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Abstract

This paper discusses a linear regression model with a mismeasured regressor in which the

measurement error is correlated with both the latent variable and the regression error. We use

a linear structure to capture the correlation between the measurement error and the latent

variable. This paper shows that the variance of the latent variable is very useful for revealing

information on the parameters which otherwise cannot be obtained with such a nonclassical

measurement error. The main result is that the finite bounds on the parameters can be found

using the variance of the latent variable, regardless of how severely the measurement error and

the regression error are correlated, if the mismeasured regressor contains enough information

on the latent one. This paper also discusses the special but interesting case of the latent

variable being dichotomous. In this case, the mean of the latent variable may even reveal

information on the correlation between the measurement error and the regression error. All

the bounds developed in the paper are tight.
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1. Introduction

The measurement error model has increasingly been a topic of interest
among researchers who want to estimate economic parameters such as the
return to schooling and the union wage differential. When a regressor is
mismeasured in a linear regression model, the least-squares estimator is generally
not consistent, but at least some information can be inferred about the true
parameters from the inconsistent estimators. These types of results are in the
form of bounds on the parameters, which will hold asymptotically. Under
the classical assumption that the measurement error is independent of
the latent regressor and the regression error, it is well known that the regressions
of x on y and y on x provide asymptotic bounds on the coefficient on x in the one-
regressor case (Gini, 1921). However, the problem is more complicated in a multi-
regressor context, and the existence of bounds is limited to certain cases. The
classical result in the area is due to Koopmans (1937), who shows that such a
generalization is possible only under very restrictive conditions. Patefield (1981) and
Klepper and Leamer (1984) present a similar result. When further information on
the measurement error distribution, such as bounds on the error variance, is
available, narrower bounds on the parameters can be found (Bekker et al., 1984).
Similar types of bounds are also discussed in Leamer (1982, 1987) and Klepper
(1988b).

While the classical measurement error has been studied intensively, nonclassical
measurement error has drawn more and more attention from researchers in
recent decades. Bekker et al. (1987) discuss the case of errors in regressors
and the regression error being correlated. Iwata (1992) and Krasker and Pratt
(1986, 1987) show that bounds on these correlations may help find bounds on
parameters of interest. Erickson (1993) provides a neat result when the measurement
error is independent of the latent regressor but correlated with the regression
error. As for empirical evidence of the nonclassical measurement error, Rodgers et
al. (1993) suggest that the measurement error may be correlated with the
latent variable. Bound et al. (2001) also find that the assumption that the
measurement error is independent of the latent variable is strong and often
implausible.

This paper discusses a linear measurement error model in which the measurement
error is correlated with both the latent variable and the regression error. Let y denote
the dependent variable, xn denote the latent regressor and w denote the row vector of
the other regressors (excluding the constant). Let a; b and g be the intercept, the
regression coefficients of xn and w respectively, where g is a column vector with the
same dimension as w: Let u stand for the regression error. The linear regression
model is as follows:

y ¼ aþ bxn þ wgþ u (1)

with Eðujxn;wÞ ¼ 0. The researcher observes another variable x together with y and
w as the proxy of the latent variable xn. A critical assumption in this paper is that the
conditional mean of the measurement error v ¼ x� xn is linear in the latent
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regressor xn. Then,

x ¼ pþ rxn þ e, (2)

where Eðejxn;wÞ ¼ 0. Eq. (2) implies that the measurement error v may be correlated
with the latent variable xn, and that the observed variable x may also contain a
systematic shift p.

The linear structure in Eq. (2) can be justified as follows: first, if v and xn are joint-
normally distributed and Eðxjxn;wÞ ¼ EðxjxnÞ; the conditional mean of v on xn is a
linear function of xn. Second, when x and xn are two 0–1 dichotomous variables, x

and xn also satisfy Eq. (2).
The linear structure in Eq. (2) allows the correlation between the measurement

error and the latent variable. Such a correlation has received increasing attention in
the literature, especially in studies relating to earnings and wages. For example,
Angrist and Krueger (1999) compare the self-reported hourly wage in CPS with
corresponding employers’ records, and find that the variance of the log self-reported
wage is 0.355 while that of the employer-reported wage is 0.430. The fact that the
latter is larger than the former implies that the measurement error v must be
correlated with the true value xn if we assume employers’ records are accurate. This
is because the variance of the self-reported wage sxx would be larger than that of the
employer-reported wage sxnxn if the measurement error v were uncorrelated with the
true wage xn. Eq. (2) implies that the conditional mean of the measurement error v is
linear in xn, i.e., Eðvjxn;wÞ ¼ pþ ðr� 1Þxn and that sxxXr2sxnxn : Therefore, we have
rp0:91 if we assume r40. The fact that ro1 means that the measurement error in
the self-reported wage is negatively correlated with the true wage. This is also
consistent with the existing findings, such as those in Rodgers et al. (1993).

The method in Erickson (1993) is not applicable to this framework because the
latent regressor in this paper is correlated with its measurement error. It has been
shown that no informative bounds on the parameters of interest exist when
measurement error is correlated with both the latent regressor and the error of the
regression (Krasker and Pratt, 1986; Bekker et al., 1987; Erickson, 1989). Therefore,
additional information is needed to find the bounds on the parameters of interest.
Since we may observe the latent variable from other sources, the additional
information may be the variance of the latent variable. In other words, the researcher
may observe y, x and w in one data set and xn in another data set. This framework is
reasonable for several applications. For example, wages are usually mismeasured in
the survey data, while the administrative data may contain accurately measured
wages.

