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a b s t r a c t

In this paper, we consider nonparametric identification and estimation of first-price auctionmodelswhen
N∗, the number of potential bidders, is unknown to the researcher, but observed by bidders. Exploiting
results from the recent econometric literature on models with misclassification error, we develop a
nonparametric procedure for recovering the distribution of bids conditional on the unknown N∗. Monte
Carlo results illustrate that the procedure works well in practice. We present illustrative evidence from a
dataset of procurement auctions, which shows that accounting for the unobservability of N∗ can lead to
economically meaningful differences in the estimates of bidders’ profit margins.
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In many auction applications, researchers do not observe N∗,
the number of bidders in the auction. In the parlance of the
literature, N∗ is the ‘‘number of potential bidders’’, a terminology
we adopt in the remainder of the paper. The most common
scenario obtains under binding reserve prices.When reserve prices
bind, the number of potential bidders N∗, which is observed by
auction participants and influences their bidding behavior, differs
from the observednumber of biddersA (≤N∗),which is the number
of auction participants whose bids exceed the reserve price. Other
scenarios which would cause N∗ to be unknown to the researcher
include bidding or participation costs. In other cases, the number of
auctionparticipantsmay simply not be recorded in the researcher’s
dataset.
In this paper, we consider nonparametric identification and es-

timation of first-price auction models when N∗ is observed by
bidders, but not by the researcher. Using recent results from the
literature on misclassified regressors, we show how the equilib-
rium distribution of bids, given the unobserved N∗, can be iden-
tified and estimated. In the case of first-price auctions, these bid
distributions estimated using our procedure can be used as inputs
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into established nonparametric procedures (Guerre et al., 2000; Li
et al., 2002) to obtain estimates of bidders’ valuations.
Accommodating the possibility that the researcher does not

know N∗ is important for drawing valid policy implications from
auction model estimates. Because N∗ is the level of competition in
an auction, not knowing N∗, or using a mismeasured value for N∗,
can lead to wrong implications about the degree of competitive-
ness in the auction, and also the extent of bidders’ markups and
profit margins. Indeed, a naïve approach where the number of ob-
served bids is used as a proxy for N∗ will tend to overstate compe-
tition, because the unknown N∗ is always (weakly) larger than the
number of observed bids. This bias will be shown in the empirical
illustration below.
Not knowing the potential number of bidders N∗ has been an

issue since the earliest papers in the structural empirical auction
literature. In the parametric estimation of auction models, the
functional relationship between the bids b and number of potential
bidders N∗ is explicitly parameterized, so that not knowing N∗
need not be a problem. For instance, Laffont et al. (1995) used a
goodness-of-fit statistic to select themost plausible value of N∗ for
French eggplant auctions. Paarsch (1997) treated N∗ essentially as
a randomeffect and integrated it out over the assumed distribution
in his analysis of timber auctions.
In a nonparametric approach to auctions, however, the relation-

ship between the bids b and N∗ must be inferred directly from the
data, and not knowing N∗ (or observing N∗ with error) raises dif-
ficulties. Within the independent private-values (IPV) framework,
and under the additional assumption that the unknown N∗ is fixed
across all auctions (or fixed across a known subset of the auctions),
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Guerre et al. (2000) showed how to identify N∗ and the equilib-
rium bid distribution in the range of bids exceeding the reserve
price. Hendricks et al. (2003) allowed N∗ to vary across auctions,
and assumed that N∗ = L, where L is a measure of the number of
potential bidders which they construct.
The main contribution of this paper is to present a solution

for the nonparametric identification and estimation of first-
price auction models in which the number of bidders N∗ is
observed by bidders, but unknown to the researcher. We develop
a nonparametric procedure for recovering the distribution of bids
conditional on unknown N∗ which requires neither N∗ to be
fixed across auctions, nor for an (assumed) perfect measure of
N∗ to be available. Our procedure applies results from the recent
econometric literature onmodelswithmisclassification error, such
as e.g. Mahajan (2006) and Hu (2008).
As a specific case, our method is, as far as we aware, the first

to solve the identification problem for IPV first-price auctions
with reserve prices when the unobserved number of potential
bidders N∗ is a random variable. Previously, Guerre et al. (2000)
also considered identification for first-price IPV auctions with
reserve prices. However, they assumed that the observed number
of potential bidders N∗ is fixed across auctions, so that it could be
estimated as a parameter.
For first-price auctions, allowing the unknown N∗ to vary

randomly across auctions is not innocuous. BecauseN∗ is observed
by the bidders, it affects their equilibrium bidding strategies.
Hence, when N∗ is not known by the researcher, and varies across
auctions, the observed bids are drawn from amixture distribution,
where the ‘‘mixing densities’’ g(b|N∗) and the ‘‘mixing weights’’
Pr(A|N∗) are both unknown. This motivates the application of
econometric methods developed for models with a misclassified
regressor,where (likewise) the observed outcomes are drawn from
a mixture distribution.
Most closely related to our work is a paper by Song (2004). She

solved the problem of the nonparametric estimation of ascending
auction models in the IPV framework, when the number of
potential bidders N∗ is unknown by the researcher (and varies
in the sample). She showed that the distribution of valuations
can be recovered from observation of any two valuations of
which rankings from the top are known.1 However, her approach
cannot be applied to first-price auctions, which are the focus of
this paper. The reason for this is that, in IPV first-price auctions
(but not in ascending- or second-price auctions), even if the
distribution of bidders’ valuations do not vary across the unknown
N∗, the equilibrium distribution of bids still vary across N∗. Hence,
because the researcher does not know N∗, the observed bids are
drawn from a mixture distribution, and estimating the model
requires deconvolutionmethodswhichhave beendeveloped in the
econometric literature on measurement error.2
In a different context, Li et al. (2000) applied deconvolution

results from the (continuous) measurement error literature to
identify and estimate conditionally independent auction models
in which bidders’ valuations have common and private (idiosyn-
cratic) components. Krasnokutskaya (forthcoming) also used de-
convolution results to estimate auction models with unobserved
heterogeneity. To our knowledge, however, our paper is the first
application of (discrete) measurement error results to estimate an
auctionmodel where the number of potential bidders is unknown.

1 Adams (2007) also considers estimation of ascending auctions when the
distribution of potential bidders is unknown.
2 Song (2006) showed that the top two bids are also enough to identify first-price
auctions where the number of active bidders is not observed by bidders. Under her
assumptions, however, the observed bids are i.i.d. samples from a homogeneous
distribution, so that her estimation methodology would not work for the model
considered in this paper.
The issues considered in this paper are close to those considered
in the literature on entry in auctions: e.g. Li (2005); Li and Zheng
(2009), Athey et al. (2005), Krasnokutskaya and Seim (2005) and
Haile et al. (2003). While the entry models considered in these
papers differ, their one commonality is to model more explicitly
bidders’ participation decisions in auctions, which can cause the
number of observed bidders A to differ from the number of
potential bidders N∗. For instance, Haile et al. (2003) consider an
endogenous participation model in which the number of potential
bidders is observed by the researcher, and equal to the observed
number of bidders (i.e., N∗ = A), so that non-observability of N∗
is not a problem. However, A is potentially endogenous, because
it may be determined in part by auction-specific unobservables
which also affect the bids. By contrast, in this paper we assume
that N∗ is unobserved, and that N∗ 6= A, but we do not consider
the possible endogeneity of N∗.3
In Section 2, we describe our auction framework. In Section 3,

we present the main identification results, and describe our esti-
mation procedure. In Section 4, we provide Monte Carlo evidence
of our estimationprocedure, anddiscuss somepractical implemen-
tation issues. In Section 5, we present an empirical illustration, us-
ing data from procurement auctions in New Jersey. In Section 6,
we consider extensions of the approach to both scenarios where
only the winning bid is observed, and models of endogenous en-
try. Section 7 concludes. Proofs of the asymptotic properties of our
estimator are presented in the Appendix.

