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Economic theory vs. econometric model: an example

Economic theory: Permanent income hypothesis

Econometric model: Measurement error model

y = βx∗ + e

x = x∗ + v
y : observed consumption
x : observed income
x∗ : latent permanent income
v : latent transitory income
β : marginal propensity to consume

Maybe the most famous application of measurement error models
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A canonical model of income dynamics: an example

Permanent income: a random walk process

Transitory income: an ARMA process

xt = x∗t + vt

x∗t = x∗t−1 + ηt

vt = ρtvt−1 + λtϵt−1 + ϵt
ηt : permanent income shock in period t
ϵt : transitory income shock
x∗t : latent permanent income
vt : latent transitory income

Can a sample of {xt}t=1,...,T uniquely determine distributions of
latent variables ηt , ϵt , x

∗
t , and vt?
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Road map

1 Empirical evidences on measurement error
2 Measurement models: observables vs unobservables

Definition of measurement and general framework
2-measurement model
2.1-measurement model
3-measurement model
Dynamic measurement model
Estimation (closed-form, extremum, semiparametric)
Revealing unobservables by deep learning

3 Empirical applications with latent variables
Auctions with unobserved heterogeneity
Multiple equilibria in incomplete information games
Dynamic learning models
Effort and type in contract models
Unemployment and labor market participation
Cognitive and noncognitive skill formation
Matching models with latent indices
Income dynamics

4 conclusion
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Measurement error: empirical evidences and assumptions

Kane, Rouse, and Staiger (1999): Self-reported education x
conditional on true education x∗. (Data source: National Longitudinal
Class of 1972 and Transcript data)

fx |x∗(xi |xj ) x∗ — true education level

x — self-reported education x1–no college x2–some college x3–BA
+

x1–no college 0.876 0.111 0.000
x2–some college 0.112 0.772 0.020
x3–BA

+ 0.012 0.117 0.980

Finding I: more likely to tell the truth than any other possible values

fx |x∗(x
∗|x∗) > fx |x∗(xi |x∗) for xi ̸= x∗.

=⇒ error equals zero at the mode of fx |x∗(·|x∗).
Finding II: more likely to tell the truth than to lie. fx |x∗(x

∗|x∗) > 0.5.

=⇒invertibility of the matrix
[
fx |x∗(xi |xj )

]
i ,j

in the table above.
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Measurement error: empirical evidences and assumptions

Chen, Hong & Tarozzi (2005): ratio of self-reported earnings x vs.
true earnings x∗ by quartiles of true earnings. (Data source: 1978
CPS/SS Exact Match File)

Finding I: distribution of measurement error depends on x∗.

Finding II: distribution of measurement error has a zero mode.
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Measurement error: empirical evidences and assumptions

Bollinger (1998, page 591): percentiles of self-reported earnings x
given true earnings x∗ for males. (Data source: 1978 CPS/SS Exact
Match File)

Finding I: distribution of measurement error depends on x∗.

Finding II: distribution of measurement error has a zero median.
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Measurement error: empirical evidences and assumptions

Self-reporting errors by gender
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Graphical illustration of zero-mode measurement error
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Latent variables in microeconomic models

empirical models unobservables observables

measurement error true earnings self-reported earnings
consumption function permanent income observed income
production function productivity output, input
wage function ability test scores
learning model belief choices, proxy
auction model unobserved heterogeneity bids
contract model effort, type outcome, state var.
... ... ...
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Our definition of measurement

X is defined as a measurement of X ∗ if

cardinality of support(X ) ≥ cardinality of support(X ∗).

there exists an injective function from support(X ∗) into support(X ).

equality holds if there exists a bijective function between two supports.

number of possible values of X is not smaller than that of X ∗

X X ∗

discrete {x1, x2, ..., xL} discrete {x∗1 , x∗2 , ..., x∗K} L ≥ K
continuous discrete {x∗1 , x∗2 , ..., x∗K}
continuous continuous

X − X ∗: measurement error (classical if independent of X ∗)
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A general framework

observed & unobserved variables

X measurement observables

X ∗ latent true variable unobservables

economic models described by distribution function fX ∗

fX (x) =
∫
X ∗

fX |X ∗(x |x∗)fX ∗(x∗)dx∗

fX ∗ : latent distribution
fX : observed distribution
fX |X ∗ : relationship between observables & unobservables

identification: Does observed distribution fX uniquely determine
model of interest fX ∗?
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Relationship between observables and unobservables

discrete X ∈ {x1, x2, ..., xL} and X ∗ ∈ X ∗ = {x∗1 , x∗2 , ..., x∗K}

fX (x) = ∑
x∗∈X ∗

fX |X ∗(x |x∗)fX ∗(x∗),

matrix expression

−→p X = [fX (x1), fX (x2), ..., fX (xL)]
T

−→p X ∗ = [fX ∗(x
∗
1 ), fX ∗(x

∗
2 ), ..., fX ∗(x

∗
K )]

T

MX |X ∗ =
[
fX |X ∗(xl |x∗k )

]
l=1,2,...,L;k=1,2,...,K

.

−→p X = MX |X ∗
−→p X ∗ .

given MX |X ∗ , observed distribution fX uniquely determine fX ∗ if

Rank
(
MX |X ∗

)
= Cardinality (X ∗)
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Identification and observational equivalence

two possible marginal distributions −→p a
X ∗ and

−→p b
X ∗ are observationally

equivalent, i.e.,

−→p X = MX |X ∗
−→p a

X ∗ = MX |X ∗
−→p b

X ∗

that is, different unobserved distributions lead to the same observed
distribution

MX |X ∗h = 0 with h := −→p a
X ∗ −−→p b

X ∗

identification of fX ∗ requires

MX |X ∗h = 0 implies h = 0

that is, two observationally equivalent distributions are the same.
This condition can be generalized to the continuous case.
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Identification in the continuous case

define a set of bounded and integrable functions containing fX ∗

L1
bnd (X ∗) =

{
h :

∫
X ∗
|h(x∗)| dx∗ < ∞ and sup x∗∈X ∗ |h(x∗)| < ∞

}
define a linear operator

LX |X ∗ : L1
bnd (X ∗)→ L1

bnd (X )(
LX |X ∗h

)
(x) =

∫
X ∗

fX |X ∗(x |x∗)h(x∗)dx∗

operator equation
fX = LX |X ∗ fX ∗

identification requires injectivity of LX |X ∗ , i.e.,

LX |X ∗h = 0 implies h = 0 for any h ∈ L1
bnd (X ∗)
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A 2-measurement model

definition: two measurements X and Z satisfy

X ⊥ Z | X ∗

two measurements are independent conditional on the latent variable

fX ,Z (x , z) = ∑
x∗∈X ∗

fX |X ∗(x |x∗)fZ |X ∗(z |x∗)fX ∗(x∗)

matrix expression

MX ,Z = [fX ,Z (xl , zj )]l=1,2,...,L;j=1,2,...,J

MZ |X ∗ =
[
fZ |X ∗(zj |x∗k )