Other useful additional information may include the bounds on the parameter r. It
is plausible to assume the parameter r is bounded away from zero if x contains
enough information on xn. We may then assume there exists an m such that rXm40:
One can show r ¼ rxxn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxx=sxnxn

p
where rxxn is the correlation coefficient between x

and xn. Since sxx and sxnxn are identified, a lower bound on rxxn implies a lower
bound on r. When x and xn are two 0–1 dichotomous variables, the lower bound on r

implies an upper bound on the total misclassification probability. We will show that
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this information is very useful for finding informative bounds on the parameters of
interest.

The paper is organized as follows: Section 2 derives the bounds for a
single regressor linear model. Section 3 provides the main results of the paper.
A linear model with a dichotomous latent regressor is discussed in Section 4
as an application. Section 5 concludes the paper. The appendix includes all the
proofs.
2. The single regressor model: an illustration

We consider a single regressor model in this section to illustrate how to find the
bounds on the parameters using the variance of the latent variable. The model is
formally represented by model I:

y ¼ aþ bxn þ u, (3)

x ¼ pþ rxn þ e, (4)

EðujxnÞ ¼ EðejxnÞ ¼ 0, (5)

r40, (6)

The assumption r40 is not restrictive because one can always use �x as the proxy of
xn. We will also assume rxy40. This assumption is not restrictive either, since one
can multiply the regression equation by �1 and discuss the bounds on �b instead of
b. Define

b ¼
sxy

sxx

; d ¼
syy

sxy

; rxy ¼
sxyffiffiffiffiffiffiffiffiffiffiffiffiffisxxsyy
p ; ru ¼

ffiffiffiffiffiffiffiffiffiffi
sxx

sxnxn

r
. (7)

The bounds on the parameter of interest b can be derived as follows.

Theorem 1. Given model I, without loss of generality, assume rxy40: Then,
1.
 0orpru;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip ffiffiffiffiffiffip

2.
 �ru bðd � bÞobpru bd.
These bounds are tight. In the case that reu ¼ 0, we have
1.
 rxyruprpru;ffiffiffiffiffiffip

2.
 rubpbpru bd.
Proof. See the appendix. &

Theorem 1 provides bounds on the regression coefficient b and also on the
parameter r when the variance of the latent variable sxnxn is known. The most
important point here is that all these bounds are finite regardless of how severely the
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measurement error and the regression error are correlated. Furthermore, these
bounds are very easy to calculate.

The upper bound on b can be written as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
syy=sxnxn

p
, which can be derived

directly from the condition suuX0. This means the variance of bxn is bounded by
that of y. And the variance of xn reveals b from the variation of bxn. Therefore,
we obtain a finite upper bound on b. If there are other regressors, say, w, it is
possible that the variance of bxn is larger than that of y because xn and w can be
either positively or negatively correlated. Therefore, we would expect that the
upper bound on b is larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
syy=sxnxn

p
or is even infinite in a general

linear regression model. This multivariate case will be discussed in the next
section.

Theorem 1 shows that sxnxn does help find the finite bounds on the parameters.
The useful variation in sxx is r2sxnxn : If r (or sxnxnÞ is very small given sxnxn (or r),
then the variable x does not contain much information on the latent variable. And
the bounds on the parameters will be large in the absolute value. In the extreme case
that sxnxn ! 0, the bounds on b approach infinity. That is the reason why we cannot
find finite bounds on b if sxnxn is unknown. In this simple linear regression model,
jbjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
syy=sxnxn

p
holds even when x does not contain any useful information, i.e.,

r ¼ 0: That means b is always bounded. Unfortunately, this result can only be
generalized in the unlikely case of the latent variable xn being uncorrelated with
other regressors.

To compare our result with the existing ones, suppose the variance of xn is
unknown. Define xe ¼ EðxjxnÞ: We can rewrite the model as

y ¼ a0 þ yxe þ u, (8)

x ¼ xe þ e, (9)

where a0 ¼ a� pb=r and y ¼ b=r. If e and u are uncorrelated, it is well known that y
can be bounded by b and d. One can show that y ¼ sxy=sxexe so that bounds on
sxexe ð¼ r2sxnxnÞ can be found. But no further information on b and r can be revealed
without knowing sxnxn . If e and u are correlated, Erickson’s results show the bounds
on sxexe and y. Again, no further information on b and r can be revealed if sxnxn is
unknown. With the variance of xn known, we can reveal r from sxexe : The bounds on
r can be developed from those on sxexe and the bounds on b can also be derived from
those on y.

