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ABSTRACT

In this chapter, we consider the nonparametric identification of Markov
dynamic games models in which each firm has its own unobserved state
variable, which is persistent over time. This class of models includes most
models in the Ericson and Pakes (1995) and Pakes and McGuire (1994)
framework. We provide conditions under which the joint Markov equili-
brium process of the firms’ observed and unobserved variables can be non-
parametrically identified from data. For stationary continuous action
games, we show that only three observations of the observed component
are required to identify the equilibrium Markov process of the dynamic
game. When agents’ choice variables are discrete, but the unobserved
state variables are continuous, four observations are required.
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INTRODUCTION

In this chapter, we consider nonparametric identification in Markovian
dynamic games models where each agent may have its own serially corre-
lated unobserved state variable. This class of models includes most models
in the Ericson and Pakes (1995) and Pakes and McGuire (1994) frame-
work.1 These models have been the basis for much of the recent empirical
applications of dynamic game models. Throughout, by “unobservable,” we
mean variables which are commonly observed by all agents, and condition
their actions, but are unobserved by the researcher.

Consider a dynamic duopoly game in which two firms compete. It
is straightforward to extend our assumptions and arguments to the case of
N firms. A dynamic duopoly is described by the sequence of variables
ðWtþ 1; χtþ 1Þ; ðWt; χtÞ;…; ðW1; χ1Þ where

Wt = ðW1;t;W2;tÞ

χt = ðχ1;t; χ2;tÞ

Wi;t stands for the observed information on firm i and χi;t denotes the unob-
served heterogeneity of firm i at period t, which we allow to vary over time
and be serially correlated.

In empirical dynamic games model, the observed variables Wi;t consist of
two variables:

Wi;t ≡ ðYi;t;Mi;tÞ

where Yi;t denotes firm i’s choice, or control variable in period t, and Mi;t

denotes the state variables of firm i which are observed by both the firms
and the researcher. We assume that the serially correlated variables χ1;t and
χ2;t are observed by both firms prior to making their choices of Y1;t;Y2;t in
period t, but the researcher never observes χt. For simplicity, we assume
that each firm’s variables Yi;t;Mi;t; χi;t are scalar-valued.

Main Results: Our goal is to identify the density

fWt ;χt |Wt− 1;χt− 1
ð1Þ

which corresponds to the equilibrium transition density of the choice
and state variables along the Markov equilibrium path of the dynamic
game.2 The identification of this stochastic process plays a key role in the
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identification of dynamic games because it can be interpreted as the
“reduced form” equations of the model and contains all the information
that is needed to identify and estimate the structural parameters under
standard exclusion restrictions.

In Markovian dynamic settings, the transition density can be factored
into two components of interest:

fWt ;χt |Wt− 1;χt− 1
= fYt ;Mt ;χt |Yt− 1;Mt− 1;χt− 1

= fYt |Mt ;χt|fflffl{zfflffl}
CCP

⋅ fMt ;χt |Yt− 1;Mt− 1;χt− 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
state transition

ð2Þ

The first term denotes the conditional choice probabilities (CCP) for
the firms’ actions in period t, conditional on the current state ðMt; χtÞ.
In the Markov equilibrium, firms’ optimal strategies typically depends just
on the current state variables (Mt; χt), but not past values. The second term
denotes is the equilibrium Markovian transition probabilities for the state
variables ðMt; χtÞ. As shown in Hotz and Miller (1993) and Magnac and
Thesmar (2002), once these two structural components are known, it is pos-
sible to recover the “deep” structural elements of the model, including the
period utility functions.

In an earlier chapter (Hu & Shum (2013)), we focused on nonparametric
identification of Markovian single-agent dynamic optimization models.
There, we showed that in stationary models, four periods of data
Wtþ 1;…;Wt− 2 were enough to identify the Markov transition
Wt; χt |Wt− 1; χt− 1, while five observations Wtþ 1;…;Wt− 3 were required for
the nonstationary case. In this chapter, we focus on Markovian dynamic
games. We show that, once additional features of the dynamic optimization
framework are taken into account, only three observations Wt;…;Wt− 2 are
required to identify Wt; χt |Wt− 1; χt− 1 in the stationary case, when Yt is a
continuous choice variable. If Yt is a discrete choice variable (while χt is
continuous), then four observations are required for identification.
Related literature: Recently, there has been a growing literature related to
identification and estimation of dynamic games. Paper AU:1s include
Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-Dengler (2008),
Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007),
and Bajari, Chernozhukov, Hong, and Nekipelov (2007). Our main contri-
bution related to this literature is to provide nonparametric identification
results for the case, where there are firm-specific unobserved state variables,
which are serially correlated over time. Allowing for firm-specific and
serially correlated unobservables is important, because the dynamic game
models in Ericson and Pakes (1995) and Pakes and McGuire (1994)
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(see also Doraszelski & Pakes, 2007), which provide an important frame-
work for much of the existing empirical work in dynamic games, explicitly
contain firm-specific “product quality” variables which are typically unob-
served by researchers.

