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Abstract

This paper outlines recently developed techniques for estimating the primitives needed
to empirically analyze equilibrium interactions and their implications in oligopolistic
markets. It is divided into an introduction and three sections; a section on estimating
demand functions, a section on estimating production functions, and a section on esti-
mating “dynamic” parameters (parameters estimated through their implications on the
choice of controls which determine the distribution of future profits).
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The introduction provides an overview of how these primitives are used in typical
I.O. applications, and explains how the individual sections are structured. The topics of
the three sections have all been addressed in prior literature. Consequently each section
begins with a review of the problems I.O. researchers encountered in using the prior
approaches. The sections then continue with a fairly detailed explanation of the recent
techniques and their relationship to the problems with the prior approaches. Hopefully
the detail is rich enough to enable the reader to actually program up a version of the
techniques and use them to analyze data. We conclude each section with a brief dis-
cussion of some of the problems with the more recent techniques. Here the emphasis is
on when those problems are likely to be particularly important, and on recent research
designed to overcome them when they are.

Keywords

demand estimation, production function estimation, dynamic estimation, strategic
interactions, equilibrium outcomes

JEL classification: C1, C3, C5, C7, L1, L4, L5
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Recent complementary developments in computing power, data availability, and econo-
metric technique have led to rather dramatic changes in the way we do empirical analy-
sis of market interactions. This paper reviews a subset of the econometric techniques
that have been developed. The first section considers developments in the estimation
of demand systems, the second considers developments in the estimation of production
functions, and the third is on dynamic estimation, in particular on estimating the costs of
investment decisions (where investments are broadly interpreted as any decision which
affects future, as well as perhaps current, profits).

These are three of the primitives that are typically needed to analyze market interac-
tions in imperfectly competitive industries. To actually do the analysis, that is to actually
unravel the causes of historical events or predict the impact of possible policy changes,
we need more information than is contained in these three primitives. We would also
need to know the appropriate notion of equilibrium for the market being analyzed, and
provide a method of selecting among equilibria if more than one of them were consis-
tent with our primitives and the equilibrium assumptions. Though we will sometimes
use familiar notions of equilibrium to develop our estimators, this paper does not ex-
plicitly consider either the testing of alternative equilibrium assumptions or the issue
of how one selects among multiple equilibria. These are challenging tasks which the
profession is just now turning to.

For each of the three primitives we do analyze, we begin with a brief review of the
dominant analytic frameworks circa 1990 and an explanation of why those frameworks
did not suffice for the needs of modern Industrial Organization. We then move on to
recent developments. Our goal here is to explain how to use the recently developed
techniques and to help the reader identify problems that might arise when they are used.
Each of the three sections have a different concluding subsection.

There have been a number of recent papers which push the demand estimation lit-
erature in different directions, so we conclude that section with a brief review of those
articles and why one might be interested in them. The section on production function
concludes with a discussion of the problems with the approach we outline, and some
suggestions for overcoming them (much of this material is new). The section on the
costs of investments, which is our section on “dynamics”, is largely a summary and in-
tegration of articles that are still in various stages of peer review; so we conclude here
with some caveats to the new approaches.

We end this introduction with an indication of the ways Industrial Organization makes
use of the developments outlined in each of the three sections of the paper. This should
direct the researcher who is motivated by particular substantive issues to the appropriate
section of the paper. Each section is self-contained, so the reader ought to be able to read
any one of them in isolation.

Demand systems are used in several contexts. First demand systems are the major
tool for comparative static analysis of any change in a market that does not have an
immediate impact on costs (examples include the likely effects of mergers, tax changes,
etc.). The static analysis of the change usually assumes a mode of competition (almost
always either Nash in prices or in quantities) and either has cost data, or more frequently
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estimates costs from the first order conditions for a Nash equilibrium. For example, in a
Nash pricing (or Bertrand) equilibrium with single product firm, price equals marginal
cost plus a markup. The markup can be computed as a function of the estimated de-
mand parameters, so marginal costs can be estimated as price minus this markup. Given
marginal costs, demand, and the Nash pricing assumption the analyst can compute an
equilibrium under post change conditions (after the tax or the merger). Assuming the
computed equilibrium is the equilibrium that would be selected, this generates the pre-
dictions for market outcomes after the change. If the analyst uses the pre-change data
on prices to estimate costs, the only primitive required for this analysis is the demand
function and the ownership pattern of the competing products (which is usually ob-
served).