]
j=1,2,...,J;k=1,2,...,K

DX ∗ = diag {fX ∗(x∗1 ), fX ∗(x∗2 ), ..., fX ∗(x∗K )}

MX ,Z = MX |X ∗DX ∗M
T
Z |X ∗

suppose that matrices MX |X ∗ and MZ |X ∗ have a full rank, then

Rank (MX ,Z ) = Cardinality (X ∗)
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2-measurement model: binary case

a binary latent regressor

Y = βX ∗ + η

(X ,X ∗) ⊥ η

X , X ∗ ∈ {0, 1}

measurement error X − X ∗ is correlated with X ∗ in general

f (y |x) is a mixture of fη(y) and fη(y − β)

f (y |x) =
1

∑
x∗=0

f (y |x∗)fX ∗|X (x∗|x)

= fη(y)fX ∗|X (0|x) + fη(y − β)fX ∗|X (1|x)
≡ fη(y)Px + fη(y − β)(1− Px )
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2-measurement model: binary case

observed distributions f (y |x = 1) and f (y |x = 0) are mixtures of
f (y |x∗ = 1) and f (y |x∗ = 0)
with different weights P1 and P2

f (y |x = 1)− f (y |x = 0) = [fη(y − β)− fη(y)](P0 − P1)

if |P0 − P1| ≤ 1, then

|f (y |x = 1)− f (y |x = 0)| ≤ |f (y |x∗ = 1)− f (y |x∗ = 0)|

leads to partial identification
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2-measurement model: binary case

parameter of interest

β = E (y |x∗ = 1)− E (y |x∗ = 0)

bounds
|β| ≥ |E (y |x = 1)− E (y |x = 0)|

If Pr(x∗ = 0|x = 0) > Pr(x∗ = 0|x = 1), i.e., P0 − P1 > 0, then

sign {β} = sign {E (y |x = 1)− E (y |x = 0)}
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2-measurement model: binary case

measurement error causes attenuation
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2-measurement model: discrete case

a discrete latent regressor

Y = m(x∗) + η

(X ,X ∗) ⊥ η

X , X ∗ ∈ {x∗1 , x∗2 , ..., x∗K}

Chen Hu & Lewbel (2009): point identification generally holds

general models without (X ,X ∗) ⊥ η : partial identification
see Bollinger (1996) and Molinari (2008)
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2-measurement model: linear model with classical error

a simple linear regression model with zero means

Y = βX ∗ + η

X = X ∗ + ε

X ∗ ⊥ ε ⊥ η

β is generally identified (from observed fY ,X )
except when X ∗ is normal (Reiersol 1950)
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2-measurement model: Kotlarski’s identity

a useful special case: β = 1

Y = X ∗ + η

X = X ∗ + ε

distribution function & characteristic function of X ∗ (i =
√
−1)

fX ∗(x
∗) =

1

2π

∫
e−ix

∗tΦX ∗(t)dt ΦX ∗ = E
[
e itX

∗
]

Kotlarski’s identity (1966)

ΦX ∗(t) = exp

[∫ t

0

iE
[
Ye isX

]
Ee isX

ds

]

latent distribution fX ∗ is uniquely determined by observed distribution
fY ,X with a closed form
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2-measurement model: Kotlarski’s identity

Kotlarski’s identity (1966)

ΦX ∗(t) = exp

[∫ t

0

iE
[
Ye isX

]
Ee isX

ds

]

intuition:
Var(X ∗) = Cov(Y ,X )

All the moments of X ∗ may be written as a function of joint
moments of Y and X with a closed form

first introduced to econometrics by Li and Vuong (1998). Li (2002,
JoE) first used the result to consistently estimate regression models
with classical measurement errors.
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2-measurement model: nonlinear model with classical error

a nonparametric regression model

Y = g(X ∗) + η

X = X ∗ + ε

X ∗ ⊥ ε ⊥ η

Schennach & Hu (2013 JASA): g(·) is generally identified except
some parametric cases of g or fX ∗

a generalization of Reiersol (1950, ECMA)

2-measurement model needs strong specification assumptions for
nonparametric identification: additivity, independence
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2-measurement model: nonlinear model with nonclassical
error

a nonparametric regression model

Y = g(X ∗) + η, with X ∗ ⊥ η

X ← X ∗

X ⊥ η | X ∗

key assumption: LX |X ∗ is bijective.

discrete X ∗ - Chen Hu & Lewbel (2009, Statistica Sinica). There are
interesting results in the binary case (Chen et al, 2008)

continuous X ∗ - Hu, Schennach, & Shiu (2021, JE): g(·) is generally
identified

2-measurement model needs strong specification assumptions for
nonparametric identification: additivity, independence
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2.1-measurement model

“0.1 measurement” refers to a 0-1 dochotomous indicator Y of X ∗

definition of 2.1-measurement model:
two measurements X and Z and a 0-1 indicator Y satisfy

X ⊥ Y ⊥ Z | X ∗

for y ∈ {0, 1}

fX ,Y ,Z (x , y , z) = ∑
x∗∈X ∗

fX |X ∗(x |x∗)fY |X ∗(y |x∗)fZ |X ∗(z |x∗)fX ∗(x∗)

an important message: adding “0.1 measurement” in a
2-measurement model is enough for nonparametric identification, i.e.,
under mild conditions,

fX ,Y ,Z uniquely determines fX ,Y ,Z ,X ∗

fX ,Y ,Z ,X ∗ = fX |X ∗ fY |X ∗ fZ |X ∗ fX ∗

a global nonparametric point identification
(exact identification if J = K = L)
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Identification: discrete case (Hu, 2008, JE)

Let x , x∗ ∈ {x1, x2, x3} and z ∈ {z1, z2, z3}, e.g., education levels.