A few recent papers have considered estimation methodologies for games
with serially correlated unobservables.3 Arcidiacono and Miller (2011)
develop an EM-algorithm for estimating dynamic games where the unobser-
vables are assumed to follow a discrete Markov process. Siebert and
Zulehner (2008) extend the Bajari et al. (2007) approach to estimate a
dynamic product choice game for the computer memory industry where
each firm experiences a serially correlated productivity shock. Finally,
Blevins (2008) develops simulation estimators for dynamic games with
serially correlated unobservables, utilizing state-of-the-art recursive impor-
tance sampling (“particle filtering”) techniques. However, all these papers
focus on estimation of parametric models in which the parameters are
assumed to be identified, whereas this chapter concerns nonparametric
identification.

EXAMPLES OF DYNAMIC DUOPOLY GAMES

To make things concrete, we present two examples of a dynamic duopoly
problem, both of which are in the “dynamic investment” framework of
Ericson and Pakes (1995) and Pakes and McGuire (1994), but simplified
without an entry decision.

Example 1 is a model of learning by doing in a durable goods market,
similar to Benkard (2004). There are two heterogeneous firms i= 1; 2, with
each firm described by two time-varying state variables ðMi;t; χi;tÞ. Mi;t

denotes the “installed base” of firm i, which are the share of consumers
who have previously bought firm i’s product. χi;t is firm i’s marginal cost,
which is unobserved to the econometrician, and is an unobserved state vari-
able. There is learning by doing, in the sense that increases in the installed
base will lower future marginal costs. In each period, each firm’s choice
variable Yi;t is its period t price, which affects the demand for its product in
period t and thereby the future installed base, which in turn affects future
production costs.

In the following, let Yt ≡ ðY1;t;Y2;tÞ, and similarly for Mt and χt. Let
St ≡ ðMt; χtÞ denote the common-knowledge state variables of the game in
period t. Si;t ≡ ðMi;t; χi;tÞ, for i= 1; 2, denotes firm i’s state variables. Each
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period, firms earn profits by selling their products to consumers who have
not yet bought the product. The demand curve for firm i’s product is

qiðYt;Mt; ηi;tÞ

which depends on the price and installed base of both firms’ products.
Firm i’s demand also depends on ηi;t, a firm-specific demand shock. As in
Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler
(2008), we assume that ηi;t is privately observed by each firm; that is, only
firm 1, but not firm 2, observes η1;t, making this a game of incomplete
information. Furthermore, we assume that the demand shocks ηi;t are i.i.d.
across firm and periods, and distributed according to a distribution K

which is common knowledge to both firms. The main role of the variable
ηi;t is to generate randomness in Yi;t, even after conditioning on ðMt; χtÞ.

The period t profits of firm i can then be written:

ΠiðYt; St; ηi;tÞ= qiðYt;Mt; ηi;tÞ � ðYi;t − χi;tÞ

where Yi;t − χi;t is firm i’s margin from each unit that it sells.
Installed base evolves according to the conditional distribution:

Mi;tþ 1 ∼Gð⋅|Mi;t;Yi;tÞ ð3Þ

One example is to model the incremental change Mi;tþ 1 −Mi;t as a log-
normal random variable:

logðMi;tþ 1 −Mi;tÞ∼ qiðYt;Mt; ηi;tÞ þ εi;t; εi;t ∼Nð0;σ2εÞ; i:i:d:-ði; tÞ

Marginal cost evolves according to the conditional distribution:

χi;tþ 1 ∼Hð⋅|χi;t;Mi;tþ 1Þ ð4Þ

One example is

χi;tþ 1 = χi;t −NðγðMi;tþ 1 −Mi;tÞ; σ2kÞ

where γ and σk are unknown parameters. This encompasses learning-by-
doing because the incremental reduction in marginal cost ðχi;tþ 1 − χi;tÞ
depends on the incremental increase in installed base ðMi;tþ 1 −Mi;tÞ.
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In the dynamic Markov-perfect equilibrium, each firm’s optimal pricing
strategy will also be a function of the current St, and the current demand
shock ηi;t:

Yi;t = Y�
i ðSt; ηi;tÞ; i= 1; 2 ð5Þ

where the strategy satisfies the equilibrium Bellman equation:

Y�
i ðSt; ηi;tÞ= argmaxyEη− i;t

fΠiðSt; y;Y− i;t =Y�
− iðSt; η− i;tÞÞ

þ βE[ViðStþ 1; ηi;tþ 1Þ|y;Y− i;t = Y�
− iðSt; η− i;tÞ]g ð6Þ

subject to Eqs. (4) and (3). In the above equation, ViðSt; ηitÞ denotes
the equilibrium value function for firm i, which is equal to the expected
discounted future profits that firm i will make along the equilibrium path,
starting at the current state ðSt; ηitÞ. ▪

Example 2 is a simplified version of the dynamic investment models
estimated in the productivity literature. (See Ackerberg, Benkard, Berry,
and Pakes (2007) for a detailed survey of this literature.) In this model,
firms’ state variables are ðMi;t; χi;tÞ, where Mi;t denotes firm i’s capital stock,
and χi;t denotes its productivity shock in period t. Yi;t, firm i’s choice
variable, denotes new capital investment in period t.