A second use of demand systems is to analyze the effect of either price changes
or new goods on consumer welfare. This is particularly important for the analysis of
markets that are either wholly or partially regulated (water, telecommunications, elec-
tricity, postage, medicare and medicaid, . . . ). In this context we should keep in mind
that many regulatory decisions are either motivated by nonmarket factors (such as eq-
uity considerations), or are politically sensitive (i.e. usually either the regulators or those
who appointed them are elected). As a result the analyst often is requested to provide a
distribution of predicted demand and welfare impacts across demographic, income and
location groups. For this reason a “representative agent” demand system simply will not
do.

The use of demand systems to analyze welfare changes is also important in several
other contexts. The “exact” consumer price index is a transform of the demand sys-
tem. Thus ideally we would be using demand systems to construct price indices also
(and there is some attempt by the BLS research staff to construct experimental indexes
in this way). Similarly the social returns to (either publicly or privately funded) re-
search or infrastructure investments are often also measured with the help of demand
systems.

Yet a third way in which demand systems are important to the analysis of I.O. prob-
lems is that some of them can be used to approximate the likely returns to potential
new products. Demand systems are therefore an integral part of the analysis of product
placement decisions, and more generally, for the analysis of the dynamic responses to
any policy or environmental change. Finally the way in which tastes are formed, and the
impacts of advertising on that process, are problems of fundamental interest to I.O. Un-
fortunately these are topics we will not address in the demand section of this paper. Our
only consolation is the hope that the techniques summarized here will open windows
that lead to a deeper understanding of these phenomena.

Production or cost functions are a second primitive needed for comparative static
analysis. However partly because product specific cost data are not available for many
markets, the direct estimation of cost functions has not been an active area of research
lately. There are exceptions, notably some illuminating studies of learning by doing [see
Benkard (2000) and the literature cited there], but not many of them.
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What has changed in the past decade and a half is that researchers have gained access
to a large number of plant (sometimes firm) level data sets on production inputs and
outputs (usually the market value of outputs rather than some measure of the physical
quantity of the output). This data, often from various census offices, has stimulated
renewed interest in production function estimation and the analysis of productivity. The
data sets are typically (though not always) panels, and the availability of the data has
focused attention on a particular set of substantive and technical issues.

Substantively, there has been a renewal of interest in measuring productivity and
gauging how some of the major changes in the economic environment that we have
witnessed over the past few decades affect it. This includes studies of the productiv-
ity impacts of deregulation, changes in tariff barriers, privatization, and broad changes
in the institutional environment (e.g. changes in the legal system, in health care deliv-
ery, etc.). The micro data has enabled this literature to distinguish between the impacts
of these changes on two sources of growth in aggregate productivity: (i) growth in the
productivity of individual establishments, and (ii) growth in industry productivity result-
ing from reallocating more of the output to the more productive establishments (both
among continuing incumbents, and between exitors and new entrants). Interestingly,
the prior literature on productivity was also divided in this way. One part focused on
the impacts of investments, in particular of research and infrastructure investments, on
the productive efficiency of plants. The other focused on the allocative efficiency of
different market structures and the impacts of alternative policies on that allocation (in
particular of merger and monopoly policy).

From an estimation point of view, the availability of large firm or plant level panels
and the desire to use them to analyze the impacts of major changes in the environment
has renewed interest in the analysis of the effects of simultaneity (endogeneity of inputs)
and selection (endogeneity of attrition) on parameter estimates. The data made clear that
there are both: (i) large differences in measured “productivity” across plants (no matter
how one measures productivity) and that these differences are serially correlated (and
hence likely to effect input choices), and (ii) large sample attrition and addition rates
in these panels [see Dunne, Roberts and Samuelson (1988) and Davis and Haltiwanger
(1992) for some of the original work on US manufacturing data]. Moreover, the changes
in the economic environment that we typically analyze had different impacts on different
firms. Not surprisingly, the firms that were positively impacted by the changes tended
to have disproportionate growth in their inputs, while those that it affected negatively
tended to exhibit falling input demand, and not infrequently, to exit.