Mx |x∗ =

 fx |x∗ (x1|x1) fx |x∗ (x1|x2) fx |x∗ (x1|x3)
fx |x∗ (x2|x1) fx |x∗ (x2|x2) fx |x∗ (x2|x3)
fx |x∗ (x3|x1) fx |x∗ (x3|x2) fx |x∗ (x3|x3)

⇐= error structure

Mx∗ |z =

 fx∗ |z (x1|z1) fx∗ |z (x1|z2) fx∗ |z (x1|z3)
fx∗ |z (x2|z1) fx∗ |z (x2|z2) fx∗ |z (x2|z3)
fx∗ |z (x3|z1) fx∗ |z (x3|z2) fx∗ |z (x3|z3)

⇐= IV structure

Dy |x∗ =

 fy |x∗ (y |x1) 0 0

0 fy |x∗ (y |x2) 0

0 0 fy |x∗ (y |x3)

⇐= latent model

My ;x |z =

 fy ;x |z (y , x1|z1) fy ;x |z (y , x1|z2) fy ;x |z (y , x1|z3)
fy ;x |z (y , x2|z1) fy ;x |z (y , x2|z2) fy ;x |z (y , x2|z3)
fy ;x |z (y , x3|z1) fy ;x |z (y , x3|z2) fy ;x |z (y , x3|z3)

⇐= observed info.

My ;x |z contains the same information as fy ,x |z .
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Matrix equivalence

The main equation for a given y

fy ,x |z (y , x |z) = ∑x∗ fx |x∗(x |x∗)fy |x∗(y |x∗)fx∗|z (x∗|z)
⇕

My ;x |z = Mx |x∗Dy |x∗Mx∗|z

Similarly,

fx |z (x |z) = ∑x∗ fx |x∗(x |x∗)fx∗|z (x∗|z)
⇕

Mx |z = Mx |x∗Mx∗|z

Eliminate Mx∗|z

My ;x |zM
−1
x |z =

(
Mx |x∗Dy |x∗Mx∗|z

)
×

(
M−1

x∗|zM
−1
x |x∗

)
= Mx |x∗Dy |x∗M

−1
x |x∗ .
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An inherent matrix diagonalization

An eigenvalue-eigenvector decomposition:

My ;x |zM
−1
x |z = Mx |x∗Dy |x∗M

−1
x |x∗

=

 fx |x∗ (x1|x1) fx |x∗ (x1|x2) fx |x∗ (x1|x3)
fx |x∗ (x2|x1) fx |x∗ (x2|x2) fx |x∗ (x2|x3)
fx |x∗ (x3|x1) fx |x∗ (x3|x2) fx |x∗ (x3|x3)


×

 fy |x∗ (y |x1) 0 0

0 fy |x∗ (y |x2) 0

0 0 fy |x∗ (y |x3)



×

 fx |x∗ (x1|x1) fx |x∗ (x1|x2) fx |x∗ (x1|x3)
fx |x∗ (x2|x1) fx |x∗ (x2|x2) fx |x∗ (x2|x3)
fx |x∗ (x3|x1) fx |x∗ (x3|x2) fx |x∗ (x3|x3)

−1

For ♣ ∈ {x1, x2, x3}, i.e., an index of eigenvalues and eigenvectors:
– eigenvalues: fy |x∗(y |♣)
– eigenvectors:

[
fx |x∗(x1|♣), fx |x∗(x2|♣), fx |x∗(x3|♣)

]T
Yingyao Hu (JHU) Econometrics of Unobservables 2024 30 / 82



Ambiguity Inside the decomposition

Ambiguity in indexing eigenvalues and eigenvectors, i.e.,

{♣,♡,♠} 1-to-1⇐⇒ {x1, x2, x3}

Decompositions with different indexing are observationally equivalent,

My ;x |zM
−1
x |z = Mx |x∗Dy |x∗M

−1
x |x∗

=

 fx |x∗ (x1|♣) fx |x∗ (x1|♡) fx |x∗ (x1|♠)
fx |x∗ (x2|♣) fx |x∗ (x2|♡) fx |x∗ (x2|♠)
fx |x∗ (x3|♣) fx |x∗ (x3|♡) fx |x∗ (x3|♠)


×

 fy |x∗ (y |♣) 0 0

0 fy |x∗ (y |♡) 0

0 0 fy |x∗ (y |♠)



×

 fx |x∗ (x1|♣) fx |x∗ (x1|♡) fx |x∗ (x1|♠)
fx |x∗ (x2|♣) fx |x∗ (x2|♡) fx |x∗ (x2|♠)
fx |x∗ (x3|♣) fx |x∗ (x3|♡) fx |x∗ (x3|♠)

−1

Identification of fx |x∗ boils down to identification of symbols ♣,♡,♠.

Yingyao Hu (JHU) Econometrics of Unobservables 2024 31 / 82



Restrictions on eigenvalues and eigenvectors

Eigenvalues are distinct if x∗ is relevant, i.e.,
– fy |x∗(y |xi ) ̸= fy |x∗(y |xj ) with xi ̸= xj for some y .

Symbols ♣,♡,♠ are identified under zero-mode assumption.

– For example, error distribution fx |x∗ is the same as in Kane et al (1999).

no clg.− x1:
some clg.− x2:

BA+ − x3:

 fx |x∗ (x1|♣)
fx |x∗ (x2|♣)
fx |x∗ (x3|♣)

 =

 0.111
0.772
0.117

 zero-mode assumption

⇓ ⇓
x2 = argmaxxi fx |x∗ (xi |♣) argmaxxi fx |x∗ (xi |♣) = ♣

“x2 is the mode” “truth at the mode”︸ ︷︷ ︸
♣ = x2 (some college)

Similarly, we can identify ♡ and ♠.
=⇒ The model fy |x∗ and the error structure fx |x∗ are identified.
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Uniqueness of the eigen decomposition

uniqueness of the eigenvalue-eigenvector decomposition (Hu 2008 JE)
1. distinct eigenvalues: ∃ a nontrivial set of y, s.t.,
f (y |x∗1 ) ̸= f (y |x∗2 ) for any x∗1 ̸= x∗2
2. eigenvectors are colums in MX |X ∗ , i.e., fX |X ∗ (·|x∗). A natural
normalization is ∑

x
fX |X ∗ (x |x∗) = 1 for all x∗

3. ordering of the eigenvalues or eigenvectors
That is to reveal the value of x∗ for either fX |X ∗ (·|x∗) or f (y |x∗)
from one of below

a. x∗ is the mode of fX |X ∗ (·|x∗): very intuitive, people are more
likely to tell the truth; consistent with validation study

b. x∗ is a quantile of fX |X ∗ (·|x∗): useful in some applications
c. x∗ is the mean of fX |X ∗ (·|x∗): useful when x∗ is continuous
d. E (g(y)|x∗) is increasing in x∗ for a known g , say

Pr(y > 0|x∗)
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2.1-measurement model: geometric illustration

Eigen-decomposition in the 2.1-measurement model
Eigenvalue: λi = fY |X∗ (1|x∗i )

Eigenvector: −→pi = −→p X |x∗i
=

[
fX |X∗ (x1 |x∗i ), fX |X∗ (x2 |x

∗
i ), fX |X∗ (x3 |x

∗
i )