Capital stock Mi;t evolves deterministically, as a function of ðYi;t− 1;Mi;t− 1Þ:
Mi;t = ð1− δÞ ⋅Mi;t− 1 þ Yi;t− 1 ð7Þ

The productivity shock is serially correlated, and evolves according to
the conditional distribution:

χi;tþ 1 ∼Hð⋅|χi;t;Mi;tÞ ð8Þ

Each period, firms earn profits by selling their products. Let
qiðpi;t; p− i;t; ηi;tÞ denote the demand curve for firm i’s product, which
depends on the quality and prices of both firms’ products. As in Example
1, ηi;t denotes the privately observed demand shock for firm i in period t,
which is distributed i.i.d. across firms and time periods.

The period t profits of firm i are

qiðpi;t; p− i;t; ηi;tÞ � ðpi;t − ciðSi;tÞÞ−KðYi;tÞ

where cið⋅Þ is the marginal cost function for firm i (we assume constant
marginal costs) and KðYitÞ is the investment cost function.
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Following the literature, we assume that each firm’s price in period t are
determined by a static equilibrium, given the current values of the state
variables St, and the firm-specific demand shock ηi;t. Let p

�
i ðSt; ηi;tÞ denote

the static equilibrium prices for each firm in period t. By substituting in the
equilibrium prices in firm’s profit function, we obtain each firm’s “reduced-
form” expected profits:

ΠiðSt;Yt; ηi;tÞ=Eη− i;t
qiðp�1ðSt; η1;tÞ; p�2ðSt; η2;tÞ; ηi;tÞ

� [p�i ðSt; ηi;tÞ− ciðSi;tÞ]−KðYi;tÞ; i= 1; 2

As in Example 1, the Markov equilibrium investment strategy for each
firm just depends on the current state variables St, and the current shock
ηi;t:

Yt =Y�
i ðSt; ηitÞ; i= 1; 2

subject to the Bellman equation (Eq. (6)) and the transitions (Eqs. (7)
and (8)). ▪

The substantial difference between Examples 1 and 2 is that in Example
2, the evolution of the observed state variable Mi;t is deterministic, whereas
in Example 1 there is randomness in Mi;t conditional on ðMi;t− 1;Yi;t− 1Þ
(i.e., compare Eqs. (3) and (7)). As we will see below, this has important
implications for nonparametric identification.

Moreover, as illustrated in these two examples, for the first part of the
chapter, we focus on games with continuous actions, so that Yt are continu-
ous variables. Later, we will consider the important alternative case of
discrete-action games, where Yt is discrete-valued.

NONPARAMETRIC IDENTIFICATION

In this section, we present the assumptions for nonparametric identification
in the dynamic game model. Our identification strategy requires a panel
dataset with multiple markets and the asymptotics in the corresponding
estimation is in the number of markets. The assumptions we make here are
different than those in our earlier chapter (Hu & Shum, 2013), and are
geared specifically for the dynamic games literature, and motivated directly
by existing applied work utilizing dynamic games. We assume that for each
market j; fðWtþ 1; χtþ 1Þ; ðWt; χtÞ;…; ðW1; χ1Þgj is an independent random
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draw from the identical distribution fWtþ 1;Wt ;…;W1;χtþ 1;χt ;…;χ1 . This rules out
across-market effects and spillovers. And the assumption of identical distri-
bution across markets rules out the possibility of multiple equilibria. For
each market j; fW1;…;WTgj is observed, for T ≥ 4.

After presenting each assumption, we relate it to the examples in the
previous section. Define Ω < t = fWt− 1;…;W1; χt− 1;…;χ1g. We assume the
dynamic process satisfies:

Assumption 1. First-order Markov:

fWt ;χt |Wt− 1;χt− 1;Ω< t− 1
= fWt ;χt |Wt− 1;χt− 1

ð9Þ

Remark. The first-order Markov assumption is satisfied along the Markov-
equilibrium path of both examples given in the previous section. ▪

Without loss of generality, we assume that Wt = Yt;Mtð Þ∈R
2. We assume

Assumption 2.