The traditional corrections for both simultaneity and selection, corrections based
largely on simple statistical models (e.g. use of fixed effect and related estimators for
simultaneity, and the use of the propensity score for selection) were simply not rich
enough to account for the impacts of such major environmental changes. So the litera-
ture turned to simultaneity and selection corrections based on economic models of input
and exit choices. The section of this chapter on production functions deals largely with
these latter models. We first review the new procedures emphasizing the assumptions
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they use, and then provide suggestions for amending the estimators for cases where
those assumptions are suspect.

The last section of the paper deals explicitly with dynamic models. Despite a blos-
soming empirical literature on the empirical analysis of static equilibrium models, there
has been very little empirical work based on dynamic equilibrium models to date. The
I.O. literature’s focus on static settings came about not because dynamics were thought
to be unimportant to the outcomes of interest. Indeed it is easy to take any one of the
changes typically analyzed in static models and make the argument that the dynamic
implications of the change might well overturn their static effects. Moreover, there was
a reasonable amount of agreement among applied researchers that the notion of Markov
perfect equilibrium provided a rich enough framework for the analysis of dynamics in
oligopolistic settings.

The problem was that even given this framework the empirical analysis of the dy-
namic consequences of the changes being examined was seen as too difficult a task to
undertake. In particular, while some of the parameters needed to use the Markov per-
fect framework to analyze dynamic games could be estimated without imposing the
dynamic equilibrium conditions, some could not. Moreover, until very recently the only
available methods for estimating these remaining parameters were extremely burden-
some, in terms of both computation and researcher time.

The computational complexity resulted from the need to compute the continuation
values to the dynamic game in order to estimate the model. The direct way of obtaining
continuation values was to compute them as the fixed point to a functional equation,
a high order computational problem. Parameter values were inferred from observed be-
havior by computing the fixed point that determines continuation values at different trial
parameter values, and then searching for the parameter value that makes the behavior
implied by the continuation values “as close as possible” to the observed data. This
“nested fixed point” algorithm is extremely computationally burdensome; the continua-
tion values need to be computed many times and each time they are computed we need
to solve the fixed point.

A recent literature in industrial organization has developed techniques that substan-
tially reduce the computational and programming burdens of using the implications of
dynamic games to estimate the parameters needed for subsequent applied analysis. That
literature requires some strong assumptions, but delivers estimating equations which
have simple intuitive explanations and are easy to implement.

Essentially the alternative techniques deliver different semiparametric estimates of
continuation values. Conditional on a value of the parameter vector, these estimated
continuation values are treated as the true continuation values and used to determine
optimal policies (these can be entry and exit policies, investments of various forms, or
bidding strategies in dynamic auctions). The parameters are estimated by matching the
policies that are predicted in this way to the policies that are observed in the data. Note
that this process makes heavy use of nonparametric techniques; nonparametric estimates
of either policies or values must be estimated at every state observed in the data. Not
surprisingly then Monte Carlo evidence indicates that the small sample properties of the
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estimators can be quite important in data sets of the size we currently use. This, in turn,
both generates preferences for some semiparametric estimators over others, and makes
obvious a need for small sample bias correction procedures which, for the most part,
have yet to be developed. We now move on to the body of the paper.

1. Demand systems

Demand systems are probably the most basic tool of empirical Industrial Organization.
They summarize the demand preferences that determine the incentives facing produc-
ers. As a result some form of demand system has to be estimated before one can proceed
with a detailed empirical analysis of pricing (and/or production) decisions, and, conse-
quently of the profits and consumer welfare likely to be generated by the introduction
of new goods.

Not long ago graduate lectures on demand systems were largely based on “repre-
sentative agent” models in “product” space (i.e. the agent’s utility was defined on the
product per se rather than on the characteristics of the product). There were a number
of problems with this form of analysis that made if difficult to apply in the context of
I.O. problems. We begin with an overview of those problems, and the “solutions” that
have been proposed to deal with them.

