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a b s t r a c t 

We analyze a structural model of threshold public goods contributions, where the public 

good is provided only if the aggregated contributions reach or surpass the predetermined 

cost; otherwise contributions will be returned to individuals. Based on individual contri- 

butions to a public good in multiple periods, we are able to identify the number of con- 

tributing strategies, functional form for each strategy and the transition probabilities of 

contributing strategies conditional on the previous provision outcomes. The result of the 

constructive identification suggests a multi-step procedure to estimate the model primi- 

tives. Monte Carlo results illustrate that the procedure works well in practice. We apply 

the methodology to the experimental data we collected and show that subjects strate- 

gically respond to provision history by making an adjustment based on their preceding 

contributing strategies. We also find that subjects are more likely to adjust contribution 

strategies upon provision failures. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Private provision of public goods is important for governments or organizations to seek support to cover project costs

partially or entirely. Prominent examples include the newly emerged crowd-funding industry, annual fundraising of non-

profit organizations such as Wikipedia and National Public Radio (NPR). 1 The prevalence and rapid development of private

provision of public goods call for better understanding of individuals’ contributing behavior, which could shed light on some

policy-related issues such as setting appropriate mechanisms for the provision. In this paper, we analyze a structural model

of threshold public goods contributions by allowing heterogeneity and learning among individuals. 

A large body of literature has been devoted to the study of the private provision of public goods with a focus on individ-

ual behavior. It has been documented that individuals do not always reveal their true values toward the public good, (e.g.,
� We are grateful to Alex Brown, Catherine Eckel, and Daniel Stephenson for their helpful comments and discussions. The authors would like to thank 

Enago ( www.enago.com ) for the English language review. This paper is a revised version of the Centre for Microdata Methods and Practice (Cemmap) 

working paper under the title “Estimating Private Provision of Public Goods with heterogeneous Participants: A Structural Analysis”. All errors are our own. 
∗ Corresponding author. 

E-mail addresses: y.an@tamu.edu (Y. An), yhu@jhu.edu (Y. Hu), pengfei.liu@uconn.edu (P. Liu). 
1 The Crowd-funding Industry Report’s data indicating the overall crowd-funding industry has raised $2.7 billion in 2012, across more than 1 million 

individual campaigns globally. In 2013 the industry is projected to grow to $5.1 billion. Wikipedia organizes an annual fundraising campaign to support its 

operations, which usually lasts from mid-November to mid-January. The total money raised increases from $94,0 0 0 in 2005 to $25 million in 2012. 
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see Andreoni (1988) ; Weimann (1994) and Olson (1965) ) and that they exhibit strategic and heterogeneous contributing be-

havior ( Oliveira et al. (2014) and Fischbacher and Gächter (2010) ). However, existing studies of individuals’ behavior mainly

rely on behavioral assumptions on their beliefs or preferences, without explicitly modeling individuals’ strategic behavior

and interactions with a microeconomic foundation. To fill the gap, we propose a structural model of private provision of

public goods that allows individuals’ contributing behavior to be heterogeneous and evolve over time. The model primitives

including the number of different contributing strategies, functional form for each strategy, and the transition probabilities

among all possible strategies are shown to be identifiable and estimable from the revealed contribution choices of indi-

viduals. Based on the data collected in a threshold public good experiment, we find that subjects strategically respond to

provision history by making an adjustment based on their preceding contributions; such response is heterogeneous and

dependent on subjects’ current contributing strategies. 

This paper focuses on threshold public good games with the money back guarantee ( Bergstrom et al., 1986; Cadsby

and Maynes, 1999; Croson and Marks, 20 0 0; Liu et al., 2016 ), where the public good is provided only if the aggregated

contributions reach or surpass the predetermined cost (or the provision point); otherwise contributions will be returned to

individuals. 2 We collect individual contributions data from a threshold public good experiment. Subjects in a group of fixed

membership make contributions toward a public good with predetermined cost across 10 periods, with their induced values

being randomly drawn from a uniform distribution. Subjects observe the outcome of the game, i.e., whether the public

good is provided, but not other group members’ contributions after each period. The data pattern suggests that subjects

contribute using heterogeneous strategies and they also adjust their contributing strategies based on the outcome as well

as their own strategies in the preceding period. 

Based on the observed pattern of our data, we propose a structural model describing individuals’ behavior in public

good provision and estimate the model using the experimental data. Our model allows the individuals to employ hetero-

geneous contributing strategies (we label all individuals employing the same strategy as a “type”) and we do not assume

their strategies constitute a Bayesian Nash equilibrium. In line with Fischbacher and Gächter (2010) , who focus on “linear”

public goods, 3 we assume that the individual heterogeneity originates in their beliefs about other contributors’ behavior.

We allow subjects to adjust their contributing strategies as the belief can change based on the provision outcomes. Without

specifying the number of contributing strategies, the functional form of the strategies, and the adjustment process ex ante ,

we demonstrate that all these objectives can be directly recovered from individuals’ contributions. The main requirement

of our approach is that each individual participates in three public good provision games (makes three contributions). The

sequence of contributions from each individual is used to identify and estimate the structural econometric model based on

the recently developed results in nonclassical measurement errors ( Hu, 2008 ). We treat the unobserved type of an individual

as the latent variable, while using the revealed contributions as the corresponding measurements. In this way, contributions

are used as instrumental variables for the unobserved type of individuals, which enable us to identify a distinct pattern for

each contributing strategy. 

We employ a two-stage procedure for estimation. First, we back out the number of types as well as the contributing

strategy for each type using a fully nonparametric approach. Second, we use maximum likelihood estimation to recover the

adjustment process among different types based on provision history using multi-periods data. A Monte Carlo experiment

demonstrates that our proposed method performs very well for samples with a similar size to our experimental data. Our

empirical estimations based on the experimental data suggest that subjects can be classified into three types ranked by

average contribution, from low to high. If we average all the periods, we estimate the proportions of three types to be 23.6%,

36.1%, and 40.3% for type 1, 2, and 3, respectively. The estimated contributing strategies of all three types are significantly

different and all highly nonlinear. Our estimation results show that type 1 contributes substantially less than type 2 and

3. Nevertheless, we find that type 1 still contributes a significant proportion of their induced values rather than employs a

complete free-riding strategy. 4 

We illustrate the adjustment among types by estimating the transition matrices with each element being a probability

of type k (k = 1 , 2 , 3) in the current period conditional on one’s type j ( j = 1 , 2 , 3 ) and the outcome of the provision in the

preceding period. We find that subjects maintain their proceeding contributing strategies with a probability greater than

67% in response to a successful provision. By contrast, both type 1 and 2 would adjust to higher types with a substantial

probability to respond to an unsuccessful provision. The majority of type 3 would stick to their contributing strategy regard-

less of the outcome. We also estimate the model separately using the first and last five periods of data and compare the

results with that estimated from all the 10 periods. The comparison suggests that in the last five periods subjects are less

reluctant to adjust their contributing strategies. Moreover, we do not find subjects’ contributing strategies converge during

the ten periods’ of experiments. 
2 Bagnoli and McKee (1991) find that provision point mechanism together with money back guarantee (MBG) can potentially induce Pareto efficient 

outcome in a single unit provision environment. 
3 In a standard linear public good game, subjects are asked to allocate their tokens between a private fund that benefits only the individual investor and 

a group fund that generates profits for everyone. The private fund yields a higher rate of return than the public fund for the private investor, but the public 

fund provides the group with a higher total return. The marginal return for the group fund is normally set such that the social optimum occurs when 

individuals give everything to the group fund, while the individuals’ optimum occurs when one keeps all tokens in their private fund. 
4 Heterogeneous behavior in “linear” public good games indicate the existence of a substantial portion of free-rider ( Fischbacher and Gächter, 2010; 

Fischbacher et al., 2001 ). 
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The main contribution of our paper is to provide some new findings on individuals’ contributing strategies and how

they are affected by provision outcomes. There is a fast-growing experimental literature on private provision of public goods

focuses on investigating the heterogeneous behavior of individuals ( Fischbacher and Gächter, 2010; Oliveira et al., 2014 ). Ours

is the first paper that explicitly models and estimates individuals’ heterogeneous strategies and the transition probabilities in

private provision of a threshold public good without imposing behavioral assumptions on individuals’ beliefs or preferences.

The estimates in our paper constitute systematic evidence on individuals’ heterogeneity and their strategic response to

others’ behavior as well as their own. 

The novelty of our paper is that the analysis of individuals’ heterogeneous behavior is grounded on revealed contribution

choices without any behavioral assumptions. Existing studies of individuals’ heterogeneous behavior (e.g., Fischbacher and

Gächter (2010) ; Fischbacher et al. (2001) , and Fischbacher et al. (2014) ) mainly rely on experimental controls to classify

different contributing strategies, which is either not applicable or costly to data contexts in fields. By contrast, our approach

does not specify strategies ex ante . We rather identify strategies from the revealed contributions by exploring the structural

connection between individuals’ strategies and their multiple contributions. Therefore, our approach can be applied to more

general data contexts. 

Another main contribution of our paper is that contributing strategies can be estimated without imposing a functional

form or solving equilibria explicitly. This is a great advantage since the existing studies on the threshold public good pro-

vision lack detailed analyses on individuals’ contributing strategies, partly due to the difficulty of deriving an analytical

solution. There are several attempts to characterize the Bayesian-Nash equilibrium for a two-players threshold public good

provision game (e.g., Alboth et al. (2001) ; Barbieri and Malueg (2008) , and Laussel and Palfrey (2003) ). However, once the

group size grows to three and above, an analytical solution is almost impossible without much more stringent assumptions.

The possible non-equilibrium and heterogeneous contributing strategies of individuals might be rationalized by various be-

havioral models, e.g., level- k thinking ( Crawford and Iriberri, 2007 ) or cognitive hierarchy ( Camerer et al., 2004 ). Therefore,

our paper sheds some lights on the analysis of non-equilibrium behavior without imposing too many structural restrictions.

For instance, we can test the validity of a model by comparing its prediction of subjects’ contributing strategies with our

estimates. Furthermore, our paper contributes to the public good learning literature ( Clemens and Riechmann, 2002; Healy,

2006 ). Our learning results show individuals will adjust their contributions based on the history of outcome and their own

strategies, and such learning adjustments are contingent on unobserved individual types. 

Our methodology relates to recent studies of unobserved heterogeneity in environments of strategic interactions us-

ing the results of measurement errors (e.g. Hu (2008) ; Hu and Schennach (2008) ). For example, Krasnokutskaya (2011) ;

Li et al. (20 0 0) and Hu et al. (2013b) consider auction models unobserved heterogeneity. Hu et al. (2013a) use bandit ex-

periments to nonparametrically estimate the learning rule using auxiliary measurements of beliefs. Xiao (2018) considers

multiple equilibria in static and dynamic games. The connection between the unobserved heterogeneity and observables in

these studies is similar to our paper. Nevertheless, our paper is the first study of the private provision of public goods with

rigorous identification and estimation applying measurement errors method. 

The remaining of this paper is organized as follow. Section 2 provides an overview of the experiment and the data.

Section 3 proposes a structural model of threshold public goods with heterogeneous contributing strategies and shows the

model is nonparametrically identifiable and estimable. Section 4 conducts Monte Carlo experiments to illustrate our method.

Section 5 presents the empirical estimation results using experimental data. Section 6 concludes. Proofs, tables, figures and

experiment instructions are collected in the Appendix. 

