
Identification of Nonparametric Monotonic Regression Models

with Continuous Nonclassical Measurement Errors∗

Yingyao Hu†, Susanne Schennach‡, and Ji-Liang Shiu§

September 9, 2020

Abstract

This paper provides sufficient conditions for identification of a nonparametric regression

model with an unobserved continuous regressor subject to nonclassical measurement error.

The measurement error may be directly correlated with the latent regressor in the model.

Our identification strategy does not require the availability of additional data information,

such as a secondary measurement, an instrumental variable, or an auxiliary sample. Our

main assumptions for nonparametric identification include monotonicity of the regression

function, independence of the regression error, and completeness of the measurement error

distribution. We also propose a sieve maximum likelihood estimator and investigate its

finite sample property through Monte Carlo simulations.
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1. Introduction

This paper considers the following nonparametric errors-in-variables regression model:

Y = m0(X∗) + η(1)

X = X∗ + ε(2)

where m0 is an unknown, monotone function, Y is a dependent variable, η is the regression

error, X∗ is an unobserved continuous regressor, X is the observed counterpart of X∗, con-

taminated by a measurement error ε. The main goal is to identify the nonlinear function

m0 from the joint distribution of the observed data (Y,X) without a priori knowledge of

the distribution of the measurement error ε, while allowing a correlation between X∗ and

ε, and without relying on the availability of additional side information, such as repeated

measurements or instruments.

The nonparametric version of the identification problem in Eqs. (1) and (2) without the

monotonicity has only very recently been solved in the case where ε, η and X∗ are mutually

independent (Schennach and Hu (2013)). This paper seeks to relax the independence assump-

tion between ε and X∗ to allow for so-called non-classical measurement error, a topic whose

importance is beginning to gather significant attention due to realization that the classical

(independent) error may often be violated in applications (Bound, Brown, and Mathiowetz

(2001), Hu and Schennach (2008), Bollinger (1998), Bound, Brown, Duncan, and Rodgers

(1994)).

The present paper provides a significant step towards generally handling nonclassical er-

ror, by allowing flexible correlation between the latent regressor X∗ and the nonclassical

measurement error ε. We impose the same type of restriction on the nonclassical measure-

ment error as in Hu and Schennach (2008) such as completeness and a location condition of

the measurement error distribution but avoid the use of an additional instrumental variable to

achieve nonparametric identification. We also avoid the reliance on the information contained

in other, correctly measured, regressors (as in, e.g., Ben-Moshe, D’Haultfoeuille, and Lew-

bel (2016)). Our model is superficially reminiscent of that in Chen, Hu, and Lewbel (2009),

where the unobserved regressor X∗ and its measurement X share a finite discrete support.

Whereas handling the discrete misclassification case could be reduced to solving a finite sys-

tem of equations, handling the continuous case entails considerable technical challenges, such

as requiring the use of advanced operator and Fourier techniques. In addition, we are able to
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provide primitive conditions for our identification result that are far easier to interpret than

those of Chen, Hu, and Lewbel (2009).1

We assume non-differential measurement error and that the regression error η is inde-

pendent of the latent regressor X∗ and its measurement X, that the regression function m0

is monotonic over the support X ∗ of X∗, and that the measurement error density fX|X∗

is complete (This can be regarded as a nonparametric rank condition. see, e.g., Mattner

(1993) or Andrews (2017)). We show that the regression function m0 and the measure-

ment error distribution fX|X∗ are nonparametrically identified by showing that the densities(
fY |X∗ , fX|X∗ , fX∗

)
on the right hand side are uniquely determined from the observed joint

density fY,X on the left hand side of the following integral equation:

(3) fY,X(y, x) =

∫
X ∗
fY |X∗(y|x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗,

obtained after assuming fY |X∗,X(y|x∗, x) = fY |X∗(y|x∗).

Based on this result, we propose a sieve maximum likelihood estimator (MLE) for the

(possibly infinite-dimensional) parameter of interest α that incorporates the regression func-

tion m0 and other nonparametric elements fη, fX|X∗ , and fX∗ . Sieve estimators represent a

powerful and rapidly growing class of estimators (see Ding and Nan (2011), Xue, Miao, and

Wu (2010), Chen, Wu, and Yi (2009), Ghosal and Van Der Vaart (2007) for recent exam-

ples). Under suitable regularity conditions, one can approximate the unknown functions m0,

fη, fX|X∗ , and fX∗ by truncated sieve series such as polynomials, Fourier series, or splines

and estimate the coefficients of these approximations by maximum likelihood (Chen (2006)).

Using techniques from Ai and Chen (2003), we show that the sieve MLE is consistent and, in

semiparametric settings, root-n asymptotically normal and efficient, under suitable regularity

conditions. We investigate finite sample properties of the proposed sieve maximum likelihood

estimator through Monte Carlo simulations.

Measurement error models have been gathering considerable interest in statistics (Chesher

(1991), Li and Vuong (1998), Wang (2004), Huang and Wang (2001), Schennach (2013), Car-

roll, Delaigle, and Hall (2007), Delaigle, Hall, and Meister (2008), Schennach (2004), among

many others) and this topic has been the subject of several reviews (e.g., Carroll, Rup-

pert, Stefanski, and Crainiceanu (2006), Schennach (2016)). The more challenging problem

1Our assumptions are all imposed directly on the primitive objects such as m0, fX|X∗ , etc. The identification
condition in Assumption 2.3 of Chen, Hu, and Lewbel (2009) is rather technical and its connections to m0,
fX|X∗ , etc are not straightforward.
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of addressing measurement error when side information is unavailable has also been receiving

considerable attention, but existing methods have so far focussed on linear models (Geary

(1942), Reiersol (1950), Chesher (1998), Pal (1980), Cragg (1997), Lewbel (1997), Lewbel

(2012), Dagenais and Dagenais (1997), Erickson and Whited (2000), Erickson and Whited

(2002), Erickson, Jiang, and Whited (2014), Ben-Moshe (2014), among others). Examples

that combine a classical error on Y and a nonclassical error on X can be found in many

fields, from the medical to the economic literatures. For instance, in the study the effect of

a specific food intake (X∗) on cholesterol levels (Y ) (e.g., Griffin and Lichtenstein (2013)),

it is plausible to maintain a classical error assumption on the laboratory measurement of

cholesterol level (Glasziou, Irwig, Heritier, Simes, and Tonkin (2008)) but food intake is un-

likely to be contaminated by a simple classical error if it is self-reported, a situation known

to induce non-classical errors (Hyslop and Imbens (2001), Bound, Brown, and Mathiowetz

(2001)). Another example would be the study of the relation between household income (X∗)

and children health status (Y ), as measured by objective quantities (such a body mass in-

dex) (e.g., Jin and Jones-Smith (2015)). While the dependent variable is likely to conform to

classical assumptions, household income is widely recognized as exhibiting nonclassical error

(Bollinger (1998), Bound and Krueger (1991)).

The rest of the paper is organized as follows. Section 2 discusses assumptions for nonpara-

metric identification. Section 3 describes our estimator, and Section 4 presents Monte Carlo

simulations. Section 5 concludes. All proofs and auxiliary lemmas are in the Appendix.

2. Nonparametric Identification

In this section, we introduce our key assumptions for nonparametric identification of the model

and outline the main arguments of the proof in order to give an intuition of the identification

result. Let Y, X , and X ∗ denote the supports of the distributions of the random variables Y ,

X, and X∗, respectively. We first assume a boundedness restriction on densities and place

some restrictions on the regression error η.

Assumption 2.1. (Restrictions on densities) The joint distribution of the random variable

X and X∗ admits a density fX,X∗ with respect to the Lebesgue measure and the conditional

density of the measurement error fX|X∗ and marginal density of the true regressor fX∗ are

bounded by a constant.

Assumption 2.2. (Restrictions on regression error) We assume that
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(i) (Independence) the regressor error η is independent of the latent true regressor X∗,

(ii) (Zero conditional mean) E[η|X∗] = 0,

(iii) (Nonvanishing characteristic function) E[exp(iγη)] 6= 0 for all γ ∈ R.

Assumption 2.2(i) effectively imposes an additively separable structure on the regression

error η. This assumption implies that the conditional density fY |X∗ is completely determined

by the distribution of the regressor error η and the regression function as follows:

fY |X∗(y|x∗) = fη(y −m0(X∗)).

Assumption 2.2(ii) is a standard centering restriction on the model’s disturbances.

Let L2(X) = {h :
∫
X |h(x)|2dx <∞}. The measurement error satisfies the following:

Assumption 2.3. (Restrictions on Measurement Error) Suppose that

(i) (Nondifferential error) the observed measurement X is independent of dependent vari-

able Y conditional on the unobserved regressor X∗, i.e., for ∀(y, x, x∗) ∈ Y × X × X ∗

fY |X∗,X(y|x∗, x) = fY |X∗(y|x∗).

(ii) (Invertibility) For any function h ∈ L2(X ∗),
∫
fX|X∗(x|x∗)h(x∗)dx∗ = 0 for all x ∈ X

implies h(x∗) = 0 for almost any x∗ ∈ X ∗. On the other hand, for any function h ∈ L2(X ),∫
fX|X∗(x|x∗)h(x)dx = 0 for all x∗ ∈ X ∗ implies h(x) = 0 for almost any x ∈ X .

(iii) (Normalization) There exists a known functional G such that G
[
fX|X∗(·|x∗)

]
= x∗

for any x∗ ∈ X ∗.

Assumption 2.3(i) implies that the measurement error is nondifferential, that is, X −X∗

does not affect the true model, fY |X∗ , the distribution of the dependent variable Y condi-

tional on the true value X∗. The observed measurement X thus does not provide any more

information about Y than the unobserved regressor X∗ already does. Such conditional inde-

pendence restrictions have been extensively used in the recent years.2 Note that we allow the

measurement error X − X∗ to be correlated with the true unobserved regressor X∗, which

reflects the presence of potential nonclassical measurement error.

Assumption 2.3(ii) implies that the conditional density fX|X∗ is complete in both X and

X ∗. This condition is related to the invertibility of the integral operator with kernel fX|X∗ .

2For example, Altonji and Matzkin (2005), Heckman and Vytlacil (2005), and Hoderlein and Mammen
(2007).
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Intuitively, assuming completeness of fX|X∗ is weaker than assuming independence between

X∗ and X −X∗, in the same way the space of invertible matrices is much larger (in terms of

dimension) than the space of similarly sized matrices A of the special form Aij = v(j−i) for

some vector v.3 Completeness conditions have recently been employed in the nonparametric

IV regression models and nonlinear measurement error models and such conditions are often

regarded as high level conditions. Canay, Santos, and Shaikh (2013) have shown that the

completeness condition is not testable in a nonparametric setting with continuous variables.

