖υ∗

n − υ∗‖2 = o(1) and ‖υ∗
n − υ∗‖2 × ‖α̂n − α0‖2 =

oP (1/
√

n + na).

Assumption A.8 There is a random variable U(Zi) with E{[U(Zi)]2} < ∞ and a non-negative measurable function η

with limδ→0 η(δ) = 0, such that, for all α ∈ N0n,

sup
α∈N0

∣∣∣∣d2�(Zi ; α)

dαdαT
[α − α0, υ

∗
n ]
∣∣∣∣ ≤ U(Zi) × η(‖α − α0‖s ).
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Assumption A.9 Uniformly over α ∈ N0 and α ∈ N0n,

E

(
d2�(Zi ; α)

dαdαT
[α − α0, υ

∗
n ] − d2�(Zi ; α0)

dαdαT
[α − α0, υ

∗
n ]
)

= o

(
1√

n + na

)
.

Assumption A.10 E{((d�(Zi ; α0))/(dα)[υ∗
n − υ∗])2} goes to zero as ‖υ∗

n − υ∗‖2 goes to zero.

AssumptionA.10 is automatically satisfied when the latent parametric model is correctly specified. Recall the definitions
of Fisher inner product and the Fisher norm:

〈v1, v2〉 ≡ E

{(
d�(Zi ; α0)

dα
[v1]
)(

d�(Zi ; α0)

dα
[v2]
)}

, ‖v‖ ≡ √〈v, v〉.

Under correct specification, g(y|x∗, w; θ0) = fY |X∗,W (y|x∗, w), it can be shown that ‖v‖ = ‖v‖2 and 〈v1, v2〉 =
〈v1, v2〉2. Thus, the space V is also the closure of the linear span of A−{α0} under the Fisher metric ‖ · ‖.

Suppose that θ has dθ components, and write its kth component as θk . Write μ∗ = (μ∗1, μ∗2, . . . , μ∗dθ ), where we
compute μ∗k ≡ (μ∗k

1 , μ∗k
1a, μ

∗k
2 , μ∗k

2a)
T ∈ U as the solution to

inf
μk∈U

E

{(
d�(Zi ; α0)

dθk
− d�(Zi ; α0)

dh
[μk]

)2
}

= inf
(μ1,μ1a ,μ2,μ2a )T∈U

E

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

d�(Zi ; α0)

dθk
− d�(Zi ; α0)

df1
[μ1] − d�(Zi ; α0)

df1a

[μ1a]

− d�(Zi ; α0)

df2
[μ2] − d�(Zi ; α0)

df2a

[μ2a]

⎞⎟⎟⎠
2⎫⎪⎪⎬⎪⎪⎭.

Implicitly, this defines (d�(Zi ; α0))/dh[μ∗]. Then Sθ0 ≡ (d�(Zi ; α0))/dθT − (d�(Zi ; α0))/dh[μ∗] becomes the semi-
parametric efficient score for θ0, and

I∗ ≡ E[ST
θ0

Sθ0 ] = V∗ (A11)

becomes the semiparametric information bound for θ0.
We refer readers to the longer version for the proof of the asymptotic normality Theorem 3.1.