The information on the first moments helps bound the parameter a and p but does
not help bound b and r in general. In some cases, however, we may have extra
restrictions on p or r: These restrictions may make the first moments useful to bound
b and r. This does happen when x and xn are dichotomous. In the end, the bounds
generated in this procedure are tight because there exist possible values of
unobservables to support any b or r in the feasible region, including the bounds
themselves. We will prove the tightness of the bounds in the next section, in which we
consider a general linear regression model.
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3. The general linear regression model

The single regressor model illustrates how the bounds can be developed with the
variance of the latent variable known. This section shows that there are still certain
features of the bounds which are not captured by this simple model. First of all, the
bounds on b may be infinite because of the existence of other regressors. In order to
find meaningful (or finite) bounds on b, we introduce a known lower bound on r;
say, rXm. This assumption is meaningful because r should be bounded away from
zero if x contains enough information on xn: A similar assumption is also made in
Bollinger (1996). Second, we will show that the bounds on b can be expressed as a
function of r. Moreover, the upper bound function of b may not be monotonic in r.
This makes it more complicated to find the bounds.

Consider a linear regression model named as model II:

y ¼ aþ bxn þ wgþ u, (10)

x ¼ pþ rxn þ e, (11)

Eðujxn;wÞ ¼ Eðejxn;wÞ ¼ 0, (12)

r40. (13)

We are interested in the bounds on b; r and g: Define sxx:w ¼ sxx � SxwS�1wwSwx;
syy:w ¼ syy � SywS�1wwSwy; sxy:w ¼ sxy � SxwS�1wwSwy and rxy:w ¼ sxy:w=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffisxx:wsyy:w
p

.
Redefine b ¼ sxy:w=sxx:w; d ¼ syy:w=sxy:w. The values b and d can be estimated
directly from the observed data by regression of y on x; w and regression of x on y,
w. Also define

rl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxx � sxx:w

sxnxn

r
; rm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xy:wr2u þ ð1� r2xy:wÞr

2
l

q
, (14)

and the two bounds functions

bðrÞ ¼ bð1þ RðrÞÞr,

bðrÞ ¼ bð1� RðrÞÞr, ð15Þ

where

RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�2xy:w � 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2u � r2

r2 � r2l

s
. (16)

The bounds on b and r are developed from the functions bðrÞ and bðrÞ. One can
show that bðrÞ is always monotonic in r but bðrÞmay not be. The upper bound on b is
found by maximizing bðrÞ with respect to r. The properties of the function bðrÞ
depend on the value of rxy:w as follows.

Lemma 2. There exists a x such that bðrÞ is monotone when rxy:wpx; and has a unique

local maximum and a unique local minimum on rlorpru when rxy:w4x.
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Proof. See the appendix. &

In fact, x is the value of rxy:w for which bðrÞ has a saddlepoint. The detailed
derivation of x is in the proof of Lemma 2. We also define rmax as the solution of
qb=qr ¼ 0 satisfying q2b=qr2o0: The bounds on b and r can be found as follows.

Theorem 3. Given model II, assume rxy:w40 and rXm. Then
1.
 maxðrl ;mÞprpru:
The bounds on b are as follows:
1.
 mprl¼)�1obo1;

2.
 rxy:wpx and m4rl¼)bðmÞpbpbðmÞ;

3.
 rxy:w4x and rmaxXm4rl¼) bðmÞpbpmaxfbðmÞ;bðrmaxÞg;

4.
 rxy:w4x and m4rmax¼)bðmÞpbpbðmÞ.
Furthermore, these bounds are tight. In the case that reu ¼ 0, we have
5.
 rmprpru;

6.
 rubpbprmd.
Proof. See the appendix. &

Theorem 3 considers a multivariate regression model, which is more applicable
than that in Theorem 1. Theorem 3 requires both the variance of the latent variable
and a meaningful lower bound on r to obtain bounds on b. The bounds on r are
always finite even if m is unknown, while the bounds on b are finite only if m4rl . The
intuition of this result is that b can be finitely bounded as long as we know the
mismeasured variable x contains enough correct information on xn. These bounds
are easy to compute because the bound functions are known and well defined.

Figs. 1 and 2 provide a straightforward way to demonstrate how these bounds are
derived. In both figures, the horizontal axis stands for b and the vertical axis stands for
r. The solid curve on the left is the graph of the lower bound function bðrÞ and the
dotted curve on the right is the graph of the upper bound function bðrÞ. The third curve
in the figure is the graph of the implicit function ðr2u � r2l Þb� ðr

2 � r2l Þb=r ¼ 0. The area
to the right of the third curve implies that b and r satisfy ðr2u � r2l Þb� ðr

2 � r2l Þb=ro0,
i.e., reuo0. Since bðrÞ and bðrÞ are derived when r2eu ¼ 1; the condition r2eup1 implies
that all the possible combinations of b and r lie between bðrÞ and bðrÞ in the graph.
Note that bðrÞ ! �1 and bðrÞ ! 1 only when r! rl : Fig. 2 shows that the upper
bound function bðrÞ is not monotonic if rxy:w4x. But the bounds on b and r can still be
found in this case by maximizing bðrÞ with respect to r.

From Theorem 3, we have rlprpru in general. The lower bound is strictly positive
if xn is correlated with w. It implies that the other regressor w helps reveal certain
information about r because w is uncorrelated with the error e. Moreover, the
bounds on b are not finite if and only if r ¼ rl . Therefore, we can find finite bounds
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Fig. 1. The bound functions of b with rxy:wox.