However, Freyberger (2017) provides a first test for the restricted completeness in a nonpara-

metric instrumental variable model by linking the outcome of the test to consistency of an

estimator. Hu, Schennach, and Shiu (2017) rely on known results regarding the Volterra e-

quation to provide sufficient conditions for completeness conditions for densities with compact

support with an accessible interpretation and without specific functional form restrictions.4

Assumption 2.3(iii) is borrowed from Hu and Schennach (2008), because we also use a

spectral decomposition, but with less data information and more restrictions on the regres-

sion model. Examples of functional G from Assumption 2.3(iii) include the mean, the mode,

median, or the τ -th quantile. It implies that a location of the distribution fX|X∗(·|x∗) reveals

the true value x∗. This condition also imposes restrictions on the support of x, x∗, and there-

fore, the measurement error. Those include that zero is in the support of the measurement

error and that the cardinality of the support of x can’t be smaller than that of x∗. We refer

to that paper for further discussion on these conditions.

Finally, we assume the regression function satisfies

Assumption 2.4. (Restrictions on regression function) Suppose that the regression function

m0 is continuous, bounded, and strictly monotonic over support X ∗.

The boundedness constraint can be somewhat restrictive and rules out linear functions

when the support X ∗ is unbounded. However, if the support of x∗ is a bounded interval,

Assumption 2.4 is a rather mild condition and allows for linear functions.

Our main results is as follows:

Theorem 2.1. Under Assumptions 2.1, 2.3, 2.2, and 2.4, given the observed density fY,X(y, x),

3This analogy exploits the fact that, in the case of discrete measurement error, the link between the observed
distribution of X and the unobserved distribution of X∗ can be represented by the multiplication of the vector
of unobserved probabilities of the different values of X∗ by the mislassification matrix A.

4 More general discussions of completeness can be found in D’Haultfoeuille (2011), Chen, Chernozhukov,
Lee, and Newey (2013), Andrews (2017), and Hu and Shiu (2017), Mattner (1993), Newey and Powell (2003)
and Blundell, Chen, and Kristensen (2007).
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the equation

fY,X(y, x) =

∫
X ∗
fη(y −m0(X∗))fX|X∗(x|x∗)fX∗(x∗)dx∗

permits a unique solution (m0, fη, fX|X∗ , fX∗) ≡ α0. The solution characterizes the nonpara-

metric regression model in Eq. (1).

The formal proof of this result, reported in the appendix, can be outlined as follows. If

one knew the distribution of the model error η, one could recover the joint distribution of

(m0(X∗), X) by a standard deconvolution argument, thanks to Assumptions 2.2 and 2.3(i).

From that distribution, one could then recover m0 and fX|X∗ from our assumed normaliza-

tion restriction (Assumption 2.3(iii)), after exploiting the monotonicity and continuity of m0

(Assumption 2.4).5 Of course, one does not know, a priori, the distribution of η, but one

can, in principle, consider any possible trial distribution to get various possible trial values of

m0 and fX|X∗ . The key realization is that, whenever the assumed density of η is incorrect,

this will be detectable by one of the following occurrences: (i) negative densities for the un-

observed variables, (ii) violation of Assumption 2.3(ii) (invertibility) or (iii) violation of the

boundedness constraint of Assumption 2.4.

The Appendix provides another, completely independent, proof of Theorem 2.1, which

delivers a rather different insight into the identification problem. This alternate proof employs

operator techniques similar to those used in Hu and Schennach (2008) and can be summarized

as follows. The idea is that the integral Equation 2.1 can be cast as a system of operator

equivalence relations. Solving this system yields an equivalence between an operator entirely

built from observable quantities and a product of unknown operators to be determined. We

then show that this factorization can be uniquely determined, because it takes the form of an

operator diagonalization identity, i.e., the eigenvalues and eigenfunctions of a known operator

yield the different pieces of the product. To ensure uniqueness of this decomposition, we

appeal to conditions such as the invertibility and normalization on fX|X∗ in Assumptions

2.3(ii)&(iii) and the monotonic restriction on m0 in Assumptions 2.4.

Although the monotonicity is a strong restriction, the condition is applicable to many em-

pirical settings. We provide three examples in different areas of economics where monotonicity

is a reasonable assumption. The first example is the estimation of the impact of education

(X∗) on wages (Y ) in which there could be reporting errors in education level. The higher

5 In the absence of monotonicity, the measurement error distributions along the X axis for different true
values of X∗ would mix. As a result, one could not easily identify the measurement error distribution by
looking at the distribution of X conditional on the value of m0(X∗).
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education level the higher wage, which implies a monotonic regression function between the

wage offer and the true education level. The second empirical example is in estimating the ef-

fect of government subsidies (X∗) on firm R&D investment (Y ). The measures of government

subsidies may suffer measurement errors because they may be hard to summarize when each

firm may receive different types of subsidies. The fact that more government subsidies for

firms are likely to increase R&D investments indicates a monotonic relation between them.

The third example is the relation between household income (X∗, measured with error) and

children health status (Y ). Since wealthier families have more resource to promote children

health, higher household income tends to be associated with better children health status. In

all these three examples, we can use the mode as the functional G in Assumption 2.3(iii) be-

cause people are more likely to tell the truth for their education level, and household income,

and firms are more likely to report the true government subsidies.

The point identification result of Theorem 2.1 is not only nonparametric, but also global.

This is because we show identification by solving the integral equation directly, in the sense

that our identification strategy does not rely on the usual local identification condition that

a true parameter value is only distinguishable from those parameters values close to the true

one.

Our result is applicable beyond regression settings. In general, we may also consider the

observables (Y,X) as two measurements or proxies of the latent variable X∗, an observation

which is useful, for instance, in factor models. In many empirical applications, the latent

variable may represent unobserved heterogeneity or an individual effect. Our result may then

allow for flexible relationships between observables and unobservables to achieve nonparamet-

ric identification. In addition, our results can also be straightforwardly extended to the case

where an additional error-free covariate vector W appears in the regression function, because

our assumptions and results can all be restated as conditioned on W .

Our results prompt the question of whether it would be possible to further extend the

identification proof to cover the case where both the dependent variable and the regressor are

contaminated by a nonclassical error. However, this would necessitate a one-to-one mapping

between the space of bivariate density fY X(y, x) and the much “larger” space of pairs of

bivariate functions (fX,X∗(x, x
∗), fY |X∗(y|x∗)), which is a highly unlikely possibility.
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3. A Sieve Maximum Likelihood Estimator

The nonparametric identification result of Theorem 2.1 allows for a variety of possible parametriza-

tion of the model in terms of the parameter α0 that incorporates all the unknown functions of

the model. In this section, we assume that the regression function contains a vector of finite

dimensional unknown parameters θ of primary interest and possibly an infinite dimensional

unknown function h, namely, m0(x∗) = m0(x∗; θ̃0) where θ̃0 = (θ0, h0).6 For instance, θ0 could

be a finite-dimensional parameter that represents some average derivative (Härdle and Stoker

(1989)) of m0 (x∗), while h0 would be an infinite-dimensional parameter vector allowing the

shape of m0 (x∗) to be free of parametric restrictions. Alternatively, the regression function

m0 could be parametrically specified as m0(x∗; θ0) for a finite-dimensional parameter θ0.7

Hence, practitioners are free to be as parametric or as nonparametric as they wish given the

data available.

This approach’s underlying motivation is that practitioners often wish to test a specific

hypothesis or report a single summary measure θ of the causal effect of some variable on an-

other variable even when they are unwilling to make parametric restrictions. In this context,

the smoothing effect of semiparametric functionals, enables, under suitable regularity condi-

tions, convergence at the parametric rate and a limiting distribution that is normal centered

at zero, thus enabling testing in the most natural way and circumventing8 slow convergence

due to the ill-posedness of the problem of inverting integral equations (Schennach (2004)).

The identification of (θ0, fη, fX|X∗ , fX∗ , h0) in Theorem 2.1 makes use of completeness con-

ditions on fX|X∗ and monotonicity of m0 and we show how to accomplish the nontrivial task

of integrating these identification conditions into a practical estimation method. This section

illustrates the sieve MLE of the nonparametric regression model (1) with the identification

restrictions. This constructive estimation method is novel to the literature.

Set A = Θ × F1 × F2 × F3 × F4, as the parametric space containing the true parameter

α0 ≡ (θ0,
√
fη, fX|X∗ ,

√
fX∗ ,

√
h0),9 and α ≡ (θ, f1s, f2, f3s, h4s), where the lower subscript s

indicates the square roots. Note that employing an expansion based on the square root of

the densities provides a natural way to ensure that the densities themselves are positive. The

true parameter α0 ≡ (θ0,
√
fη, fX|X∗ ,

√
fX∗ ,

√
h0) is the solution of the following maximization

6While m is identified from Theorem 2.1, the joint identification of θ0,h0 from m is assumed.
7More examples of a partition can be found in Shen (1997).
8Of course, this statement is conditional on a number of regularity conditions that may not always hold,

see Chen and Liao (2014) and Chen and Pouzo (2015) for examples.
9The detail descriptions of A are provided in Appendix B.
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problem:

(4) sup
α∈A

E

[
ln

(∫
X ∗
f1(y −m0(x∗; θ̃))f2(x|x∗)f3(x∗)dx∗

)]
,

where θ̃ = (θ, h4). An estimator can then be obtained by maximizing the sample analog of

Eq. (4) based on the observed sample {yi, xi}ni=1. Define

(5) Q̂n(α) =
1

n

∑n

i=1
ln

(∫
X ∗
f1(yi −m0(x∗; θ̃))f2(xi|x∗)f3(x∗)dx∗

)
.

To obtain a consistent estimator, it is necessary to regularize the optimization procedure by

maximizing Q̂n(α) over An ≡ Θ× Fn1 × Fn2 × Fn3 × Fn4 , a sequence of approximation spaces

to A.

3.1. Identification Restrictions on Sieve Spaces

In the sieve approximation, we consider each component of the finite-dimensional sieve An

spanned by othonormal bases. Let {pi(x) : i = 1, 2, 3, ...} and {pj(x∗) : j = 1, 2, 3, ...}

be orthonormal base for L2(X ) and L2(X ∗), respectively. A bivariate basis function for

L2(X × X ∗) can be generated by a tensor product construction using {pi(x) : i = 1, 2, 3, ...}

and {pj(x∗) : j = 1, 2, 3, ...}. We thus have a sieve expressions for f2 of the form

(6) f2(x|x∗) =
∑k2,n

i=1

∑k2,n

j=1
β2ijpi(x)pj(x

∗).