2. The experiment and data 

We conducted six experiment sessions in the College of Agriculture and Natural Resources (CANR) Lab, University of

Connecticut (UConn). Subjects were recruited primarily through UConn Daily Digest where we advertised requesting vol-

unteer participation in economic experiments. Our subject pool consists mostly undergraduates and a few graduate stu-

dents from various academic majors who have indicated a willingness to participate in economic experiments. We check

the participants’ names and email addresses, before confirming their attendance, to ensure each subject participated only

once in this sequence of experiments. We conducted experiments through networked computer terminals using z-Tree

( Fischbacher (2007) ). Inter-participant communications during the experiment were prohibited and subjects could not ob-

serve each other’s choices. Experiment instructions were distributed to participants and were read aloud. Subjects were told

that they had already earned a $5 show-up fee before we proceeded to the instructions and were paid in cash after the ex-

periment was finished. Each experiment session consisted of two groups with group size fixed at five. Group memberships

were kept the same during the 10 decision periods, i.e., subjects knew that they would play with the same people during

the 10 -period experiment. There is no time limit for each period, although the first two periods are usually longer than the

remaining ones. It takes about 30–45 minutes to run ten periods of experiments. 

Our experiment uses the provision point mechanism with the money back guarantee where each subject was asked

to contribute to a threshold public good ( Cadsby and Maynes, 1999 ). At the beginning of each decision period, subjects

were told their induced values, which simulate the valuations for the public goods. Induced values followed a uniform

distribution on the interval [8,20] and were rounded to one decimal place. Subjects knew the value distribution and their

own induced values, however, they did not observe the induced value of the others. Subjects were informed the potential
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Table 1 

Summary statistics by period. 

Period 

Variable 1 2 3 4 5 6 7 8 9 10 

Sample size 60 60 60 60 60 60 60 60 60 60 

Provided 0.583 0.333 0.333 0.333 0.417 0.25 0.75 0.833 0.5 0.5 

(0.497) (0.475) (0.475) (0.475) (0.497) (0.437) (0.437) (0.376) (0.504) (0.504) 

Value 14.863 13.233 14.373 13.038 14.152 13.567 13.745 13.837 14.952 13.958 

(3.280) (3.606) (3.365) (3.186) (3.311) (3.350) (3.793) (3.525) (3.195) (3.391) 

Contribution 8.821 7.775 8.178 7.997 8.323 8.323 8.941 8.992 8.605 7.937 

(4.068) (4.311) (3.621) (3.945) (2.626) (3.115) (3.776) (3.373) (3.470) (3.339) 

Subj. Prob. 0.662 0.555 0.594 0.534 0.484 0.513 0.488 0.517 0.521 0.519 

(0.240) (0.291) (0.281) (0.300) (0.300) (0.326) (0.314) (0.332) (0.292) (0.337) 

Contr./Value 0.609 0.586 0.569 0.615 0.598 0.615 0.646 0.661 0.583 0.580 

(0.326) (0.299) (0.232) (0.263) (0.169) (0.202) (0.188) (0.255) (0.213) (0.212) 

Standard deviation in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

loss of contributing higher than their induced values. 5 The provision cost or the threshold c was public information. If

the total contribution from the group is equal to or higher than the provision cost, the public good will be provided and

one’s profit equals her induced value minus contribution; otherwise, the public good was not provided and each subject

received zero profits as contributions were fully returned (with the money back guarantee mechanism). After each decision

period, subjects would be informed of the provision result and their own profits in the last period, but not others’ profit.

We set the provision cost for one unit equal to 60% of the expected induced value for an individual times the number of all

individuals in a session; thus, the cost is 60% × 14 × 5 = 42 . A total of 60 subjects participated in the experiment, producing

600 individual level observations. Individuals received an average earning of about $20, including the $5 show-up fee. The

earning was based on the cumulative profits that one subject earned in all 10 decision periods. Actual earnings vary across

individuals and sessions. 

Table 1 presents simple summary statistics of the data. In each column (period), the variable “Provided” is a binary vari-

able indicating the outcome of the public good game: provided = 1 if provided and 0 otherwise.; “Contr./Value” is defined

as the ratio of contribution over the induced value (such a ratio can be used to approximate subjects’ linear contribut-

ing strategies). The table demonstrates that the proportion of groups that successfully provide the public good varies a lot

across period with the minimum 0.333 and the maximum 0.833 even though the change of value and contribution is rela-

tively small. The average contribution ratio per period ranges from 0.569 to 0.661, which is consistent with results reported

in Croson and Marks (20 0 0) for threshold public good games. To visualize the pattern of contribution for groups, we fur-

ther illustrate the group contribution (the sum of individual contributions in one group) for the twelve experimental groups

as well as the average group contribution relative to the provision cost in Fig. 1 . We observe that the average group con-

tribution follows the provision cost closely, which is consistent with the theoretical predictions for threshold public game

with incomplete information ( Bagnoli and Lipman, 1989; Bagnoli and McKee, 1991; Croson and Marks, 20 0 0 ). Nevertheless,

the individual group’s contributions display frequent and significant adjustments across the period. Most of the groups in-

crease their contributions to respond to lower contributions in the preceding period and decrease their contributions upon

a provision failure. 

We check whether the groups’ contributing behavior converge to an equilibrium in the ten periods. Due to the compli-

cated nature of the threshold public good game, the analytical solution under various equilibrium concepts including the

BNE often does not exist when the group size is larger than two ( Alboth et al., 2001; Barbieri and Malueg, 2008 ). There-

fore, it is hard for individuals to figure out the best responses during a short period of time. We compute the variance

of contributions among groups for each period, then regress the variance on the period number. The result indicates that

the variance does not decrease in period significantly ( v ariance t = 7 . 475 − 0 . 04906 t, p -value = 0.884), implying that the con-

tributing behavior does not converge (at least) to a single equilibrium. This is can also be seen from Fig. 1 , where the disper-

sion of group contributions does not shrink across periods. Our finding is consistent with the literature (e.g., see Cason and

Zubrickas (2017) ) which suggest that more than 30 periods are often needed to examine equilibrium behaviors. 

Next, we present some interesting observations regarding individual subjects’ contributing behavior. As subjects are in-

formed the provision outcome after each decision period, the dependence of contributing behavior on the outcomes may

exist. For this purpose, we further illustrate in Fig. 2 the relationship between subjects’ value and contribution conditional on

the outcome in the preceding period. The blue and red markers are for successful provision and provision failure, respec-

tively. There are two important observations regarding this figure. First, the relationship between value and contribution

varies across periods for a given outcome. For example, the blue markers are concentrated in period 5, however, they are

scattered in period 9, implying that contributing behavior in those two periods is distinct. Second, the relationship between
5 Our data shows about 2.8% of contributions are higher than the induced value. Subjects were not allowed to contribute more than 20 (in experimental 

currency) in any single period. 
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Fig. 2. Value-contribution conditioning on outcome. 
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value and contribution is different across outcomes; e.g., in period 2 those subjects who had a successful outcome in period

1 contribute relatively less: for a given value, contributions indicated by the blue markers are below the red ones. How-

ever, such a pattern is less obvious for period 3. A possible interpretation is that subjects respond to the preceding period’s

different outcomes differently and such response could also be distinctive across subjects and/or periods. 

In summary, the pattern in Figs. 1 and 2 of the experimental data reveals that (1) subjects may be heterogeneous in

their contributing behavior; (2) subjects may adjust their contributing behavior based on the provision history and such

adjustment can be heterogeneous; (3) the contributing behavior does not converge to an equilibrium in the ten periods’ of

the game. We present a structural model in the next section to quantitatively assess these findings. 

3. A structural model with heterogeneous subjects 

In this section, we propose a structural model of public goods provision with heterogeneous subjects to rationalize the

findings in Section 2 . The main components of the model are shown to be nonparametrically identifiable and estimable

under mild conditions. 

3.1. The model 

A group of I ≥ 2 risk-neutral subjects contribute to a public good across T ≥ 3 periods. 6 The private values of subjects

v it ∈ [ v , v ] , i = 1 , 2 , . . . , I; t = 1 , 2 , · · · T are i.i.d. draws across i and t from a cumulative distribution function G ( · ) with density

g ( · ). At period t , subject i makes a contribution b it ∈ [0 , v it ] and the public good is provided only if the total contribution

of all the I subjects exceeds the cost (threshold) c > 0, i.e., �i b it ≥ c where c is a known constant over periods. We maintain

that v < c such that it is impossible for one subject to provide the good. Subject i obtains a payoff v it − b it if the public

good is provided and zero otherwise. The common knowledge among subjects at the beginning of period t includes the

value distribution G ( · ), group size I , cost c and the outcome of previous periods w −t ≡ { w 1 , w 2 , · · · , w t−1 } , which are binary

variables with w s = 1 indicating a successful provision in period s , and w s = 0 otherwise. In summary, subject i solves the

following maximization problem in period t : 

max 
b it 

(v it − b it ) Pr 

( 

I ∑ 

j=1 

b jt ≥ c 

∣∣∣∣∣I −it 

) 

, (1)

where I −it ≡ { ( w s , b is , v is ) , s = 1 , 2 , . . . , t − 1 } is a set of information available t o subject i prior t o period t . 

The probability in (1) summarizes a subject’s belief about others’ behavior. To model the heterogeneous contributing

behavior, we follow the previous findings in the literature and assume that the probability may be different across subjects.

Given a subject’s value v it , each possible probability implies a corresponding b it as the optimal solution to problem (1) .

Let all the subjects be one of the K ( K ≥ 2) discrete private types with each type corresponding to a specific contributing

strategy, which is defined as follows. 7 Subject i ’s type is denoted as τi ∈ { 1 , 2 , . . . , K} , then her contributing strategy (we

only consider those strategies monotone in value) is a mapping from her private value and type to her contribution, i.e., 

s i (·, ·) : [ v , v ] × { 1 , 2 , . . . , K} → [0 , v ] . 
For ease of notation, we rewrite s i (v i , τi = k ) as s k (v i ) . This strategy also depends on the group size I , value distribution

G ( · ), and the threshold c ; however, we suppress the argument I , G and c in s k ( · ) to simplify the notation. We assume that

the number of types K does not vary across time and each subject’s type is private information. Each subject potentially

adjusts her type over time based on the outcome in previous periods. We denote such adjustments by a transition matrix

Pr (τt ′ | τt , w −t ) . Given a vector of outcome history w −t , Pr (τt ′ | τt , w −t ) is a K × K matrix with its ( i , j )-th element being the

probability for a type j in period t that changes to type i in period t ′ . 
Note that we are not requiring or prohibiting subjects’ contributing strategies constitute a Nash equilibrium in our

model. The type τ can be understood as a “reduced-form” description of subjects’ contributing behavior. For the possible

non-equilibrium behavior, the heterogeneous contributing strategies of subjects might be rationalized by various behavioral

models, e.g., level-k thinking ( Crawford and Iriberri, 2007 ) or cognitive hierarchy ( Camerer et al., 2004 ). 