Fig. 2. The bound functions of b with rxy:w4x.
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on b for any value of r2eu if we know a lower bound m such that rXm4rl : If there is
no other covariate, we have rl ¼ 0, m! 0, and rmax ¼ rm ¼ rxyru: The results
degenerate to those in theorem 1.

The bounds on the coefficient g on the other regressor can be obtained through the
following equation:

g ¼ S�1wwSwy � S�1wwSwxðb=rÞ. (17)
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Therefore, it is enough to find the bounds on b=r. Since bðrÞ and bðrÞ are known
functions, we can directly derive the bound functions of b=r to obtain those of g: Let
gj, qj and sj denote the jth elements of g, S�1wwSwy and S�1wwSwx, respectively. Then the
jth equation in Eq. (17) can be written as

gj ¼ qj � sjðb=rÞ. (18)

Without loss of generality, suppose sjp0: Then bounds on gj are summarized in the
following theorem.

Theorem 4. Given model II, assume rxy:w40; sjp0 and rXm: Then
1.
 mprl¼)�1ogjoþ1;

2.
 m4rl¼)qj � sj bðmÞ=mpgjpqj � sjbðmÞ=m.
These bounds are tight.

Proof. See the appendix. &
4. An application: the linear regression model with a dichotomous latent regressor

As mentioned before, one special case of the measurement error structure
satisfying Eq. (2) is that xn and x are 0–1 dichotomous variables with the following
relationship:

Pðx ¼ 1jxn;wÞ ¼ ð1� qÞxn þ pð1� xnÞ. (19)

The constants p and q are the misclassification probability. And r ¼ 1� p� q in Eq.
(2). The additional information here contains the mean of the latent dichotomous
variable and a lower bound on r. Bollinger (1996) provides bounds on the parameters of
interest based on the methodology developed by Klepper and Leamer (1984) and
Klepper (1988a). Black et al. (2000) discuss the bounds on parameters when two noisy
reports of the variable of interest are available. In these studies, the measurement errors
are assumed to be independent of the dependent variable, conditional on regressors.

The difference between this model and the general linear regression model is that
we have two extra restrictions: 1XpX0 and 1XqX0. These restrictions imply a new
upper bound on r: Let Px ¼ Pðx ¼ 1Þ; Pxn ¼ Pðxn ¼ 1Þ and

rd ¼ min
1� Px

1� Pxn

;
Px

Pxn

� �
. (20)

It will be shown that rprd and rdpru: That means the restrictions on p and q provide
a smaller upper bound on r. This new upper bound on r may reveal information on
reu as follows.

Lemma 5. Given model I with Eq. (19), then
1.
 0orprd ;
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2.
 rd4rxyru¼)1XreuX� 1;
2

� �1=2

3.
 rdprxyru¼)1XreuX 1� ð1� r2xyÞ

ru

r2u�r2
d

.

These bounds are tight.

Proof. See the appendix. &

Applying Theorem 1 to the dichotomous model with the additional restriction
rprd , we have the bounds on b and r as follows.

Corollary 6. Given model I with Eq. (19), then
1.
 rd4rxyru¼)� ru

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðd � bÞ

p
obpru

ffiffiffiffiffiffi
bd
p

;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

2.
 rdprxyru¼)� ru bðd � bÞobpbðrdÞ.
These bounds are tight. In the case of reu ¼ 0, assume rdXrxyru: Then
1.
 rxyruprprd ; ffiffiffiffiffiffip

2.
 r2ub=rdpbpru bd.
Proof. See the appendix. &

Bollinger (1996) shows the finite bounds on b when reu ¼ 0 and Pxn is unknown.
In the following discussion, we compare Bollinger’s results with ours to show how
Pxn affects the bounds. It is straightforward to show that the lower bound developed
in Corollary 6 is always larger than or equal to b, the lower bound in Bollinger’s
results, since r2uXrd . It takes two steps to show our upper bound ru

ffiffiffiffiffiffi
bd
p

is no larger
than the upper bound in Bollinger’s results, i.e., maxfdPx þ bð1� PxÞ; dð1� PxÞ þ

bPxg: First, we need to find the bounds on Pxn since Pxn is unknown. Note that
reu ¼ 0 implies sxy ¼ brsxnxn . As defined before, y ¼ b=r. Then, y is bounded by b

and d. The bounds on Pxn can be solved from

sxy ¼ yr2Pxnð1� PxnÞ,

bpypd,

rpmin
1� Px

1� Pxn

;
Px

Pxn

� �
One can show that

1�
ð1� PxÞ

2

ð1� PxÞ
2
þ sxy=d

pPxnp
P2

x

P2
x þ sxy=d

. (21)

Second, the upper bound on b can be solved by

bmax
¼ max

Pxn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxx

Pxn ð1� PxnÞ

r ffiffiffiffiffiffi
bd
p

. (22)
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The solution of maximization (22) subject to (21) is just the upper bound in Bollinger
(1996), i.e., bmax

¼ maxfdPx þ bð1� PxÞ; dð1� PxÞ þ bPxg: Therefore, the upper
bound developed in this paper is smaller because Pxn is known.

The mean of the latent regressor xn plays two roles in the analysis. First, as shown
in Eq. (22), Pxn helps find narrower bounds because we do not need to maximizeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sxx=sxnxn

p ffiffiffiffiffiffi
bd
p

with respect to Pxn . Second, Pxn provides a new upper bound on r;
i.e., rprd .