With this expansion, the first completeness restriction in Assumption 2.3(ii), projected onto

the finite dimensional space of functions spanned by the pj , is equivalent to imposing that

the square coefficient matrix [β2ij ]k2,n×k2,n is invertible. This follows from the orthogonality

of the pj , as shown in more detail in Lemma D.1 of the online appendix. We can similarly

find the restriction for the second completeness restrictions and the restriction also requires

[β2ij ]k2,n×k2,n to be invertible. Incorporating the two other restrictions on f2, namely, the
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density restriction and normalization in Assumption 2.3(iii), yields the following sieve space:

Fn2 ={f2(·|·) ∈ Λγ1,ωc (X × X ∗) : ∃β2 ∈ Rk2,n×k2,n such that

(i) f2 (x|x∗) =

k2,n∑
i,j=1

β2ijpi(x)pj(x
∗), [β2ij ]k2,n×k2,n is invertible,

(ii) f2(·|·) ≥ 0,

∫
X
f2(x|x∗)dx = 1 for x∗ ∈ X ∗, and

(iii) f2 satisfies Assumption 2.3(iii)}.

Since implementation of some of the restrictions on sieve coefficients are dependent on the

specific basis used, we will discuss all restrictions together for a particular orthonormal basis

in the Monte Carlo section.

Next, we consider the strict monotonicity condition on m0(x∗; θ̃). Without loss of gener-

ality, we assume m0(x∗; θ̃) is strictly increasing. To impose the strictly increasing property,

we need to know the semi-parametric structure of the regression function. We divide the

semi-parametric structure into three cases, pure parametric cases, pure nonparametric cases,

and semi-parametric cases. In the pure parametric case, we can consider m′(x∗; θ) > 0 for all

x∗ ∈ X ∗. As for the pure nonparametric case m0(x∗; θ̃) = m0(x∗), we can consider a sieve

expression of a square root of m′ and use the following sieve expression

m′(x∗) = β40 +

(∑k4,n−2

k=1
β4kpk(x

∗)

)2

for some β40 > 0.(7)

Then, we can use an anti-derivative of the sieve expression in Eq. (7) as a sieve approximation

for the regression function,

m0(x∗) = µ0 + β40x
∗ +

∫ x∗

a

(∑k4,n−2

k=1
β4kpk(x

∗)

)2

dt.(8)

If m has both parametric (θ) and nonparametric (h4) components, the sieve restriction from

the monotonicity condition may depend on the functional form of m0(x∗; θ̃). For example,

if m0(x∗; θ̃) = H(θ + h4(x∗)), where H is a known function, we may only implement the

restriction as H ′ > 0, and h′4 > 0, and we can obtain the sieve restriction for h′4 > 0 in a

similar way as the pure nonparametric case. Therefore, we use the following sieve space for
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the strictly increasing function m

Fn4 ={
√
m′4(·; θ̃) ∈ F4 : ∃ (β40, β4) ∈ R1+k4,n such that(9) √
m′4(·; θ̃) = β40 + pk4,n(x∗)Tβ4β

T
4 p

k4,n(x∗), β40 > 0}(10)

Because f1, and f3 only have density restrictions, the sieve restrictions for them are easy

to impose and their sieve spaces are

Fn1 = {
√
f1(·) ∈ F1 : ∃β1 ∈ Rk1,n such that

√
f1(η) = pk1,n(η)Tβ1}

Fn3 = {
√
f3(x∗) ∈ F3 : ∃β3 ∈ Rk3,n such that

√
f3(x∗) = pk3,n(x∗)Tβ3}

where pk(·) = (p1(·), ..., pk(·))T is a vector of known univariate basis function.

A consistent sieve MLE α̂n is given by

α̂n = arg max
α∈An

Q̂n(α).

This estimator is a direct application of the general semi-parametric sieve MLE presented by

Shen (1997), Chen and Shen (1998), and Ai and Chen (2003). Ai and Chen (2003) shows

that α̂n is a consistent estimator, and the parametric component of α has an asymptotically

normal distribution. We present all the standard assumptions for consistency of all unknown

parameters and root-n normality of the parametric part in the Online Appendix.

4. Monte Carlo Study

In this section, we examine the finite sample properties of the estimator via Monte Carlo

experiments in a variety of models including parametric and nonparametric regression models.

4.1. Parametric Regression Model

In the parametric setting, we focus on three parametric model specifications for two Data Gen-

erating Process (DGP) designs with two different types of nonclassical measurement errors.

The three different specifications for the monotonic regression function m0(x∗; θ) include a

polynomial, an exponential function, and a rational fraction. In each experiment, we perform

200 Monte Carlo replications with two sample sizes: 1000, and 2000. For each sample size, we

calculate the mean, the median, RMSE and AICc for the estimator across all 200 simulations.
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Formal data-driven selection rules for choosing smoothing parameters in sieve maximum

likelihood are available in the literature (van der Laan, Dudoit, and Keles (2004), Schennach

(2013), Chen, Wu, and Yi (2009)). Here, following Chen, Wu, and Yi (2009), we determine the

optimal number of terms based on small sample correction of AIC in Burnham and Anderson

(2002) AICc = −2Q̂n(α̂n(Kn)) + 2Kn/(n −Kn − 1), where Kn is the total number of sieve

parameters, with the model with lowest AICc preferred. We report the estimation result using

different choices of the order of the sieve coefficients for f2(x|x∗), k2,n = 3, 4, and 5 (larger

values of k2,n, not reported for conciseness, do not yield improvements in RMSE or AICc

values).

The data for the Monte Carlo experiments are generated by the model:

yi = m0(x∗i ; θ) + ηi, for all i = 1, ..., N,(11)

where, X∗ is a standard normal random variable truncated to the interval [−1, 1], and η is

generated independently by η ∼ N(0, 1). Consider

DGP I: x = x∗ + h(x∗)e, e ∼ N(0, 1) with h(x∗) = |x∗|,

DGP II: x = x∗ + h(x∗)e, e ∼ N(0, 1) with h(x∗) = 0.3exp(−x∗).

There are three specifications for the parametric regression function

Function 1: m0(x∗; θ) = θ1x
∗ + θ2x

∗2 + x∗3,

Function 2: m0(x∗; θ) = θ1x
∗ + θ2e

x∗ ,

Function 3: m0(x∗; θ) = θ1x
∗ +

θ2x
∗

2− x∗
.

We use the Hermite orthogonal series as our sieve basis functions for f1(η)1/2 and the

Legendre polynomial series of L2([−1, 1]) = {h :
∫ 1
−1 |h(x)|2dx < ∞} as our sieve basis

functions for f2(x|x∗), and f3(x∗)1/2 (the observed data is bounded and is trivially scaled to fit

the [−1, 1] domain of these series). Denote the Hermite polynomials by H1(η) = 1, H2(η) = η,

H3(η) = η2 − 1, H4(η) = η3 − 3η, ... and observe that they form an orthogonal series after

multiplication by a Gaussian:
∫∞
−∞Hn(η)Hm(η)e−η

2
dη =

√
2πn!δnm, where δnm = 1 if n = m,

and δnm = 0 otherwise. When k1,n = 4, f1(η) =
(∑4

k=1 β1kHk(η)
)2

. Those sieve coefficients

satisfy the following density restriction,
√

2π(β2
11 + β2

12 + 2!β2
13 + 3!β2

14) = 1.

Denote the Legendre polynomials by g1(η) = 1, g2(η) = η, g3(η) = η2 − 1
3 , g4(η) = η3 −
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3
5η, g5(η) = η4−6

7η
2+ 3

35 , ... and observe that they form an orthogonal series:
∫ 1
−1 gl(η)gm(η)dη =

clδlm, where δlm = 1 if l = m, and δlm = 0 otherwise. Then, we can normalize the orthogonal

series to obtain an orthonormal base {φi(η) : i = 1, 2, 3, ...}, where φi(η) = gi(η)√
ci

.10 We use

the orthonormal base in the sieve approximation series in Eq. (6) for the measurement error

probability f2(x|x∗),

f2(x|x∗) =

k2,n∑
i=1

k2,n∑
j=1

β2ijgi(x)gj(x
∗).(12)

As discussed in Section 3.1, the completeness constraint on f2(x∗|x) to impose on the sieve

coefficients is that the square matrix [β2ij ]k2,n×k2,n is non-singular. The non-singular property

can be imposed by choosing the matrix [β2ij ]k2,n×k2,n as a strictly diagonally dominant ma-

trix.11 This sufficient condition for nonsingularity offers the advantage of allowing for a very

straightforward implementation. Alternatively, a standard nonzero determinant conditions

could be used, at the expense of a more complex implementation, due to the nonlinearity

of the resulting constraint. The diagonal dominance constraint proves convenient, at early

stages of the optimization, for efficiently finding an approximate solution. If this constraint

turns out to become binding, one can refine the solution using the necessary and sufficient

nonzero determinant constraint, a task which is then less numerically challenging because the

nonlinear constraint becomes nearly linear in a neighborhood of the solution.

As we use the Legendre orthonormal polynomials as approximation series, the density

restrictions
∫
X f2(x|x∗)dx = 1, for all x∗ can be imposed through β211 = 1 and β21j = 0 for

all j 6= 1 and the normalization restrictions
∫
X xf2(x|x∗)dx = x∗ can be imposed through

β222 = 1 and β22j = 0 for all j 6= 2.12 We can then choose the following form of sieve

coefficients satisfying all three sieve restrictions, I2×2 0

0 D2

 ,
10The properties of the Legendre polynomials can be found in Weisstein (2020).
11A square matrix is strictly diagonally dominant if the magnitude of the diagonal entry in each row of

the matrix is larger than the sum of the magnitudes of all off-diagonal entries in that row. Levy-Desplanques
Theorem shows that a strictly diagonally dominant matrix is non-singular. The result can be found as Corollary
5.6.17. in Horn and Johnson (1985). In our case, the condition is |β2ii| >

∑
j 6=i
|β2ij | for all i.

12The density and normalization restrictions stem from the conditions for the Legendre polynomials,∫ 1

−1
gi(x)dx = 0 for i > 1 and

∫ 1

−1
xgi(x)dx = 0 for i 6= 2. Because of the continuity of x∗, these condi-

tions are not just sufficient but also necessary.
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where D2 = [β2ij ]3≤i,j≤k2,n and D2 is strictly diagonally dominant. Thus, the sieve restrictions

may be easily satisfied by using the identity matrix for an initial value for [β2ij ]k2,n×k2,n . The

sieve approximation f3(x∗)1/2 can be constructed in the same manner as f1(η)1/2 by using

the Legendre orthonormal polynomials.