Using data from three consecutive periods, the joint distribution of b 1 , b 2 , b 3 can be directly identified. Our goal of

identification is to uniquely determine the number of type K , the proportion and bidding strategy for each type as well as

the transition matrix Pr (τt ′ | τt , w −t ) . Let F ( · ) be the distribution of subjects’ contributions and F (·| τ = k ) , k = 1 , 2 , · · · , K be

the distribution for subjects of type k . Then using the data for a given period t (we drop the index of period for simplicity),

the model provides a finite mixture of distributions for all the types: 

F (b 1 , b 2 , b 3 ) = 

K ∑ 

k =1 

F (b 1 , b 2 , b 3 | τ = k ) p k , (2)
6 Subjects are assumed to be risk-neutral, as did in most of the existing literature (see e.g., Cadsby and Maynes (1999) ; Croson and Marks (20 0 0) and 

Fischbacher and Gächter (2010) ). Given that the average earning is only $20, we believe that risk-neutrality is a reasonable assumption. 
7 The assumption that subjects are of K types is relevant in environments where members are known a priori to belong to a small number of distinct 

groups. In other cases where type is in fact continuously distributed, our method below should be interpreted as showing identification for a coarser, 

discretized version of the model. 
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where p k is the proportion of type k . To explore the dependence of model primitives on the relationship above, we consider

a similar equation for one period, 

F (b) = 

K ∑ 

k =1 

F (b| τ = k ) p k = 

K ∑ 

k =1 

G 

(
s −1 
τ= k (b) 

)
p k . (3)

The ( Eq. (3) ) holds because F (b| τ = k ) = Pr (B ≤ b| τ = k ) = Pr (s τ= k (V ) ≤ b) = Pr (V ≤ s −1 
τ= k (b)) = G 

(
s −1 
τ= k (b) 

)
, where B is a

random variable following distribution F (·| τ = k ) with s τ= k (V ) denote the contribution strategy for type k . We have two

observations from (3) regarding identification of the model. First, cross-sectional observations of subjects’ values and con-

tributions are insufficient for identification. The cross-sectional data allow us to recover a relationship between values and

contributions, which is the combined contributing strategies for all the types. Without prior information about the number

of types as well as proportion and functional form of the strategy for each type, it is impossible to back out the contributing

strategy for each type. Second, we have a short panel with multiple observations for each subject and the subject’s iden-

tity; however, identification still requires a novel method. With a panel data of values and contributions being observed,

a possible approach is to apply the method in Athey and Haile (2002) to recover a subject’s contributing strategy using

her multiple values and contributions under the assumption of invariant type. Such an approach requires a large number

of observations for each subject. Nevertheless, it is unlikely that we have both type invariance and a long panel in both

experimental and field data. 

To solve the identification issues, we apply the recent development in the literature of measurement error, namely

Hu (2008) to identify the model based upon (2) and (3) . It is worth noting that our methodology of identification only

requires researchers to observe the distribution of induced values but not individuals’ values. This allows us to accommo-

date more flexible data structures, e.g., in many field data individuals’ values are unknown but researchers may have prior

information about the distribution of values. 

3.2. Identification 

We consider the case where M groups of subjects sequentially participate in T games of provision for the public good.

The cost of the public good or the threshold is fixed for all the game. Similarly, the group size and the group members

remain the same. As subjects’ contributing strategies may depend on group size and cost, maintaining them fixed allows us

to control for their effects when we conduct our analysis. Suppose we observe an i.i.d. sample { b m 

it 
, w 

m 

t } , i = 1 , 2 , · · · , I; m =
1 , 2 , · · · , M; t = 1 , 2 , · · · , T , where i , m and t indicate individual, group, and time period, respectively, and we use N ≡ M · I

to denote the sample size or the total number of individuals. We assume individuals’ values are unknown to researchers

but the distribution is known. For ease of notation, we suppress the superscript m and subscript i . As will be shown, three

periods of data (T = 3) are sufficient for identification, hence the sample is denoted as { b 1 , w 1 ; b 2 , w 2 ; b 3 ; w 3 } . As discussed

previously, subject i ’s type in period t is denoted as τit ∈ { 1 , 2 , . . . , K } , where K is unknown, and the type may evolve across

periods. The objectives of interest are: (1) number of type, (2) contributing strategy for each of the type, (3) the proportion

of each type in the first period and (4) the transition matrix of type across period, or the “learning rules”. 

We start our identification strategy from a joint distribution of subjects’ contributions and the provision outcome, b 1 , b 2 
and b 3 and w 2 . By the law of total probability, we have 

f b 3 ,w 2 ,b 2 ,b 1 = 

∑ 

τ3 

∑ 

τ2 

f b 3 ,τ3 ,w 2 ,b 2 ,τ2 ,b 1 

= 

∑ 

τ3 

∑ 

τ2 

f b 3 | τ3 ,w 2 ,b 2 ,τ2 ,b 1 f τ3 | w 2 ,b 2 ,τ2 ,b 1 f w 2 | b 2 ,τ2 ,b 1 f b 2 | τ2 ,b 1 f τ2 ,b 1 , (4) 

where f R 1 ,R 2 and f R 1 | R 2 denote the joint and conditional densities R 1 and R 2 respectively. For simplicity of exposi-

tion, we still use the notation of f ( · ) when R 1 and/or R 2 are discrete whenever there is no ambiguity. Let �−t ≡
{ ( w s , b s , τs ) for s = 1 , . . . , t − 1 } be a set of information available for subjects prior to period t , where τ s contains all the

subjects’ types from period 1 to t − 1 . Our first assumption specifies the dependence of subjects’ contributions on the infor-

mation set �−t . 

Assumption 1. A subject’s contribution in each period is only determined by her induced value and her current type, i.e.,

b it = s it (v it , τit ) , which is s k (v it ) for τit = k, k ∈ {1, 2, ���, K }. 

This assumption excludes the dependence of the current contribution on the preceding information �−t . It states all the

information available to a subject is absorbed into her current type. That is, a subject sufficiently utilizes the history of

outcomes, her contributions and strategies to determine the strategy at the current period, which implies that the type is a

“sufficient statistic” of the information set �−t . This assumption simplifies the conditional density f b 3 | τ3 ,w 2 ,b 2 ,τ2 ,b 1 
as f b 3 | τ3 

and f b 2 | τ2 ,b 1 
as f b 2 | τ2 

. Accordingly, (4) can be rewritten as 

f b 3 ,w 2 ,b 2 ,b 1 = 

∑ 

τ3 

∑ 

τ2 

f b 3 | τ3 
f τ3 | w 2 ,b 2 ,τ2 ,b 1 f w 2 | b 2 ,τ2 ,b 1 f b 2 | τ2 

f τ2 ,b 1 . (5) 
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In the equation above, f w 2 | b 2 ,τ2 ,b 1 
is the probability that the public good is provided successfully in period 2 for w 2 = 1 . Re-

call that w 2 = 1 only if the summation of all the contributions in this period exceeds the cost, 
∑ I 

j=1 b j2 ≥ c hence the prob-

ability f w 2 | b 2 ,τ2 ,b 1 
is independent of τ 2 conditional on b 2 , i.e., f w 2 | b 2 ,τ2 ,b 1 

= f w 2 | b 2 ,b 1 . The conditional probability f τ3 | w 2 ,b 2 ,τ2 ,b 1 
captures the transition process of subjects’ type from period t = 2 to t = 3 . Similar to Assumption 1 , we impose some re-

strictions on how subjects’ type evolves. 

Assumption 2. The contributing strategy in the next period for a subject only depends on the outcome of provision and her

contributing strategy in the current period. 

Under this assumption, the transition of types Pr (τt+1 | w t , b t , τt , �−t ) can be simplified to Pr (τt+1 | w t , τt ) . The restriction

imposed by this assumption is twofold: first, the history �−t , especially outcomes before period t play no role in subjects’

learning rule given the current period’s information. We do not rule out the possibility that subjects consider the infor-

mation �−t , however, it’s irrelevant under Assumption 1 since the current type τ t absorbs the history �−t . This leaves us

with the transition probability being Pr (τt+1 | w t , b t , τt ) . This part of the assumption is also supported by the data pattern

in the proceeding section, where w t−2 has little impact on b it after controlling w t−1 . Second, a subject’s contribution in the

preceding period has no impact on her strategy for this period given the previous outcome and her previous strategy. This

restriction is a natural consequence of the independence of subjects’ values across periods: since values are independent, a

subject can only learn from the provision outcome and her type in the last period. Intuitively, the contribution b t contains

no additional information other than τ t for subjects with independent values across period. Nevertheless, it is worth noting

that the independence of type τt+1 and the information set �−t is an assumption of first-order Markov process, which is

widely used in the literature, and it can be relaxed when more periods of data are available for each subject. 

Under Assumption 2 we further simplify (5) as 

f b 3 | w 2 ,b 2 ,b 1 f b 1 ,b 2 = 

∑ 

τ2 

f b 3 | w 2 ,τ2 
f b 2 | τ2 

f τ2 ,b 1 . (6)

Integrating out b 2 on both sides of the equation above, we obtain ∫ 
f b 3 | w 2 ,b 2 ,b 1 (·|·, ·, u ) f b 1 ,b 2 (·, u ) du = 

∑ 

τ2 

f b 3 | w 2 ,τ2 
f τ2 ,b 1 . (7)

The two equations above provide a structural link between directly observed objectives on the L.H.S. and unknowns on

the R.H.S. Following Hu (2008) , we adopt a matrix form of Eqs. (6) and (7) for the purpose of identification. Specifically,

we discretize the contributions b 1 and b 3 , which are both continuous variables, as L values and denote the discretized

contributions as d 1 and d 3 , respectively. 8 

For a given outcome w 2 ∈ { 0 , 1 } , and discretized contributions d 1 and d 3 , we define the following matrices: 

A i j ≡ Pr (d 3 = i | w 2 , b 2 , d 1 = j) f (d 1 = j, b 2 ) , 

E i j ≡
∫ 

Pr (d 3 = i | w 2 , b 2 , d 1 = j) f (d 1 = j, b 2 ) db 2 , 

(B d 3 | w 2 ,τ2 
) i,k ≡ [ Pr (d 3 = i | w 2 , τ2 = k )] ik , 

(C τ2 ,d 1 ) k, j ≡ [ Pr (τ2 = k, d 1 = j)] k j , 

D b 2 | τ2 
≡ diag [ f (b 2 | τ2 = 1) f (b 2 | τ2 = 2) · · · f (b 2 | τ2 = K)] . (8)

All the matrices are pointwise in b 2 , where A and E are of dimension L × L , B , C and D are of dimension L × K , K × L and K × K ,

respectively, where the number of types K is still unknown. Similar to their continuous counter-parts, the matrices defined

above describe the distributions of observed and unobserved variables. For example, the ( i , k )-th element in B d 3 | w 2 =0 ,τ2 
is

the probability that the discretized contributions of the third period for those subjects who are of type k is in the i -th

segment given the second period’s outcome is “not provided”. The k -th element of D b 2 | τ2 
is the density f b 2 | τ2 

for the type

τ2 = k evaluated at b 2 . 

The matrices defined above allow us to express (6) and (7) in a matrix form as follows: 

A ≡ B d 3 | w 2 ,τ2 
D b 2 | τ2 

C τ2 ,d 1 , 

E ≡ B d | w ,τ C τ ,d . (9)

3 2 2 2 1 

8 The discrete contribution d t is determined by the following method of discretization. 

d t = 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 if b t ∈ [ b , b t (1)] , 

2 if b t ∈ (b t (1) , b t (2)] , 

. . . 