Heterogeneous agents and simulation

First, almost all estimated demand systems were based on market level data: they would
regress quantity purchased on (average) income and prices. There were theoretical pa-
pers which investigated the properties of market level demand systems obtained by
explicitly aggregating up from micro models of consumer choices [including a semi-
nal paper by Houthakker (1955)]. However we could not use their results to structure
estimation on market level data without imposing unrealistic a priori assumptions on
the distribution of income and “preferences” (or its determinants like size, age, location,
etc.) across consuming units.

Simulation estimators, which Pakes (1986) introduced for precisely this problem, i.e.
to enable one to use a micro behavioral model with heterogeneity among agents to
structure the empirical analysis of aggregate data, have changed what is feasible in this
respect. We can now aggregate up from the observed distribution of consumer charac-
teristics and any functional form that we might think relevant. That is we allow different
consumers to have different income, age, family size, and/or location of residence. We
then formulate a demand system which is conditional on the consumer’s characteristics
and a vector of parameters which determines the relationship between those character-
istics and preferences over products (or over product characteristics). To estimate those
parameters from market level data we simply

• draw vectors of consumer characteristics from the distribution of those character-
istics in the market of interest (in the US, say from the March CPS),
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• determine the choice that each of the households drawn would make for a given
value of the parameter vector,

• aggregate those choices into a prediction for aggregate demand conditional on the
parameter vector, and

• employ a search routine that finds the value of that parameter vector which makes
these aggregate quantities as close as possible to the observed market level de-
mands.

The ability to obtain aggregate demand from a distribution of household preferences
has had at least two important impacts on demand analysis. First it has allowed us to
use the same framework to study demand in different markets, or in the same market at
different points in time. A representative agent framework might generate a reasonable
approximation to a demand surface in a particular market. However there are often large
differences in the distribution of income and other demographic characteristics across
markets, and these in turn make an approximation which fits well in one market do
poorly in others.

For example, we all believe (and virtually all empirical work indicates) that the im-
pact of price depends on income. Our micro model will therefore imply that the price
elasticity of a given good depends on the density of the income distribution among the
income/demographic groups attracted to that good. So if the income distribution differed
across regional markets, and we used an aggregate framework to analyze demand, we
would require different price coefficients for each market. Table 1 provides some data
on the distribution of the income distribution across US counties (there are about three
thousand counties in the US). It is clear that the income distribution differs markedly
across these “markets”; the variance being especially large in the high income groups
(the groups which purchase a disproportionate share of goods sold).

Table 1
Cross county differences in household income

Income
group
(thousands)

Fraction of US
population in
income group

Distribution of fraction
over counties

Mean Std. dev.

0–20 0.226 0.289 0.104
20–35 0.194 0.225 0.035
35–50 0.164 0.174 0.028
50–75 0.193 0.175 0.045
75–100 0.101 0.072 0.033
100–125 0.052 0.030 0.020
125–150 0.025 0.013 0.011
150–200 0.022 0.010 0.010
200+ 0.024 0.012 0.010

Source: From Pakes (2004).
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A heterogenous agent demand model with an interaction between price and income
uses the available information on differences in the distribution of income to combine
the information from different markets. This both enables us to obtain more precise
parameter estimates, and provides a tool for making predictions of likely outcomes in
new markets.

The second aspect of the heterogenous agent based systems that is intensively used
is its ability to analyze the distributional impacts of policies or environmental changes
that affect prices and/or the goods marketed. These distributional effects are often of
primary concern to both policy makers and to the study of related fields (e.g. the study
of voting patterns in political economy, or the study of tax incidence in public finance).

The too many parameters and new goods problems

There were at least two other problems that appeared repeatedly when we used the ear-
lier models of demand to analyze Industrial Organization problems. They are both a
direct result of positing preferences directly on products, rather than on the characteris-
tics of products.