(i) fYt |Mt ;χt ;Yt− 1;Mt− 1;χt− 1
= fYt |Mt ;χt ;

(ii) fχt |Mt ;Yt− 1;Mt− 1;χt− 1
= fχt |Mt ;Mt− 1;χt− 1

:

Assumption 2(i) is motivated completely by the state-contingent aspect
of the optimal policy function in dynamic optimization models. It turns out
that this assumption is stronger than necessary for our identification, but it
allows us to achieve identification only using three periods of data.
Assumption 2(ii) implies that χt is independent of Yt− 1 conditional on Mt;
Mt− 1 and χt− 1. This is consistent with the setup above.

Remarks. Assumption 2 is satisfied in both Examples 1 and 2. ▪

The conditional independence Assumptions 1 and 2 imply that the
Markov transition density (Eq. (1)) can be factored into

fWt ;χt |Wt− 1;χt− 1
= fYt ;Mt ;χt |Yt− 1;Mt− 1;χt− 1

= fYt |Mt ;χt ⋅ fχt |Mt ;Mt− 1;χt− 1
⋅ fMt |Yt− 1;Mt− 1;χt− 1

ð10Þ

In the identification procedure, we will identify these three components
of fWt ;χt |Wt− 1;χt− 1

in turn.
Next, we restrict attention to stationary equilibria in the dynamic game,

which is natural given our focus on Markov equilibria. In stationary equili-
bria, the Markov transition density fWt ;χt |Wt− 1;χt− 1

is time-invariant.

Assumption 3. Stationarity of Markov kernel:

fWt ;χt |Wt− 1;χt− 1
= fW2;χ2 |W1;χ1
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For simplicity, we assume that Yi;t; Mt; χi;t ∈ f1; 2;…; Jg:4 Consider the
joint density of fYt;Mt;Yt− 1;Mt− 1;Yt− 2g. We show in the appendix, that
Assumptions 1 and 2 imply that

fYt ;Mt ;Yt− 1 |Mt− 1;Yt− 2
=

P
χt− 1

fYt |Mt ;Mt− 1;χt− 1
fMt ;Yt− 1 |Mt− 1;χt− 1

fχt− 1 |Mt− 1;Yt− 2 ð11Þ

where the final line follows from Assumptions 1 and 2. Note that the den-
sity fYt ;Mt ;Yt− 1 |Mt− 1;Yt− 2

on the left-hand side is nonparametrically identified
everywhere under mild regularity conditions, and that Eq. (11) summarizes
all the key restrictions that the model imposes on the densities on the righ-
hand side.

In order to identify the unknown densities on the right-hand side, we use
the identification strategy for the nonclassical measurement error models in
Hu (2008). His results imply that two measurements and a dependent vari-
able of a latent explanatory variable are enough to achieve identification.
For fixed values of ðMt;Mt− 1Þ, we see that ðYt;Yt− 1; Yt− 2Þ enter Eq. (11)
separately in, respectively, the first, second, and third terms. This implies
that we can use ðYt;Yt− 2Þ as the two measurements and Yt− 1 as the depen-
dent variable of the latent variable χt− 1.

We abuse the notation Yt and define

Yt =GðY1;t; Y2;tÞ≡
1 if ðY1;t;Y2;tÞ= ð1; 1Þ
2 if ðY1;t;Y2;tÞ= ð1; 2Þ
… …

J2 if ðY1;t;Y2;tÞ= ðJ; JÞ

8>><
>>:

where the one-to-one function G maps a vector of discrete variables to
a scalar discrete variable.5 Similarly, we may also redefine χt =Gðχ1;t; χ2;tÞ.
Furthermore, we define the matrix FYt ;mt ;yt− 1 |mt− 1;Yt− 2

for any given
ðmt; yt− 1;mt− 1Þ in the support of Mt; Yt− 1;Mt− 1ð Þ and i,j; k∈S ≡ f1; 2… ;J2g

FYt ;mt ;yt− 1 |mt− 1;Yt− 2
= [fYt ;Mt ;Yt− 1 |Mt− 1;Yt− 2

ði;mt; yt− 1|mt− 1; jÞ]i;j
FYt |mt ;mt− 1;χt− 1

= [fYt |Mt ;Mt− 1;χt− 1
ði|mt;mt− 1; kÞ]i;k

Dyt− 1 |mt ;mt− 1;χt− 1
= diagf[fYt− 1 |Mt ;Mt− 1;χt− 1

ðyt− 1|mt;mt− 1; kÞ]kg
Dmt |mt− 1;χt− 1

= diagf[fMt |Mt− 1;χt− 1
ðmt |mt− 1; kÞ]kg

Fχt− 1 |mt− 1;Yt− 2
= [fχt− 1 |Mt− 1;Yt− 2

ðk|mt− 1; jÞ]k;j
where diag Vf g generates a diagonal matrix with diagonal entries equal to
the corresponding ones in the vector V . As shown in the appendix, Eq. (11)
can be written in matrix notation as (for fixed ðmt; yt− 1;mt− 1Þ):