L if b t ∈ (b t (L − 1) , b ] , 

where the support of contribution, [ b , b ] is divided into L segments by the L − 1 cutoff points b(1) , b(2) , . . . , b(L − 1) , b < b(1) < b(2) < . . . < b(L − 1) < ̄b , 

and d t ∈ { 1 , 2 , . . . , L } (L ≥ 2) is the discretized contribution. Both d 1 and d 3 take values from { 1 , 2 , . . . , L } , however, the cutoff points for discretizing b 1 and 

b 3 can be different. Then Pr (d t = l) ≡ ∫ b t (l) 
b t (l−1) f b t (u ) du . 



132 Y. An et al. / Journal of Economic Behavior and Organization 152 (2018) 124–146 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a given value of w 2 , the matrix E describes the joint distribution of two discretized contributions d 1 and d 3 . As

argued in An (2017) , the rank of this matrix can be used to identify the number of types under two conditions: first, the

support of τ t does not change along with t ; second, contribution distribution of any type is not a linear combination of

those for other types. We employ this insight here and make the following assumption. 

Assumption 3. The inverse contributing functions s −1 
k 

(·) for k = 1 , 2 , · · · , K are linearly independent. Formally, there does

not exist some c k ∈ R , k = 1 , 2 , · · · , K not all zero such that 
∑ K 

k =1 c k s 
−1 
k 

(b) = 0 for all b ∈ [0 , ̄v ] . 

The restrictions imposed by this assumption on the inverse contributing strategies s −1 
k 

(·) can be described as a nonzero

Wronskian if s −1 
k 

(·) has (K − 1) -th continuous derivatives (see e.g., chapter 2 in Shilov (2013) for details). Recall that the

distribution of contributions for type k , F (b| τ = k ) is equal to G 

(
s −1 

k 
(b) 

)
, which can be further simplified as s −1 

k 
(b) / ( ̄v − v )

because the induced values are uniformly distributed in our experiment. Thus Assumption 3 implies that the distributions of

contributions for different types are linearly independent. We require the linear independence holds regardless of the condi-

tioning on the outcome. The unconditional linear independence implies that the row rank of C τ2 ,d 1 
is equal to K , the number

of types. Similarly, the linear independence conditional on the outcome w 2 guarantees that the column rank of B d 3 | w 2 ,τ2 
for

any w 2 ∈ { 0 , 1 } is also K . The essential restriction of this assumption is that there are enough variations of contributing

strategies across type. Recall that the values of subjects who are of different types are i.i.d. It is unlikely that two different

mappings from values to contributions (contributing strategies) lead to linearly dependent distributions of contributions. 

Similar assumptions of full rank have been widely imposed to identify structural models in econometrics. For example,

in Newey and Powell (2003) and Chernozhukov et al. (2007) the full rank condition is essential for the identification of

nonparametric instrumental variable models. 

Lemma 1. Under Assumptions 1 –3 , the number of types K = rank (E) . 

The proof of this lemma is similar to that of lemma 2 in An (2017) . This lemma provides an important guidance to

choose L , the number of values the discretized b 1 and b 3 take. Specifically, L = min { l : det(E l×l ) = 0 } − 1 . More details of the

discretization will be discussed in estimation. 

The assumption of invertibility implies E −1 = C −1 
τ2 ,d 1 

B −1 
d 3 | w 2 ,τ2 

. Combining (9) with the relationship above, we obtain 

A × E −1 = B d 3 | w 2 ,τ2 
D b 2 | τ2 

B 

−1 
d 3 | w 2 ,τ2 

, (10) 

where D b 2 | τ2 
and B b 3 | w 2 ,τ2 

are matrices of eigenvalues and eigenvectors, respectively for the observed matrix A × E −1 . Espe-

cially, each of the diagonal element of D b 2 | τ2 = k , k ∈ { 1 , 2 , . . . , K} is the density of contributions for subjects of type k evalu-

ated at b 2 . Employing the strategies of identification proposed in Hu (2008) , if the matrix decomposition in (10) is unique,

then both B d 3 | w 2 ,τ2 
and D b 2 | τ2 

are identified since the L.H.S of the equation can be recovered from data. 

To achieve the uniqueness of the decomposition, it is necessary to normalize the eigenvector matrix B d 3 | w 2 ,τ2 
and make

the eigenvector unique for each given eigenvalue. Considering that for a given outcome w 2 ∈ { 0 , 1 } , each element in the

eigenvector matrix B d 3 | w 2 ,τ2 
is a conditional probability, hence each column of the matrix sums up to one, i.e., 

∑ 

d 3 
B d 3 | w 2 ,τ2 

=
1 . Then a plausible method of normalization is to divide each column by the corresponding column sum. To achieve the

uniqueness of eigenvector for each eigenvalue, it is necessary for the eigenvalues to be distinctive, which is guaranteed by

the following lemma. 

Lemma 2. If subjects’ values are uniformly distributed, then the distributions of contributions for any two different types of

subjects are distinct, i.e., for any two different types k , j ∈ {1, 2, ���, K }, the density f b| τ (b| τ = k ) is different from f b| τ (b| τ = j) ,

i.e., the set { b : f b| τ (b| τ = k ) 	 = f b| τ (b| τ = j) } has nonzero Lebesgue measure. 

It is straightforward to prove Lemma 2 because of the link between the cdf of b and the inverse contributing function, 

F (b| τ = k ) = 

s −1 
k 

(b) − v 
v − v 

, k = 1 , · · · , K. (11) 

The equation above allows us to recover the contributing strategies for τ2 = 1 , 2 , · · · , K, i.e., 

s −1 
k 

(b) = ( v − v ) F (b| τ = k ) + v , k = 1 , 2 , · · · , K. 

The result in Lemma 2 is testable from (10) because once we obtain all the eigenvalues for each contribution b 2 , it is

straightforward to verify whether the result is violated, i.e., whether there exist at least two types whose distributions of

contributions are always the same for any b 2 . 

Assumption 4. There exists a functional F such that F (s −1 
k 

(b)) , k = 1 , 2 , · · · , K can be completely ordered. 

This assumption guarantees that the contributing strategies of K types can be strictly ordered. The choice of F is flexible:

it can be a known quantile of b ∈ [0 , ̄v ] or the mean. For example, let b 0.5 be the median of the contribution b , then a

possible condition to order s −1 
k 

(·) is s −1 
1 

(b 0 . 5 ) > s −1 
2 

(b 0 . 5 ) > · · · > s −1 
K 

(b 0 . 5 ) , which implies subjects of type 1 would have the

largest value to contribute b 0.5 and type K have the smallest value, i.e., type 1 contributes the least. The restriction of this

assumption is flexible and in the following identification we assume that the average contributions for different types can
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be ordered. Recall that s −1 
k 

(b) / ( ̄v − v ) = F (b| τ = k ) , Assumption 4 implies that we can distinguish different types according

to their average contribution. Without loss of generality, we always label types in an ascending order according to expected

contribution, i.e., on average type 1 contributes the least while type K contributes the most. The approach to label the types

is consistent with the findings in the literature of public good. For example, in Fischbacher and Gächter (2010) the three

types free riders, learners and contributors are classified according to how much they contribute. By imposing Assumption 4 ,

the ordering of eigenvalues (eigenvectors) is fixed and the eigenvector matrix B d 3 | w 2 ,τ2 
is uniquely determined from the

eigenvalue-eigenvector decomposition of the observed matrix A × E −1 . 

For each period, the observed distribution of contributions is a weighted average of distributions for all the possible

types, i.e., 

f (b) = 

∑ 

τ

f (b| τ ) Pr (τ ) . (12)

This relationship allows us to identify the proportion of each type Pr (τ2 ) in period 2 once the distribution for each type

f ( b 2 | τ 2 ) is identified from the eigenvalue-eigenvector decomposition. In summary, all the important components of the

model are identified from (10) and the results are summered as follows. 

Proposition 1. Under Assumptions 1 –4 , the distribution of contributions in period 3 conditioning on the outcome and type in

the last period Pr (d 3 | w 2 , τ2 ) , the distribution of contributions ( f b 2 | τ2 
) and the proportion for each type ( Pr (τ2 ) ) in period 2 are

uniquely determined by the joint distribution of outcome in period 2 and contributions in three periods, f b 3 ,w 2 ,b 2 ,b 1 
. Furthermore,

if the distribution of values is known, the contributing strategy of each type s k ( · ) is also identified. 

Based on the results of identification in Proposition 1 , we show next that the two learning rules Pr (τ3 | w 2 , τ2 ) and

Pr (τ2 | w 1 , τ1 ) are identified, too. First of all, the identified distribution of period 3 conditional on the outcome and type

in period 2, Pr (d 3 | w 2 , τ2 ) is associated with the learning rule Pr (τ3 | w 2 , τ2 ) as 

Pr (d 3 | w 2 , τ2 ) = 

∑ 

τ3 

Pr (d 3 | τ3 , w 2 , τ2 ) Pr (τ3 | w 2 , τ2 ) 

= 

∑ 

τ3 

Pr (d 3 | τ3 ) Pr (τ3 | w 2 , τ2 ) . (13)

It is necessary to utilize an important implication of our model: the distribution of subjects’ contributions for a certain

type is invariant across periods, i.e., f b 3 | τ3 
= f b 2 | τ2 

= f b 1 | τ1 
. This conclusion is due to the fact that the provision game is

homogeneous and subjects’ values are i.i.d. in each period, therefore, the distribution of contributions must remain the same

for each type in different periods. Using this property, Pr (d 3 | τ3 ) can be obtained from the identified conditional density

f b 3 | τ3 
= f b 2 | τ2 

, and the learning rule Pr (τ3 | w 2 , τ2 ) is identified from (13) . We exemplify the procedure by assuming subjects

are of two types, and correspondingly the discretized contribution d 3 takes two values. Then the aforementioned equation

can be expressed in a matrix form: [
Pr (d 3 = 1 | w 2 , τ2 = 1) Pr (d 3 = 1 | w 2 , τ2 = 2) 
Pr (d 3 = 2 | w 2 , τ2 = 1) Pr (d 3 = 2 | w 2 , τ2 = 2) 

]
= 

[
Pr (d 3 = 1 | τ3 = 1) Pr (d 3 = 1 | τ3 = 2) 
Pr (d 3 = 2 | τ3 = 1) Pr (d 3 = 2 | τ3 = 2) 

]
×

[
Pr (τ3 = 1 | w 2 , τ2 = 1) Pr (τ3 = 1 | w 2 , τ2 = 2) 
Pr (τ3 = 2 | w 2 , τ2 = 1) Pr (τ3 = 2 | w 2 , τ2 = 2) 

]
, (14)

where w 2 ∈ { 0 , 1 } . This is a linear system and the learning rule Pr (τ3 | w 2 , τ2 ) can be uniquely solved from it only if the first

matrix on the R.H.S. is full rank, which is guaranteed under Assumption 3 . A similar argument can be applied to identify

the learning rule of subjects from the first to the second period Pr (τ2 | w 1 , τ1 ) . Alternatively, we might identify the learning

rule as follows. Considering the observed joint density of contribution b 2 , b 1 and the outcome w 1 , f b 2 ,w 1 ,b 1 
, we employ the

law of total probability to obtain 

f b 2 ,w 1 ,b 1 = 

∑ 

τ2 

∑ 

τ1 

f b 2 ,τ2 ,w 1 ,b 1 ,τ1 

= 

∑ 

τ2 

∑ 

τ1 

f b 2 | τ2 ,w 1 ,b 1 ,τ1 
f τ2 | w 1 ,b 1 ,τ1 

f w 1 | b 1 ,τ1 
f b 1 | τ1 

f τ1 

= 

∑ 

τ2 

∑ 

τ1 

f b 2 | τ2 
Pr (τ2 | w 1 , τ1 ) f w 1 | b 1 f b 1 | τ1 

f τ1 
, (15)

where the first two equalities hold without any assumption and the third equality is due to Assumptions 1 and 2 . In the

equation above, the L.H.S. as well as f w 1 | b 1 are directly observed from the data. The distribution for each type f b 2 | τ2 
= f b 1 | τ1

and f τ1 
are identified using Proposition 1 . 