]T
Observed distribution in the whole sample: −→q 1 = −→p X |z1 =

[
fX |Z (x1 |z1), fX |Z (x2 |z1), fX |Z (x3 |z1)

]T
Observed distribution in the subsample with Y = 1 :
−→q y

1 = −→p y1,X |z1 =
[
fY ,X |Z (1, x1 |z1), fY ,X |Z (1, x2 |z1), fY ,X |Z (1, x3 |z1)

]T
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Discrete case without ordering conditions: finite mixture

conditional independence with general discrete X , Y , Z , and X ∗

(Allman, Matias and Rhodes, 2009, Ann Stat)

advantages:
1 cardinality of X ∗ can be larger than that of X or Z or both
2 a lower bound on the so-called Kruskal rank is sufficient for

identification up to permutation. (but ordering is innocuous)

disadvantages:
1 Kruskal rank is hard to interpret in economic models, not testable as

regular rank
2 not clear how to extend to the continuous case

cf. classic local parametric identification condition:
Number of restrictions ⩾ Number of unknowns

cf. 2.1 measurement model:
1 reach the lower bound on the Kruskal rank: 2Cardinality (X ∗) + 2
2 directly extend to the continuous case
3 values of X ∗ may have economic meaning
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2.1-measurement model: continuous case

X ,Z , and X ∗ are continuous

f (y , x , z) =
∫

f (y |x∗)f (x |x∗)f (x∗, z)dx∗

share the same idea as the discrete case in Hu (2008)

from matrix to integral operator

diagonal matrix ⇒ “diagonal” operator (multiplication)
matrix diagonalization ⇒ spectral decomposition
eigenvector ⇒ eigenfunction

nontrivial extension, highly technical

Hu & Schennach (2008, ECMA)
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From conditional density to integral operator

From 2-variable function to an integral operator

fx |x∗ (·|·)
⇓(

Lx |x∗g
)
(x) =

∫
fx |x∗ (x |x∗) g (x∗) dx∗ for any g .

Operator Lx |x∗ transforms unobserved fx∗ to observed fx , i.e.,
fx = Lx |x∗ fx∗ .(

fx∗(x∗)
distribution of x∗

)
Lx |x∗
=⇒

(
fx (x)

distribution of x

)
fx |x∗ (·|·) is called the kernel function of Lx |x∗ .
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Identification: from matrix to integral operator

From matrix to integral operator

Ly ;x |zg =
∫

fy ,x |z (y , ·|z) g (z) dz

Lx |zg =
∫

fx |z (·|z) g (z) dz

Lx |x∗g =
∫

fx |x∗ (·|x∗) g (x∗) dx∗

Lx∗|zg =
∫

fx∗|z (·|z) g (z) dz

Dy ;x∗|x∗g = fy |x∗ (y |·) g (·) .

Ly ;x |z : y viewed as a fixed parameter.

Dy ;x∗|x∗ : “diagonal” operator (multiplication by a function).
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Identification: operator equivalence

The main equation

Ly ;x |z = Lx |x∗Dy ;x∗|x∗Lx∗|z .

– for a function g ,[
Ly ;x |zg

]
(x) =

∫
fy ,x |z (y , x |z) g (z) dz

=
∫ ∫

fx |x∗ (x |x∗) fy |x∗ (y |x∗) fx∗ |z (x∗|z) dx∗g (z) dz

=
∫

fx |x∗ (x |x∗) fy |x∗ (y |x∗)
∫

fx∗ |z (x
∗|z) g (z) dzdx∗

=
∫

fx |x∗ (x |x∗) fy |x∗ (y |x∗)
[
Lx∗ |zg

]
(x∗) dx∗

=
∫

fx |x∗ (x |x∗)
[
Dy ;x∗ |x∗Lx∗ |zg

]
(x∗) dx∗

=
[
Lx |x∗Dy ;x∗ |x∗Lx∗ |zg

]
(x) .

Similarly,
Lx |z = Lx |x∗Lx∗|z .
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Identification: a necessary condition on error distribution

Intuition: if fx |x∗ is known, we want fx∗ to be identifiable from fx .

– That is, if fx∗ and f̃x∗ are observationally equivalent as follows:

fx (x) =
∫

fx |x∗(x |x∗)fx∗ (x∗) dx∗ =
∫

fx |x∗(x |x∗)f̃x∗ (x∗) dx∗,

then fx∗ = f̃x∗ .
– In other words, let h = fx∗ − f̃x∗ , we want∫

fx |x∗(x |x∗)h (x∗) dx∗ = 0 for all x =⇒ h = 0.

An equivalent condition:
– Assumption 2(i): Lx |x∗ is injective.

Implications:
– Inverse L−1

x |x∗ exists on its domain. L−1
x |x∗ × Lx |x∗ = Ix∗|x∗

– Assumption 2(i) is implied by bounded completeness of fx |x∗ , e.g.,
exponential family.
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A necessary condition on instrumental variable

This is related to nonparametric identification with IV∫
fx∗|z (x

∗|z)h (x∗) dx∗ = 0 for all z =⇒ h = 0

Implications:
– Used in Newey&Powell (2003), Darolles Florens&Renault (2005).
– It is a necessary condition to achieve point identification using IV.
– Implied by the bounded completeness of fx∗|z , e.g., exponential
family.

Here Lx |z = Lx |x∗Lx∗|z and Lx |x∗ is injective, Lx∗|z = L−1
x |x∗Lx |z .

We will need the right inverse of Lx |z , i.e., Lx |z × L−1
x |z = Ix |x , which is

implied by:
– Assumption 2(ii): Lz |x is injective.
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An inherent spectral decomposition

left inverse L−1
x |x∗ and right inverse L−1

x |z exist

=⇒ an inherent spectral decomposition

L−1
x |x∗Lx |z = L−1

x |x∗(Lx |x∗Lx∗|z )

= Lx∗|z

Ly ;x |zL
−1
x |z =

(
Lx |x∗Dy ;x∗|x∗Lx∗|z

)
× L−1

x |z

=
(
Lx |x∗Dy ;x∗|x∗(L

−1
x |x∗Lx |z )

)
× L−1

x |z

= Lx |x∗Dy ;x∗|x∗L
−1
x |x∗ .

An eigenvalue-eigenfunction decomposition of an observed operator
on LHS
– Eigenvalues: fy |x∗ (y |x∗), kernel of Dy ;x∗|x∗ .
– Eigenfunctions: fx |x∗ (·|x∗), kernel of Lx |x∗ .
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Identification: uniqueness of the decomposition

Assumption 3: supy∈Y supx∗∈X ∗ fy |x∗ (y |x∗) < ∞.