When there are covariates in the regression model with a latent dichotomous
regressor, we have rlprpru by Theorem 3. At the same time, rprd : The intersection
of the two sets of r has to be nonempty for us to make the assumption that the mean
of the latent variable is observed consistent with the data. Therefore, we must have

rlprd . (23)

The results in Lemma 5 and Corollary 6 can be extended to a general linear
regression model with a dichotomous latent regressor by applying Theorem 3.

It is straightforward to check the above results with the real data. We consider the
case of the regression error being uncorrelated with the misclassification error so that
we can compare it with Bollinger’s bounds. Take, for example, model I. Suppose the
coefficient of x in the regression of y on x is 1, i.e., b ¼ 1, and the reciprocal of the
coefficient of y in the regression of x on y is 4, i.e., d ¼ 4: Let Pxn ¼ 0:3; p ¼ 0:2 and
q ¼ 0:6: The bounds on b suggested by this paper are ½1:06; 1:83�; while Bollinger’s
bounds are ½1; 3:22�: The result shows that the variance of the latent variable does
help find narrower bounds.

It is also necessary to discuss when the informative (or finite) bounds can be
found. As mentioned before, the bounds on b are finite if there exists an m such that
rXm4rl : The constraint rXm means an upper bound of pþ q, i.e., pþ qo1�m. It
suggests that the sum of misclassification probabilities is less than 1. Therefore, if we
know the total misclassification probability pþ q is not very large, we may find
informative bounds on b regardless of how severely the two errors are correlated. We
consider the model II. Let b; d;Pxn ; p and q take the same values as shown above.
Suppose sxx:w ¼ 0:19:1 Then, rl ¼ 0:107: Therefore, if we know an m such that
pþ qpmo0:893, we can always get finite bounds on b: Suppose we know m ¼ 0:85;
then the bounds on b are ½�2:18; 2:48� for any reu:

In reality, researchers can obtain estimates of sxnxn and r from a validation sample.
For example, we consider the estimation of wage function with college education as a
0–1 dichotomous independent variable. If an individual has at least some college
education, this variable equals 1, otherwise it equals 0. The education level is subject
to reporting error in most survey samples. Kane et al. (1999) use a validation sample
containing self-reported data and transcript data to show the empirical joint
distribution of true education level and misreported education level (Table 1). From
this validation study, one can find that bPxn ¼ 0:573, bp ¼ 0:1235 and bq ¼ 0:0681 so
that br is equal to 0:8084. Therefore, one can bound the coefficient on the education
variable in the wage function. Furthermore, one may find narrower bounds on the
1Note the inequality sxxXsxx:wXsxx � r2sxnxn must hold.
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Table 1

Sample proportions of true and misreported education in Kane et al. (1999).

Transcript data Self-reported data

No college education College education Total

No college education 0.376 0.053 0.429

College education 0.039 0.534 0.573

Total 0.415 0.587

Y. Hu / Journal of Econometrics 133 (2006) 51–7062
parameter b with other types of additional information on pþ q (or rÞ. For example,
let p ¼ q or p ¼ 0. Then, r ¼ ðPx � Pxn Þ=ð1� 2Pxn Þ or r ¼ Px=Pxn : These conditions
also provide narrower bounds on b (Table 1).

Another example of the use of a validation sample with a continuous regressor
would be bounding the impact of earnings on consumption. When a consumption
function is estimated using a survey sample, researchers usually are worried about
the reporting error in earnings. Bound et al. (1994) use a validation sample
containing 416 observations of self-reported earnings in PSID together with
corresponding employers’ records. They provide not only the sample variance of
self-reported and true earnings, but also the sample correlation coefficient between
self-reported and true earnings. Their study shows that the sample variance of true
log earnings bsxnxn is 0:0416, that of self-reported log earnings bsxx is 0:0488, and the
sample correlation coefficient between the two earnings is 0:8862. That means br is
equal to 0:9598; and therefore the 95% confidence interval of r is ½0:9115; 1:0082�
based on its asymptotic distribution. One may then take 0:9115 as a lower bound on
r: Thus, the bounds in this paper apply even if the reporting error and the regression
error are correlated.

Bound et al. (2001) provide an excellent summary of these validation studies.
Moreover, most of those studies provide the sample variance of the true value xn and
a point or interval estimate of r, which makes the method in this paper easy to apply.
5. Conclusion

This paper discusses a linear regression model with a mismeasured regressor under
the assumption that the variance of the latent regressor is available. The main result
is that the parameters of interest can be finitely bounded with additional
information, the variance of the latent variable and an additional lower bound on
the parameter r, regardless of how severely the measurement error is correlated with
the regression error. If the regression error and the measurement error are
uncorrelated, the variance of the latent regressor helps provide narrower bounds
compared with those in the existing results. We also discuss the model with a latent
dichotomous regressor as an application of the general result. In this case, the
additional information needed includes the mean of the latent variable, and an upper
bound on the total misclassification probability. The additional information may
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lead to bounds not only on the parameters of interest, but also on the correlation
coefficient between the measurement error and the regression error. The presented
results suggest that the variance of the latent variable is very useful in solving the
nonclassical measurement error problem in the linear regression model.
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Appendix
Proof (Theorem 1). By the assumptions in model I, we have

syy ¼ b2sxnxn þ suu, (24)

sxy ¼ brsxxn þ s�u, (25)

sxx ¼ r2sxnxn þ see. (26)