Proposition 2. Under Assumptions 1 –4 , the learning rules regarding how subjects adjust their contributing strategies f τ2 | w 1 ,τ1 

and f τ | w ,τ are uniquely determined by the joint distribution of outcomes and contributions in three periods, f b ,w ,b ,w ,b . 

3 2 2 3 2 2 1 1 
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The results of identification in Propositions 1 and 2 are constructive and they suggest a convenient multi-step procedure

for estimation. We discuss the procedure briefly and leave the technical details of estimation in Appendix B. The first step

of estimation is to determine the number of types by testing the rank of the matrix E . Next, by the eigenvalue-eigenvector

decomposition in (10) , we obtain the eigenvector matrix as well as the conditional distribution of contributions for each

type in the second period, where the L.H.S. of (10) is estimated nonparametrically by kernel estimation. Consequently, the

corresponding probability of each type can be estimated from (12) . Lastly, based on (15) the learning rules are estimated

by maximum likelihood estimation (MLE) since the learning rule only contains K × K parameters, where K is the number of

types. 

4. Monte Carlo experiments 

In this section, we present some Monte Carlo evidence to demonstrate the performance of our estimator. We consider a

game of public good provision similar to the experimental setting in Section 2 . The game is played by groups with size m = 5

for three periods ( T = 3 ). Values V it are drawn from a standard uniform distribution and independent across individuals and

over the three periods. The cost of the public good is set to be c = 0 . 6 × E[ V it ] × m = 1 . 5 . Individuals are of three types with

their contributing strategies respectively being as follows: 9 

s 1 (v ) = 

√ 

v + 1 − 1 , s 2 (v ) = 

2 v 
3 

, s 3 (v ) = �−1 
(
(�(1) − �(0)) v + �(0) 

)
, (16)

where �( · ) is the cumulative distribution function for the standard normal distribution. Notice that all the three strategies

are strictly increasing in value on the support [0, 1]. 

Starting from period t = 1 , we randomly draw N values from a standard uniform distribution U [0, 1], then assign one

of the three types to the N individuals according to the probability Pr (τ1 = 1) = 0 . 4 , Pr (τ1 = 2) = 0 . 3 and Pr (τ1 = 3) = 0 . 3 .

After we simulate the contributions for all the individuals based on their values and the contributing strategies in (16) , the

indicator of outcome w 1 is generated as w 1 = 1( 
∑ 5 

m =1 b 1 m 

≥ c = 1 . 5) . Conditioning on w 1 and individuals’ type τ 1 in period

t = 1 , we simulate their type τ 2 in period t = 2 according to the following transition matrix of types: 

f (τ ′ | τ, w = 1) = 

[ 

0 . 5 0 . 3 0 . 2 

0 . 2 0 . 6 0 . 4 

0 . 3 0 . 1 0 . 4 

] 

, f (τ ′ | τ, w = 0) = 

[ 

0 . 8 0 . 1 0 . 2 

0 . 1 0 . 7 0 . 6 

0 . 1 0 . 2 0 . 2 

] 

, 

where τ ′ indicates the type in the next period. For simplicity, it is assumed that the two transition matrices are invariant

across periods. For example, if an individual was type 1 in a certain period, and her group successfully provides the public

good, then she will be type 1, 2, and 3 with probabilities 0.5, 0.3 and 0.2, respectively in the next period. By applying

this procedure repeatedly, we simulate a sample of contributions and outcomes { b i 1 , w 1 , b i 2 , w 2 , b i 3 } , i = 1 , 2 , · · · , N for 10 0 0

replications. 

We first estimate the number of types through the rank of E defined previously using two alternative approaches. First,

we use statistics of the condition number and determinant for the matrix E under the hypotheses of different number of

types. 10 The condition number is a measure of how close a matrix is singular: a matrix with large condition number is

nearly singular, whereas a matrix with condition number close to 1 is far from being singular. Alternatively, we may im-

plement a more complicated but rigorous method to test the rank of E (e.g., Robin and Smith (20 0 0) ). In the simulation,

we discretize b it , t = 1 , 3 into 2–6 segments, and compute the condition number and the determinant of the matrix E for

each segment. Tables 2 presents the results for w = 0 , N = 500 and w = 1 , N = 10 0 0 , in the top and bottom panel, respec-

tively, and the results for w = 1 , N = 500 and w = 0 , N = 10 0 0 are similar, hence omitted for brevity. 11 As the results show,

both the condition number and the determinant jump between 3 and 4 at different quantiles. For instance, the median of

condition number for N = 500 jumps more than three-fold from 53 to 167.45 and a similar pattern is also observed for the

case with N = 10 0 0 . The pattern of determinants is consistent with the condition number, and this offers some statistical

confirmation for the rank of E , i.e., the number of types being three. We also use the method in Robin and Smith (20 0 0) to

test the rank of E and the result also supports 3 types. Table 3 presents the testing result, where b 1 and b 3 are discretized

into 2 to 6 values. The null hypothesis H 0 is that rank (E) = r and the alternative hypothesis H 1 is that rank ( E ) > r . For both

N = 500 and N = 10 0 0 , we see that there are straight rejections at 5% significance level across all discretization methods

for r = 1 and r = 2 . For r = 3 , we fail to reject the null hypothesis at 5% significance level when M > 3. As a result, we are

confident to determine the number of types to be 3. Note that in the table, the test is invalid whenever M ≤ r since a r × r

has a rank of at most r . 
9 For simplicity, we assume away the dependence of contributing strategies on group size. Nevertheless, the estimation still relies on group size because 

the winning indicator w is determined by contributions and the cost c , which is a linear function of group size m . 
10 Condition number of a matrix A is defined as || A || · || A −1 || , where || · || is a matrix norm. We adopt the Euclidean norm, i.e., || A || 2 , which is defined as 

the largest eigenvalue of the matrix A ′ A . 
11 The results are obtained by discretizing the subjects’ contributions equally on the support. A different approach of discretization might change the 

reported numbers but the pattern that both condition number and determinant jump from 3 to 4 does not change with discretizations. We use the 

Epanechnikov kernel function and choose the bandwidth to be 2 N −0 . 2 . 
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Table 2 

Identification of number of types. 

Discretize Level 2 3 4 5 6 

w = 0 , N = 500 

Condition Number 

Mean 190.03 126.14 792.29 2124.35 1164.67 

25 percentile 18.40 26.86 101.93 93.31 138.51 

Median 32.03 53.00 167.45 199.17 247.45 

75 percentile 63.20 93.47 425.37 490.10 590.13 

Determinant 

Mean 4.83E-03 -2.75E-02 2.16E-04 1.96E-07 -3.49E-05 

25 percentile -4.66E-04 -3.01E-05 -6.54E-08 -8.15E-11 -9.75E-13 

Median 1.08E-03 -1.02E-06 -2.99E-10 0.0 0E + 0 0 -7.24E-18 

75 percentile 5.05E-03 4.48E-06 8.59E-09 1.92E-10 2.14E-13 

w = 1 , N = 10 0 0 

Mean 115.89 145.99 1307.84 774.56 849.63 

25 percentile 20.54 32.48 104.16 135.55 142.82 

Median 35.87 60.07 196.40 220.76 253.25 

75 percentile 77.65 116.02 440.30 461.40 476.87 

Determinant 

Mean 1.50E-04 9.20E-05 4.24E-07 5.91E-09 5.54E-13 

25 percentile -2.72E-04 -4.61E-06 -8.23E-09 -4.79E-11 -6.84E-14 

Median 8.53E-04 2.41E-07 1.60E-10 -8.34E-14 0.0 0E + 0 0 

75 percentile 2.95E-03 1.09E-05 1.12E-08 1.52E-11 6.16E-14 

Table 3 

Monte Carlo: results of Rank test. 

p -value M = 2 M = 3 M = 4 M = 5 

N = 500 r = 1 0.0 0 0 0.0 0 0 0.0 0 0 0.001 

r = 2 N/A 0.024 0.018 0.014 

r = 3 N/A N/A 0.074 0.254 

N = 10 0 0 r = 1 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 

r = 2 N/A 0.001 0.001 0.017 

r = 3 N/A N/A 0.135 0.219 

Table 4 

Estimate of type probability. 

type 1 type 2 type 3 

True value 0.40 0.30 0.30 

N = 500 0.400 ∗∗∗ 0.301 ∗∗∗ 0.299 ∗∗∗

(0.047) (0.059) (0.045) 

N = 10 0 0 0.401 ∗∗∗ 0.297 ∗∗∗ 0.301 ∗∗∗

(0.032) (0.041) (0.031) 

Standard errors in parentheses, ∗ p < . 10 , ∗∗ p < 

. 05 , ∗∗∗ p < . 01 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimates of contributing strategies for three types, together with the corresponding [10%, 90%] point-wise confi-

dence intervals are illustrated in Figs. 3 . The estimates perform well for modest sample-size datasets of N = 50 0 , 10 0 0 . For

the three types, the estimated contributing strategies track the actual ones very closely. Notice that for types 1 and 2 the

estimated contribution is larger than the true one when the value is close to its upper bound. This is because the estimate

of contribution distribution is less accurate when a contribution is close to the upper bound due to the sparse observations.

We provide the estimation of the initial type probabilities, i.e., at period t = 1 in Table 4 . The probabilities are accurately

estimated for both sample size. Tables 5 presents the estimated transition matrices of types. Notice that the estimate of

f (τ ′ | τ, w = 1) performs very well while that of f (τ ′ | τ, w = 0) is a bit noisy, and this is because the observations for w = 0

is smaller than w = 1 due to the setting of our transition matrix of type. Nevertheless, both estimated matrices are accurate

enough to capture the transition pattern of the type. 

In summary, the Monte Carlo evidence illustrates that our procedure of estimation performs well for modest-sized

samples. 

Robustness check. In the simulation, we assume individuals’ induced values are independent across periods in the data gen-

erating process; such assumption is automatically satisfied as induced values are randomly re-assigned to each subject every

period in the experiment. However, this assumption might be violated for some field data where values may be correlated.

As a robustness check, we allow values to be correlated across periods and then estimate the model by the proposed method
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assuming independence of the values. 12 Fig. 4 and the bottom panel in Table 5 present the estimated contributing strategies

and the transition matrices, respectively for sample size 500 when the values of two consecutive periods are correlated

with a coefficient 0.2. The estimate of strategies is very close to that in Fig. 3 . Similarly, the probabilities of transition in

Table 5 also closely track the corresponding elements in the true transition matrices. A comparison of the estimated results
12 To generate the uniformly distributed values with Pearson correlation, we first generate normally distributed draws with Spearman correlations then 

apply the uniform transformation to those random draws. Please see Embrechts et al. (2003) for details. 
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Table 5 

Estimated transition matrix of type. 