FYt ;mt ;yt− 1 |mt− 1;Yt− 2
=FYt |mt ;mt− 1;χt− 1

Dyt− 1 |mt ;mt− 1;χt− 1
Dmt |mt− 1;χt− 1

Fχt− 1 |mt− 1;Yt− 2
ð12Þ
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Similarly, integrating our yt− 1 in Eq. (11) leads to for any given ðmt;mt− 1Þ:

FYt ;mt |mt− 1;Yt− 2
=FYt |mt ;mt− 1;χt− 1

Dmt |mt− 1;χt− 1
Fχt− 1 |mt− 1;Yt− 2

ð13Þ
where

FYt ;mt |mt− 1;Yt− 2
= [fYt ;Mt |Mt− 1;Yt− 2

ði;mt |mt− 1; jÞ]i;j

The identification of a matrix, for example, FYt |mt ;mt− 1;χt− 1
, is equivalent to

that of its corresponding density, for example, fYt |Mt ;Mt− 1;χt− 1
. Identification

of FYt |mt ;mt− 1;χt− 1
from the observed FYt ;mt ;yt− 1 |mt− 1;Yt− 2

requires

Assumption 4. For any ðmt;mt− 1Þ; there exists a yt− 1 ∈S such that
FYt ;mt |mt− 1;Yt− 2

is invertible.
Assumption 4 rules out cases where the support of χt− 1 is larger than

that of Yt. Hence, in this section, we are restricting attention to the case
where Yt and χt− 1 have the same support.

Remark. This assumption implies that all the unknown matrices on the
right-hand side are invertible. In particular, all the diagonal entries in
Dyt− 1 |mt ;mt− 1;χt− 1

and Dmt |mt− 1;χt− 1
are nonzero. Furthermore, this assump-

tion is imposed on the observed probabilities, and therefore, directly
testable using the sample. ▪

As in Hu (2008), if the latter matrix relation can be inverted (which is
ensured by Assumption 4), we can combine Eqs. (12) and (13) to get

FYt ;mt ;yt− 1 |mt− 1;Yt− 2
F− 1
Yt ;mt |mt− 1;Yt− 2

=FYt |mt ;mt− 1;χt− 1
⋅Dyt− 1 |mt ;mt− 1;χt− 1

⋅F− 1
Yt |mt ;mt− 1;χt− 1

ð14Þ

This representation shows that an eigenvalue-eigenfunction decomposi-
tion of the observed matrix FYt ;mt ;yt− 1 |mt− 1;Yt− 2

F− 1
Yt ;mt |mt− 1;Yt− 2

yields the unknown
density functions fYt |mt ;mt− 1;χt− 1

as the eigenfunctions and fyt− 1 |mt ;mt− 1;χt− 1
as the

eigenvalues.
The following assumption ensures the uniqueness of this decomposition,

and restricts the choice of the ωð⋅Þ function.

Assumption 5. For any ðmt;mt− 1Þ; there exists a yt− 1 ∈S such that for
j≠k∈S

fYt− 1 |Mt ;Mt− 1;χt− 1
ðyt− 1|mt;mt− 1; jÞ≠ fYt− 1 |Mt ;Mt− 1;χt− 1

ðyt− 1|mt;mt− 1; kÞ

106 YINGYAO HU AND MATTHEW SHUM

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39



Assumption 5 implies that the latent variable does change the distri-
bution of Yt− 1 given Mt in the two periods. Notice that Assumption 4
guarantees that fyt− 1 |mt ;mt− 1;χt− 1

≠ 0.

Remark. Assumption 5 requires that the conditional density
fYt− 1 |Mt ;Mt− 1;χt− 1

ðyt− 1|mt;mt− 1; χt− 1Þ varies in χt− 1 given any fixed
mt;mt− 1ð Þ, so that the “eigenvalues” in the decomposition (Eq. (14)) are
distinctive. Although this assumption is not imposed directly on
observed probability, the probability fYt− 1 |Mt ;Mt− 1;χt− 1

for different values
of χt− 1 is an eigenvalue of an matrix induced by observed probabilities.
Therefore, Assumption 5 is also testable using the sample. For Example
1, given the preceding discussion, Assumption 5 should hold. For
Example 2, the capital stock Mt evolves deterministically, so that
fYt− 1 |Mt ;Mt− 1;χt− 1

ðyt− 1|mt;mt− 1; χt− 1Þ= I yt− 1 =mt − ð1− δÞmt− 1ð Þ. Since this
does not change with χt− 1 for any fixed mt;mt− 1ð Þ, Therefore,
Assumption 5 fails. ▪