The sign of reu is the same as s�u. Then,

signðreuÞ ¼ signðsxy � brsxnxnÞ. (27)

The expression reu ¼ s�u=
ffiffiffiffiffiffiffiffiffiffiffiffi
seesuu
p 2 leads to

r2euðsxx � r2sxnxn Þðsyy � b2sxnxnÞ ¼ ðsxy � brsxnxnÞ
2. (28)

Rearranging the terms and dividing by s2xnxn , we have

Ab2 þ Bbþ C ¼ 0, (29)

where

A ¼ r2 þ r2euðr
2
u � r2Þ,

B ¼ �2br2ur,

C ¼ b2r4u � r2eubdr2uðr
2
u � r2Þ.

It can be shown that

B2 � 4AC ¼ 4bdr2ur
2
euðr

2
u � r2Þ½ð1� r2euÞr

2 þ ðr2eu � r2xyÞr
2
u�.

The existence of b requires B2 � 4ACX0; which leads to the bounds on r for
different values of reu: The bounds on b are derived as follows: first, let

bðr;r2euÞ ¼
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
and bðr;r2euÞ ¼

�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
. (30)
2Without loss of generality, we set reu ¼ 0 if see ¼ 0 or suu ¼ 0:
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Define bðrÞ ¼ bðr; 1Þ and bðrÞ ¼ bðr; 1Þ. Since r2eup1, these two functions provide
bounds on b, i.e., bðrÞpbpbðrÞ: One can show that bðrÞ is increasing in r and bðrÞ
reaches its unique maximum at rxyru. Therefore, we have bð0ÞobpbðrxyruÞ: It is
straightforward to show bð0Þ ¼ �ru

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðd � bÞ

p
and bðrxyruÞ ¼ ru

ffiffiffiffiffiffi
bd
p

.
In the case that reu ¼ 0; b ¼ sxy=rsxnxn : And suuX0 implies syyXb2sxnxn : These

two conditions on b and r lead to rxyrupr. The condition rpru follows from seeX0.
The bounds on b follow from the bounds on r.

Since Theorem 1 considers a special case of the model in Theorem 3, we will show
the tightness of the bounds in the proof of Theorem 3. &

Proof (Lemma 2). We consider the upper bound function bðrÞ ¼ bð1þ RðrÞÞr. The
shape of the function bðrÞ depends on the value of rxy:w given rl and ru. We will show
that there exists a x such that bðrÞ is monotone when rxy:wpx, and that bðrÞ has a
unique local maximum and a unique local minimum on rlorpru when rxy:w4x. In
other words, if rxy:wox; then qbðrÞ=qr ¼ 0 has no roots on rlorpru; if rxy:w4x then
the function qbðrÞ=qr ¼ 0 has two roots; if rxy:w ¼ x then the function has only one
root. From qbðrÞ=qr ¼ 0, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�2xy:w � 1

q ZðrÞ ¼ 1þ
r2l

r2u � r2l
ðZðrÞ2 þ 1Þ2, (31)

where

ZðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2u � r2

r2 � r2l
:

s
(32)

Since rlorpru, we have Z 2 ½0;1Þ and qZðrÞ=qro0: The left-hand side of Eq. (31) is
a linear function of Z whose slope is a strictly increasing function of rxy:w ðrxy:w40Þ.
The right-hand side of Eq. (31) is a simple quartic function strictly increasing in Z.
Given r2u and r2l , the right-hand-side function is fixed while the slope of the linear
function on the left-hand side changes with rxy:w. If rxy:w is close to 1, the linear
function is so steep that it will intersect the function on the right-hand side. That
means qbðrÞ=qr ¼ 0 has two roots. If rxy:w is close to 0, the linear function is so flat
that it will not intersect the function on the right-hand side. That means qbðrÞ=qr ¼ 0
has no roots. The equation qbðrÞ=qr ¼ 0 has only one root if the two functions on the
two sides of Eq. (31) are tangent to each other. That means q2b=qr2 ¼ 0. This critical
value of rxy:w is named as x, which can be solved by qbðrÞ=qr ¼ 0 and q2bðrÞ=qr2 ¼ 0.
Moreover, x is a function of r2u and r2l . &

Proof (Theorem 3). By the assumptions in model II, the second moments can be
written as

syy ¼ b2sxnxn þ g0Swwgþ 2bSxnwgþ suu, (33)
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sxy ¼ bsxxn þ Sxwgþ s�u, (34)

Swy ¼ bSwxn þ Swwg, (35)

sxx ¼ r2sxnxn þ see, (36)

Sxw ¼ rSxnw. (37)

Eliminating g from the system, we have:

syy:w ¼ ðb=rÞ2ðr2sxnxn � sxx þ sxx:wÞ þ suu, (38)

sxy:w ¼ ðb=rÞðr2sxnxn � sxx þ sxx:wÞ þ s�u, (39)

sxx ¼ r2sxnxn þ s��. (40)

From r2eu ¼ s2�u=seesuu; we can get

Ab2 þ Bbþ C ¼ 0, (41)

where

A ¼ ðr2 � r2l Þ½ðr
2 � r2l Þ þ r2euðr

2
u � r2Þ�,

B ¼ �2bðr2u � r2l Þrðr
2 � r2l Þ,

C ¼ b2
ðr2u � r2l Þ

2r2 � r2eubdðr2u � r2l Þr
2ðr2u � r2Þ.