Pr (τ2 | w = 1 , τ1 ) : N = 500 

Type1 Type2 Type3 

Type1 0.494 ∗∗∗ 0.308 ∗ 0.206 

(0.170) (0.240) (0.170) 

Type2 0.226 0.543 ∗∗ 0.423 ∗∗

(0.193) (0.285) (0.225) 

Type3 0.279 ∗∗∗ 0.150 0.370 ∗∗

(0.143) (0.167) (0.172) 

Pr (τ2 | w = 0 , τ1 ) : N = 500 

Type1 Type2 Type3 

Type1 0.735 ∗∗∗ 0.218 0.213 

(0.192) (0.279) (0.288) 

Type2 0.160 0.555 ∗ 0.618 ∗

(0.188) (0.358) (0.401) 

Type3 0.105 0.227 0.169 

(0.110) (0.234) (0.250) 

Pr (τ2 | w = 1 , τ1 ) : N = 10 0 0 

Type1 Type2 Type3 

Type1 0.504 ∗∗∗ 0.317 0.176 

(0.125) (0.203) (0.136) 

Type2 0.206 0.556 ∗∗ 0.441 ∗∗

(0.146) (0.230) (0.179) 

Type3 0.291 ∗∗∗ 0.127 0.382 ∗∗∗

(0.102) (0.115) (0.130) 

Pr (τ2 | w = 0 , τ1 ) : N = 10 0 0 

Type1 Type2 Type3 

Type1 0.766 ∗∗∗ 0.192 0.168 

(0.153) (0.236) (0.239) 

Type2 0.140 0.608 ∗∗ 0.615 ∗∗

(0.138) (0.320) (0.362) 

Type3 0.099 0.204 0.215 

(0.084) (0.190) (0.244) 

Pr (τ2 | w = 1 , τ1 ) : corr. values (N = 500) 

Type1 Type2 Type3 

Type1 0.590 ∗∗∗ 0.258 0.104 

(0.152) (0.216) (0.134) 

Type2 0.174 0.607 ∗∗ 0.408 ∗∗

(0.167) (0.275) (0.214) 

Type3 0.236 ∗∗ 0.135 0.488 ∗∗∗

(0.135) (0.175) (0.193) 

Pr (τ2 | w = 0 , τ1 ) : corr. values (N = 500) 

Type1 Type2 Type3 

Type1 0.843 ∗∗∗ 0.207 0.196 

(0.157) (0.295) (0.314) 

Type2 0.087 0.593 ∗∗ 0.607 ∗

(0.144) (0.359) (0.394) 

Type3 0.069 0.200 0.197 

(0.092) (0.248) (0.293) 

 

 

 

 

 

in three panels of Tables 5 illustrates that the correlation of values negatively affects the accuracy of estimates. For example,

the probability Pr (τ2 = 1 | w = 1 , τ1 = 1) is estimated to be 0.494 in the top panel, which is close to the true value 0.50,

while the estimate is 0.590 in the bottom panel. Nevertheless, with the modest correlation of values, our proposed method

based on independence of values still performs well in estimating the model. 

5. Empirical results 

In this section, we use the experimental data described in Section 2 to identify heterogeneous contributing strategies and

learning in the private provision of the threshold public good game. 13 To maximize the number of observations and explore
13 As discussed in Section 3.2 , three periods of data are sufficient for identification. Under the assumption that the learning rule is invariant across periods, 

each of the three consecutive periods of the 10 periods in our sample can be employed to estimate the learning rule. We reorganize 10 periods of data into 

{1, 2, 3}, {2, 3, 4}, ���{8, 9, 10} to increase the number of observations. Nevertheless, we keep the original data structure for the estimation of the initial 

type distribution. 
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Table 6 

Estimation of number of types. 

Discretize level 2 3 4 5 6 

w = 0 

Condition Number 

Original Sample 13.84 15.36 3.34E + 03 9.62E + 02 2.03E + 03 

Mean 21.58 289.23 3.12E + 04 1.03E + 05 7.63E + 15 

25 percentile 7.65 18.79 1.60E + 03 1.02E + 03 1.32E + 03 

Median 11.16 24.24 4.35E + 03 2.28E + 03 3.71E + 03 

75 percentile 13.90 38.30 1.36E + 04 1.03E + 04 9.99E + 03 

Determinant 

Original Sample 0.0050 4.12E-05 -1.27E-09 8.65E-13 4.87E-16 

Mean 0.0071 2.40E-05 7.58E-10 8.14E-13 1.09E-16 

25 percentile 0.0052 1.34E-05 -1.69E-10 -2.10E-14 -1.18E-17 

Median 0.0065 2.15E-05 1.34E-10 1.64E-13 6.86E-18 

75 percentile 0.0091 3.22E-05 1.71E-09 5.89E-13 6.16E-17 

w = 1 

Condition Number 

Original Sample 26.65 34.77 3.16E + 03 8.95E + 02 1.16E + 03 

Mean 20.95 65.52 1.33E + 04 1.56E + 16 1.38E + 16 

25 percentile 8.035 19.10 1.43E + 03 1.15E + 03 1.54E + 03 

Median 11.35 24.99 3.16E + 03 2.49E + 03 3.92E + 03 

75 percentile 15.81 35.20 9.65E + 03 8.69E + 03 1.03E + 04 

Determinant 

Original Sample 0.0026 1.53E-05 6.27E-10 2.33E-13 1.26E-16 

Mean 0.0066 2.39E-05 9.60E-10 3.01E-13 3.84E-17 

25 percentile 0.0044 1.35E-05 -2.10E-10 -3.97E-14 -1.33E-17 

Median 0.0063 2.01E-05 1.20E-10 6.20E-14 6.43E-18 

75 percentile 0.0090 2.85E-05 1.22E-09 4.20E-13 7.80E-17 

Table 7 

Results of Rank Test. 

p -value M = 2 M = 3 M = 4 M = 5 

r = 1 0.0 0 0 0.0 0 0 0.028 0.016 

r = 2 N/A 0.001 0.001 0.023 

r = 3 N/A N/A 0.147 0.220 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the possibility that subjects may change their learning rules across periods, we consider the following three approaches

to aggregate the observations: (a) pool all the 10 periods’ data, where learning rule Pr (τ ′ | w, τ ) is invariant between any

two periods, (b) use only the first five periods’ data and (c) use the last five periods’ data, where we assume that subjects’

learning behavior is invariant in the first and the last five periods, respectively. The results of (a) can be considered as the

baseline and (b) and (c) are used for robustness checks. 

5.1. Estimation results 

The first set of results are condition numbers and determinants of matrix E , which are used to determine the number of

types. Tables 6 presents the results when we pool the 10 periods’ data together. The first and last five periods’ of data both

lead to very similar results and are hence omitted. The top panel of the table is conditional on the outcome that the public

good is not provided, w 2 = 0 and the bottom panel is for the outcome w 2 = 1 . Both panels reveal a clear pattern that the

condition number and determinant jump when the number of discretization changes from 3 to 4, and this identifies the

number of types to be 3. We also use the method in Robin and Smith (20 0 0) to test the rank of E . The result in Table 7 also

supports 3 types. 

Next, the procedure of identification using matrix decomposition enables us to recover the conditional density f b 2 | τ2 
. 14 

It is used to obtain the contributing strategies for three types and the initial type probability through f b 1 and f b 2 | τ2 
= f b 1 | τ1 

.

The estimates of probability and contributing strategy for each type are provided in Table 8 and Fig. 5 , respectively. We label

the three types such that on average type 3 contributes the most, whereas type 1 the least. The results in Table 8 indicate

that the proportion of each type is significantly positive. The first two rows are both estimates for the first period using

different sam ples of data. Both rows reveal that the proportion of type 3 is the largest (about 40%), and that of type 1 and

type 2 are slightly different. By contrast, the type probability of period 5 (using the data of the last five periods) displays a

different pattern: the proportion of type 2 is the largest (about 38%) whereas the other two types have a proportion 25.3%
14 In the first and this step of estimation, we discretize subjects’ contributions b 1 and b 3 into equal intervals on their supports. In estimating the kernel 

density ̂  f (b 2 , d 3 | w 2 ) , we choose the Epanechnikov kernel function and the bandwidth to be 2 N −0 . 2 . 
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Table 8 

Estimate of type probability in the first period. 

Type1 Type2 Type3 

pooled data 0.236 ∗∗∗ 0.361 ∗∗∗ 0.403 ∗∗∗

(0.049) (0.054) (0.041) 

the first 5 periods 0.334 ∗∗∗ 0.263 ∗∗∗ 0.403 ∗∗∗

(0.051) (0.058) (0.046) 

the last 5 periods 0.253 ∗∗∗ 0.381 ∗∗∗ 0.365 ∗∗∗

(0.041) (0.035) (0.051) 

Standard errors in parentheses, ∗ p < . 10 , ∗∗ p < . 05 , ∗∗∗

p < . 01 . 
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(type 1) and 36.5%. The results imply that subjects tend to contribute more at the beginning (i.e., the larger proportion of

types 1 and 2). As they continue to participate in the game, more subjects may learn to contribute strategically and adapt

the contributing strategies of lower types. 

The three subplots in Fig. 5 illustrate the contribution as a function of the value for subjects of three types. 15 A formal

test indicates that the contributing strategy of each type is significantly different from the other two at the 5% significance

level. 16 This pattern holds across all the three subplots, which implies that during the 10 periods of the experiment, subjects’

contributing strategies do not “converge” through learning. This result provides strong evidence that subjects contribute

using heterogenous strategies. 

The first subplot using the 10 periods’ of data illustrates that type 1 and type 2 contribute significantly less than type 3,

especially when a subject’s value is small. When their values are near the lower bound 8, type 1 and type 2 behave as free-

riders and contribute nothing; whereas type 3 contribute up to 5. However, as the value increases the three types contribute
15 Note that some of the contributing strategies are not strictly increasing. This is due to our small sample size, and the strategies would be strictly 

increasing asymptotically. 
16 According to Lemma 2 , testing the difference between two bidding strategies is equivalent to that of two distributions of contributions. Therefore, we 

conduct Kolmogorov-Smirnov tests on the distributions of contributions for any of the two types. 
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a significant proportion of their values, e.g., for a value 14 the contributions are 2.5, 5 and 9, which is about 17.9%, 35.7%

and 64.3% of the value, respectively for type 1, 2, and 3. Furthermore, it is worth noting that the difference between type

2 and type 3 diminishes as the value increases. Especially, when a value is greater than 18, which is near the upper bound

(the upper bound of value is 20), the contributions of the two types are very close to each other. However, type 1 only

contributes 5 when his value is 20. The pattern revealed by the first subplot is comparable to the results in Fischbacher and

Gächter (2010) , where the three types are free riders, learners, and contributors. Nevertheless, we do not find free riders in

our experiment: the contribution of type 1 is significantly less than the other two types but greater than zero. 

The second and the third subplots present the results using the first and last five periods of data, respectively. A com-

parison between the two subplots illustrates how the three types of subjects may adjust their contributing strategies across

period. First of all, in the last five periods, we observe that type 2 contributes a significant proportion of his value but type

3 contributes a similar proportion to type 1 when their values are small. This contrasts with the pattern in the first five pe-

riods. An implication is that type 2 and type 3 adjust their strategies differently based on the history of provision outcomes.