1. Model

In this paper, we consider the case of first-price auctions under
the symmetric independent private values (IPV) paradigm, for
which identification and estimation are most transparent. For
a thorough discussion of identification and estimation of these
models when the number of potential bidders N∗ is known, see
Paarsch and Hong (2006, Ch. 4). For concreteness, we focus on the
casewhere a binding reserve price is the reasonwhy the number of
potential bidders N∗ differs from the observed number of bidders,
and is not known by the researcher.
There are N∗ bidders in the auction, with each bidder drawing

a private valuation from the distribution FN∗(x)which has support
[x, x̄]. Furthermore, we assume the density of the private valuation
fN∗(x) is bounded away from zero on [x, x̄].4 N∗ can vary freely
across the auctions, andwhile it is observed by the bidders, it is not
known by the researcher. We allow the distribution of valuations
FN∗(x) to vary across N∗.5 There is a reserve price r , assumed to be
fixed across all auctions, where r > x.6 The equilibrium bidding
function for bidder iwith valuation xi is

b(xi;N∗)

= xi −
∫ xi
r FN∗(s)

N∗−1ds
FN∗(xi)N

∗−1
for xi ≥ r

0 for xi < r.
(1)

Hence, the number of bidders observed by the researcher is A ≡∑N∗
i=1 1(xi > r), the number of bidders whose valuations exceed

the reserve price.

3 In principle, we recover the distribution of bids (and hence the distribution of
valuations) separately for each value of N∗ , which accommodates endogeneity in a
general sense. However, because we do not model the entry process explicitly (as
in the papers cited above), we do not deal with endogeneity in a direct manner.
4 This assumption guarantees that the density of bids g(b|N∗, b > r) is
also bounded away from zero. See Guerre et al. (2000, Section 3.1) for detailed
discussions.
5 This is consistent with some models of endogenous entry. See Section 6.2.
6 Our estimation methodology can potentially also be used to handle the case
where N∗ is fixed across all auctions, but r varies freely across auctions.



330 Y. An et al. / Journal of Econometrics 157 (2010) 328–341
For this case, the equilibrium bids are i.i.d. and, using the
change-of-variables formula, the density of interest g(b|N∗, b > r)
is equal to

g(b|N∗, b > r) =
1

b′(ξ(b;N∗);N∗)
fN∗(ξ(b;N∗))
1− FN∗(r)

, for b > r (2)

where ξ(b;N∗) denotes the inverse of the equilibrium bid function
b(·;N∗) evaluated at b. In equilibrium, each observed bid from an
N∗-bidder auction is an i.i.d. draw from the distribution given in
Eq. (2), which does not depend on A, the observed number of
bidders.
We propose a two-step estimation procedure. In the first step,

the goal is to recover the density g(b|N∗; b > r) of the equilibrium
bids, for the truncated support (r,+∞). (For convenience, in what
follows, we suppress the conditioning truncation event b > r .) To
identify and estimate g(b|N∗), we use the results from Hu (2008).
In the second step, we use the methodology of Guerre et al.

(2000) to recover the valuations x, from the density g(b|N∗). For
each b in the marginal support of g(b|N∗), the corresponding
valuation x is obtained by

ξ
(
b,N∗

)
= b+

1
N∗ − 1

[
G (b|N∗)
g (b|N∗)

+
FN∗(r)
1− FN∗(r)

·
1

g (b|N∗)

]
. (3)

Notice that FN∗ , the valuation distributions, can also be recovered
after we identify g(b|N∗) for different N∗.
For most of this paper, we focus on the first step of this proce-

dure, because the second step is a straightforward application of
standard techniques.

2. Nonparametric identification

In this section, we apply the results fromHu (2008) to show the
identification of the first-price auction model with unknown N∗.
The procedure requires two auxiliary variables:

1. a proxy N , which is a mismeasured version of N∗; and
2. an instrument Z , which could be a discretized second bid.

We observe a random sample of {Ebt ,Nt}, where Ebt denotes
the vector of observed bids {b1t , b2t , . . . , bAt t}. Note that we only
observe At bids for each auction t . In what follows, we use b to
denote a randomly chosen bid from each auction.
We assume that the variables N , and N∗ are both discrete, and

that they have the same supportN = {2, . . . , K} as the discretized
second bid Z . Here K can be interpreted as the maximum number
of bidders, which is fixed across all auctions.7
For convenience, we first define the following matrices which

we shall use repeatedly. We use the notation g(· · · ) to denote,
generically, a probability mass or density function.

Gb,N,Z ≡ [g(b,N = i, Z = j)]i,j ,

GN|N∗ ≡
[
g
(
N = i|N∗ = k

)]
i,k ,

GN∗,Z ≡
[
g
(
N∗ = k, Z = j

)]
k,j ,

GN,Z ≡ [g (N = i, Z = j)]i,j ,

and

Gb|N∗ ≡

(g(b|N∗ = 2) 0 0
0 · · · 0
0 0 g(b|N∗ = K)

)
. (4)

All of these are (K − 1)-dimensional square matrices.
The five conditions required for our identification argument are

given here:

7 Our identification results still hold if Z has more possible values than N and N∗ .
Condition 1. g(b|N∗,N, Z) = g(b|N∗).

Condition 2. g(N|N∗, Z) = g(N|N∗).

Condition 3. Rank
(
GN,Z

)
= K − 1.

Condition 4. For any i, j ∈ N , the set {(b) : g(b|N∗ = i) 6= g(b|N∗
= j)} has nonzero Lebesgue measure whenever i 6= j.

Condition 5. N ≤ N∗.

In this section, we will show how Conditions 1–5 lead to the
identification of the unknown elements Gb|N∗ , GN|N∗ and GN∗,Z (the
former pointwise in b). The conditions will be discussed as they
arise in the identification argument.
Condition 1 implies thatN or Z affects the equilibriumdensity of

bids only through the unknown number of potential bidders N∗. In
the econometric literature, this is known as the ‘‘non-differential’’
measurement error assumption. In what follows, we only consider
values of b such that g(b|N∗) > 0, for N∗ = 2, . . . , K . This
requires, implicitly, knowledge of the support of g(b|N∗), which
is typically unknown to the researcher. Below, when we discuss
estimation, we present a two-step procedure to estimate g(b|N∗)
which circumvents this problem.
Condition 2 implies that the instrument Z affects the mismea-

sured N only through the number of potential bidders. Roughly,
because N is a noisy measure of N∗, this condition requires that
the noise is independent of the instrument Z , conditional on N∗.

Examples of N and Z

Before proceeding with the identification argument, we con-
sider several examples of auxiliary variables (N, Z) which satisfy
Conditions 1 and 2.
1. One advantage to focusing on the IPV model is that A, the

observed number of bidders, can be used in the role of N . In
particular, for a given N∗, the sampling density of any equilibrium
bid exceeding the reserve price – as given in Eq. (2) above – does
not depend on A, so Condition 1 is satisfied.8
A good candidate for the instrument Z is a discretized second

bid, and it depends on N∗ through Eq. (1):

Z = b(N∗, xz)

where xz denotes the valuation of the bidder who submits the
second bid Z . In order to satisfy Conditions 1 and 2, we would
require b ⊥ Z |N∗, and also A ⊥ Z |N∗, which are both satisfied in
the IPV setting. The use of a second bid in the role of the instrument
Z echoes the use of two bids per auction in the earlier identification
results of Li et al. (2002) and Krasnokutskaya (forthcoming). Hence,
just as in those papers, our identification and estimation approach
is applicable to any IPV auction with two or more bidders.
Because we are focused on the symmetric IPV model in this pa-

per, we will consider this example in the remainder of this section,
and also in ourMonte Carlo experiments and in the empirical illus-
tration.
2. A second possibility is that N is a noisy measure of N∗,

as in example 2, but Z is an exogenous variable which directly
determines participation:

N = l(N∗, υ)
N∗ = k(Z, ν).