1. Many of the markets we wanted to analyze contained a large number of goods
that are substitutes for one another. As a result when we tried to estimate demand
systems in product space we quickly ran into the “too many parameters problem”.
Even a (log) linear demand system in product space for J products requires esti-
mates of on the order of J 2 parameters (J price and one income coefficient in the
demand for every one of the J products). This was often just too many parameters
to estimate with the available data.

2. Demand systems in product space do not enable the researcher to analyze demand
for new goods prior to their introduction.

Gorman’s polar forms [Gorman (1959)] for multi-level budgeting were an ingenious
attempt to mitigate the too many parameter problem. However they required assump-
tions which were often unrealistic for the problem at hand. Indeed typically the grouping
procedures used empirically paid little attention to accommodating Gorman’s condi-
tions. Rather they were determined by the policy issue of interest. As a result one would
see demand systems for the same good estimated in very different ways with results
that bore no relationship to each other.1 Moreover, the reduction in parameters obtained
from multilevel budgeting was not sharp enough to enable the kind of flexibility needed
for many I.O. applications [though it was for some, see for e.g. Hausman (1996) and the
literature cited there].

1 For example, it was not uncommon to see automobile demand systems that grouped goods into imports and
domestically produced in studies where the issue of interest involved tariffs of some form, and alternatively by
gas mileage in studies where the issue of interest was environmental or otherwise related to fuel consumption.
Also Gorman’s results were of the “if and only if” variety; one of his two sets of conditions were necessary
if one is to use multi-level budgeting. For more detail on multi-level budgeting see Deaton and Muellbauer
(1980).
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The new goods problem was central to the dynamics of analyzing market outcomes.
That is in order to get any sort of idea of the incentives for entry in differentiated product
markets, we need to be able to know something about the demand for a good which
had not yet been introduced. This is simply beyond the realm of what product based
demand systems can do. On the other hand entry is one of the basic dynamic adjustment
mechanisms in Industrial Organization, and it is hard to think of say, the likely price
effects of a merger,2 or the longer run effects of an increase in gas prices, without some
way of evaluating the impacts of those events on the likelihood of entry.

The rest of this section of the paper will be based on models of demand that posit
preferences on the characteristics of products rather than on products themselves. We
do not, however, want to leave the reader with the impression that demand systems in
product based, in particular product space models that allow for consumer heterogene-
ity, should not be used. If one is analyzing a market with a small number of products,
and if the issue of interest does not require an analysis of the potential for entry, then it
may well be preferable to use a product space system. Indeed all we do when we move
to characteristic space is to place restrictions on the demand systems which could, at
least in principle, be obtained from product space models. On the other hand these re-
strictions provide a way of circumventing the “too many parameter” and “new goods”
problems which has turned out to be quite useful.

1.1. Characteristic space: The issues

In characteristics space models
• Products are bundles of characteristics.
• Preferences are defined on those characteristics.
• Each consumer chooses a bundle that maximizes its utility. Consumers have dif-

ferent relative preferences (usually just marginal preferences) for different charac-
teristics, and hence make different choices.

• Simulation is used to obtain aggregate demand.
Note first that in these models the number of parameters required to determine ag-

gregate demand is independent of the number of products per se; all we require is the
joint distribution of preferences over the characteristics. For example, if there were five
important characteristics, and preferences over them distributed joint normally, twenty
parameters would determine the own and cross price elasticities for all products (no
matter the number of those products). Second, once we estimate those parameters, if we
specify a new good as a different bundle of characteristics then the bundles currently in
existence, we can predict the outcomes that would result from the entry of the new good

2 Not surprisingly, then, directly after explaining how they will analyze the price effects of mergers among
incumbent firms, the US merger guidelines [DoJ (1992)] remind the reader that the outcome of the analysis
might be modified by an analysis of the likelihood of entry. Though they distinguish between different types
of potential entrants, their guidelines for evaluating the possibility of entry remain distinctly more ad hoc then
the procedures for analyzing the initial price changes.
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by simply giving each consumer an expanded choice set, one that includes the old and
the new good, and recomputing demand in exactly the same way as it was originally
computed.3

Having stated that, at least in principle, the characteristic space based systems solve
both the too many parameter and the new goods problems, we should now provide
some caveats. First what the system does is restrict preferences: it only allows two
products to be similar to one another through similarities in their characteristics. Below
we will introduce unmeasured characteristics into the analysis, but the extent to which
unmeasured characteristics have been used to pick up similarities in tastes for different
products is very limited. As a result if the researcher does not have measures of the
characteristics that consumers care about when making their purchase decisions, the
characteristic based models are unlikely to provide a very useful guide to which prod-
ucts are good substitutes for one another. Moreover, it is these substitution patterns that
determine pricing incentives in most I.O. models (and as a result profit margins and the
incentives to produce new goods).