Remark (complete information games). In some models, the choice vari-
able Yit is a deterministic function of the current state variables, that is,

Yi;t− 1 = giðMt− 1; χt− 1Þ; i= 1; 2 ð15Þ

In Examples 1 and 2, this would be the case if we eliminated the
privately observed demand shocks η1t and η2t. Assumption 5 becomes

fYt− 1 |Mt− 1;χt− 1
ðyt− 1|mt− 1; jÞ≠ fYt− 1 |Mt− 1;χt− 1

ðyt− 1|mt− 1; kÞ ▪

Remark. Notice that in the decomposition (Eq. (14)), yt− 1 only appears in
the eigenvalues. Therefore, if there are several values yt− 1 which satisfy
Assumption (5), the decompositions (Eq. (14)) using these different yt− 1’s
should yield the same eigenfunctions. Hence, depending on the specific
model, it may be possible to use this feature as a general specification
check for Assumptions 1 and 2. We do not explore this possibility here. ▪

Under the foregoing assumptions, the density Yt;mt; yt− 1|mt− 1;Yt− 2 can
form a unique eigenvalue-eigenvector decomposition. In this decompo-
sition, the eigenfunction corresponds to the density fYt |mt ;mt− 1;χt− 1

×
ð⋅|mt;mt− 1; χt− 1Þ which can be written as

fYt |mt ;mt− 1;χt− 1
ð⋅|mt;mt− 1; χt− 1Þ= fY1;t ;Y2;t |mt ;mt− 1;χ1;t− 1;χ2;t− 1

ð⋅; ⋅|mt;mt− 1; χ1;t− 1; χ2;t− 1Þ
ð16Þ
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The eigenvalue�eigenfunction decomposition only identifies this eigen-
function up to some arbitrary ordering of the ðχ1;t− 1; χ2;t− 1Þ argument.
Hence, in order to pin down the right ordering of χt− 1, an additional order-
ing assumption is required. In our earlier chapter (Hu & Shum, 2013),
where χt was scalar-valued, a monotonicity assumption sufficed to pin
down the ordering of χt. However, in dynamic games, χt− 1 is multivariate,
so that monotonicity is no longer well-defined.

Consider the marginal density

fYi;t |mt ;mt− 1;χ1;t− 1;χ2;t− 1
ð⋅|mt;mt− 1; χ1;t− 1; χ2;t− 1Þ

which can be computed from Eq. (16) above. We make the following order-
ing assumption:

Assumption 6. For any given ðmt;mt− 1Þ and j≠ k∈S
fYt |mt ;mt− 1;χt− 1

ðk|mt;mt− 1; kÞ> fYt |mt ;mt− 1;χt− 1
ðj|mt;mt− 1; kÞ

Remark. With this assumption, the mode of fY1;t ;Y2;t |mt ;mt− 1;χ1;t− 1;χ2;t− 1

ð⋅; ⋅|mt;mt− 1; j; kÞ is j; kð Þ. Therefore, the value of the latent variable
χ1;t− 1; χ2;t− 1 can be identified from the eigenvectors. In other words, the
“pattern” of the latent marginal cost is revealed at the mode of the price
distribution of Y1;t;Y2;t

� �
. This assumption should be confirmed on a

model-by-model basis. In example where the Yi;t is interpreted as a price
and χ1;t as a marginal cost variable, this assumption implies that a firm
whose marginal cost is the k-th lowest would most likely has the k-th
lowest price for given the installed base. ▪

From the eigenvalue�eigenvector decomposition in Eq. (14), Hu (2008)
implies that we can identify all the unknown matrices FYt |mt ;mt− 1;χt− 1

;
Dyt− 1 |mt ;mt− 1;χt− 1

; Dmt |mt− 1;χt− 1
, and Fχt− 1 |mt− 1;Yt− 2

for any ðmt; yt− 1;mt− 1Þ and
their corresponding densities fYt |Mt ;Mt− 1;χt− 1

; fYt− 1 |Mt ;Mt− 1;χt− 1
; fMt |Mt− 1;χt− 1

; and
fχt− 1 |Mt− 1;Yt− 2

. That implies we can identify fMt ;Yt− 1 |Mt− 1;χt− 1
as

fMt ;Yt− 1 |Mt− 1;χt− 1
= fYt− 1 |Mt ;Mt− 1;χt− 1

fMt |Mt− 1;χt− 1

From the factorization:

fMt ;Yt− 1 |Mt− 1;χt− 1
= fMt |Yt− 1;Mt− 1;χt− 1

⋅fYt− 1 |Mt− 1;χt− 1

we can recover fMt |Yt− 1;Mt− 1;χt− 1
and fYt− 1 |Mt− 1;χt− 1

. Given stationarity, the latter
density is identical to fYt |Mt ;χt , so that from fMt ;Yt− 1 |Mt− 1;χt− 1

we have recovered
the first two components of fWt ;χt |Wt− 1;χt− 1

in Eq. (10).
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All that remains now is to identify the third component fχt |Mt ;Mt− 1;χt− 1
. To

obtain this, note that the following matrix relation holds:

FYt |mt ;mt− 1;χt− 1
=FYt |mt ;χtFχt |mt ;mt− 1;χt− 1

for given ðmt;mt− 1Þ, and where for i,l; k∈S
Fχt |mt ;mt− 1;χt− 1

= [fχt |Mt ;Mt− 1;χt− 1
ðl|mt;mt− 1; kÞ]l;k

FYt |mt ;χt = [fYt |Mt ;χt ði|mt; lÞ]i;l
The invertibility of FYt |mt ;mt− 1;χt− 1

implies that of FYt |mt ;χt . Therefore, the
final component in Eq. (10) can be recovered as

Fχt |mt ;mt− 1;χt− 1
=F− 1

Yt |mt ;χt
FYt |mt ;mt− 1;χt− 1

ð17Þ
where both terms on the right-hand side have already been identified in pre-
vious steps.

Finally, we summarize the identification results as follows:

Theorem 1. (Stationary case) Under the Assumptions 1, 2, 3, 4, 5, and 6,
the density fWt ;Wt− 1;Wt− 2

, for any t∈ 3;…Tf g, uniquely determines the time-
invariant Markov equilibrium transition density fW2;χ2 |W1;χ1 .

Proof. See the appendix AU:2. ▪

This theorem implies that we may identify the Markov kernel density
with three periods of data.

Without stationarity, the desired density fYt |Mt ;χt is not the same as
fYt− 1 |Mt− 1;χt− 1

, which can be recovered from the three observations
fWt ;Wt− 1;Wt− 2

. However, in this case, we can repeat the whole foregoing argu-
ment for the three observations fWtþ 1;Wt ;Wt− 1

to identify fYt |Mt ;χt . Hence, the
following corollary is immediate:

Corollary 1. (Nonstationary case) Under the Assumptions 1, 2, 4, 5, and 6,
the density fWtþ 1;Wt ;Wt− 1;Wt− 2

uniquely determines the time-varying Markov
equilibrium transition density fWt ;χt |Wt− 1;χt− 1

, for every period t∈ f3;…T − 1g.

EXTENSIONS

Alternatives to Assumption 2(ii)

In this section, we consider alternative conditions of Assumption 2(ii).
Assumption 2(ii) implies that χt is independent of Yt− 1 conditional on Mt;
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Mt− 1 and χt− 1. There are other alternative “limited feedback” assumptions,
which may be suitable for different empirical settings. Assumptions 1 and 2
(i) imply

fWtþ1;Wt ;Wt−1;Wt−2

=fYtþ1;Mtþ1;Yt ;Mt ;Yt−1;Mt−1;Yt−2;Mt−2

=
R R

fYtþ1;Mtþ1 |Yt ;Mt ;χt fYt |Mt ;χt fχt ;Mt |Yt−1;Mt−1;χt−1
⋅fYt−1 |Mt−1;χt−1

fχt−1;Mt−1;Yt−2;Mt−2

� �
dχtdχt−1

Assumption 2(ii) implies that the state transition density satisfies

fχt ;Mt |Yt− 1;Mt− 1;χt− 1
= fχt |Mt ;Mt− 1;χt− 1

fMt |Yt− 1;Mt− 1;χt− 1

Alternative “limited feedback” assumptions may be imposed on the den-
sity fχt ;Mt |Yt− 1;Mt− 1;χt− 1

. One alternative to Assumption 2(ii) is

fχt ;Mt |Yt− 1;Mt− 1;χt− 1
= fχt |Mt ;Yt− 1;χt− 1

fMt |Yt− 1;Mt− 1;χt− 1
ð18Þ

which implies that Mt− 1 does not have a direct effect on χt conditional on
Mt; Yt− 1; and χt− 1. A second alternative is

fχt ;Mt |Yt− 1;Mt− 1;χt− 1
= fMt |χt ;Yt− 1;Mt− 1

fχt |Yt− 1;Mt− 1;χt− 1
ð19Þ

which is the “limited feedback” assumption used in our earlier study (Hu &
Shum, 2013) of identification on single-agent dynamic optimization pro-
blems. Both alternatives (Eqs. (18) and (19)) can be handled using identifi-
cation arguments similar to the one in Hu and Shum (2013).

A third alternative to Assumption 2(ii) is

fχt ;Mt |Yt− 1;Mt− 1;χt− 1
= fχt |Mt ;Yt− 1;Mt− 1;χt− 1

fMt |Mt− 1;χt− 1
ð20Þ

This alternative can be handled in an identification framework similar to
the one used in this chapter.