(5)

In order to satisfy Conditions 1 and 2, we would require b ⊥
(υ, Z)|N∗, as well as υ ⊥ Z |N∗. This implies that Z is excluded
from the bidding strategy, and affects bids only through its effect
on N∗.

8 This is no longer true in affiliated value models.
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Furthermore, in this example, in order for the second step of
the estimationprocedure (inwhichwe recover bidders’ valuations)
to be valid, we also need to assume that b ⊥ ν|N∗. Importantly,
this rules out the case that the participation shock ν is a source
of unobserved auction-specific heterogeneity.9 Note that ν will
generally be (unconditionally) correlated with the bids b, which
our assumptions allow for. �
By the law of total probability, the relationship between the

observed distribution g(b,N, Z) and the latent densities is as
follows:

g(b,N, Z) =
K∑

N∗=2

g(b|N∗,N, Z)g(N|N∗, Z)g(N∗, Z). (6)

Under Conditions 1 and 2, Eq. (6) becomes

g(b,N, Z) =
K∑

N∗=2

g(b|N∗)g(N|N∗)g(N∗, Z). (7)

Eq. (7) can be written as

Gb,N,Z = GN|N∗Gb|N∗GN∗,Z . (8)

Condition 2 implies that

g(N, Z) =
K∑

N∗=2

g(N|N∗)g(N∗, Z), (9)

which, using the matrix notation above, is equivalent to

GN,Z = GN|N∗GN∗,Z . (10)

Eqs. (8) and (10) summarize the unknowns in the model, and
the information in the data. The matrices on the left-hand sides
of these equations are quantities which can be recovered from
the data, whereas the matrices on the right-hand sides are the
unknown quantities of interest. As a counting exercise, we see
that the matrices Gb,N,Z and GN,Z contain 2(K − 1)2 − (K − 1)
known elements, while the unknown matrices GN|N∗ , GN∗,Z and
Gb|N∗ contain at most a total of also 2(K − 1)2 − (K − 1) unknown
elements. Hence, in principle, there is enough information in
the data to identify the unknown matrices. The key part of the
proof below is to characterize the solution and give conditions
for uniqueness. Moreover, the proof is constructive in that it
immediately suggests a way for estimation.
Eq. (10) implies that

Rank
(
GN,Z

)
≤ min

{
Rank

(
GN|N∗

)
, Rank

(
GN∗,Z

)}
. (11)

Hence, it follows from Condition 3 that Rank
(
GN|N∗

)
= K − 1 and

Rank
(
GN∗,Z

)
= K−1. In other words, thematrices GN,Z , GN|N∗ , and

GN∗,Z are all invertible.10 Therefore, postmultiplying both sides of
Eq. (8) by G−1N,Z = G

−1
N∗,ZG

−1
N|N∗ , we obtain the key equation

Gb,N,ZG−1N,Z = GN|N∗Gb|N∗G
−1
N|N∗ . (12)

The matrix on the left-hand side can be formed from the data.
For the expression on the right-hand side, note that because Gb|N∗
is diagonal (see Eq. (4)), the right-hand side matrix represents
an eigenvalue–eigenvector decomposition of the left-hand side
matrix, with Gb|N∗ being the diagonal matrix of eigenvalues, and
GN|N∗ being the corresponding matrix of eigenvectors. This is the

9 In the casewhenN∗ is observed, correlation between bids and the participation
shock ν can be accommodated, given additional restriction on the k(· · · ) function.
See Guerre et al. (2009) and Haile et al. (2003) for details. However, when N∗ is
unobserved, as is the case here, it is not clear how to generalize these results.
10 Note that Condition 3 is directly testable from the sample. It essentially ensures
that the instrument Z affects the distribution of the proxy variable N (resembling
the standard instrumental relevance assumption in usual IV models).
key representation which will identify and facilitate estimation of
the unknown matrices GN|N∗ and b|N∗ .
In order to make the eigenvalue–eigenvector decomposition

in Eq. (12) unique, Condition 4 is required. This condition, which
is actually implied by equilibrium bidding, guarantees that the
eigenvalues in Gb|N∗ are distinctive for some bid b, which ensures
that the eigenvalue decomposition in Eq. (12) exists and is unique,
for some bid b. Moreover, it guarantees that all the linearly
independent eigenvectors are identified from the decomposition
in Eq. (12).11
Given Condition 4, Eq. (12) shows that an eigenvalue decompo-

sition of the observed Gb,N,ZG−1N,Z matrix identifies Gb|N∗ and GN|N∗
up to a normalization and ordering of the columns of the eigenvec-
tor matrix GN|N∗ .
There is a clear appropriate choice for the normalization con-

stant of the eigenvectors; because each column ofGN|N∗ should add
up to one, we can multiply each element GN|N∗(i, j) by the recipro-
cal of the column sum

∑
i GN|N∗(i, j), as long as GN|N∗(i, j) is non-

negative.
The appropriate ordering of the columns of GN|N∗ is less clear,

and in order to complete the identification, we need an additional
condition which pins down the ordering of these columns. Condi-
tion 5, which posits that N ≤ N∗, is one example of such an or-
dering condition. It is natural, and automatically satisfied, when
N = A, the observed number of bidders. This condition implies
that for any i, j ∈ N

g
(
N = j|N∗ = i

)
= 0 for j > i. (13)

In other words, GN|N∗ is an upper-triangular matrix. Since the tri-
angular matrix GN|N∗ must be invertible (by Eq. (11)), its diagonal
entries are all nonzero, i.e.,

g
(
N = i|N∗ = i

)
> 0 for all i ∈ N . (14)

In otherwords, Condition 5 implies that, oncewe have the columns
of GN|N∗ obtained as the eigenvectors from the matrix decomposi-
tion (12), the right ordering can be obtained by rearranging these
columns so that they form an upper-triangular matrix.
Hence, the arguments in this section have shown the following

result:

Theorem 1. Under Conditions 1–5, Gb|N∗ , GN|N∗ and GN∗,Z are
identified (the former pointwise in b).

3. Nonparametric estimation: two-step procedure

In this section, we give details on the estimation of (b|N∗) given
observations of (b,N, Z), for the symmetric independent private
valuesmodel. In the key Eq. (12), thematrixGN|N∗ is identical for all
b.12 This suggests a convenient two-step procedure for estimating
the unknown matrices GN|N∗ and G(b|N∗).

Step one

In Step 1, we estimate the eigenvector matrix GN|N∗ . To
maximize the convergence rate in estimating GN|N∗ , we average

11 Specifically, suppose that for some value b̃, g (̃b|N∗ = i) = g (̃b|N∗ = j), which
implies that the two eigenvalues corresponding to N∗ = i and N∗ = j are the same.
In this case, the two corresponding eigenvectors cannot be uniquely identified,
because any linear combination of the two eigenvectors is still an eigenvector.
Condition 4 guarantees that there exists another value b such that g(b|N∗ = i) 6=
g(b|N∗ = j). Because Eq. (12) holds for every b, implying that g (̃b|N∗ = i) and
g(b|N∗ = i) correspond to the same eigenvector, as do g (̃b|N∗ = j) and g(b|N∗ = j),
we can use the value b to identify the two eigenvectors corresponding toN∗ = i and
N∗ = j.
12 This also implies that there is a large degree of overidentification in this model,
and suggests the possibility of achieving identification with weaker assumptions.
In particular, it may be possible to relax the non-differentiability Condition 1 so
that we require g(b|N∗,N, Z) = g(b|N∗) only at one particular value of b. We are
exploring the usefulness of such possibilities in ongoing work.
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across values of the bid b. Specifically, from Eq. (7), we have

E(b|N, Z)g(N, Z) =
K∑

N∗=2

E(b|N∗)g(N|N∗)g(N∗, Z) (15)

where E[·|·] denote conditional expectation. Define the matrices
GEb,N,Z ≡ [E (b|N = i, Z = j) g(N = i, Z = j)]i,j , (16)
and

GEb|N∗ ≡

E [b|N∗ = 2] 0 0
0 · · · 0
0 0 E

[
b|N∗ = K

]
 .