As for new goods, there is a very real sense in which characteristic based systems
can only provide adequate predictions for goods that are not too “new”. That is, if we
formed the set of all tuples of characteristics which were convex combinations of the
characteristics of existing products, and considered a new product whose characteris-
tics are outside of this set, then we would not expect the estimated system to be able
to provide much information regarding preferences for the new good, as we would be
“trying to predict behavior outside of the sample”. Moreover, many of the most suc-
cessful product introductions are successful precisely because they consist of a tuple of
characteristics that is very different than any of the characteristic bundles that had been
available before it was marketed (think, for example, of the lap top computer, or the
Mazda Miata4).

Some background

The theoretical and econometric groundwork for characteristic based demand systems
dates back at least to the seminal work of Lancaster (1971) and McFadden (1974,
1981).5 Applications of the Lancaster/McFadden framework however, increased sig-
nificantly after Berry, Levinsohn and Pakes (1995) showed how to circumvent two

3 This assumes that there are no product specific unobservables. As noted below, it is typically important to
allow for such unobservables when analyzing demand for consumer products, and once one allows for them
we need to account for them in our predictions of demand for new goods. For example, see Berry, Levinsohn
and Pakes (2004).
4 For more detail on just how our predictions would fail in this case see Pakes (1995).
5 Actually characteristics based models have a much longer history in I.O. dating back at least to Hotelling’s

(1929) classic article, but the I.O. work on characteristic based models focused more on their implications for
product placement rather than on estimating demand systems per se. Characteristic based models also had a
history in the price index literature as a loose rational for the use of hedonic price indices; see Court (1939),
Griliches (1961), and the discussion of the relationship between hedonics and I.O. equilibrium models in
Pakes (2004).
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problems that had made it difficult to apply the early generation of characteristic based
models in I.O. contexts.

The problems were that
1. The early generation of models used functional forms which restricted cross and

own price elasticities in ways which brought into question the usefulness of the
whole exercise.

2. The early generation of models did not allow for unobserved product characteris-
tics.

The second problem was first formulated in a clear way by Berry (1994), and is par-
ticularly important when studying demand for consumer goods. Typically these goods
are differentiated in many ways. As a result even if we measured all the relevant charac-
teristics we could not expect to obtain precise estimates of their impacts. One solution
is to put in the “important” differentiating characteristics and an unobservable, say ξ ,
which picks up the aggregate effect of the multitude of characteristics that are being
omitted. Of course, to the extent that producers know ξ when they set prices (and recall
ξ represents the effect of characteristics that are known to consumers), goods that have
high values for ξ will be priced higher in any reasonable notion of equilibrium.

This produces an analogue to the standard simultaneous equation problem in esti-
mating demand systems in the older demand literature; i.e. prices are correlated with
the disturbance term. However in the literature on characteristics based demand sys-
tems the unobservable is buried deep inside a highly nonlinear set of equations, and
hence it was not obvious how to proceed. Berry (1994) shows that there is a unique
value for the vector of unobservables that makes the predicted shares exactly equal to
the observed shares. Berry, Levinsohn and Pakes (1995) (henceforth BLP) provide a
contraction mapping which transforms the demand system into a system of equations
that is linear in these unobservables. The contraction mapping is easy to compute, and
once we have a system which is linear in the disturbances we can again use instru-
ments, or any of the other techniques used in more traditional endogeneity problems, to
overcome this “simultaneity problem”.