And reu has the same sign as s�u so that

signðreuÞ ¼ sign ðr2u � r2l Þb� ðr
2 � r2l Þ

b
r

� �
. (42)

The bounds on r are derived from the condition B2 � 4ACX0: The upper bound
function of b can be written as

bðr;r2euÞ ¼
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
. (43)

Moreover, bðrÞ ¼ bðr; 1Þ: The upper bound on b is solved by

max
rXm

bðrÞ. (44)

Since we have the specific form of bðrÞ; the explicit solution of the maximization
problem above does exist and has a complicated and less informative form. Here we
only discuss how many maxima the function has on its domain. Note bðruÞ ¼ rub;
bðrÞ ! 1 as r! rl and bðrÞ is continuous on r 2 ðrl ; ru�: The behavior of the
function bðrÞ at the two end points implies that a local maximum, if any, coincides
with a local minimum. If there were two local maxima, there would be five different
values of r satisfying Eq. (41) for the same value of b. This is impossible because Eq.
(41) is a quartic function in r. Therefore, bðrÞ is either monotone or has a unique
local maximum and a unique local minimum. The maximum is characterized by
qb=qr ¼ 0 and q2b=qr2o0. The in-between case is defined as the unique local
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maximum and the unique local minimum being the same point. This case is
characterized by qb=qr ¼ 0 and q2b=qr2 ¼ 0. The lower bound on b is much simpler
to analyze since the lower bound function bðrÞ is a monotonic function.

The tightness of the bounds on b is shown by finding possible values of the
unobservables r, suu, see and s�u which lead to a given value bn between the bounds
(including bounds themselves) in Theorem 3. Obviously, these possible values may
not be unique for a given bn. It is enough to show just one possible case. We let r ¼ er
as follows:

er ¼
rl if mprl ;

m if rxy:wpx and m4rl ;

m if rxy:w4x, rmaxXm4rl ;bðmÞXbðrmaxÞ;

m if rxy:w4x, rmaxXm4rl ;bðmÞobðrmaxÞ; and bnprub;

rmax if rxy:w4x, rmaxXm4rl ;bðmÞobðrmaxÞ; and bn4rub;

m if rxy:w4x, and m4rmax:

8>>>>>>>>>><>>>>>>>>>>:
(45)

The first two and the last cases in the definition of er correspond to the same cases of
the bounds on b in Theorem 3. The other three cases of er correspond to the third case
in the theorem. The idea is to find the value of r corresponding to the bounds, which
is derived when r2eu ¼ 1. Then a value of b between the bounds corresponds to a
value of r2eu in ½0; 1� with the value of r fixed. From the derivation above, we have
maxðrl ;mÞperpru. We then let

suu ¼ syy:w � ðb
n=erÞ2ðer2sxnxn � sxx þ sxx:wÞ, (46)

s�u ¼ sxy:w � ðb
n=erÞðer2sxnxn � sxx þ sxx:wÞ, (47)

see ¼ sxx � er2sxnxn . (48)

From the procedure to find the bounds, we must have seeX0; suuX0 and 0pr2eup1.
Therefore, we find possible values of r; suu, see and s�u which lead to bn. Thus, the
bounds on b are tight.

The tightness of the bounds on r is shown by finding possible values of b, suu, see
and s�u which lead to a given value rn such that maxðrl ;mÞprnpru. We let

see ¼ sxx � rn2sxnxn , (49)

where seeX0 because rnpru. We can easily find suu, s�u, and b satisfying Eqs. (38)
through (40). For example, we let reu ¼ 1 and b ¼ eb,eb ¼ bðrn;r2euÞ, (50)

suu ¼ syy:w � ð
eb=rnÞ2ðrn2sxnxn � sxx þ sxx:wÞ, (51)

s�u ¼ sxy:w � ð
eb=rnÞðrn2sxnxn � sxx þ sxx:wÞ. (52)
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The derivation of the bounds guarantees that suuX0 and s�u=
ffiffiffiffiffiffiffiffiffiffiffiffi
suusee
p

¼ 1:
Therefore, the bounds on r are tight. Moreover, this argument holds not only for
reu ¼ 1; but also for reu near 1. This is because the lower bound function bðr;r2euÞ is
continuously differentiable in both r and r2eu: Since bðr; 1Þ is monotonic in r, we must
have bðr;r2euÞ monotonic in r for reu near 1. Thus, the above argument is also true for
reu near 1.