=⇒ boundedness of Ly ;x |zL
−1
x |z , the observed operator on the LHS.

Theorem XV.4.5 in Dunford & Schwartz (1971):
The representation of a bounded linear operator as a “weighted sum
of projections” is unique.

Each “eigenvalue” λ = fy |x∗ (y |x∗) is the weight assigned to the
projection onto a linear subspace S (λ) spanned by the corresponding
“eigenfunction(s)” fx |x∗ (·|x∗).
However, there are ambiguities inside “weighted sum of projections”.
=⇒ We need to “freeze” these degrees of freedom to show that
Lx |x∗ and Dy ;x∗|x∗ are uniquely determined by Ly ;x |zL

−1
x |z .
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A close look at weighted sum of projections

Discrete case:

Ly ;x |zL
−1
x |z = Lx |x∗Dy ;x∗|x∗L

−1
x |x∗

= fy |x∗(y |x1)× Lx |x∗

 1 0 0
0 0 0
0 0 0

 L−1
x |x∗

+ fy |x∗(y |x2)× Lx |x∗

 0 0 0
0 1 0
0 0 0

 L−1
x |x∗

+ fy |x∗(y |x3)× Lx |x∗

 0 0 0
0 0 0
0 0 1

 L−1
x |x∗

Continuous case:

Ly ;x |zL
−1
x |z =

∫
σ

λP (dλ)
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Identification: uniqueness of the decomposition

Ambiguity I: Eigenfunctions fx |x∗ (·|x∗) are defined only up to a
constant:
– Solution: Constant determined by

∫
fx |x∗ (x |x∗) dx = 1.

– Intuition: Eigenfunctions are conditional densities, therefore, are
automatically normalized.

Ambiguity II: If λ is a degenerate eigenvalue, more than one possible
eigenfunctions.
– Solution: Assumption 4: for all x∗1 , x

∗
2 ∈ X ∗, the set{

y : fy |x∗ (y |x∗1 ) ̸= fy |x∗ (y |x∗2 )
}

has positive probability whenever x∗1 ̸= x∗2 .
– Intuition: eigenvalues fy |x∗ (y1|x∗) and fy |x∗ (y2|x∗) share the same
eigenfunction fx |x∗ (·|x∗) . Therefore, y is helpful to distinguish
eigenfunctions.
– Note: this assumption is weaker than (or implied by) the
monotonicity assumptions typically made in the nonseparable error
literature
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Identification: uniqueness of the decomposition

Ambiguity III: Freedom in indexing eigenvalues: e.g., use x∗ or
(x∗)3?
– Solution: the zero “location” assumption, i.e., Assumption 5:
there exists a known functional M such that x∗ = M

[
fx |x∗ (·|x∗)

]
for

all x∗.
– Intuition: Consider another variable x̃∗ related to x∗ by
x̃∗ = R (x∗) .
=⇒ M

[
fx |x̃∗ (·|x̃∗)

]
= M

[
fx |x∗ (·|R (x̃∗))

]
= R (x̃∗) ̸= x̃∗.

=⇒ Only one possible R: the identity function.

Examples of M
error has a zero mean: M [f ] =

∫
xf (x)dx (thus, allow classical error)

error has a zero mode: M [f ] = argmaxx f (x)
error has a zero τ-th quantile: M [f ] = inf

{
x∗ :

∫
1 (x ≤ x∗) f (x)dx ≥ τ

}
Importance: this assumption is based on the findings from validation
studies.
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The Hu-Schennach Theorem

key identification conditions:
1) (X ,Y ,Z ) are independent conditional on X ∗. All densities are
bounded
2) the operators LX |X ∗ and LZ |X are injective.

3) for all x∗ ̸= x̃∗ in X ∗, the set
{
y : fY |X ∗ (y |x∗) ̸= fY |X ∗ (y |x̃∗)

}
has positive probability.
4) there exists a known functional M such that M

[
fX |X ∗ (·|x∗)

]
= x∗

for all x∗ ∈ X ∗.
then

fX ,Y ,Z uniquely determines fX ,Y ,Z ,X ∗

with
fX ,Y ,Z ,X ∗ = fX |X ∗ fY |X ∗ fZ |X ∗ fX ∗

a global nonparametric point identification

2.1-measurement model is identified even in the continuous case
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3-measurement model

definition: three measurements X , Y , and Z satisfy

X ⊥ Y ⊥ Z | X ∗

can always be reduced to a 2.1-measurement model.
all the identification conditions remain with a general Y .
doesn’t matter which is called dependent variable, measurement, or
instrument.

examples:
Hausman Newey & Ichimura (1991)

add x∗ = γz + u, z instrument, g(·) is a polynomial
Schennach (2004): use a repeated measurement x2 = x∗ + ε2

general g(·), use ch.f. Kotlarski’s identity
Schennach (2007): use IV: x∗ = γz + u u ⊥ z

general g(·), use ch.f. similar to Kotlarski’s identity
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Hidden Markov model: a 3-measurement model

an unobserved Markov process

X ∗t+1 ⊥ {X ∗s }s≤t−1 | X ∗t .

a measurement Xt of the latent X ∗t satisfying

Xt ⊥ {Xs ,X
∗
s }s ̸=t | X ∗t .

a hidden Markov model

Xt−1 Xt Xt+1

↑ ↑ ↑
−→ X ∗t−1 −→ X ∗t −→ X ∗t+1 −→

a 3-measurement model

Xt−1 ⊥ Xt ⊥ Xt+1 | X ∗t ,
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dynamic measurement model

{Xt ,X
∗
t } is a first-order Markov process satisfying

fXt ,X ∗t |Xt−1,X ∗t−1
= fXt |X ∗t ,Xt−1fX ∗t |Xt−1,X ∗t−1

.