Secondly, in the first five periods, the behavior of the three types is similar when their values are high, while in the last five

periods only the discrepancy between type 1 and type 2 diminishes at a high value. These results show that (1) the three

types contribute heterogeneously; (2) the three types adjust their contributing strategies heterogeneously, too. In addition,

we do not find the evidence that subjects’ strategies converge after they spend more time with other group members. 

The last set of results are on the learning rule of different types and they are presented in Table 9 , where each 3 × 3

matrix represents transition probabilities of types conditional on provision outcomes: each column contains the probabilities

that a certain type is being adjusted to three types in the next period, hence the column sum is one. For example, in

Table 9 (a) the second column implies that if the public good is provided successfully, then the subjects of type 2 in the

current period would continue to be type 2 with probability 67.2% and adjust to be type 1 (contributes less) with probability

32.8% in the next period. However, they never transit to type 3 and contribute more. 

Across all the three data scenarios, the matrices Pr (τ2 | w = 1 , τ1 ) are close to upper diagonal or diagonally dominant,

whereas Pr (τ2 | w = 0 , τ1 ) are close to lower diagonal except the probabilities of type 3 in 9 (b) and 9 (f). Such a difference

reveals that subjects’ contributing strategies are negatively affected by the outcome, i.e., they will maintain their strategies or

contribute less if the public good is provided successfully but contribute more or at least the same for a failure provision. In

Table 9 (a) 73.2% of type 1, 67.2% of types 2 and 89.5% of type 3 would keep their own type in the next period conditioning

on a successful outcome. Moreover, a substantial proportion of type 2 would change to type 1 and contribute less in the

next period. By contrast, if the good is not provided in the current period, significant proportions of type 1 and type 2 transit

to type 2 and type 3, respectively, and contribute more in the next period. In summary, the learning rules of subjects are

heterogeneous and crucially rely on the experiment outcome in the preceding session. Nevertheless, the behavior of type 3

is a bit noisy: they may contribute less upon observing an unsuccessful outcome. 

Another important observation is that the estimates in the middle and bottom panels of Tables 9 indicate different

patterns of subjects’ learning. Subjects in the first five periods are more reluctant to adjust their contributing strategies than

in the last five periods. For instance, conditioning on an unsuccessful provision, with probability 54.8% of type 2 transits to

type 3 in the last five periods. By contrast, this probability is only 46.4% for the first five periods. In response to a successful

provision, almost all the subjects of type 1 remain as type 1 in the first five periods, whereas this probability is 82.9% in the

last five periods. The difference between the first and the last five periods suggest that the learning can also be dynamic,

which is out of the primary focus of our paper but provides an interesting venue for future research. 

It may take one or two periods for the subjects to learn how exactly the game works, even though detailed instructions

are given to the subjects before the experiment. To address this concern, we reestimate the model by using only the last 8

and 9 periods, respectively. Our results are qualitatively consistent with the results from using all 10 periods data, thus are

omitted in the paper. Specifically, the percentage of type 1 is at least 20% and the result based on the last 8 periods suggests

that type 3 has the highest percentage. The estimated learning rules also suggest that conditional on a positive outcome,

subjects are more likely to stay on current strategy. Also, subjects are more likely to adjust contribution strategies upon a

provision failure. 

5.2. Implications of estimated results 

The estimated number of types, contributing strategy of each type, and the learning rule are important for us to under-

stand individuals’ strategic behavior, predict the outcome of public good provision, and provide policy implications regarding

the provision of public goods. 

First of all, the estimated contributing strategies enable us to test the validity of various models that can be potentially

used to explain subjects’ behavior. Our analysis of contributing strategies does not rely on any equilibrium or behavioral

assumptions of subjects’ behavior: if the number of type K = 1 , then subjects might follow BNE or BNE with risk aver-

sion; if K > 1, the strategies are not at equilibrium and level- k thinking ( Crawford and Iriberri, 2007 ) or cognitive hierarchy

( Camerer et al., 2004 ) might be appropriate to interpret subjects’ behavior. In either scenario, we can test which model

explains the data better. This can be done by comparing our estimate of contributing strategies with that predicted by the

model we try to test. The prediction of subjects’ contributing strategies is possible because their value distribution is known.

Such a testing procedure is similar to Bajari and Hortacsu (2005) , where several alternative explanations of bidders’ behavior
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Table 9 

Learning rules. 

Pr (τ2 | w = 1 , τ1 ) : pooled data 

Type1 Type2 Type3 

Type1 0.732 ∗∗∗ 0.328 ∗ 0.105 

(0.087) (0.198) (0.191) 

Type2 0.268 0.672 ∗∗∗ 0.0 0 0 

(0.144) (0.155) (0.030) 

Type3 0.0 0 0 0.0 0 0 0.895 ∗∗∗

(0.165) (0.135) (0.195) 

Pr (τ2 | w = 0 , τ1 ) : pooled data 

Type1 Type2 Type3 

Type1 0.661 ∗∗∗ 0.066 0.104 

(0.127) (0.244) (0.146) 

Type2 0.291 ∗∗ 0.532 ∗∗ 0.251 ∗∗∗

(0.105) (0.269) (0.055) 

Type3 0.048 0.402 ∗∗ 0.645 ∗∗∗

(0.158) (0.195) (0.141) 

Pr (τ2 | w = 1 , τ1 ) : first 5 periods 

Type1 Type2 Type3 

Type1 0.942 ∗∗∗ 0.0 0 0 0.399 

(0.309) (0.349) (0.339) 

Type2 0.0 0 0 1.0 0 0 ∗∗ 0.0 0 0 

(0.222) (0.400) (0.179) 

Type3 0.058 0.0 0 0 0.601 ∗∗

(0.222) (0.363) (0.333) 

Pr (τ2 | w = 0 , τ1 ) : first 5 period 

Type1 Type2 Type3 

Type1 0.616 ∗∗∗ 0.0 0 0 0.0 0 0 

(0.217) (0.192) (0.132) 

Type2 0.384 0.536 ∗ 0.063 

(0.445) (0.326) (0.184) 

Type3 0.0 0 0 0.464 ∗ 0.937 ∗∗∗

(0.432) (0.245) (0.211) 

Pr (τ2 | w = 1 , τ1 ) : last 5 periods 

Type1 Type2 Type3 

Type1 0.829 ∗∗∗ 0.0 0 0 0.099 

(0.147) (0.102) (0.093) 

Type2 0.171 0.849 ∗∗∗ 0.390 ∗∗∗

(0.141) (0.080) (0.057) 

Type3 0.0 0 0 0.151 0.511 ∗∗∗

(0.057) (0.105) (0.080) 

Pr (τ2 | w = 0 , τ1 ) : last 5 periods 

Type1 Type2 Type3 

Type1 0.502 ∗∗∗ 0.179 0.0 0 0 

(0.163) (0.140) (0.068) 

Type2 0.381 ∗∗ 0.273 ∗∗∗ 0.220 ∗∗

(0.187) (0.093) (0.087) 

Type3 0.117 0.548 ∗∗∗ 0.779 ∗∗∗

(0.215) (0.103) (0.114) 

 

 

 

 

 

 

 

 

 

 

 

in first-price auctions are tested by comparing the known value distribution to those identified from different models. The

testing procedure is beyond the scope of this paper and we leave the details in future research. 

Second, our results can be used to predict group contribution dynamic across multiple periods, which can not be done

using previous reduced form analyses. Such dynamic outcomes may provide important policy implications for the provision

of public goods. Particularly, we consider how to predict provision outcomes for a group of individuals (group size is fixed

at 5 and the cost is also 42) with known but different characteristics from our subjects. Suppose that there are three types

in the population, the initial type distribution depends on observed characteristics of individuals, and the transition proba-

bilities do not depend on the initial type distribution. The estimate of initial type distribution and subjects’ characteristics in

our experiments can be used to predict the initial type distribution of the new group of individuals by assuming e.g., type

probabilities are logit function of characteristics. Based on the predicted initial type distribution, together with the learning

rule and contributing strategies, we are able to simulate the contribution for each individual in every period. 

Fig. 6 shows the simulation results and illustrates how initial type distribution affects provision outcome. In each of

the seven subfigures, we plot the average contribution of 100 groups in dotted line and the horizontal line is the cost. We
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Fig. 6. Simulated group contribution outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

also explicitly state the type distribution (e.g., [0.8, 0.1, 01] means the proportion of type 1, 2, and 3 is 0.8, 0.1, and 0.1,

respectively) and the percentage of successful periods in the title of each subfigure. We find from the figure that when the

low type dominates (the top panel), the average group contribution falls significantly below the provision cost and the group

seldom provides the public good (the provision rate is 2.3% and 24% respectively). By contrast, when three types are equally

distributed or type 3 dominates (the third and the last row, respectively), the average group contribution closely follow the

provision cost across the periods and the group successfully provides the public good at a much higher frequency (48.2% for

equally distributed type, and 46.2% and 48.1% for the case of type 3 dominating). The two medium cases fall in between in

terms of group contribution and provision outcomes. 

The simulation results could be useful for a policymaker who plans to conduct a public good provision. For example,

if the predicted initial type distribution is close to [0.8, 0.1, 0.1], then given the very low provision rate simulated the

policymaker should consider alternative strategies to improve the rate, e.g., decrease the cost or increase group size, etc. 

6. Conclusion 

We have studied the identification and estimation of a structural model for the private provision of a threshold public

good allowing heterogeneous contributing strategies. The main motivation for our paper is the need to explain individuals’

heterogeneous contributing behavior and possible adjustments of their strategies based on provision history. Individual het-

erogeneity and learning have been documented in previous experimental studies and also observed in our experimental data

of threshold public good games. Our structural model allows for individuals to employ heterogeneous contributing strategies,

which may be adjusted upon the outcome of the provision history. A prominent advantage of our approach over the existing

studies is that we are able to recover the number of different strategies, function form of each strategy and the transition

probability among the strategies without imposing any parametric assumptions on these objectives from individual revealed

contributions. 

The structural estimates of our experimental data suggest that subjects can be classified into three types with each type

employing a different contributing strategy. A subject of type 1 contributes a much smaller share of her value than types 2

and 3, and type 2 and 3 exhibit distinct learning processes. The estimates of learning indicate that subjects tend to maintain

their strategies in response to a successful provision in the last period. By contrast, they tend to contribute more if the good

is not provided in the last period. Also, the three types display different patterns of learning. Particularly, type 1 makes the

relative smaller adjustment than the other two types. By dividing the data into the first and last five periods, we find that

subjects in the first five periods are more reluctant to adjust their contributing strategies than in the last five periods. 
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There are a few directions for future research. First, our methodology for threshold public good could be applied to linear

public good provision, where the contributing strategy is a mapping from the endowment to the ratio of contributions made

to public good over their own account. Furthermore, even though we allow individuals change their learning behavior across

10 periods, we leave out their forward-looking behavior. It will be interesting to incorporate dynamics into our model and

explore individuals’ dynamic learning behavior. Last but not least, the estimated contributing strategies could be used to

test the validity of various equilibrium or non-equilibrium models that used to describe public goods provision games. 

Appendix A. Estimation 

In this section, we propose a procedure to estimate the objectives that are identified nonparametrically in Section 3 . The

procedure follows directly from the argument of identification, and a similar approach is also applied in An et al. (2010) .

We estimate all the objectives in multiple steps. 