In Theorem 1, we have rl ¼ 0; m! 0, x ¼ 0 and rmax ¼ rxyru. The definition of er
can be simplified as follows:

er ¼ rxyru if bn4rub;

m if bnprub;

(
(53)

where m is some positive number close to 0. The tightness of the bounds can be
shown in the same way as above. &

Proof (Theorem 4). From the explicit expression of bðrÞ and bðrÞ, one can show that
bðrÞ=r and bðrÞ=r are both monotonic in r. Therefore, the bounds can be derived
directly, given the range of r. These bounds on g are the same as in Erickson (1993),
since model II can be transformed to resemble the model in Erickson (1993) if rxn is
considered as the latent variable and b=r is its coefficient. The tightness of the
bounds also follows the existing results. &

Proof (Lemma 5). From the first moment condition Px ¼ pþ rPxn and pX0; we
have rpPx=Pxn . Similarly, qX0 leads to rpð1� PxÞ=ð1� Pxn Þ: Therefore, rprd . As
in the proof of Theorem 1, the existence of b requires B2 � 4ACX0 in Eq. (29),
which leads to the bounds on r for different values of reu; as follows:

r 2

ð0; ru� if r2euXr2xy;ffiffiffiffiffiffiffiffiffiffiffiffi
r2xy�r2eu
1�r2eu

r
ru; ru

� �
if r2euor2xy:

8><>: (54)

We can write the lower bound on r as a function of r2eu; say, rlðr2euÞ; as follows:

rlðr2euÞ ¼

0 if r2euXr2xy;ffiffiffiffiffiffiffiffiffiffiffiffi
r2xy�r2eu
1�r2eu

r
ru if r2euor2xy:

8><>: (55)

Then, the condition rlðr2euÞprd implies a range of r2eu. Note that rlðr2euÞ reaches its
maximum rxyru when r2eu ¼ 0. From the expression of rlðr2euÞ, one can show that the
informative bounds (other than �1 and 1) can only be found in the case of rdprxyru:
Therefore, if rd4rxyru, then reu 2 ½�1:1�; if rdprxyru, then rlðr2euÞprd implies
r2euXð1� ð1� r2xyÞr

2
u=ðr

2
u � r2d ÞÞ. The sign of reu is determined by that of seu so that

we have signðreuÞ ¼ signðr2ub� brÞ. Since we have explicit forms of function bðrÞ and
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bðrÞ; a tedious but straightforward calculation shows that reu must be nonnegative if
rprxyru: Thus, the bounds on r2eu lead to those on reu directly.

To directly prove the tightness of the bounds on reu, we need to find the values of
r; b, suu, see and s�u which lead to a particular value of reu between the bounds
(including the bounds themselves). For a given value rn

eu, we let r ¼ er and b ¼ eb; as
follows:

er ¼
1
2 ðrxyru þ rdÞ if rd4rxyru;

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xy � rn2

eu

1� rn2
eu

s
ru þ rd

0@ 1A if rdprxyru and rn
euorxy;

1
2

rd if rdprxyru and rn
euXrxy;

8>>>>>><>>>>>>:
(56)

eb ¼ bðer;rn2
eu Þ if rd4rxyru and rn

euX0;

bðer;rn2
eu Þ if rd4rxyru and rn

euo0;

bðer;rn2
eu Þ if rdprxyru:

8>><>>: (57)

The last two cases in the definition of er correspond to the second case of bounds on
reu in Lemma 5. In that case, the lower bound on reu, i.e.,

rn
euXð1� ð1� r2xyÞr

2
u=ðr

2
u � r2d ÞÞ

1=2, implies that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2xy � rn2

eu Þ=ð1� rn2
eu Þ

q
ruprd . The

key is to choose an er such that bðer;rn2
eu Þ or bðer;rn2

eu Þ changes with rn
eu. In fact, er can

take any value in ðrxyru; rdÞ in the first case in the definition of er, any value in

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2xy � rn2

eu Þ=ð1� rn2
eu Þ

q
ru; rdÞ in the second case, and value in ð0; rdÞ in the third case.

The values of suu, see and s�u can be found as follows:

see ¼ sxx � er2sxnxn , (58)

suu ¼ syy �
eb2sxnxn , (59)

s�u ¼ sxy �
ebersxnxn . (60)

The derivation of the bound function bðr;r2euÞ and bðr; r2euÞ guarantees the suuX0,

seeX0 and s�u=
ffiffiffiffiffiffiffiffiffiffiffiffi
suusee
p

¼ rn
eu. Thus, the bounds on reu are tight. &

Proof (Corollary 6). Since the results in Lemma 5 suggest that r2eu can equal 1, we
can apply Theorem 1 to the dichotomous model with an extra restriction rprd .
From Theorem 1, we know that bðrÞ is an increasing function and bðrÞ reaches its
unique maximum at rmax ¼ rxyru. Therefore, if rd4rxyru; the bounds do not change.
Otherwise, the upper bound has to be adjusted to bðrdÞ:

As shown in Lemma 5, we must have rxyruprd and b ¼ sxy=rsxnxn if reu ¼ 0.
Therefore, the bounds on b follow from the bounds on r.
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The tightness of the bounds still holds by the relevant proof of Theorem 3. The
major difference between Corollary 6 and Theorem 1 is that there is an additional
upper bound on r, i.e., rprd . To consider the additional restriction rprd , we need to
redefine er in the proof of Theorem 3 as follows:

er ¼ rxyru if rd4rxyru and bn4rub;

rd if rdprxyru and bn4rub;

m; bnprub;

8>><>>: (61)

where m is some positive number close to 0. The tightness of the bounds can be
shown in the same way as in the proof of Theorem 3. &
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