Then
GEb,N,Z = GN|N∗GEb|N∗GN∗,Z
and, as before, postmultiplying both sides of this equation by
G−1N,Z = G−1N∗,ZG

−1
N|N∗ , we obtain an integrated version of the key

equation:

GEb,N,ZG−1N,Z = GN|N∗GEb|N∗G
−1
N|N∗ . (17)

This implies
GN|N∗ = ψ

(
GEb,N,ZG−1N,Z

)
,

where ψ(·) denotes the mapping from a square matrix to its
eigenvector matrix following the identification procedure in the
previous section.13As mentioned in Hu (2008), the function ψ(·)
is a non-stochastic analytic function. Therefore, we may estimate
GN|N∗ as follows:

ĜN|N∗ := ψ
(̂
GEb,N,Z Ĝ−1N,Z

)
, (18)

where ĜEb,N,Z and ĜN,Z may be constructed directly from the
sample. In our empirical example, we estimate ĜEb,N,Z using a
sample average:

ĜEb,N,Z =

[
1
T

∑
t

1
Nj

Nj∑
i=1

bit1(Nt = Nj, Zt = Zk)

]
j,k

. (19)

Step two

In Step 2,we estimate g(b|N∗).WithGN|N∗ estimated by ĜN|N∗ in
Step 1, we may proceed to estimate g(b|N∗), pointwise in b. First,
consider
g(b,N) =

∑
N∗
g(N|N∗)g(b,N∗)

which, in matrix form, is
−→g (b,N) = GN|N∗

−→g (b,N∗),

where the vector of densities −→g (b,N) ≡ [g(b,N = 2), g(b,N =
3), . . . , g(b,N = K)]T .
Define eN∗ = (0, . . . , 0, 1, 0, . . . , 0)T , where 1 is at the N∗-th

position in the vector. This relation suggests that we may estimate
the joint density g(b,N∗) as follows:

ĝ(b,N∗) = eTN∗ Ĝ
−1
N|N∗
−→
ĝ (b,N),

where ĜN|N∗ is estimated in Step 1, and we use a kernel estimate

for each element of the vector
−→
ĝ (b,N) = [̂g(b,N = 2), ĝ(b,N =

3), . . . , ĝ(b,N = K)]T :

ĝ
(
b,Nj

)
=

[
1
Th

∑
t

1
Nt

Nt∑
i=1

K
(
b− bit
h

)
1(Nt = Nj)

]
. (20)

13 In order for GN|N∗ to be recovered from this eigenvector decomposition,
Condition 4 from the previous sectionmust be strengthened so that the conditional
means E[b|N∗], which are the eigenvalues from this decomposition, are distinct for
every N∗ .
Given this estimate of ĝ(b,N∗), it is straightforward to estimate
g(b|N∗). Define−→g N , and

−→g N∗ as the vectors of distributions for N
and N∗, respectively.14 Then,
−→g N = GN|N∗

−→g N∗ .

Wemay then estimate

P̂r(N∗) = eTN∗ Ĝ
−1
N|N∗
−→
ĝ (N),

where
−→
ĝ (N) ≡

[ 1
T

∑
t 1Nt=2, . . . ,

1
T

∑
t 1Nt=K

]
can be recovered

directly from the sample. Therefore, the conditional bid densities
g(b|N∗)may be estimated as

ĝ(b|N∗) =
eTN∗ Ĝ

−1
N|N∗
−→
ĝ (b,N)

eTN∗ Ĝ
−1
N|N∗
−→
ĝ (N)

. (21)

Analogously, we can also recover F(b|N∗), the empirical
conditional CDFs for the bids, using the conditional empirical CDF:

F̂(b|N∗) =
eTN∗ Ĝ

−1
N|N∗
−→
F̂ (b,N)

eTN∗ Ĝ
−1
N|N∗
−→
ĝ (N)

, (22)

where F̂(b,N) denotes the vector of empirical CDFs with elements

F̂
(
b,Nj

)
=
1
Nt

Nt∑
i=1

1
(
bit < b,Nt = Nj

)
, Nj = 2, . . . , K (23)

which can be recovered from the sample.
In the Monte Carlo experiments and empirical application, we

estimated both bid CDFs (using Eq. (22)) and bid densities (using
Eq. (21)) to assess the performance of our estimation procedure. An
advantage of empirical CDFs over kernel density estimates is that
we do not need to worry about the effects of bandwidth choice on
the performance of our estimator.
Because Pr(N∗ = K |A = K) = 1, and GN|N∗ is an upper-

triangular matrix, our estimates of F(b|N∗ = K) and g(b|N∗ = K)
are identical to, respectively, F(b|A = K) and g(b|A = K). Our
estimation requires a value for K , the upper bound for the number
of potential bidders. In practice, K is unknown, but we set it to
be the maximum number of observed bidders, which is a super-
consistent estimate.15
The bid b may have a different unknown support for different

N∗. That is,

g(b|N∗) =
{
>0 for b ∈ [r, uN∗ ]
=0 otherwise,

where uN∗ , the upper bound of the support of g(b|N∗), may not be
known by the researcher. In practice, we estimate the upper bound
uN∗ as follows:

ûN∗ = sup
{
b : ĝ(b|N∗) > 0

}
.

In general, using the supremum to estimate the upper bound
of an observed random sample is somewhat naïve. Estimation of
the support of an observed random sample has been extensively
studied in the statistics literature (see Cuevas and Rodríguez-Casal
(2004) for i.i.d. data, and Delaigle and Gijbels (2006a,b) for data
measured with error), and our estimate of uN∗ can be improved
by employing these methods. However, because an unbiased and

14 For example, ifN∗ = {2, 3, 4}, then−→g N∗ = {Pr(N∗ = 2), Pr(N∗ = 3), Pr(N∗ =
4)}T .
15 This is obvious if the reserve price is zero. However, this is also valid when the
reserve price is greater than zero because, even when r > 0, the probability that
the observed number of bidders is equal to K is still strictly positive.
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consistent estimator of uN∗ is all we need, the naïve estimator
ûN∗ is sufficient for our purposes, and we do not consider more
sophisticated estimators in this paper.16
The asymptotic properties of our estimator are analyzed in

detail in the Appendix. Herewe provide a brief summary. Given the
discreteness of N , Z , and the use of a sample average to construct
ĜEb,N,Z (via Eq. (19)), the estimates of ĜN|N∗ (obtained using Eq.
(18)) and ĜN,Z should converge at a

√
T -rate (where T denotes the

total number of auctions).
Hence, pointwise in b, the convergence properties of ĝ(b|N∗)

to g(b|N∗), where ĝ(b|N∗) is estimated using Eq. (21), will be
determined by the convergence properties of the kernel esti-
mate of g(b,N) in Eq. (20), which converges at a rate slower
than

√
T . In the Appendix, we show that, pointwise in b,

(Th)1/2 [̂g(b|N∗)− g(b|N∗)] converges to a normal distribution.
We also present a uniform convergence rate for ĝ(b|N∗). As for the
empirical distribution F̂(b|N∗), it is well known that T 1/2 [̂F(b,N)−
F(b,N)] converges to a normal distribution with mean zero.
Because ĜN|N∗ converges at a

√
T -rate, F̂(b|N∗) also converges at

√
T -rate. We omit the proof of this as the argument is similar to
the proof for ĝ(b|N∗).
The matrix GN|N∗ , which is a by-product of the estimation

procedure, can be useful for specification testing, when N = A, the
observed number of bidders. In the scenario where the difference
between the observed number of bidders A and the number of
potential bidders N∗ arises from a binding reserve price, and that
the reserve price r is fixed across all the auctions with the same N∗
in the dataset, it is well-known (see Paarsch (1997)) that

A|N∗ ∼ Binomial(N∗, 1− FN∗(r)) (24)

where FN∗(r) denotes the CDF of bidders’ valuations in auctions
with N∗ potential bidders, evaluated at the reserve price. This
suggests that the recovered matrix GA|N∗ can be useful in two
respects. First, using Eq. (24), the truncation probability FN∗(r)
could be estimated, for each value of N∗. This is useful when we
use the first-order condition (3) to recover bidders’ valuations.
Alternatively, we could also test whether the columns of GA|N∗ ,
which correspond to the probabilities Pr(A|N∗) for a fixed N∗, are
consistent with the binomial distribution in Eq. (24).