Step one: Estimation of the conditional distribution f (b 2 | τ2 ) . Recall our identification is mainly based on ( Eq. (10) ), which

holds for all b 2 . To improve the performance of our estimator, we take integral of this equation with respect to b 2 and use

the aggregated version for estimation: ∫ 
b 2 

b 2 A × E −1 db 2 = B d 3 | w 2 ,τ2 
D Eb 2 | τ2 

B 

−1 
d 3 | w 2 ,τ2 

Eb 2 , (A.1)

where D Eb 2 | τ2 
≡ ∫ 

b 2 
b 2 D b 2 | τ2 

db 2 . The L.H.S. of the equation above is estimable from data, then both B b 3 | w 2 ,τ2 
and D Eb 2 | τ2 

can

be estimated by the eigenvalue-eigenvector decomposition described in (10) . The details can be found in An et al. (2010) and

An (2017) , and thus omitted here. To construct the matrices A , B and E , we need to discretize b 1 and b 3 as discussed in

footnote 8 . There are infinitely many different ways to discretize b 1 and b 3 . Nevertheless, the method of discretization does

not affect the result of decomposition asymptotically given Assumptions 1 –3 hold. In practice, when sample is small, we

may vary methods of discretization to ensure robustness of results. 

Let ̂ B b 3 | w 2 ,τ2 
be the estimated eigenvector matrix, we estimate the conditional density f ( b 2 | τ 2 ) from the joint density f ( b 2 ,

τ 2 ) and the probability distribution Pr (τ2 ) . First we consider the relationship 

f (b 2 , τ2 ) = 

∑ 

w 2 ∈{ 0 , 1 } 
f (b 2 , τ2 | w 2 ) Pr (w 2 ) , 

where Pr (w 2 ) can be directly recovered from data and the joint distribution of b 2 , τ 2 conditional on the outcome w 2 ,

f (b 2 , τ2 | w 2 ) is determined by the following equation: 

f (b 2 , d 3 | w 2 ) = 

∑ 

τ2 

f (b 2 , d 3 , τ2 | w 2 ) = 

∑ 

τ2 

f (d 3 | w 2 , b 2 , τ2 ) f (b 2 , τ2 | w 2 ) 

= 

∑ 

τ2 

f (d 3 | w 2 , τ2 ) f (b 2 , τ2 | w 2 ) . 

The L.H.S. of the equation above is estimable from data, and f (d 3 | w 2 , b 2 , τ2 ) is obtained from the eigenvalue-eigenvector

decomposition. Thus, we get an estimator of f (b 2 , d 3 | w 2 ) . We exemplify the estimation for w 2 = 0 : 

f (b 2 , d 3 | 0) = B d 3 | 0 ,τ2 
f (b 2 , τ2 | 0) ⇒ 

̂ f (b 2 , τ2 | 0) = ̂

 B 

−1 
d 3 | 0 ,τ2 ̂

 f (b 2 , d 3 | 0) , 

where ̂ B d 3 | 0 ,τ2 
is invertible by construction, and 

̂ f (b 2 , d 3 | 0) is a kernel estimator defined as: 

̂ f (b 2 , d 3 = j| 0) = 

1 

Nh 

N ∑ 

i =1 

K 

(
b 2 − b 2 i 

h 

)
1 (b 3 i = j) . 

Consequently we have the estimator of the joint distribution ( b 2 , τ 2 ), ̂ f (b 2 , τ2 ) = 

̂ f (b 2 , τ2 | 0) ̂  Pr (w 2 = 0) + ̂

 f (b 2 , τ2 | 1) ̂  Pr (w 2 = 1) (A.2)

Similarly, the type distribution Pr (τ2 ) can be estimated from 

Pr (τ2 ) = 

∑ 

w 2 ∈{ 0 , 1 } 
Pr (τ2 | w 2 ) Pr (w 2 ) , 

where Pr (τ2 | w 2 ) is associated with estimable Pr (d 3 | w 2 ) and estimated Pr (d 3 | τ2 , w 2 ) . 

Pr (d 3 | w 2 ) = 

∑ 

τ2 

Pr (d 3 , τ2 | w 2 ) = 

∑ 

τ2 

Pr (d 3 | τ2 , w 2 ) Pr (τ2 , w 2 ) 

Pr ( w 2 ) 

= 

∑ 

τ2 

Pr (d 3 | τ2 , w 2 ) Pr (τ2 | w 2 ) . 
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We again illustrate our estimator for w 2 = 0 . Let 
−→ 

Pr (d 3 | 0) denote a column vector with three elements [ Pr (d 3 = 1 | w 2 = 0)

Pr (d 3 = 2 | w 2 = 0) Pr (d 3 = 3 | w 2 = 0)] T , and 

−→ 

Pr (τ2 | 0) is similarly defined. Then the last equation can be rewritten as 

−→ 

Pr (d 3 | 0) = B d 3 | 0 ,τ2 

−→ 

Pr (τ2 | 0) , 

which implies an estimator 
̂ 

−→ 

Pr (τ2 | 0) = ̂

 B −1 
d 3 | 0 ,τ2 ̂

 

−→ 

Pr (d 3 | 0) . Then the type probabilities are estimated as 

̂ 

−→ 

Pr (τ2 ) = ̂

 

−→ 

Pr (τ2 | 0) ̂  Pr (w 2 = 0) + ̂

 

−→ 

Pr (τ2 | 1) ̂  Pr (w 2 = 1) . 

Step two: Estimation of contributing strategies. In our paper, as in most of the experiments, the distribution of subjects’

values is known to the researcher. Combining this distribution with the estimated conditional density ̂ f (b 2 | τ2 ) allows us

to recover the contributing strategies for τ2 = 1 , 2 , 3 . Let F B | τ denote the conditional cdf of the observed contributions for a

type τ , then lemma 2 states that 

F B | τ (b| τ = k ) = 

s −1 
k 

(b) − v 
v − v 

, k = 1 , 2 , 3 , 

The relationship above implies that 

s −1 
k 

(b) = ( v − v ) F B | τ (b| τ = k ) + v , k = 1 , 2 , 3 . 

Then, our estimate of s −1 
k 

(b) is 

̂ s −1 
k 

(b) = ( v − v ) ̂  F B | τ (b| τ = k ) + v , k = 1 , 2 , 3 . (A.3) 

Step three: Estimation of transition matrices of types. The learning rule f τ2 | w 1 ,τ1 
is estimated from (15) , which is repeated as

follows. 

f b 2 ,w 1 ,b 1 = 

∑ 

τ2 

∑ 

τ1 

f b 2 | τ2 
f τ2 | w 1 ,τ1 

f w 1 | b 1 f b 1 | τ1 
f τ1 

. 

Based on the equation above, we maximize the likelihood function of the L.H.S. to estimate the learning rule on the R.H.S.

Specifically, suppose we fix w 1 = 1 then the log likelihood function is expressed as: 

log L = 

N ∑ 

i =1 

log 

3 ∑ 

τ2 =1 

( 

f b 2 i | τ2 

3 ∑ 

τ1 =1 

Pr (τ2 | w 1 = 1 , τ1 ) f w =1 | b 1 i f b 1 i | τ1 
Pr (τ1 ) 

) 

= 

N ∑ 

i =1 

log 

3 ∑ 

τ2 =1 

( 

f b 2 i | τ2 

f w =1 ,b 1 i 

f b 1 i 

3 ∑ 

τ1 =1 

Pr (τ2 | w 1 = 1 , τ1 ) f b 1 i | τ1 
Pr (τ1 ) 

) 

= 

N ∑ 

i =1 

log 

3 ∑ 

τ2 =1 

( 

f b 2 i | τ2 

f b 1 i | w 1 =1 Pr (w 1 = 1) 

f b 1 i 

3 ∑ 

τ1 =1 

Pr (τ2 | w 1 = 1 , τ1 ) f b 1 i | τ1 
Pr (τ1 ) 

) 

. (A.4) 

Recall that the unknown transition matrix Pr (τ2 | w 1 = 1 , τ1 ) contains six independent parameters (denoted by θ ). Given the

estimated results in the proceeding steps, MLE of Pr (τ2 | w 1 = 1 , τ1 ; θ ) is ̂ Pr (τ2 | w 1 = 1 , τ1 ; θ ) ≡ max 
θ∈ [0 , 1] 

6 
log M , (A.5) 

where log M is the log-likelihood function log L with all the terms but the transition matrix being replaced by their corre-

sponding estimates. Especially, we employ the relationship f b 1 | τ1 
= f b 2 | τ2 

and f (b 1 ) = 

∑ 

τ1 
f b 1 | τ1 

Pr (τ1 ) in estimating f b 1 | τ1 

and Pr (τ1 ) , respectively. 

Properties of the estimators can be proved by standard methods and we refer interested reader to An (2017) and

An et al. (2010) for details. 

Appendix B. Experiment instruction 

In this experiment, you will be divided into different groups where each group can provide one unit of public good. If

the sum of contributions from your group exceeds the cost, the public good is provided, and your profit is your value minus

your contribution; otherwise your profit is zero. Your value is randomly drawn from 8 to 20; that is, someone may have a

value as low as 8, and someone may have a value as high as 20, while for the most of the time, your value is between 8

and 20. Your value will vary across periods. 

Your goal is to maximize your profit. In order to make better decisions, you may need to guess how much other people

would contribute in your group. In each period, you need to enter 1) your guess on how likely your group will provide the

public good (subjective probability, between 0 and 1); 2) your contribution to the public good. 



Y. An et al. / Journal of Economic Behavior and Organization 152 (2018) 124–146 145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What you need to do? Once the program is activated, please enter your guess on how likely your group will provide

the public good and then make an offer to the public good. 

How is your profit calculated? 

• Your profit = Your benefit - Your cost. 
• Your benefit = your value, if the public good if provided; Your benefit = 0, if the public good if not provided. Suppose

that your value is $10, if the public good is provided, you benefit equals your value, which is $10; if the public good is

not provided, you benefit is 0. 
• Your cost = your offer, if the public good if provided; Your cost = 0, if the public good if not provided. Suppose that you

make an offer of $5, if the public good is provided, you cost is $5; if the public good is not provided, you cost is 0. 
• Under this situation, your profit = $10-$5 = $5 if the public good is provided; your profit = $0 if the public good is not

provided. 

All the numbers used in examples serve only illustrative purpose; please do not try to use these examples to guess what

would actually happen in the experiment. 

How to decide if the public good can be provided? We will compare the total offer of your group with the cost of the

public good. If the group’s total offer is higher or equal to the cost for the public good, we will provide the public good,

otherwise not. 

Quiz (4 mins): 

1. If your offer on the public good is $10, you value $20, what’s if your profit if the public good is provided /not provided?

2. If the total offers of your group is $50, the cost of the public good is $40, is the public good provided? What if the cost

of the public good is $60? 

Instructions At-A-Glance 

• You will be asked to decide how much money to offer towards the cost of the public good. 
• The administrator will use the offers of everyone in your group to determine if we can provide the public good. 
• If you offer more, in exchange for incurring some of the costs, you may get a higher profit by increasing the probability

of the public good being provided. 
• If you offer less, you may decrease the probability of the public good being provided; however, you may get a higher

profit since you pay less if the public good is provided. 

At the end of the experiment, your earnings will be totaled across all periods and converted from experimental dollars

to real dollars. You will be paid as you leave. 

Now please make your decisions! 
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