Flow of chart

−→ Xt−2 −→ Xt−1 −→ Xt −→ Xt+1 −→
↘ ↕ ↘ ↕ ↘ ↕ ↘ ↕ ↘
−→ X ∗t−2 −→ X ∗t−1 −→ X ∗t −→ X ∗t+1 −→

Hu & Shum (2012, JE): nonparametric identification of the joint
process

Special case with X ∗t = X ∗t−1 needs 4 periods of data.
cf. 6 periods with discrete X ∗ in Kasahara and Shimotsu (2009)
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dynamic measurement model

Hu & Shum (2012): nonparametric identification of the joint process.
(use Carroll Chen & Hu (2010, JNPS))

key identification assumptions:
1) for any xt−1 ∈ X , MXt |xt−1,Xt−2 is invertible.
2) for any xt ∈ X , there exists a (xt−1, x t−1, x t) such that
MXt+1,xt |xt−1,Xt−2 , MXt+1,xt |x t−1,Xt−2 , MXt+1,x t |xt−1,Xt−2 , and
MXt+1,x t |x t−1,Xt−2 are invertible and that for all x∗t ̸= x̃∗t in X ∗

∆xt ∆xt−1 ln fXt |X ∗t ,Xt−1 (x
∗
t ) ̸= ∆xt ∆xt−1 ln fXt |X ∗t ,Xt−1 (x̃

∗
t )

3) for any xt ∈ X , E [Xt+1|Xt = xt ,X
∗
t = x∗t ] is increasing in x∗t .

joint distribution of five periods of data fXt+1,Xt ,Xt−1,Xt−2,Xt−3 uniquely
determines Markov transition kernel fXt ,X ∗t |Xt−1,X ∗t−1
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Other approaches: use a secondary sample

{Y ,X}, {X ∗} (administrative sample) Hu & Ridder (2012)

{Y ,X}, {X ,X ∗} (validation sample) Chen, Hong & Tamer (2005)
among many other papers in econometrics & statistics

{Y ,X ,W }, {Ya,Xa,Wa} (auxiliary survey sample) Carroll, Chen &
Hu (2010) with model of interest f (Y |X ∗,W ) = f (Ya|X ∗a ,Wa)

also related to literature on missing data, where X ∗ can be considered
as missing
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Estimation: discrete case

Estimate the matrices directly

Ly ;x ,z =

 fy ;x |z (y , x1, z1) fy ;x |z (y , x1, z2) fy ;x |z (y , x1, z3)
fy ;x |z (y , x2, z1) fy ;x |z (y , x2, z2) fy ;x |z (y , x2, z3)
fy ;x |z (y , x3, z1) fy ;x |z (y , x3, z2) fy ;x |z (y , x3, z3)


Use sample proportion

Use kernel density estimator with continuous covariates

Identification is globe, nonparametric, and constructive

Mimic identification procedure:
a unique mapping from fy ,x ,z to fy |x∗ , fx |x∗ , and fx∗,z

Easy to compute without optimization or iteration

May have problems with a small sample: estimated prob outside [0,1]
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Estimation: discrete case

Eigen decomposition holds after averaging over Y with a known ω (.)

E [ω (Y ) |X = x ,Z = z ] fX ,Z (x , z) = ∑
x∗∈X ∗

fX |X ∗ (x |x∗)E [ω (Y ) |x∗] fZ |X ∗ (z |x∗)fX ∗ (x∗)

Define

MX ,ω,Z = [E [ω (Y ) |X = xk ,Z = zl ] fX ,Z (xk , zl )]k=1,2,...,K ;l=1,2,...,K

Dω|X ∗ = diag {E [ω (Y ) |x∗1 ] ,E [ω (Y ) |x∗2 ] , . . . ,E [ω (Y ) |x∗K ]}

MX ,ω,ZM
−1
X ,Z = MX |X ∗Dω|X ∗M

−1
X |X ∗

The matrix MX ,ω,Z can be directly estimated as

M̂X ,ω,Z =

[
1

N

N

∑
i=1

ω (Yi ) 1 (Xi = xk ,Zi = zl )

]
k=1,2,...,K ;l=1,2,...,K

Estimation mimics identification procedure
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Estimation: discrete case

May also use extremum estimator with restrictions

(
M̂X |X ∗ , D̂ω|X ∗

)
= arg min

M,D

∥∥∥∥M̂X ,ω,Z

(
M̂X ,Z

)−1
M −M ×D

∥∥∥∥
such that

1) each entry in M is in [0, 1]

2) each column sum of M equals 1

3) D is diagonal

4) entries in M satisfies the ordering Assumption

See Bonhomme et al. (2015, 2016) for more extremum estimators
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Closed-form estimators

Global nonparametric identification
elements of interest can be written as a function of observed
distributions

continuous case: Kotlarski’s identity
nonparametric regression with measurement error:
Schennach (2004b, 2007), Hu and Sasaki (2015)
discrete case: eigen-decomposition in Hu (2008)

Closed-form estimator

mimic identification procedure
don’t need optimization or iteration
less nuisance parameters than semiparametric estimators
but may not be efficient
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Closed-form estimators

a 3-measurement model

x1 = g1(x
∗) + ϵ1

x2 = g2(x
∗) + ϵ2

x3 = g3(x
∗) + ϵ3

normalization: g3(x∗) = x∗

Schennach (2004b): g2(x∗) = x∗

Hu and Sasaki (2015): g2 is a polynomial

Hu and Schennach (2008): g1 and g2 are nonparametrically identified

Open question: Do closed-form estimators for g1 and g2 exist?
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Estimation: a sieve semiparametric MLE

Based on :

fy ,x |z (y , x |z) =
∫

fy |x∗(y |x∗)fx |x∗(x |x∗)fx∗|z (x∗|z)dx∗

Approximate ∞-dimensional parameters, e.g., fx |x∗ , by truncated
series

f̂1(x |x∗) =
in

∑
i=0

jn

∑
j=0

γ̂ijpi (x)pj (x
∗),

– where pk (·) are a sequence of known univariate basis functions.
Sieve Semiparametric MLE

α̂ =
(

β̂, η̂, f̂1, f̂2
)

= argmax
(β,η,f1,f2)∈An

1

n

n

∑
i=1

ln
∫

fy |x∗ (yi |x∗; β, η)f1(xi |x∗)f2(x∗|zi )dx∗

 β : parameter vector of interest
η, f1, f2 : ∞-dimensional nuisance parameters
An : space of series approximations
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Estimation: handling moment conditions

Use η to handle moment conditions:
– For parametric likelihoods: omit η.
– For moment condition models: need η.

Model defined by:
E [m (y , x∗, β) |x∗] = 0.

Method:
– Define a family of densities fy |x∗ (y |x∗, β, η) such that∫

m (y , x∗, β) fy |x∗ (y |x∗, β, η) dx∗ = 0, ∀x∗, β, η.

– Use sieve MLE

α̂ =
(

β̂, η̂, f̂1, f̂2
)

= argmax
(β,η,f1,f2)∈An

1

n

n

∑
i=1

ln
∫

fy |x∗(yi |x∗; β, η)f1(xi |x∗)f2(x∗|zi )dx∗.
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Estimation: consistency and normality

Consistency of α̂
– Conditions: too technical to show here.
– Theorem (consistency): Under sufficient conditions, we have

∥α̂− α0∥s = op(1).

– Proof: use Theorem 4.1 in Newey and Powell (2003).