Three other estimators serve as a basis for comparison. They include: (1) an infeasi-

ble estimator based on actually observing X∗ (Infeasible with X∗), (2) a feasible but biased

estimator that ignores the measurement error problem (Biased Estimator), (3) infeasible es-

timator presented in Eq. (5) using the error-contaminated sample but using knowledge of the

distribution of η, i.e. f1 is assumed to the standard normal density (Infeasible with η) and

f2 and f3 are approximated by the Legendre polynomials. While Tables 1, 3 present the sim-

ulation results of the mean, median, and RMSE of the three comparison estimators, Tables

2, 4 report the results for the mean, median, RMSE and AICc of the sieve ML estimator.

The simulation design contain the three different specifications of the monotonic regression

function with two types of DGPs. The Monte Carlo results show that the sieve MLE with

different orders of k2,n generally had smaller RMSEs than the Biased Estimator ignoring mea-

surement error. In general, the proposed sieve MLE achieves higher standard deviations than

the Infeasible with η because the sieve MLE has to estimate the additional unknown function

f1. The estimation results of the parameters in all DGPs show small RMSEs and AICcs for

k2,n = 5, of N = 2000. The RMSEs and AICcs decrease with the sample size. The means

and medians of the estimated parameters are only slightly different in the proposed sieve ML

estimator, indicating little skewness in their respective distributions.

4.2. Nonparametric Regression Model

The DGPs for X∗ and X are the same as the ones in the parametric regression models, but

the estimation procedure in this section does not rely on the knowledge of the functional form

of the regression function. There are two types of DGPs for the measurement error process

15



which are the same as Section 4.1 and the three regression functions used are:

Function 4: m0(x∗) = ln(1.2 + x∗ + 0.5x∗2)

Function 5: m0(x∗) =

 0.8x∗ if x∗ < 0,

1.5x∗ otherwise.

Function 6: m0(x∗) =

 0.01x∗ + 0.01 if x∗ < 0,

x∗ + 0.01 otherwise.

Function 4 is infinitely continuously differentiable, Function 5 has a limited degree of smooth-

ness, and Function 6 is strictly monotone but very close to constant on the interval [−1, 0].

The sieve approximations for f1(η)1/2, f2(x|x∗), and f3(x∗)1/2 are the same as the ap-

proximations in the parametric regression models. The identifying restrictions in fX|X∗ are

imposed through β222 = 1 and β22j = 0 for all j 6= 2 for the normalization and the strictly

diagonally dominant matrix D2 = [β2ij ]3≤i,j≤k2,n for completeness. As for the sieve approx-

imations for the regression function, we also use the Legendre orthonormal polynomials and

adopt the series form in Eq. (8) with k4,n = 4. The series form in Eq. (8) is an anti-derivative

of the sieve expression in Eq. (7) which takes positive values. Thus, this estimation pro-

cedure by sampling embeds the monotonicity constraints on m0. The estimator for m0(x∗)

is constructed by sampling the function at the 201 points ranging from -1 to 1 with a 0.01

increment.

Tables 5-7 reports the integrated mean squared errors (IMSE) and AICcs as a function

of k2,n for our sieve MLE estimator m̂(x∗) for Functions 4, 5, and 6. The results of Table 5

indicate that IMSEs are smaller in DGPs I and II with k2,n = 4, and smaller AICc for DGP

I with k2,n = 3 and DGP II with k2,n = 4. Table 6 shows that IMSEs are samller for DGP I

with k2,n = 5 and DGP II with k2,n = 4 but AICc are samller for DGP I with k2,n = 4 and

DGP II with k2,n = 5. Table 7 shows that IMSEs and AICc values point to an optimal choice

of k2,n = 4 for all DGPs. The estimation results of the sieve MLE for Functions 4, 5, and 6

with k2,n = 3, k2,n = 4, and 5 are plotted in Figures 1 –3, Figures 4 –6, and Figures 7 –9,

respectively. These plots show that the shapes of the estimates (cyan solid lines and black

dashed line) are close to the true functions (red dashed line). The black dashed lines represent

confidence bands constructed from the 10th and 90th percentile of 1000 curves estimated by

sieve MLE. The closeness of the mean plot and the true regression plot in Figures 2, 5, and 8,

reflecting small IMSEs. The mean plot and the true regression plot in the Figures are almost
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inside the black dashed confidence bands.

5. Conclusion

This paper investigates identification and estimation of a class of measurement error models

without any side information, in which the measurement error may be nonclassical, i.e., cor-

related with the continuous latent true values. The global nonparametric point identification

of the model is proven through two different routes, one exploiting a deep connection between

convolutions and completeness for compactly supported densities and the other relying on a

spectral decomposition of an integral operator associated with the distribution of observable

variables. The main identifying assumptions include restrictions on the range of the regression

function and the completeness of the measurement error distribution. Our result allows for a

rather flexible structure of regression function and measurement error distribution and thus

provides a useful alternative to the existing literature. We also develop a sieve ML estimator

for the parameters of interest based on the identification result. We present the asymptotic

properties of the sieve MLE and investigate its finite sample properties through a Monte Carlo

study and find that it performs satisfactorily.

A. Proofs

Lemma A.1. For any given probability measure dA supported on a compact interval [a, a]

with a > a, the mapping M : L1
([
b− a, b− a

])
7→ L1

([
b, b
])

with −∞ < b < b < ∞ defined

by:

[Mf ] (x) =

∫ a

a
f (x− u) dA (u) for x ∈

[
b, b
]

is not injective (even if the characteristic function of A is nonvanishing on the real line). The

same conclusion holds for any compactly supported measure dA whose Fourier transform has

a zero somewhere in the complex plane.

Proof Without loss of generality, we consider A supported on [−l, l] with l > 0, since the

problem can always be reduced to this case by eliminating a trivial translation by (a+ a) /2

from the mapping M . For the same reason, we can also assume that b < 0 < b̄. Since A

has compact support, by Theorem 7.2.3 and Remark 4 in Lukacs (1970), its characteristic

function α (ξ) has infinitely many zeros in the complex plane. (If the characteristic function

of A is nonvanishing on the real line, these zeros lie elsewhere in the complex plane.) Let
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ω + iρ denote one of these zeros. Then, consider the function

f (x) = exp (ρx) cos (ωx) 1
(
x ∈

[
b− l, b+ l

])
and observe that, for x ∈

[
b, b
]

[Mf ] (x) =

∫ l

−l
exp (−ρ (x− u)) cos (−ω (x− u)) 1

(
x ∈

[
b− l, b+ l

])
dA (u)

= Re

{∫ l

−l
exp (− (ρ+ iω) (x− u)) 1

(
x ∈

[
b− l, b+ l

])
dA (u)

}
= Re

{∫ l

−l
exp (− (ρ+ iω) (x− u)) dA (u)

}
= Re

{
exp (− (ρ+ iω)x)

∫ l

−l
exp ((ρ+ iω)u) dA (u)

}
= Re

{
exp (− (ρ+ iω)x)

∫ ∞
−∞

exp ((ρ+ iω)u) dA (u)

}
= Re {exp (− (ρ+ iω)x)α (ω + iρ)} = 0

Hence we have found a nonzero function supported on
[
b− l, b+ l

]
that is mapped onto the

zero function on
[
b, b
]

and the mapping M is thus not injective. The same construction

obviously holds for any measure whose Fourier transform vanishes at some point ω+ iρ in the

complex plane.

Proof of Theorem 2.1 For a given random variable V , we let φV (ν) ≡ E[eiνV ] denote

its characteristic function and given another random variable W assumed to have a densi-

ty fW (w), we also define the “partial” characteristic function φV ;W (ν;w) ≡ E[eiνV |W =

w]fW (w). We then have,

φY ;X (γ;x) ≡ E
[
eiγY |X = x

]
fX (x) = E

[
E
[
eiγY |X∗, X = x

]
|X = x

]
fX (x)

= E
[
E
[
eiγY |X∗

]
|X = x

]
fX (x) = E

[
E
[
eiγ(m(X∗)+η)|X∗

]
|X = x

]
fX (x)

= E
[
eiγm(X∗)E

[
eiγη|X∗

]
|X = x

]
fX (x) = E

[
eiγm(X∗)E

[
eiγη

]
|X = x

]
fX (x)

= E
[
eiγη

]
E
[
eiγm(X∗)|X = x

]
fX (x) = E

[
eiγη

]
E
[
eiγY

∗ |X = x
]
fX (x)

≡ φη (γ)φY ∗;X (γ;x)(13)

where we have used, in turn, the definition of φY ;X (γ;x), iterated expectations, Assumptions

2.3(i), the definition of Y , Assumption 2.2(i), the definition Y ∗ ≡ m (X∗) and the definition of

18



φY ∗;X (γ;x). Observe that Equation (13) states, in Fourier space, that the joint density of Y

and X is the convolution of the density of η and the probability density of (X,Y ∗). Hence, if

one knew the distribution of η, one could determine the joint distribution of Y ∗ and X from the

observed joint distribution of Y and X through the relation φY ∗;X (γ;x) = φY ;X (γ;x) /φη (γ).

As one does not know, a priori, the distribution of η, we consider some trial zero-mean

density of η denoted f̃η (η). (The zero-mean constraint is needed to meet the requirement

of Assumption 2.2(ii).) To this f̃η (η) corresponds a trial value of all other unobservable

quantities (also denoted with tildes). In particular, the trial value of fY ∗,X (y∗, x), denoted

f̃Y ∗,X (y∗, x) can be obtained, thanks to Assumptions 2.2 and 2.3(i), through a standard

deconvolution procedure:

(14) φ̃Y ∗;X (γ;x) =
φY ;X (γ;x)

φ̃η (γ)

To this trial value of fY ∗,X also corresponds a trial regression function m̃0 (x∗) that can

be identified as follows. Note that any valid trial m̃0 (x∗) must be strictly monotonic and

continuous by Assumption 2.4, hence m̃−1
0 (y∗) exists. Furthermore, conditioning on x∗ or

y∗ ≡ m̃0 (x∗) is equivalent. We can then use the centering restriction (Assumption 2.3(iii))

G
[
fX|X∗ (·|x∗)

]
= x∗ to write

(15) m̃−1
0 (y∗) = G

[
f̃X|Y ∗ (·|y∗)

]
where f̃X|Y ∗ (·|y∗) = f̃Y ∗X (y∗, x) /

∫
f̃Y ∗X (y∗, x) dx, sinceG

[
f̃X|Y ∗ (·|y∗)

]
= G

[
f̃X|Y ∗ (·|m̃ (x∗))

]
=

G
[
f̃X|X∗ (·|x∗)

]
= x∗ = m̃−1

0 (y∗).