4. Monte Carlo evidence

In this section, we present some Monte Carlo evidence for
our estimation procedure. We consider first price auctions where
bidders’ valuations xi ∼ U[0, 1], independently across bidders i.
With a reserve price r > 0, the equilibrium bidding strategy with
N∗ bidders is

b∗(x;N∗) = 1x≥r
{(
N∗ − 1
N∗

)
x+

1
N∗

( r
x

)N∗−1
r
}
. (25)

For each auction t , we generate the equilibrium bids bjt , for
j = 1, . . . ,N∗t , as well as (N

∗
t ,Nt , Zt). The proxy Nt is taken

to be the number of observed bidders At , and Zt is a discretized
second bid. The number of potential bidders N∗t for each auction
t is generated uniformly on {2, 3, . . . , K}, where K , the maximum
number of bidders, is set at 4. For each auction t , and each bidder
j = 1, . . . ,N∗t , we draw valuations xj ∼ U[0, 1], and construct
the corresponding equilibrium bids using Eq. (25). Subsequently,
the number of observed bidders is determined as the number

16 This naïve estimator for the upper bound of the support of bids is commonly
used in the auction literature; e.g., see Donald and Paarsch (1993) and Guerre et al.
(2000), among others.
of bidders whose valuations exceed the reserve price: At =∑
j∈N ∗t

1(xj ≥ r).
The estimation procedure in Section 3 requires At ≥ 2 for each

t , so that the supports of At and N∗t coincide. For this reason, we
discard all the auctions with At = 117; for each of the remaining
auctions, we randomly pick a pair of bids (b1t , b2t ), and use a
discretized version of the second bid b2t in the role of Zt .18

4.1. Results

We present results from S = 400 replications of a simulation
experiment. The performance of our estimation procedure is
illustrated in Figs. 1 and 3. The estimator performs well for all
values of N∗ = 2, 3, 4, and for modest-sized datasets of T = 1000
and T = 400 auctions, especially for the empirical bid distribution
functions. Across the Monte Carlo replications, the estimated
distribution and density functions track the actual densities quite
closely. In these graphs, we also plot the bid CDFs (labelled
‘‘G(b|A)’’) anddensities (g(b|A)) conditional onA, which are ‘‘naïve’’
estimators for F(b|N∗), and g(b|N∗), respectively. For N∗ = 2, 3,
our estimator outperforms the naïve estimator, especially for the
case of N∗ = 2. As wementioned earlier, forN∗ = 4, our estimates
coincide with the naïve estimates.
In Figs. 2 and 4, we present estimates of bidders’ valuations.

In each graph on the left-hand side of the figure, we graph the
bids against three measures of the corresponding valuation: (i)
the actual valuation, computed from Eq. (3) using the actual bid
densities g(b|N∗), and labeled ‘‘True values’’; (ii) the estimated
valuations using our estimates of g(b|N∗), labeled ‘‘Estimated
value’’19; and (iii) naïve estimates of the values, computed using
g(b|A), the observed bid densities conditional on the observed
number of bidders.20
The graphs show that there are sizable differences between the

value estimates, across all values of the bids. For all values of N∗,
we see that our estimator tracks the true values quite closely. In
contrast, the naïve approach underestimates the valuations. This
is to be expected—because N∗ ≥ A, the set of auctions with a given
value of A actually have a true level of competition larger than A.
Hence, the naïve approach overstates the true level of competition,
which leads to underestimation of bidders’ markdowns (x− b)/x.
The markdowns implied by our valuation estimates are shown in
the right-hand-side graphs in Figs. 2 and 4.

5. Empirical illustration

In this section, we illustrate our methodology using a dataset of
low-bid construction procurement auctions held by theNew Jersey
Department of Transportation (NJDOT) in the years 1989–1997.
This dataset was previously analyzed in Hong and Shum (2002),
and a full description of it is given there. Moreover, Hong and
Shum’s (2002) analysis allows for common values, whereaswe just
have a simpler IPV model in the application here.21

17 Because of Condition 1, ignoring the auctions with At = 1 does not affect
the consistency of the estimates of the bid distributions g(b|N∗). There is only an
efficiency impact from using fewer observations.
18 Specifically, in this experiment, bids are distributed on [0.3, 0.75], and both
N∗, A ∈ {2, 3, 4}. Hence, the discretized second bid Zt also takes values {2, 3, 4}
as follows: if b2t ∈ [0.3, 0.55], Z = 2; b2t ∈ [0.55, 0.675], Z = 3; b2t ∈
[0.675, 0.55], Z = 4.
19 In computing these valuations, the truncation probability F(r) in Eq. (3) is
obtained from the first-step estimates of the misclassification probability matrix

GN|N∗ as F̂(r) = 1−
[
Ĝ(N∗|N∗)

]1/N∗
.

20 In computing the values for the naïve approach,we use the first-order condition
ξ(b; A) = b+ G(b|A)

(A−1)·g(b|A) , which ignores the possibility of a binding reserve price.
21 We are uncertain how to extend our estimation approach to common (or
affiliated) value settings, and are exploring this in ongoing work.
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Fig. 1. Estimates of bid distribution functions and densities: K = 4, T = 1000.
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Fig. 2. Estimates of bid functions and implied markdowns, K = 4, T = 1000.
Among all the auctions in our dataset, we focus on highway
work construction projects, for which the number of auctions
is the largest. In Table 1, we present some summary statistics
on the auctions used in the analysis. Note that there were six
auctions with just one bidder, in which non-infinite bids were
submitted. If the observed number of bidders A is equal to N∗, the
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Fig. 3. Estimates of bid distribution functions and densities: K = 4, T = 400.
Fig. 4. Estimates of bid functions and implied markdowns, K = 4, T = 400.
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Table 1
Summary statistics of procurement auction data. Highway work auctions,
worktype = 4. Only auctions with A = 2, 3, 4 were used in empirical analysis.