CONCLUSIONS

In this chapter, we show several results regarding nonparametric identifica-
tion in a general class of Markov dynamic games, including many models
in the Ericson and Pakes (1995) and Pakes and McGuire (1994) framework.
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We show that only three observations Wt;…;Wt− 2 are required to identify
Wt; χt |Wt− 1; χt− 1 in the stationary case, when Yt is a continuous choice vari-
able. If Yt is a discrete choice variable (while χt is continuous), then four
observations are required for identification.

In ongoing work, we are working on developing estimation procedures
for dynamic games which utilize these identification results.

Proof. (theorem 1) First, Assumptions 1 and 2 imply that the density of
interest becomes

fWt ;χt |Wt− 1;χt− 1
= fYt ;Mt ;χt |Yt− 1;Mt− 1;χt− 1

= fYt |Mt ;χt ;Yt− 1;Mt− 1;χt− 1
fχt |Mt ;Yt− 1;Mt− 1;χt− 1

fMt |Yt− 1;Mt− 1;χt− 1

= fYt |Mt ;χt fχt |Mt ;Mt− 1;χt− 1
fMt |Yt− 1;Mt− 1;χt− 1

ð21Þ

We consider the observed density fWt ;Wt− 1;Wt− 2
: One can show that

Assumptions 1 and 2(i) imply

fWt ;Wt− 1;Wt− 2

=
P

χt

P
χt− 1

fWt ;χt |Wt− 1;Wt− 2;χt− 1
fWt− 1;Wt− 2;χt− 1

=
P

χt

P
χt− 1

fYt |Mt ;χt fχt |Mt ;Yt− 1;Mt− 1;χt− 1
fMt |Yt− 1;Mt− 1;χt− 1

fYt− 1 |Mt− 1;χt− 1
fχt− 1;Mt− 1;Yt− 2;Mt− 2

=
P

χt

P
χt− 1

fYt |Mt ;χt fχt |Mt ;Yt− 1;Mt− 1;χt− 1
fMt ;Yt− 1 |Mt− 1;χt− 1

fχt− 1;Mt− 1;Yt− 2;Mt− 2

After integrating out Mt− 2, Assumption 2(ii) then implies

fYt ;Mt ;Yt− 1;Mt− 1;Yt− 2
=

P
χt− 1

P
χt
fYt |Mt ;χt fχt |Mt ;Mt− 1;χt− 1

� �
fMt ;Yt− 1 |Mt− 1;χt− 1

fχt− 1;Mt− 1;Yt− 2

.
The expression in the parenthesis can be simplified as fYt |Mt ;Mt− 1;χt− 1

. We
then have

fYt ;Mt ;Yt− 1 |Mt− 1;Yt− 2
=

P
χt− 1

fYt |Mt ;Mt− 1;χt− 1
fMt ;Yt− 1 |Mt− 1;χt− 1

fχt− 1 |Mt− 1;Yt− 2 ð22Þ

Straightforward algebra shows that this equation is equivalent to

FYt ;mt ;yt− 1 |mt− 1;Yt− 2
=FYt |mt ;mt− 1;χt− 1

Dyt− 1 |mt ;mt− 1;χt− 1
Dmt |mt− 1;χt− 1

Fχt− 1 |mt− 1;Yt− 2
ð23Þ

for any given mt; yt− 1;mt− 1ð Þ. The identification results then follow from
Theorem 1 in Hu (2008). ▪
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NOTES

1. Our framework is one of incomplete information but our results apply both to
models of incomplete information and, as a particular case, to dynamic games of
complete information.
2. Markov Perfect Equilibrium (MPE) is the equilibrium concept that has been

used in this literature and this concept assumes that players’ strategies depend only
on payoff-relevant state variables.
3. Kasahara and Shimotsu (2009) consider a dynamic discrete choice model as a

mixture model, where the unobserable is time-invariant. We use a general identifica-
tion result for measurment error models (Hu, 2008) to identify a dynamic game
with time-varying unobserved state variables. See also Hu, Kayaba, and Shum
(2013) and An, Hu, and Shum (2010).
4. This restriction limits the support of the common knowledge unobservables to

be discrete. An advantage of this restriction is that the identification procedure does
not require high-level technical assumption, such as injectivity, and many assump-
tions are directly testable from the data. An obvious disadvantage is that it rules
out continuous unobserved state variables.
5. The identification strategy for the continuous choice games is the same as that

for the discrete choice games after discretization of the observed choice, as long as
the latent unobservable is discrete. This can be seen in the transformation of
ðY1;t; Y2;tÞ before introducing the matrices. For the continuous choice games, one
may pick a function ~G to map continuous Y1;t; Y2;t to a discrete Yt = ~GðY1;t; Y2;tÞ, then
impose restrictions on Yt.
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