In principle, once can compute (14) for any trial density f̃η (η), however, if f̃η (η) is not

the true density of η, this will be detectable in one of the following ways:

1. If f̃η (η) is not a factor13 of fY |X (y|x) for some x, then φY ∗;X (γ;x) /φ̃η (γ) will not

be a valid characteristic function for some x (i.e. the inverse Fourier Transform of

φY ;X (γ;x) /φ̃η (γ) is either taking on negative values or is diverging in such a way that

the result is not a probability measure).

2. If f̃η (η) is a factor of fY |X (y|x) for all x, but yields a f̃Y ∗X (y∗, x) with a support that is

not compact along y∗ (sup {|y∗| : (y∗, x) ∈ suppfY ∗,X} =∞), then the resulting m̃0 (x∗)

13 A probability measure µA is said to be a factor of another probability measure µB if there exists a third
probability measure µC such that µB is equal to the convolution of µA and µC (Lukacs (1970)). This definition
specializes to the case where µA and µB can be represented by densities and for conditional measures.
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(from Equation (15)) will not be bounded, contrary to Assumption 2.4.

3. Next, consider the case where f̃η (η) is a factor of fY |X (y|x) for all x and yields a

f̃Y ∗X (y∗, x) with a compact support along y∗. However, f̃η (η) is not the true fη (η) but

a factor of it. In this case, f̃Y ∗,X can then be written as the convolution, along y∗, of the

true fY ∗,X with a compactly supported probability measure a (y∗), whose characteristic

function is equal to α (γ) ≡ φη (γ) /φ̃η (γ), since we must have

φY ;X (γ;x) = φ̃Y ∗;X (γ;x) φ̃η (γ) = φY ∗;X (γ;x)φη (γ)

or

(16) φ̃Y ∗;X (γ;x) = φY ∗;X (γ;x)
φη (γ)

φ̃η (γ)
= φY ∗;X (γ;x)α (γ) .

Equation (16) states, in Fourier representation, that f̃Y ∗X (y∗, x) is the convolution of

fY ∗X (y∗, x) (for fixed x) with the probability measure a(y∗). The measure a(y∗) must

be compactly supported, because f̃Y ∗X (y∗, x) is (for a given x). But then, the integral

operator associated with f̃Y ∗X (y∗, x) can be written as the composition of two operators:

the integral operator associated with fY ∗X (y∗, x) and a convolution with a(y∗). But by

Lemma A.1, the latter operator is not injective because a(y∗) has compact support. It

follows that the operator associated with f̃Y ∗X (y∗, x) cannot be injective either. The

same conclusion carries over to the operator associated with f̃XX∗ (x, x∗)), since x∗ and

y∗ are simply related by a one-to-one mapping, due to the assumed monotonicity of any

valid trial m̃. This lack of injectivity contradicts Assumption 2.3(ii).

4. Finally, consider the case where f̃η (η) is a factor fY |X (y|x) for all x and yields a

f̃Y ∗X (y∗, x) with a compact support along y∗, and f̃η (η) is neither the true fη (η)

nor a factor of it. We show by contradiction that this is not possible. Consider the

function α (γ) = φη (γ) /φ̃η (γ) (whose inverse Fourier transform is necessarily not a valid

probability measure). By construction, as in case 3, we have the equality φ̃Y ∗;X (γ;x) =

φY ∗;X (γ;x)α (γ) or

α (γ) =
φ̃Y ∗;X (γ;x)

φY ∗;X (γ;x)

wherever the denominator is not vanishing. Since φ̃Y ∗;X (γ;x) for a given x is the

characteristic function of a compactly supported probability measure, by Theorem 7.2.3
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and Remark 4 in Lukacs (1970), φ̃Y ∗;X (γ;x) has infinitely many zeros in the complex

plane. Next, we make use of a number well-known results in the theory of entire functions

(see Boas (1954)). Compact support of Y ∗ implies that φ̃Y ∗;X (γ;x) is entire. The

same conclusion applies to φY ∗;X (γ;x) since fY ∗X (y∗, x) has compact support along

y∗. There are three cases to consider. (a) At least one zero of φ̃Y ∗;X (γ;x) does not

coincide with a zero of φY ∗;X (γ;x), or at least one zero does coincide but its multiplicity

in φ̃Y ∗;X (γ;x) is higher than that of φY ∗;X (γ;x). In this case α (γ) has a zero somewhere

in the complex plane and thus, by the second conclusion of Lemma A.1, the operator

associated with f̃Y ∗X (y∗, x) would not be injective, leading to a violation of Assumption

2.3(ii), as in case 3. (b) The case described in (a) holds with the roles of φ̃Y ∗;X (γ;x)

and φY ∗;X (γ;x) reversed, leading to a similar conclusion. (c) Each zero of φ̃Y ∗;X (γ;x)

coincides with a zero of φY ∗;X (γ;x) and these zeros have the same multiplicity. In that

case the function α (γ) has no zero anywhere in the complex plane and the function

1/α (γ) has thus no singularity anywhere in the complex plane. We can eliminate the

case of zeros “at infinity” by permuting the role of the two alternative models if necessary.

Thus 1/α (γ) has no singularity in the extended complex plane and is bounded. Yet,

α (γ) is meromorphic because it is the ratio of two entire functions (see Lang (2003),

Chapter XIII). This, combined with its lack of singularities, implies that α (γ) is also

entire.14 By Liouville’s Theorem (e.g., Theorem 7.5 in Lang (2003)), 1/α (γ) must then

be constant. That constant must be 1, since α (γ) is the ratio φη (γ) /φ̃η (γ) of two

characteristic functions (that are necessarily such that φη (0) = φη̃ (0) = 1). This, in

turn, implies that φη (γ) /φ̃η (γ) = 1 or φ̃η (γ) = φη (γ) and thus f̃η (η) would in fact be

the true distribution of η.

B. Alternative Proof of Theorem 2.1

We provide an alternative proof of the main nonparametric identification result in Theorem

2.1.

We first derive the basic integral equation that needs to be solved. Combining Assump-

tion 2.2(i) and 2.3(i), we can obtain the relationship between the observed density and the

14 This can be shown by noting that a meromorphic function satisfies the Cauchy-Riemann equations (Lang
(2003), Section I.6) everywhere, except perhaps at isolated singularities. But if there are no singularities in
the extended complex plane, those conditions are everywhere satisfied and the function is thus entire.
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unobserved ones:

fY,X(y, x) =

∫
X ∗
fY |X∗(y|x∗)fX,X∗(x, x∗)dx∗

=

∫
X ∗
fη(y −m0(x∗))fX|X∗(x|x∗)fX∗(x∗)dx∗.

Since a characteristic function of any random variable completely determines its probabil-

ity distribution, the above equation is equivalent to

φfY,X=x
(t) ≡

∫
Y
eityfY,X(y, x)dy(17)

= φη(t)

∫
X ∗
eitm0(x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗,

= |φη(t)|
∫
X ∗
ei(tm0(x∗)+e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗,

for all real-valued t, where φη(t) =
∫
η e

itηfη(η)dη and we define e(t) such that the following

holds φη(t) ≡ |φη(t)|eie(t) and e(t) is the phase of the function. Then Eq. (17) can expressed

in terms of two real equations:

ReφfY,X=x
(t) = |φη(t)|

∫
X ∗

cos(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗,(18)

ImφfY,X=x
(t) = |φη(t)|

∫
X ∗

sin(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗.(19)

Without loss of generality, we can make the following assumption:

Assumption B.1. (Locally symmetric range) The range of the regression function {m0(x∗) :

x∗ ∈ X ∗} has an open subset containing zero.

Assumption B.1 is not restrictive because one may always shift the mean of the dependent

variable Y and redefine the regression function accordingly. Also, the range of the regression

is never reduced to a point, by the strict monotonicity imposed by Assumption 2.4.

Using Assumptions B.1 and 2.4 we can rescale the range of the regression function such

that the range is equal to the interval [−c, d] for positive constants c, d and c+d < π. Because

|φη(t)| is continuous at 0 (a property of any characteristic function) and |φ(0)| = 1, we can

find a t̄ ≤ π such that 0 < |φη(t)| < b1 for all t in [0, t̄] and a constant b1. Denote the variance

22



of the regression error as σ2
η. Choose a constant tu such that

0 < tu < min

{
t̄,

√
2

σ2
η

}
.

Use Eq. (18) to derive an operator equivalence relationship as following: for an arbitrary

h ∈ L2([0, tu])

(LReφfY,X h)(x) =

∫
ReφfY,X=x

(t)h(t)dt,(20)

=

∫
|φη(t)|

∫
X ∗

cos(tm0(X∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗h(t)dt

=

∫
X ∗
fX|X∗(x|x∗)fX∗(x∗)

(∫
cos(tm0(x∗) + e(t))|φη(t)|h(t)dt

)
dx∗

=

∫
X ∗
fX|X∗(x|x∗)fX∗(x∗)

(∫
cos(tm0(x∗) + e(t))(∆|φη |h)(t)dt

)
dx∗

=

∫
X ∗
fX|X∗(x|x∗)fX∗(x∗)

(
Lcosm0,e

∆|φη |h)(x∗)
)
dx∗

=
(
LfX|X∗∆fX∗Lcosm0,e

∆|φη |h
)

(x),

where we have used (i) Eq. (18), (ii) an interchange of the order of integration (justified by

Fubini’s theorem), (iii) the definition of ∆|φη | , (iv) the definition of Lcosm0,e
operating on the

function ∆|φη |h, and (v) the definition of LfX|X∗∆fX∗ operating on the function Lcosm0,e
∆|φη |h.

Thus, we obtain

LReφfY,X = LfX|X∗∆fX∗Lcosm0,e
∆|φη | ≡ LfX|X∗∆fX∗LReφfY |X∗

,(21)

We can also express Eq. (19) as the following operator equivalence relationships:

LImφfY,X = LfX|X∗∆fX∗Lsinm0,e
∆|φη | ≡ LfX|X∗∆fX∗LImφfY |X∗

.(22)

Both LReφfY |X∗
and LImφfY |X∗

are bounded linear operators from L2([0, tu]) to L2(X ∗) be-

cause operators in the right hand side are all bounded by Assumptions 2.1 and continuity of

characteristic functions.

Our identification technique is to derive a spectral decomposition of an observed integral

operator and show the uniqueness of the decomposition under our assumptions. We can derive

some primitive conditions for the invertibility of the operators LReφfY,X , and LImφfY,X which

are related to the invertibility of the operator LfX|X∗ and the invertibility of the operators
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LReφfY |X∗
and LImφfY |X∗

.