Observed # bidders (A) # auctions Frequency Average bida

1 6 2.96 0.575
2 11 5.42 1.495
3 31 15.27 1.692
4 46 22.67 1.843
5+ 109 53.69 4.034
a In millions of 1989$.

number of potential bidders observed by bidders when they bid,
then the non-infinite bids observed in these one-bidder auctions
is difficult to explain from a competitive bidding point of view.22
However, occurrences of one-bidder auctions are a sign that the
observed number of bidders is less than the potential number of
bidders, perhaps due to an implicit reserve price. Themethodology
developed in this paper allows for this possibility.
For the two auxiliary variables, we used A, the number of

observed bidders, in the role of the noisy measure N . We only
analyze auctions with A = 2, 3, 4. Correspondingly, N∗ also takes
three distinct values from {2, 3, 4}. Because we focus on this range
of small A, we assume that all the auctions are homogeneous.23 In
the role of the instrument Z , we use a second bid, discretized to
take three values, so that the support of Z is the same as that of
A.24
Furthermore, we use the ordering Condition 5, which implies

that A ≤ N∗, which is consistent with the story that bidders
decide not to submit a bid due to an implicit reserve price. By
an implicit reserve price, we mean a reserve price that bidders
observe at the timeof bidding,while not the econometrician.While
there was no explicit reserve price in these auctions, there may
have been an implicit reserve price, which can be understood as
bidders’ common beliefs regarding the upper bound of bids that
the auctioneer is willing to consider.25
Because we model these auctions in a simplified setting, we

do not attempt a full analysis of these auctions. Rather, this
exercise highlights some practical issues in implementing the
estimation methodology. There are three important issues. First,
the assumption that A ≤ N∗ implies that the matrix on the right-
hand side of the key equation (17) should be upper-triangular,
and hence that the matrix on the left-hand side, GEb,N,ZG−1N,Z , which
is observed from the data, should also be upper-triangular. In
practice, this matrix may not be upper-triangular. However, we do

22 Indeed, (Li and Zheng, 2009, p. 9) point out that evenwhenbidders are uncertain
about the number of competitors they are facing, finite bids cannot be explained
when bidders face a non-zero probability that they could be the only bidder.
23 We also considered an alternative specification where we control for observed
auction-specific heterogeneity via preliminary regressions of bids on auction
characteristics, and then perform the analysis using the residuals from these
regressions. The resulting estimates of the bid distributions (available from the
authors upon request) were qualitatively similar to, but noisier than, the results
presented here. This may be due to the weak correlation between the residuals
and N∗ . Our identification scheme relies critically on the correlation between bids
and N∗ , and if the auction characteristics were strongly related with, and affect the
bids through N∗ , using the residuals from the regressions in place of the bids may
eliminate much of the correlation, leading to noisier estimates.
24 Namely, we set Zt = 2 if the second bid bt is less than the 25th percentile of
all the second bids; between the 25th and the 75th percentile, Zt = 3; greater that
the 75th, Zt = 4. We tried several other alternatives, to ensure that the results
are robust. In general, even if the support of Z exceeds that of A, the rank of GA,Z
remains the same, but the model is overidentified in the sense that there are more
instruments than needed. Our estimation approach can be extended to this case by
using the generalized inverse of GA,Z , but we did not pursue this possibility here.
25 In conversations with an NJDOT authority, we were told that bids which were
deemedexcessive could be rejected outright at the discretion of the auction officials,
which is consistent with an implicit reserve price.
not impose upper-triangularity on GEb,N,ZG−1N,Z in the first step of
estimation. Instead, we constrain the estimated matrix ĜA|N∗ to be
upper-triangular in the second step of estimation. Doing so has no
effect on the asymptotic consistency and convergence properties
of ĜA|N∗ since GEb,N,ZG−1N,Z is upper-triangular asymptotically, i.e.,
with probability 1, the lower-triangular elements of GEb,N,ZG−1N,Z
vanish.26
Second, even after imposing upper-triangularity on estimated

GA|N∗ , it is still possible that the eigenvectors and eigenvalues
could have negative elements, which is inconsistent with the
interpretation of them as densities and probabilities.27 When our
estimate of the densities g(b|N∗) took on negative values, our
remedy was to set the density equal to zero, but normalize our
density estimate so that the resulting density integrated to one.28
Third, for low-bid procurement auctions, the optimal bidding

strategy, analogous to Eq. (1) above, is

b(xi;N∗) =

xi +
∫ r
xi
(1− FN∗(s))N

∗
−1ds

(1− FN∗(xi))N
∗−1

for xi ≤ r;

0 for xi > r.
(26)

Correspondingly, the valuation x is obtained by

ξ
(
b,N∗

)
= b−

1
N∗ − 1

×
1− FN∗(r)G(b|N∗)
FN∗(r)g(b|N∗)

. (27)

Results: highway work auctions

Fig. 5 contains the graphs of the estimated densities g(b|N∗)
for N∗ = 2, 3, 4, for the highway work auctions. In each column
of this table, we present three estimates of each g(b|N∗): (i) the
normalized estimate with the negative portions removed, just
following the remedy we mentioned above, labeled ‘‘trunc est’’;
(ii) the unnormalized estimate, which includes the negative values
for the density, labeled ‘‘Orig est’’; and (iii) the naïve estimate,
given by g(b|A). In each plot, we also include the 5% and
95% pointwise confidence intervals, calculated using bootstrap
resampling.29
Fig. 5 shows that the naïve bid density estimates, using A in

place of N∗, overweight small bids, which is reminiscent of the
Monte Carlo results. As above, the reason for this seems to be that
the number of potential bidders N∗ exceeds the observed number
of bidders A. In the IPV framework, more competition drives down
bids, implying that using A to proxy for the unobserved level of
competition N∗ may overstate the effects of competition. Because
in this empirical application we do not know and control the
data-generating process, these economically sensible differences
between the naïve estimates (using g(b|A)) and our estimates
(using g(b|N∗)) serve as a confirmatory reality check on the
assumptions underlying our estimator. In order to observe the
performances of these estimators closely by comparisons, we also
include estimated empirical CDFs and densities for N∗ = 2, 3, 4 in
Fig. 6.

26 Indeed, in the Monte Carlo simulations, we sometimes also had to impose this
on the simulated data, as the GEb,N,ZG−1N,Z matrix could be non-upper-triangular
due to small sample noise. In a previous version of the paper, we imposed upper-
triangularity directly on GEb,N,ZG−1N,Z . Bothmethods have no effect on the asymptotic
consistency and convergence properties on our estimator, but clearly themethod in
current version is more plausible since we did not impose any restriction on data-
driven matrix GEb,N,ZG−1N,Z .
27 This issue also arose in our Monte Carlo studies, but went away when we
increased the sample size.
28 Here we follow the recommendation of Efromovich (1999, p. 63). This remedy
does not affect the asymptotic properties of our estimator in that asymptotically
g(b|N∗) is bounded away from zero on its support, as we mentioned in footnote 4.
29 The asymptotic variance is derived analytically in the Appendix. However, it is
tedious to compute in practice, which is why we use the bootstrap to approximate
the pointwise variance of the density estimates.
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Fig. 5. Highway work projects, estimated densities: bootstrap 90% CI of the adjusted estimator.
For these estimates, the estimated GA|N∗ matrix was

N∗ = 2 N∗ = 3 N∗ = 4

A = 2 1.0000 0.1300 0.4091
A = 3 0 0.8700 0.1041
A = 4 0 0 0.4868

Furthermore, for the normalized estimates of the bid densitieswith
the negative portions removed, the implied values for E[b|N∗], the
average equilibrium bids conditional on N∗, were 3.6726, 3.1567,
3.1776 for, respectively, N∗ = 2, 3, 4 (in millions of dollars).
The corresponding valuation estimates, obtained by solving

Eq. (27) pointwise in b using our bid distribution and density
estimates, are graphed in Fig. 7. We present the valuations
estimated using our approach, as well as a naïve approach using
g(b|A) as the estimate for the bid densities. Note that the valuation
estimates become negative within a low range of bids, and then at
the upper range of bids, the valuations are decreasing in the bids,
which violates a necessary condition of equilibrium bidding. These
may be due to unreliability in estimating the bid densities g(b|A)
and g(b|N∗) close to the bounds of the observed support of bids.
Comparing the estimates of valuations using g(b|N∗) and those

obtained using g(b|A), we see that the valuations using g(b|N∗) are
smaller than those using g(b|A), for N∗ = 2, 3, 4. As in the Monte
Carlo results, this implies that the markups (b− c)/b are larger us-
ing our estimates of g(b|N∗). The differences in implied markups
between these two approaches is economically meaningful, as il-
lustrated in the right-hand-side graphs in Fig. 7. For example, for
N∗ = 4, at a bid of $ 2 million, the corresponding markup using
g(b|A = 4) is around 30%, or $ 600,000, but using g(b|N∗ = 4) is
around 55%, or $ 1.1 million. This suggests that failing to account
for unobservability ofN∗ can lead the researcher to understate bid-
ders’ profit margins.