Asymptotic normality of parameters of interest β̂.
– Conditions: even more technical.
– Theorem (normality): Under sufficient conditions, we have

√
n
(

β̂− β0

)
d→ N

(
0, J−1

)
.

– Proof: use Theorem 1 in Shen (1997) and Chen and Shen (1998).
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Revealing unobservables by deep learning

Can we estimate the true values in each observation?

From identification in distribution to identification in observation

An ongoing research
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Empirical applications with latent variables

Auctions with unknown number of bidders

Auctions with unobserved heterogeneity

Auctions with heterogeneous beliefs

Multiple equilibria in incomplete information games

Dynamic learning models

Effort and type in contract models

Unemployment and labor market participation

Cognitive and noncognitive skill formation

Dynamic discrete choice with unobserved state variables

Matching models with latent indices

Income dynamics
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First-price sealed-bid auctions

Bidder i forms her own valuation of the object: xi
Bidders’ values are private and independent
Common knowledge: value distribution F , number of bidders N∗

Bidder i chooses bid bi to maximize her expected utility function

Ui = (xi − bi )Pr(max
j ̸=i

bj < bi )

Winning probability Pr(max
j ̸=i

bj < bi ) depends on bidder i ’s belief about

her opponents’ bidding behavior

Perfectly correct beliefs about opponents’ bidding behavior
→ Nash equilibrium
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Auctions with unknown number of bidders

An Hu & Shum (2010, JE):

IPV auction model:


N∗: # of potential bidders
A: # of actual bidders
b: observed bids

bid function

b(xi ;N
∗) =

{
xi −

∫ xi
r FN∗ (s)

N∗−1ds

FN∗ (xi )N
∗−1 for xi ≥ r

0 for xi < r .

conditional independence

f (At , b1t , b2t |b1t > r , b2t > r)

= ∑
N∗

f (At |At ≥ 2,N∗) f (b1t |b1t > r ,N∗) f (b2t |b2t > r ,N∗)×

×f (N∗|b1t > r , b2t > r)
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Auctions with unobserved heterogeneity

s∗t is an auction-specific state or unobserved heterogeneity

bit = s∗t × ai (xi )

2-measurement model
b1t ⊥ b2t | s∗t

and

ln b1t = ln s∗t + ln a1

ln b2t = ln s∗t + ln a2

in general
b1t ⊥ b2t ⊥ b3t | s∗t

Li Perrigne & Vuong (2000), Krasnokutskaya (2011), Hu McAdams &
Shum (2013 JE)
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Auctions with heterogeneous beliefs

An (2016): empirical analysis on Level-k belief in auctions

Bidders have different levels of sophistication ⇒ Heterogenous
(possibly incorrect) beliefs about others’ behavior

Beliefs (types) have a hierarchical structure

Type Belief about other bidders’ behavior
1 all other bidders are type-L0 (bid näıvely)
2 all other bidders are type-1
...

...
k all other bidders are type-(k − 1)

Specification of type-L0 is crucial, assumed by the researchers

Help explain overbidding and non-equilibrium behavior

Observe joint distribution of a bidder’s bids in three auctions,
assuming bidder’s belief level doesn’t change across auctions

three bids are independent conditional on belief level
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Multiple equilibria in incomplete information games

Xiao (2014): a static simultaneous move game

utility function

ui (ai , a−i , ϵi ) = πi (ai , a−i ) + ϵi (ai )

expected payoff of player i from choosing action ai

∑
a−i

πi (ai , a−i )Pr (a−i ) + ϵi (ai ) ≡ Πi (ai ) + ϵi (ai )

Bayesian Nash Equilibrium is defined as a set of choice probabilities
Pr (ai ) s.t.

Pr (ai = k) = Pr

({
Πi (k) + ϵi (k) > max

j ̸=k
Πi (j) + ϵi (j)

})
let e∗ denote the index of equilibria

a1 ⊥ a2 ⊥ ... ⊥ aN | e∗
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Dynamic learning models

Hu Kayaba & Shum (2013 GEB): observe choices Yt , rewards Rt ,
proxy Zt for the agent’s belief X ∗t
Zt : eye movement

Yt−1 Yt Yt+1

↑ ↑ ↑
−→ X ∗t−1 −→ X ∗t −→ X ∗t+1 −→

↓ ↓ ↓
Zt−1 Zt Zt+1

a 3-measurement model

Zt ⊥ Yt ⊥ Zt−1 | X ∗t
learning rule Pr

(
X ∗t+1|X ∗t ,Yt ,Rt

)
can be identified from

Pr (Zt+1,Yt ,Rt ,Zt)

= ∑
X ∗t+1

∑
X ∗t

Pr (Zt+1|X ∗t+1)Pr (Zt |X ∗t )Pr (X ∗t+1,X
∗
t ,Yt ,Rt) .
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Effort and type in contract models: Xin (2018)

Online credit markets for peer-to-peer lending attract dispersed and
anonymous borrowers and lenders, and often require no collateral.

The problems of asymmetric information are two-fold:
(1) Borrowers differ in their inherent risks =⇒ Adverse Selection;
(2) Additional incentives are necessary to motivate borrowers to exert

effort =⇒ Moral Hazard.

Xin (2018, Job market paper) sets up a dynamic structural model to
formalize
(1) borrowers’ repayment decisions,
(2) lenders’ investment strategies,
(3) websites’ pricing schemes,

when both hidden information (adverse selection) and hidden
actions (moral hazard) are present.

identification strategies to recover the dist. of borrowers’ private
types and costs of effort, and utility primitives, and estimate the
model using a large dataset from Prosper.com.
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Effort and type in contract models: Xin (2018)

Let the index for two loans be t − 1 and t.

Key elements in the model:
(1) Outcomes of the loan (default, late payment): Ot ,Ot−1;
(2) Observed characteristics (debt-to-income ratio, credit grade): Xt ,Xt−1;
(3) Effort choices: et , et−1;
(4) Borrower’s type: c .

Dynamic structure motivated by the model:
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Effort and type in contract models: Xin (2018)

Step 1: Identify Type Distribution

Observables, Xt = {Financial Status(Zt), Credit Grade(Kt)}.
Three pieces of information, independent conditional on type.

f (Ot ,Xt ,Ot−1,Xt−1) = ∑
c

f (c ,Xt−1,Ot−1)︸ ︷︷ ︸
Init. Char.

f (Xt |Xt−1,Ot−1, c)︸ ︷︷ ︸
Transition of States

f (Ot |c,Xt)︸ ︷︷ ︸
Outcome Realized

Type distribution f (c |Xt−1,Ot−1) is identified for borrowers with
multiple loans. (Hu and Shum, 2012)
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Effort and type in contract models: Xin (2018)

Step 2: Identify Effort Choice Probabilities

Loan outcomes include borrowers’ default and late payment
performances, Ot = {Dt , Lt}.

f (Ot |c ,Xt)︸ ︷︷ ︸
identified

= ∑
et

f (Dt |et)f (Lt |et)f (et |c,Xt)

(1) Conditional on effort, default and late payment are independent.
(2) Effort choice is related to borrower’s type.