Lemma B.1. Assumptions 2.1 and 2.3(ii), L−1
fX|X∗

exists and is densely defined over L2(X ).

See the Online Appendix for the proof. This result shows LfX|X∗ is onto and the injec-

tivity of the operators LfX|X∗ is directly assumed from the first part of Assumption 2.3(ii).

Therefore, L−1
fX|X∗

exists and L−1
fX|X∗

LfX|X∗ = LfX|X∗L
−1
fX|X∗

= I where I is the identity map

from L2(X ∗) to itself. The discussion hereafter focuses on the conditions for the completeness

of Lcosm0,e
, and Lsinm0,e

. Define ns(t) = 1− cos(e(t)) =
|φη |−Re(φη)
|φη | as a measure of degree of

non-symmetry. If the distribution of the error term η is symmetric then φη(t) is real-valued

and ns(t) = 0 for t ∈ [0, tu]. Continuity of characteristic functions and Assumption B.1 are

sufficient conditions for the invertibility of the operators Lcosm0,e
, and Lsinm0,e

. We have

Lemma B.2. If Assumption B.1 holds, then each of systems, {cos(tm0(x∗) + e(t))|φη(t)| :

x∗ ∈ X ∗} and {sin(tm0(x∗)+e(t))|φη(t)| : x∗ ∈ X ∗}, is complete over L2([0, tu]). This implies

the operators LReφfY |X∗
and LImφfY |X∗

are both injective from L2([0, tu]) to L2(X ∗).

The injectivity implies the inverses of LReφfY |X∗
and LImφfY |X∗

exist and can defined over

the range of the operators. To show this primitive conditions for the invertibility, we utilize

results from Fourier analysis. We provide the following result of the trigonometric system.15

Lemma B.3. If 1 < p < ∞ and λk is a sequence of distinct real or complex numbers for

which |λk| ≤ k + 1
2p , k = 1, 2, 3, ..., then the sequence {eitλk}∞k=1 is complete in Lp([−π, π]).

We can directly use this neat result to establish the following completeness.

Lemma B.4. If the range of the regression function {m0(x∗) : x∗ ∈ X ∗} contains a sequence

of distinct numbers {λ1, λ2, λ3, ...} such that |λk| ≤ k+ 1
4 , k = 1, 2, 3, ..., then the family of the

functions {eitm0(x∗) : x∗ ∈ X ∗} is complete in L2([−π, π]).

Next, we establish the completeness of the two systems: {cos(tm0(x∗)) : x∗ ∈ X ∗} and

{sin(tm0(x∗)) : x∗ ∈ X ∗} over L2([0, tu]).

Lemma B.5. If the range of the regression function {m0(x∗) : x∗ ∈ X ∗} contains a sequence

of distinct numbers {λ1, λ2, λ3, ...} such that |λk| ≤ k + 1
4 , k = 1, 2, 3, ..., then the families

of the functions {cos(tm0(x∗)) : x∗ ∈ X ∗} and {sin(tm0(x∗)) : x∗ ∈ X ∗} are complete in

L2([0, tu]) for any tu ≤ π.

15See Theorem 4 of page 119 in Young (1980).
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See the Online Appendix for the proof. This result gives the invertibility of the operators

Lcosm0,e
, and Lsinm0,e

under the symmetric distribution of the regression error η, i.e., e(t) = 0

∀t. Next, we try to generalize the invertibility or completeness of the symmetric case to a

non-symmetric case. Comparing the function in the symmetric case cos(tm0(x∗)) with the

function in the non-symmetric case cos(tm0(x∗) + e(t)) suggests that we can look into a

situation where e(t) is under ”small” perturbations around zero (symmetry; e(t) = 0 ∀t) and

investigate what restrictions on the range of e(t) leads to invertibility of operators. In this

way, questions about ”small” perturbations can be regarded as questions about the stability

of completeness because we have already provided a sufficient condition for the symmetric

case in Lemma B.5. We will adopt a stability criterion to study completeness. The following

result can be found in Young (1980).16

Lemma B.6. Let {bk} be a complete sequence for a Hilbert space (H, ‖ · ‖), and suppose that

{fk} is sequence of elements of H such that

‖
n∑
k=1

ck(bk − fk)‖ ≤ λ‖
n∑
k=1

ckbk‖

for some constant 0 ≤ λ < 1, and all choices of the scalar {c1, c2, c3, ..., cn}, Then {fk} is

complete for H.

Lemma B.6 is based on the fact that a bounded linear operator T on a Banach space is

invertible whenever ‖I − T‖ < 1 because the inverse operator of T can exist by the formula

T−1 =
∞∑
k=0

(I − T )k.17 Define ns(t) = 1 − cos(e(t)) =
|φη |−Re(φη)
|φη | as a measure of degree of

non-symmetry. If the distribution of the error term η is symmetric then φη(t) is real-valued

and ns(t) = 0. The following result provides an upper bound on the absolute values of ns(t)

and it will be used to prove Lemma B.2.

Lemma B.7. For t ∈ [0, tu], ns(t) is nonnegative and its maximum is less than 1 .

See the Online Appendix for the proof. Applying the stability criterion and Lemma B.7

to Lemma B.5 under Assumptions B.1 and 2.4, we can prove Lemma B.2. See the Online

Appendix for details.

16See Problem 2 in page 41. The result is stated for a Banach space and the dense property. Here we adopt
Hilbert space version by an important consequence of the Hahn-Banach theorem and the Riesz representation
theorem that the dense property is equivalent to the completeness in a Hilbert space.

17The result is like ordinary numbers: if |1− t| < 1, then t−1 exists. More discussions can be found in Young
(1980).
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In order to provide the onto property of the operators LReφfY |X∗
and LImφfY |X∗

, we need

a variant of the stability result as in Lemma B.6. We introduce the following notations and

statements. Any function f in a Hilbert space can be expressed as a linear combination of the

basis function with a unique sequence of scalars {c1, c2, c3, ...}. Therefore, we can consider cn

as a function of f . In fact, cn (·) is the so-called coefficient functional.18

Definition B.1. If {f1, f2, f3, ...} is a basis in a Hilbert space H, then every function f in

H has a unique series {c1, c2, c3, ...} such that f =
∞∑
n=1

cn(f)fn. Each cn is a function of f .

The functionals cn (n = 1, 2, 3, ...) are called the coefficient functionals associated with the

basis {f1, f2, f3, ...}. Because cn is a coefficient functional from H to R. Define its norm by

‖cn‖ = sup {|cn(f)| : f ∈ H, ‖f‖ ≤ 1} .

The following results regarding the coefficient functionals are from Theorem 3 in section

6 in Young (1980).

Lemma B.8. If {f1, f2, f3, ...} is a basis in a Hilbert space H. Define cn as coefficient

functionals associated with the basis. Then, there exists a constant M such that 1 ≤ ‖fn‖ ·

‖cn‖ ≤M, for all n.

Based on this result, we show, in the Online Appendix, that

Lemma B.9. Denote H as a Hilbert space. Suppose that

i) the sequence {ek (·) : k = 1, 2, ...} is a basis in a Hilbert space H;

ii) the sequence {fk (·) : k = 1, 2, ...} in H is ω−independent;

iii)
∑∞

n=1
‖fk(·)−ek(·)‖
‖ek(·)‖ <∞.

Then, the sequence {fk(·) : k = 1, 2, ...} is a basis in H.

Applying this stability result, we have

Lemma B.10. If Assumptions B.1 and 2.4 hold, then each of systems, {cos(tm0(x∗)+e(t)) :

t ∈ [0, tu]} and {sin(tm0(x∗) + e(t)) : t ∈ [0, tu]}, is complete over L2(X ∗). This implies that

the inverse operators L−1
ReφfY |X∗

and L−1
ImφfY |X∗

exist and are densely defined over L2(X ∗).

See the Online Appendix for the proof.

The completeness results in Lemma B.2 imply the injectivity of LReφfY |X∗
and LImφfY |X∗

while Lemma B.10 gives the onto property of these operators. Therefore, the operators

18The introduction of coefficient functional can be found in the page 22 of Young (1980).
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invertible with L−1
ReφfY |X∗

LReφfY |X∗
= LReφfY |X∗

L−1
ReφfY |X∗

= I and L−1
ImφfY |X∗

LImφfY |X∗
=

LImφfY |X∗
L−1
ImφfY |X∗

= I, where I is the identity map from L2([0, tu]) to itself.

Define LK1 as

LK1 = L−1
ReφfY |X∗

LImφfY |X∗

by the existence of L−1
ReφfY |X∗

over L2(X ∗) by Lemma B.10. We can elicit simpler represen-

tations of the operator LK1 under Assumption B.1. Furthermore, this simpler representation

of LK1 implies the angle function e(t) is identified.

Lemma B.11. If Assumption B.1 holds, then LK1 is a multiplier operator such that (LK1h)(t) =

tan(e(t))h(t) or (LK1h)(t) =
Imφη(t)
Reφη(t) h(t) for t ∈ [0, tu].

See the Online Appendix for the proof. We now are ready to prove the main theorem.

Alternate proof of Theorem 2.1. We start with the operator equivalence relationships

in Eqs. (21) and (22):

LReφfY,X = LfX|X∗∆fX∗Lcosm0,e
∆|φη | ≡ LfX|X∗∆fX∗LReφfY |X∗

,

LImφfY,X = LfX|X∗∆fX∗Lsinm0,e
∆|φη | ≡ LfX|X∗∆fX∗LImφfY |X∗

,

Those operator equivalence relationships may not provide enough information to derive

the spectral decomposition of the operator of interest. In order to solicit more useful operator

equivalence relationships, we take derivative with respect to t in Eq. (17). It gives that

∂

∂t
φfY,X=x

(t) =

(
∂

∂t
|φη(t)|

)∫
X ∗
ei(tm0(x∗)+e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗(23)

+ i

(
∂

∂t
e(t)

)
|φη(t)|

∫
X ∗
ei(tm0(x∗)+e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗

+ i|φη(t)|
∫
X ∗
ei(tm0(x∗)+e(t))m0(x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗.
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We split Eq. (23) into a real part and an imaginary part:

Re
∂

∂t
φfY,X=x

(t) =

(
∂

∂t
|φη(t)|

)∫
X ∗

cos(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗(24)

−
(
∂

∂t
e(t)

)
|φη(t)|

∫
X ∗

sin(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗

− |φη(t)|
∫
X ∗

sin(tm0(x∗) + e(t))m0(x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗,

Im
∂

∂t
φfY,X=x

(t) =

(
∂

∂t
|φη(t)|

)∫
X ∗

sin(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗
(25)

+

(
∂

∂t
e(t)

)
|φη(t)|

∫
X ∗

cos(tm0(x∗) + e(t))fX|X∗(x|x∗)fX∗(x∗)dx∗

+ |φη(t)|
∫
X ∗

cos(tm0(x∗) + e(t))m0(x∗)fX|X∗(x|x∗)fX∗(x∗)dx∗.