6. Extensions

6.1. Only winning bids are recorded

In some first-price auction settings, only the winning bid is
observed by the researcher. This is particularly likely for the case
of descending price, or Dutch auctions, which end once a bidder
signals his willingness to pay a given price. For instance, Laffont
et al. (1995) consider descending auctions for eggplantswhere only
the winning bid is observed, and van den Berg and van der Klaauw
(2007) estimate Dutch flower auctions where only a subset of bids
close to the winning bid are observed. Within the symmetric IPV
setting considered here, Guerre et al. (2000) and Athey and Haile
(2002) argue that observing thewinning bid is sufficient to identify
the distribution of bidder valuations, provided that N∗ is known.
Our estimation methodology can be applied to this problem even
when the researcher does not know N∗, under two scenarios.

First scenario: non-binding reserve price
In the first scenario, we assume that there is no binding reserve

price, but the researcher does not know N∗. (Many Dutch auctions
take place too quickly for the researcher to collect data on the
number of participants.) Because there is no binding reserve price,
thewinning bid is the largest out of theN∗ bids in an auction. In this
case, bidders’ valuations can be estimated in a two-step procedure.
In the first step, we estimate gWB(·|N∗), the equilibrium density

of winning bids, conditional on N∗, using the methodology above.
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Fig. 6. Highway work projects, estimated distribution functions and densities.
Fig. 7. Highway work projects, estimated values and markups.
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In the second step, we exploit the fact that, in this scenario, the
equilibrium CDF of winning bids is related to the equilibrium CDF
of the bids by the relation

GWB(b|N∗) = G(b|N∗)N
∗

.

This implies that the equilibrium bid CDF can be estimated as
Ĝ(b|N∗) = ĜWB(b|N∗)1/N

∗

, where ĜWB(b|N∗) denotes the CDF im-
plied by our estimates of ĝWB(b|N∗). Subsequently, upon obtain-
ing an estimate of Ĝ(b|N∗) and the corresponding density ĝ(b|N∗),
we can evaluate Eq. (3) at each b to obtain the corresponding
value.

Second scenario: binding reserve price, but A observed
In the second scenario, we assume that the reserve price binds,

but that A, the number of bidders who are willing to submit a bid
above the reserve price, is observed. The reason we require A to
be observed is that when reserve prices bind, the winning bid is
not equal to bN

∗
:N∗ , the highest order statistic out of N∗ i.i.d. draws

from g(b|N∗, b > r), the equilibrium bid distribution truncated to
[r,+∞). Rather, for a given N∗, it is equal to bA:A, the largest out
of A i.i.d. draws from g(b|N∗, b > r). Hence, because the density of
the winning bid depends on A, even after conditioning on N∗, we
must use A as a conditioning covariate in our estimation.
For this scenario, we estimate g(b|N∗, b > r) in two steps. First,

treating A as a conditioning covariate, we estimate gWB(·|A,N∗),
the conditional density of thewinning bids conditional on both the
observed A and the unobserved N∗. Second, for a fixed N∗, we can
recover the conditional CDF G(b|N∗, b > r) via

Ĝ(b|N∗, b > r) = ĜWB(b|A,N∗)1/A, ∀A.

(That is, for each N∗, we can recover an estimate of G(b|N∗, b > r)
for each distinct value of A. Since the model implies that these
distributions should be identical for all A, we can, in principle, use
this as a specification check of the model.)
In both scenarios, we need to find good candidates for the

auxiliary variables N and Z . Since typically many Dutch auctions
are held in a given session, one possibility for N could be the total
number of attendees at the auction hall for a given session, while
Z could be an instrument (such as the time of day) which affects
bidders’ participation for a specific auction during the course of the
day.30

6.2. Endogenous entry

A second possible extension of our approach is to models of
endogenous entry. In Samuelson’s (1985) model, N∗ potential
entrants observe their valuations, and must decide whether or not
to pay an entry cost k > 0 to bid in the auction. In this model (see
Li and Zheng (2009) and Marmer et al. (2009)), the distribution
of the valuations of the bidders who enter the auction, FN∗(v),
varies depending on N∗. As Marmer et al. (2009) show, the inverse
bidding strategy for this model, analogous to Eq. (3), is

ξ
(
b,N∗

)
= b+

1− p(N∗)+ p(N∗)G(b|N∗)
(N∗ − 1)p(N∗)g(b|N∗)

, (28)

where p(N∗) denotes the equilibrium entry probability with N∗
potential entrants.
We can apply our methodology to identify and estimate the

valuation distributions FN∗(v) in this model, even when the
number of potential entrants N∗ is not observed. Let A denote the

30 This corresponds to the scenario considered in the flower auctions in van den
Berg and van der Klaauw (2007).
number of bidders who enter, which we assume to be observed.31
First, using our procedure, the equilibrium bid distributions
G(b|N∗) and misclassification probabilities GA|N∗ can be estimated
using A as the proxy for N∗ and a second bid in each auction in the
role of Z . For recovering the valuations, note that, corresponding to
Eq. (24), in equilibrium we have

A|N∗ ∼ Binomial(N∗, p(N∗)), (29)

implying that p(N∗) can be recovered for each value ofN∗ from the
misclassification probability matrix GA|N∗ . Once p(N∗) is known,
the valuations can be identified for each b in the support ofG(b|N∗)
using Eq. (28).

7. Conclusions

In this paper, we have explored the application of methodolo-
gies developed in the econometricmeasurement error literature to
the estimation of structural auction models, when the number of
potential bidders is not observed. We have developed a nonpara-
metric approach for estimating first-price auctions when N∗, the
number of potential bidders, is unknown to the researcher, and
varies in an unknown way among the auctions in the dataset. To
our knowledge, our approach is the first solution to estimating such
a model. Accommodating unknown N∗ is also important for the
policy implications of auction estimates, and the Monte Carlo and
empirical results illustrate that ignoring the problem can lead to
economically meaningful in differences the estimates of bidders’
markups.
One maintained assumption in this paper that N∗ is observed

and deterministic from bidders’ point of view, but not known by
the researcher. The empirical literature has also consideredmodels
where the number of biddersN∗ is stochastic and unobserved from
the bidders’ perspective: e.g., Athey and Haile (2002), Hendricks
et al. (2003), Bajari and Hortacsu (2003), Li and Zheng (2009) and
Song (2006). It will be interesting to explore whether the methods
used here can be useful for estimating these models.
More broadly, these methodologies developed in this paper

may also be applicable to other structural models in industrial
organization, where the number of participants is not observed
by the researcher. These could include search models, or entry
models. We are considering these possibilities in future work.

Appendix. Asymptotic properties of the two step estimator

Proof of uniform consistency of ĝ(b|N∗). In the first step, we
estimate ĜN|N∗ from

ĜN|N∗ := ψ
(̂
GEb,N,Z Ĝ−1N,Z

)
, (A.1)

whereψ (·) is an analytic function as mentioned in Hu (2008) and

ĜEb,N,Z =

[
1
T

∑
t

1
Nj

Nj∑
i=1

bit1(Nt = Nj, Zt = Zk)

]
j,k

,

ĜN,Z =

[
1
T

∑
t

1(Nt = Nj, Zt = Zk)

]
j,k

.

We summarize the uniform convergence of ĜN|N∗ as follows:

Lemma 1. Suppose that Var(b|N, Z) <∞. Then,

ĜN|N∗ − GN|N∗ = Op
(
T−1/2

)
.