Following Hu (2008), effort choice probabilities and outcome
realization process are identified.
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Unemployment and labor market participation

Feng & Hu (2013 AER): Let X ∗t and Xt denote the true and
self-reported labor force status.

monthly CPS {Xt+1,Xt ,Xt−9}i
local independence

Pr (Xt+1,Xt ,Xt−9) = ∑
X ∗t+1

∑
X ∗t

∑
X ∗t−9

Pr (Xt+1|X ∗t+1)×

×Pr (Xt |X ∗t )Pr (Xt−9|X ∗t−9)Pr (X ∗t+1,X
∗
t ,X

∗
t−9) .

assume
Pr (X ∗t+1|X ∗t ,X ∗t−9) = Pr (X ∗t+1|X ∗t )

a 3-measurement model

Pr (Xt+1,Xt ,Xt−9)

= ∑
X ∗t

Pr (Xt+1|X ∗t )Pr (Xt |X ∗t )Pr (X ∗t ,Xt−9) ,
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Cognitive and noncognitive skill formation

Cunha Heckman & Schennach (2010 ECMA)
X ∗t =

(
X ∗C ,t ,X

∗
N,t

)
cognitive and noncognitive skill

It = (IC ,t , IN,t) parental investments

for k ∈ {C ,N} , skills evolve as

X ∗k,t+1 = fk,s (X
∗
t , It ,X

∗
P , ηk,t) ,

where X ∗P =
(
X ∗C ,P ,X

∗
N,P

)
are parental skills

latent factors

X ∗ =
({

X ∗C ,t

}T

t=1
,
{
X ∗N,t

}T

t=1
, {IC ,t}Tt=1 , {IN,t}Tt=1 ,X

∗
C ,P ,X

∗
N,P

)
measurements of these factors

Xj = gj (X
∗, εj )

key identification assumption

X1 ⊥ X2 ⊥ X3 | X ∗

a 3-measurement model
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Dynamic discrete choice with unobserved state variables

Hu & Shum (2012 JE)

Wt = (Yt ,Mt)
Yt agent’s choice in period t
Mt observed state variable
X ∗t unobserved state variable

for Markovian dynamic optimization models

fWt ,X ∗t |Wt−1,X ∗t−1
= fYt |Mt ,X ∗t

fMt ,X ∗t |Yt−1,Mt−1,X ∗t−1

fYt |Mt ,X ∗t
conditional choice probability for the agent’s optimal

fMt ,X ∗t |Yt−1,Mt−1,X ∗t−1
joint law of motion of state variables

fWt+1,Wt ,Wt−1,Wt−2 uniquly determines fWt ,X ∗t |Wt−1,X ∗t−1
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Latent indices in matching models

Diamond & Agarwal (2017): an economy containing n workers with
characteristics (Xi , ε i ) and n firms described by (Zj , ηj )

researchers observe Xi and Zj

a firm ranks workers by a human capital index as

v (Xi , ε i ) = h (Xi ) + ε i . (1)

the workers’ preference for firm j is described by

u (Zj , ηj ) = g (Zj ) + ηj . (2)

the preferences on both sides are public information in the market.
Researchers are interested in the preferences, including functions h, g ,
and distributions of ε i and ηj .

a pairwise stable equilibrium, where no two agents on opposite sides
of the market prefer each other over their matched partners.
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Matching models with latent indices

when the numbers of firms and workers are both large, The joint
distribution of (X ,Z ) from observed pairs then satisfies

f (X ,Z ) =
∫ 1

0
f (X |q) f (Z |q) dq

f (X |q) = fε
(
F−1V (q)− h(X )

)
f (Z |q) = fη

(
F−1U (q)− g(Z )

)
a 2-measurement model

h and g may be identified up to a monotone transformation.
intuition: fZ |X (z |x1) = fZ |X (z |x2) for all z implies h (x1) = h (x2)

in many-to-one matching

f (X1,X2,Z ) =
∫ 1

0
f (X1|q) f (X2|q) f (Z |q) dq

a 3-measurement model
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Income dynamics

Arellano Blundell & Bonhomme (2017): nonlinear aspect of income
dynamics

pre-tax labor income yit of household i at age t

yit = ηit + ε it

persistent component ηit follows a first-order Markov process

ηit = Qt (ηi ,t−1, uit)

transitory component ε it is independent over time

{yit , ηit} is a hidden Markov process with

yi ,t−1 ⊥ yit ⊥ yi ,t+1 | ηit

a 3-measurement model
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A canonical model of income dynamics: a revisit

Permanent income: a random walk process

Transitory income: an ARMA process

xt = x∗t + vt

x∗t = x∗t−1 + ηt

vt = ρtvt−1 + λtϵt−1 + ϵt


ηt : permanent income shock in period t
ϵt : transitory income shock
x∗t : latent permanent income
vt : latent transitory income

Can a sample of {xt}t=1,...,T uniquely determine distributions of
latent variables ηt , ϵt , x

∗
t , and vt?
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A canonical model of income dynamics: a revisit

Define
∆xt+1 = xt+1 − xt

Estimate AR coefficient

ρt+1
1− ρt+2

1− ρt+1
=

cov (∆xt+2, xt−1)

cov (∆xt+1, xt−1)

Use Kotlarski’s identity

xt = vt + x∗t
∆xt+2

ρt+2 − 1
− ∆xt+1 = vt +

λt+2ϵt+1 + ϵt+2 + ηt+2

ρt+2 − 1
− ηt+1

Joint distribution of {xt}t=1,...,T⩾3 uniquely determines distributions
of latent variables ηt , ϵt , x

∗
t , and vt . (Hu, Moffitt, and Sasaki, 2016)
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Conclusion

The Econometrics of Unobservables

a solution to the endogeneity problem

integration of microeconomic theory and econometric methodology

economic theory motivates our intuitive assumptions

global nonparametric point identification and estimation

flexible nonparametrics applies to large range of economic models

latent variable approach allows researchers to go beyond observables
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Conclusion

See the online book for details

The Econometrics of Unobservables
– Latent Variable and Measurement Error Models and Their Applications in

Empirical Industrial Organization and Labor Economics

at Yingyao Hu’s webpage

Comments are welcome. Thank you for your interest.
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