We define operators as follows:

LRe ∂
∂t
φfY,X

: L2([0, tu])→ L2(X ) with (LRe ∂
∂t
φfY,X

h)(x) =

∫
Re

∂

∂t
φfY,X=x

(t)h(t)dt,(26)

LIm ∂
∂t
φfY,X

: L2([0, tu])→ L2(X ) with (LIm ∂
∂t
φfY,X

h)(x) =

∫
Im

∂

∂t
φfY,X=x

(t)h(t)dt,(27)

∆∂|φη | : L
2([0, tu])→ L2([0, tu]) with (∆∂|φη |h)(t) =

(
∂

∂t
|φη(t)|

)
h(t),(28)

∆∂e : L2([0, tu])→ L2([0, tu]) with (∆∂eh)(t) =

(
∂

∂t
e(t)

)
h(t),(29)

∆m0 : L2(X ∗)→ L2(X ∗) with (∆m0h)(x∗) = m0(x∗)h(x∗).(30)

Similarly to the derivation in Eq. (18), we can obtain operator equivalence relationships to

Eqs. (24) and (25) as the following:

LRe ∂
∂t
φfY,X

= LfX|X∗∆fX∗Lcosm0,e
∆∂|φη | − LfX|X∗∆fX∗Lsinm0,e

∆|φη |∆∂e(31)

− LfX|X∗∆fX∗∆m0Lsinm0,e
∆|φη |,

LIm ∂
∂t
φfY,X

= LfX|X∗∆fX∗Lsinm0,e
∆∂|φη | + LfX|X∗∆fX∗Lcosm0,e

∆|φη |∆∂e(32)

+ LfX|X∗∆fX∗∆m0Lcosm0,e
∆|φη |.

Define ∆∂ ln |φη | : L2([0, tu]) → L2([0, tu]) with (∆∂ ln |φη |h)(t) =

(
∂
∂t
|φη(t)|
|φη(t)|

)
h(t). The
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following derivation is dedicated to the identification of

LA = L−1
ReφfY |X∗

∆m0LReφfY |X∗
,

where L−1
ReφfY |X∗

exists and is densely defined over L2(X ) by Lemma B.10. We will show LA

is identified and use it to construct a spectral decomposition. Note that the invertibility of

the operators LReφfY,X and LImφfY,X is equivalent to the invertibility of operators, LfX|X∗ ,

LReφfY |X∗
, and LImφfY |X∗

and the boundedness of fX∗ . While Assumption 2.3(ii) and Lem-

ma B.1.1 permits the invertibility of LfX|X∗ , Lemma B.2, and Lemma B.10 guarantee the

invertibility of LReφfY |X∗
, and LImφfY |X∗

. The boundedness is ensured by Assumption 2.1.

Post-multiplying L−1
ReφfY |X∗

to Eq. (21) yields

LReφfY,XL
−1
ReφfY |X∗

= LfX|X∗∆fX∗ ,

which is justified by Lemma B.10. Use this relation to rewrite Eq. (31) as

LRe ∂
∂t
φfY,X

= LfX|X∗∆fX∗Lcosm0,e
∆∂|φη | − LfX|X∗∆fX∗Lsinm0,e

∆|φη |∆∂e

− LfX|X∗∆fX∗∆m0Lsinm0,e
∆|φη |,

= LReφfY,X

[
L−1
ReφfY |X∗

Lcosm0,e
∆∂|φη | − L

−1
ReφfY |X∗

Lsinm0,e
∆|φη |∆∂e

− L−1
ReφfY |X∗

∆m0Lsinm0,e
∆|φη |

]
Because LReφfY,X is injective by the injectivity of operators, LfX|X∗ , LReφfY |X∗

, and fX∗ ,

L−1
ReφfY,X

LReφfY,X = I. This implies

LB1 ≡ L−1
ReφfY,X

LRe ∂
∂t
φfY,X

(33)

=
(
Lcosm0,e

∆|φη |
)−1

Lcosm0,e
∆∂|φη | −

(
L−1
ReφfY |X∗

Lsinm0,e
∆|φη |

)
∆∂e

−
(
L−1
ReφfY |X∗

∆m0LReφfY |X∗

)(
L−1
ReφfY |X∗

Lsinm0,e
∆|φη |

)
= ∆∂ ln |φη | − LK1∆∂e − LALK1 ,
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where we have used LReφfY |X∗
L−1
ReφfY |X∗

= I. Similar, using Eqs. (22) and (32), we obtain

LB2 ≡ L−1
ImφfY,X

LIm ∂
∂t
φfY,X

(34)

= ∆∂ ln |φη | + L−1
K1

∆∂e + L−1
K1
LA.

We eliminate the operator LA in Eqs. (33) and (34) by applying LK1 to the left and right

sides of Eq. (34) and then adding with Eq. (33):

LC = LB1 + LK1LB2LK1

= ∆∂ ln |φη | − LK1∆∂e + LK1∆∂ ln |φη |LK1 + ∆∂eLK1

= ∆∂ ln |φη | + LK1∆∂ ln |φη |LK1 ,(35)

where we have used LK1∆∂e = ∆∂eLK1 which is justified by Lemma B.11. Note that LHS

are observable and ∆∂ ln |φη | is the unobservable operators in RHS. Applying the observed

operator LC in Eq. (35) to the constant function 1 and using Lemma B.11 yields

(LC1)(t) =
∂
∂t |φη(t)|
|φη(t)|

+ tan(e(t))2
∂
∂t |φη(t)|
|φη(t)|

(36)

= (1 + tan(e(t))2)
∂
∂t |φη(t)|
|φη(t)|

.

Because LK1 , and therefore e(t), are identified, this implies that both
∂
∂t
|φη(t)|
|φη(t)| is identified. It

follows that LA is identified from Eq. (34) as follows:

LA = LK1

(
LB2 −∆∂ ln |φη |

)
−∆∂e.

Pre-multiplying the operator LfX|X∗∆fX∗ to the both sides of the equation LReφfY |X∗
LA =

∆m0LReφfY |X∗
, we have

LReφfY,XLA = LfX|X∗∆fX∗∆m0LReφfY |X∗
.(37)

Post-multiplying the operator L−1
ReφfY |X∗

to the both sides of Eq. (37) (justified by Lemma

B.10) yields

LReφfY,XLAL
−1
ReφfY |X∗

= LfX|X∗∆fX∗∆m0 .(38)
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Because ∆−1
fX∗

and L−1
fX|X∗

both defined over a dense subset of their domain spaces (As-

sumption 2.1 and Lemma B.1.1 ), we post-multiply these operators to Eq. (38) to obtain

LReφfY,XLAL
−1
ReφfY,X︸ ︷︷ ︸

Identified

=

(
LReφfY,XLAL

−1
ReφfY |X∗

)
∆−1
fX∗

L−1
fX|X∗

= LfX|X∗∆fX∗∆m0∆−1
fX∗

L−1
fX|X∗

(39)

= LfX|X∗∆m0L
−1
fX|X∗

.

The above operator to be diagonalized is defined in terms of observable operators, while

the resulting eigenvalues m0(x∗) and eigenfunctions fX|X∗(·|x∗) (both indexed by x∗) provide

the unobserved function of interest including the regression function and the joint distribu-

tion of the joint distribution of the unobserved regressor x∗ and the observed regressor x.

Assumptions 2.3(iii) and 2.4 ensure the uniqueness of the spectral decomposition of the ob-

served operator Eq. (37). Similarly, we have fY,X(y, x) =
∫
X ∗ fY,X∗(y, x

∗)fX|X∗(x|x∗)dx∗ and

it implies that for any y ∈ Y, (LfX|X∗fY,X∗)(x) = fY,X(y, x). Thus the identification of fX|X∗

induces the identification of fY,X∗ as follow, for any y ∈ Y,

fY,X∗(y, x
∗) = (L−1

fX|X∗
fY,X)(x∗),

where the inverse is justified by the first part of 2.3(ii). Therefore, the densities fY |X∗ and

fX∗ are identified and so is the regression error distribution fη. We have reached our main

result. QED.
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Table 1: Simulation Results of the Comparison Estimators in Section 4.1 (n=1000)

Infeasible with X∗ Biased Estimator Infeasible with η

θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5

DGP I: Function 1: m0(x∗; θ) = θ1x
∗ + θ2x

∗2 + x∗3

Mean 0.498 0.501 0.070 0.311 0.416 0.415
Median 0.498 0.505 0.069 0.311 0.405 0.416
RMSE 0.060 0.078 0.573 0.201 0.139 0.134

Function 2: m0(x∗; θ) = θ1x
∗ + θ2e

x∗

Mean 0.497 0.501 0.164 0.483 0.419 0.385
Median 0.498 0.501 0.162 0.482 0.415 0.388
RMSE 0.065 0.027 0.342 0.033 0.134 0.148

Function 3: m0(x∗; θ) = θ1x
∗ + θ2x∗

2−x∗
Mean 0.497 0.501 0.364 0.276 0.407 0.417
Median 0.497 0.501 0.365 0.274 0.407 0.413
RMSE 0.154 0.250 0.188 0.298 0.132 0.135

DGP II: Function 1: m0(x∗; θ) = θ1x
∗ + θ2x

∗2 + x∗3

Mean 0.498 0.501 0.181 0.539 0.354 0.417
Median 0.498 0.505 0.181 0.539 0.319 0.416
RMSE 0.060 0.078 0.324 0.081 0.183 0.125

Function 2: m0(x∗; θ) = θ1x
∗ + θ2e

x∗

Mean 0.497 0.501 0.304 0.472 0.432 0.367
Median 0.498 0.501 0.303 0.472 0.431 0.329
RMSE 0.065 0.027 0.206 0.039 0.110 0.167

Function 3: m0(x∗; θ) = θ1x
∗ + θ2x∗

2−x∗
Mean 0.497 0.501 0.310 0.516 0.368 0.415
Median 0.497 0.501 0.306 0.519 0.359 0.417
RMSE 0.154 0.250 0.233 0.222 0.151 0.130