31 In this model, a reserve price is irrelevant, because all bidders with valuations
below the reserve price will never enter the auction. Hence, we do not need to
distinguish between the number of bidders who enter and those who enter and
submit a nonzero bid.
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Proof. It is straightforward to show that ĜEb,N,Z − GEb,N,Z =
Op(T−1/2) and ĜN,Z − GN,Z = Op(T−1/2). As mentioned in Hu
(2008), the function ψ(·) is an analytic function. Therefore, the
result holds. �

In the second step, we have

ĝ(b|N∗) =
eTN∗ Ĝ

−1
N|N∗
−→
ĝ (b,N)

eTN∗ Ĝ
−1
N|N∗
−→
ĝ (N)

,

where

ĝ
(
b,Nj

)
=
1
Th

∑
t

1
Nj

Nj∑
i=1

K
(
b− bit
h

)
1(Nt = Nj).

Let ω := (b,N). Define the norm ‖ · ‖∞ as∥∥̂g(·|N∗)− g(·|N∗)∥∥
∞
= sup

b

∣∣̂gb|N∗ (b|N∗)− gb|N∗ (b|N∗)∣∣ .
The uniform convergence of ĝ(·|N∗) is established as follows.

Lemma 2. Suppose:
(2.1) ω ∈ W andW is a compact set.
(2.2) gb,N

(
·,Nj

)
is positive and continuously differentiable to

order R with bounded derivatives on an open set containing W .
(2.3) K(u) is differentiable of order R, and the derivatives of order

R are bounded. K(u) is zero outside a bounded set.
∫
∞

−∞
K(u)du =

1, and there is a positive integer m such that for all j <
m, K (j)(u) is absolutely continuous,

∫
∞

−∞
K(u)ujdu = 0, and∫

∞

−∞
|u |m |K(u)|du <∞.
(2.4) h = cT−δ for 0 < δ < 1/2, and c > 0.
Then, for all j,

∥∥̂g(·|N∗)− g(·|N∗)∥∥
∞
= Op

{(
Th
ln T

)−1/2
+ hm

}
. (A.2)

The most important assumption for Lemma 2 is (2.2), which
places smoothness restrictions on the joint density g(b,N). Via
Eq. (7), this distribution is a mixture of conditional distributions
g(b|N∗), which possibly have a different support for different N∗.
When the supports of g(b|N∗) are known, condition (2.2) only
requires the smoothness of g(b|N∗) on its own support [r, uN∗ ]
because the distribution g(b|N) can be estimated piecewise on
[r, u2], [u2, u3], . . . , [uK−1, uK ]. When the supports of g(b|N∗) are
unknown, condition (2.2) would require the density g(b|N∗) for
each value of N∗ to be smooth at the upper boundary.32

Proof. By Lemma 1, it is straightforward to show that

P̂r(N∗) = eTN∗ Ĝ
−1
N|N∗
−→
ĝ (N)

= eTN∗G
−1
N|N∗
−→g (N)+ Op

(
T−1/2

)
.

Taking into account the fact that
−→
ĝ (b,N) is bounded above, and

P̂r(N∗) is of order 1, we conclude that

ĝ(b|N∗) =
eTN∗G

−1
N|N∗
−→
ĝ (b,N)

eTN∗G
−1
N|N∗
−→g (N)

+ Op
(
T−1/2

)
.

In order to show the consistency of our estimator ĝ(b|N∗), we need
the uniform convergence of ĝ(·,Nj). The kernel density estimator

32 In ongoing work, we are exploring alternative methods, based on wavelet
methods (e.g. Hall et al. (1996)), to estimate the joint density g(b,N) when there
are unknown points of discontinuity, which can be due to the non-smoothness of
the individual densities g(b|N∗) at the upper boundary of their supports.
has been studied extensively. Following results from Lemma 5.4
and the discussion followed in Fan and Yao (2005) (which is based
on the results in Bickel and Rosenblatt (1973)), under assumptions
of Lemma 2, we have for all j33

sup
b

∣∣̂gb,N (·,Nj)− Êgb,N
(
·,Nj

)∣∣ = Op ( Thln T
)−1/2

. (A.3)

According to the discussion on page 205 in Fan and Yao (2005),
assumption (2.3) implies that the bias

Êgb,N
(
·,Nj

)
− gb,N

(
·,Nj

)
= Op

(
hm
)
. (A.4)

Consider that∣∣̂gb,N (·,Nj)− gb,N (·,Nj)∣∣ ≤ ∣∣̂gb,N (·,Nj)− Êgb,N
(
·,Nj

)∣∣
+
∣∣Êgb,N (·,Nj)− gb,N (·,Nj)∣∣ .

From (A.3) and (A.4), we immediately conclude that

sup
b

∣∣̂gb,N (·,Nj)− gb,N (·,Nj)∣∣ = Op {( Thln T
)−1/2

+ hm
}
.

The uniform convergence of ĝb|N∗ then follows. �

Remark. Another technical issue pointed out in Guerre et al.
(2000) is that the density g(b|N∗)may not be bounded at the lower
bound of its support, which is the reserve price r . They suggest
using the transformed bids bĎ ≡

√
b− r . Our identification and

estimation procedures remain the same if b replaced by bĎ, where
an estimate of the reserve price r could be the lowest observed bid
in the dataset (given our assumption that the reserve price is fixed
in the dataset). �

Proof of asymptotic normality of ĝ(b|N∗). In this proof,we show
the asymptotic normality of ĝ(b|N∗) for a given value of b. Define
γ0(b) = {gb,N(b)}, a column vector containing all the elements
in the matrix g(b,N). Similarly, we define γ̂ (b) = {̂gb,N(b)}. The
proof of Lemma 2 suggests that

ĝ(b|N∗) = ϕ (γ̂ (b))+ Op
(
T−1/2

)
,

where

ϕ (γ̂ (b)) ≡
eTN∗G

−1
N|N∗
−→
ĝ (b,N)

eTN∗G
−1
N|N∗
−→g (N)

.

Notice that the function ϕ(·) is linear in each entry of the vector
γ̂ (b). Therefore, we have

ĝ(b|N∗)− g(b|N∗) =
(
dϕ
dγ

)T
(γ̂ (b)− γ0 (b))+ op

(
1/
√
Th
)
,

where dϕdγ is non-stochastic because it is a function of GN|N∗ and
−→g (N) only. The asymptotic distribution of ĝ(b|N∗) then follows
that of γ̂ (b). We summarize the results as follows.

Lemma 3. Suppose that the assumptions in Lemma2 holdwith R = 2
and that

1. there exists some δ such that
∫
|K(u) |2+δ du <∞,

2. (Th)1/2h2 → 0, as T →∞.

Then, for a given b and N∗,

(Th)1/2
[̂
g(b|N∗)− g(b|N∗)

] d
→ N(0,Ω),

where

33 The results in Fan and Yao (2005) are form = 2 but they also hold form > 2.
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Ω =

(
dϕ
dγ

)T
V (γ̂ )

(
dϕ
dγ

)
,

V (γ̂ ) = lim
T→∞

(Th) E
[
(γ̂ − E (γ̂ )) (γ̂ − E (γ̂ ))T

]
.

Proof. As discussed above, the asymptotic distribution of ĝ(b|N∗)
is derived from that of γ̂ (b). In order to prove that the asymptotic
distribution of the vector γ̂ (b) is multivariate normal N(0, V (γ̂ )),
we show that the scalar λT γ̂ (b) for any vector λ has a normal
distribution N(0, λTV (γ̂ )λ). For a given value of b, it is easy to
follow the proof of Theorems 2.9 and 2.10 in Pagan and Ullah
(1999) to show that

(Th)1/2
[
λT γ̂ (b)− λTγ0 (b)

] d
→N

(
0,Var

(
λT γ̂ (b)

))
,

where Var(λT γ̂ (b)) = λTV (γ̂ (b))λ is the variance of the scalar
λT γ̂ (b). The asymptotic distribution of ĝ(b|N∗) then follows. �
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