Note: The mean, the median and the Root Mean Square Error (RMSE) of the parameters
are computed by the estimates over 1000 replications. DGP I and DGP II are referred to
the DGPs for the measurement error process in Section 4.1. The orders of f2 and f3 in the
estimator, Infeasible with η, is k2,n = 4 and k3,n = 4, respectively.
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Table 2: Simulation Results of the Sieve MLE in Section 4.1 (n=1000)
k2,n = 3 k2,n = 4 k2,n = 5

θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5

DGP I: Function 1: m0(x∗; θ) = θ1x
∗ + θ2x

∗2 + x∗3

Mean 0.395 0.423 0.425 0.418 0.379 0.418
Median 0.387 0.427 0.425 0.416 0.381 0.423
RMSE 0.164 0.146 0.122 0.124 0.189 0.166

AICc 0.230 0.299 0.146

Function 2: m0(x∗; θ) = θ1x
∗ + θ2e

x∗

Mean 0.391 0.402 0.432 0.423 0.433 0.451
Median 0.395 0.414 0.429 0.419 0.438 0.462
RMSE 0.155 0.148 0.119 0.124 0.156 0.142

AICc 0.127 0.135 0.135

Function 3: m0(x∗; θ) = θ1x
∗ + θ2x∗

2−x∗
Mean 0.403 0.412 0.411 0.421 0.432 0.396
Median 0.406 0.402 0.415 0.422 0.447 0.396
RMSE 0.156 0.159 0.139 0.133 0.164 0.186

AICc 0.166 0.128 0.136

DGP II: Function 1: m0(x∗; θ) = θ1x
∗ + θ2x

∗2 + x∗3

Mean 0.409 0.436 0.438 0.458 0.402 0.421
Median 0.404 0.444 0.417 0.428 0.401 0.424
RMSE 0.152 0.123 0.146 0.148 0.166 0.147

AICc 0.218 0.268 0.194

Function 2: m0(x∗; θ) = θ1x
∗ + θ2e

x∗

Mean 0.417 0.408 0.422 0.402 0.429 0.456
Median 0.414 0.423 0.424 0.405 0.432 0.467
RMSE 0.146 0.145 0.131 0.137 0.148 0.124

AICc 0.165 0.193 0.205

Function 3: m0(x∗; θ) = θ1x
∗ + θ2x∗

2−x∗
Mean 0.396 0.407 0.407 0.421 0.428 0.422
Median 0.385 0.400 0.409 0.420 0.441 0.416
RMSE 0.160 0.153 0.137 0.132 0.153 0.165

AICc 0.268 0.220 0.194

Note: The mean, the median and the Root Mean Square Error (RMSE) of the parameters are
computed by the estimates over 1000 replications. DGP I and DGP II are referred to the DGPs
for the measurement error process in Section 4.1. The orders of the sieve approximations in
the sieve MLE are k1,n = 4, k3,n = 4, and k4,n = 4.
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Table 3: Simulation Results of the Comparison Estimators in Section 4.1 (n=2000)

Infeasible with X∗ Biased Estimator Infeasible with η

θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5

DGP I: Function 1: m0(x∗; θ) = θ1x
∗ + θ2x

∗2 + x∗3

Mean 0.502 0.499 0.067 0.310 0.461 0.484
Median 0.503 0.502 0.064 0.310 0.461 0.485
RMSE 0.042 0.055 0.569 0.197 0.101 0.099

Function 2: m0(x∗; θ) = θ1x
∗ + θ2e

x∗

Mean 0.502 0.500 0.169 0.482 0.477 0.463
Median 0.503 0.499 0.170 0.481 0.478 0.467
RMSE 0.047 0.019 0.335 0.027 0.101 0.092

Function 3: m0(x∗; θ) = θ1x
∗ + θ2x∗

2−x∗
Mean 0.505 0.495 0.169 0.482 0.468 0.490
Median 0.504 0.502 0.170 0.481 0.469 0.487
RMSE 0.115 0.180 0.335 0.027 0.098 0.101

DGP II: Function 1: m0(x∗; θ) = θ1x
∗ + θ2x

∗2 + x∗3

Mean 0.502 0.499 0.183 0.538 0.444 0.473
Median 0.503 0.502 0.184 0.537 0.442 0.473
RMSE 0.042 0.055 0.320 0.062 0.105 0.093

Function 2: m0(x∗; θ) = θ1x
∗ + θ2e

x∗

Mean 0.502 0.500 0.307 0.471 0.461 0.450
Median 0.503 0.499 0.308 0.471 0.461 0.448
RMSE 0.047 0.019 0.198 0.035 0.096 0.097

Function 3: m0(x∗; θ) = θ1x
∗ + θ2x∗

2−x∗
Mean 0.505 0.495 0.313 0.516 0.448 0.470
Median 0.504 0.502 0.315 0.512 0.448 0.472
RMSE 0.115 0.180 0.212 0.156 0.097 0.096

Note: The mean, the median and the Root Mean Square Error (RMSE) of the parameters
are computed by the estimates over 1000 replications. DGP I and DGP II are referred to
the DGPs for the measurement error process in Section 4.1. The orders of f2 and f3 in the
estimator, Infeasible with η, is k2,n = 4 and k3,n = 4, respectively.

39



Table 4: Simulation Results of the Sieve MLE in Section 4.1 (n=2000)
k2,n = 3 k2,n = 4 k2,n = 5

θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5 θ1 = 0.5 θ2 = 0.5

DGP I: Function 1: m0(x∗; θ) = θ1x
∗ + θ2x

∗2 + x∗3

Mean 0.388 0.434 0.430 0.422 0.481 0.505
Median 0.382 0.442 0.431 0.414 0.483 0.508
RMSE 0.164 0.142 0.114 0.120 0.098 0.094

AICc 0.197 0.314 0.062

Function 2: m0(x∗; θ) = θ1x
∗ + θ2e

x∗

Mean 0.387 0.410 0.428 0.424 0.488 0.499
Median 0.392 0.417 0.428 0.421 0.487 0.516
RMSE 0.150 0.137 0.121 0.117 0.100 0.109

AICc 0.087 0.051 0.034

Function 3: m0(x∗; θ) = θ1x
∗ + θ2x∗

2−x∗
Mean 0.399 0.417 0.413 0.419 0.490 0.518
Median 0.407 0.413 0.425 0.426 0.483 0.514
RMSE 0.157 0.163 0.136 0.137 0.101 0.111

AICc 0.199 0.042 0.036

DGP II: Function 1: m0(x∗; θ) = θ1x
∗ + θ2x

∗2 + x∗3

Mean 0.404 0.447 0.440 0.468 0.476 0.511
Median 0.386 0.457 0.414 0.422 0.474 0.515
RMSE 0.154 0.113 0.149 0.154 0.095 0.098

AICc 0.191 0.267 0.048

Function 2: m0(x∗; θ) = θ1x
∗ + θ2e

x∗

Mean 0.418 0.421 0.423 0.405 0.488 0.500
Median 0.424 0.437 0.421 0.409 0.490 0.502
RMSE 0.138 0.136 0.125 0.129 0.099 0.096

AICc 0.196 0.176 0.040

Function 3: m0(x∗; θ) = θ1x
∗ + θ2x∗

2−x∗
Mean 0.380 0.411 0.402 0.419 0.492 0.503
Median 0.359 0.403 0.402 0.419 0.486 0.502
RMSE 0.169 0.150 0.135 0.130 0.102 0.111

AICc 0.341 0.210 0.024

Note: The mean, the median and the Root Mean Square Error (RMSE) of the parameters are
computed by the estimates over 1000 replications. DGP I and DGP II are referred to the DGPs
for the measurement error process in Section 4.1. The orders of the sieve approximations in
the sieve MLE are k1,n = 4, k3,n = 4, and k4,n = 4.
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Table 5: The IMSEs in the Estimation of Function 4 in Section 4.2

k2,n = 3 k2,n = 4 k2,n = 5

DGP I DGP II DGP I DGP II DGP I DGP II

N=1000: 0.531 0.273 0.218 0.203 0.336 0.476

AICc 0.289 0.538 0.019 0.573 0.448 0.655

N=2000: 0.581 0.259 0.242 0.202 0.321 0.559

AICc 0.337 0.513 0.014 0.887 0.395 0.650

Note: The IMSEs are defined by
∫

[m(x∗) −m0(x∗)]2dx∗. DGP I and DGP II
are referred to the DGPs for the measurement error process in Section 4.1.

Table 6: The IMSEs in the Estimation of Function 5 in Section 4.2

k2,n = 3 k2,n = 4 k2,n = 5

DGP I DGP II DGP I DGP II DGP I DGP II

N=1000: 0.606 0.366 0.242 0.209 0.201 0.258

AICc 0.182 0.175 0.008 0.259 0.187 0.016

N=2000: 0.588 0.316 0.287 0.183 0.199 0.245

AICc 0.158 0.207 0.014 0.326 0.126 0.045

Note: The IMSEs are defined by
∫

[m(x∗) −m0(x∗)]2dx∗. DGP I and DGP II
are referred to the DGPs for the measurement error process in Section 4.1.

Table 7: The IMSEs in the Estimation of Function 6 in Section 4.2

k2,n = 3 k2,n = 4 k2,n = 5

DGP I DGP II DGP I DGP II DGP I DGP II

N=1000: 0.409 0.307 0.263 0.196 0.546 0.482

AICc 0.218 0.474 0.011 0.293 0.667 0.806

N=2000: 0.437 0.377 0.249 0.213 0.527 0.503

AICc 0.166 0.502 0.009 0.330 0.626 0.889

Note: The IMSEs are defined by
∫

[m(x∗) −m0(x∗)]2dx∗. DGP I and DGP II
are referred to the DGPs for the measurement error process in Section 4.1.
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Figure 1: The Estimated Function 4 in Section 4.2 Using k2,n = 3 for f2(x|x∗)

Figure 2: The Estimated Function 4 in Section 4.2 Using k2,n = 4 for f2(x|x∗)
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Figure 3: The Estimated Function 4 in Section 4.2 Using k2,n = 5 for f2(x|x∗)

Figure 4: The Estimated Function 5 in Section 4.2 Using k2,n = 3 for f2(x|x∗)
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Figure 5: The Estimated Function 5 in Section 4.2 Using k2,n = 4 for f2(x|x∗)

Figure 6: The Estimated Function 5 in Section 4.2 Using k2,n = 5 for f2(x|x∗)
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Figure 7: The Estimated Function 6 in Section 4.2 Using k2,n = 3 for f2(x|x∗)

Figure 8: The Estimated Function 6 in Section 4.2 Using k2,n = 4 for f2(x|x∗)
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Figure 9: The Estimated Function 6 in Section 4.2 Using k2,n = 5 for f2(x|x∗)
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