The first problem, that is the use of functional forms which restricted elasticities in
unacceptable ways, manifested itself differently in different models and data sets. The
theoretical I.O. literature focussed on the nature competition when there was one di-
mension of product competition. This could either be a “vertical” or quality dimension
as in Shaked and Sutton (1982) or a horizontal dimension, as in Salop (1979) [and in
Hotelling’s (1929) classic work]. Bresnahan (1981), in his study of the automobile de-
mand and prices, was the first to bring this class of models to data. One (of several)
conclusions of the paper was that a one-dimensional source of differentiation among
products simply was not rich enough to provide a realistic picture of demand: in partic-
ular it implied that a particular good only had a nonzero cross price elasticity with its
two immediate neighbors (for products at a corner of the quality space, there was only
one neighbor).

McFadden himself was quick to point out the “IIA” (or independence of irrelevant
alternatives) problem of the logit model he used. The simplest logit model, and the one
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that had been primarily used when only aggregate data was available (data on quanti-
ties, prices, and product characteristics), has the utility of the ith consumer for the j th
product defined as

Ui,j = xjβ + εi,j ,

where the xj are the characteristics of product j (including the unobserved characteristic
and price) and the {εi,j } are independent (across both j for a given i and across i for
a given j ) identically distributed random variables.6 Thus xjβ is the mean utility of
product j and εi,j is the individual specific deviation from that mean.

There is a rather extreme form of the IIA problem in the demand generated by this
model. The model implies that the distribution of a consumer’s preferences over prod-
ucts other than the product it bought, does not depend on the product it bought. One can
show that this implies the following:

• Two agents who buy different products are equally likely to switch to a particular
third product should the price of their product rise. As a result two goods with the
same shares have the same cross price elasticities with any other good (cross price
elasticities are a multiple of sj sk , where sj is the share of good j ). Since both very
high quality goods with high prices and very low quality goods with low prices
have low shares, this implication is inconsistent with basic intuition.

• Since there is no systematic difference in the price sensitivities of consumers
attracted to the different goods, own price derivatives only depends on shares
(∂s/∂p) = −s(1 − s). This implies that two goods with same share must have
the same markup in a single product firm “Nash in prices” equilibrium, and once
again luxury and low quality goods can easily have the same shares.

No data will ever change these implications of the two models. If your estimates do not
satisfy them, there is a programming error, and if your estimates do satisfy them, we are
unlikely to believe the results.

A way of ameliorating this problem is to allow the coefficients on x to be individual-
specific. Then, when we increase the price of one good the consumers who leave that
good have very particular preferences, they were consumers who preferred the x’s of
that good. Consequently they will tend to switch to another good with similar x’s gen-
erating exactly the kind of substitution patterns that we expect to see. Similarly, now
consumers who chose high priced cars will tend to be consumers who care less about
price. Consequently less of them will substitute from the good they purchase for any
given price increase, a fact which will generate lower price elasticities and a tendency
for higher markups on those goods.

6 In the pure logit, they have a double exponential distribution. Though this assumption was initially quite
important, it is neither essential for the argument that follows, nor of as much importance for current applied
work. Its original importance was due to the fact that it implied that the integral that determined aggregate
demand had a closed form, a feature which receded in importance as computers and simulation techniques
improved.
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This intuition also makes it clear how the IIA problem was ameliorated in the few
studies which had micro data (data which matched individual characteristics to the
products those individuals chose), and used it to estimate a micro choice model which
was then explicitly aggregated into an aggregate demand system. The micro choice
model interacted observed individual and product characteristics, essentially producing
individual specific β’s in the logit model above. The IIA problem would then be ame-
liorated to the extent that the individual characteristic data captured the differences in
preferences for different x-characteristics across households. Unfortunately many of the
factors that determine different households preferences for different characteristics are
typically not observed in our data sets, so without allowing for unobserved as well as
observed sources of differences in the β, estimates of demand systems typically retain
many reflections of the IIA problem as noted above; see, in particular Berry, Levinsohn
and Pakes (2004) (henceforth MicroBLP) and the literature cited there.

The difficulty with allowing for individual specific coefficients on product charac-
teristics in the aggregate studies was that once we allowed for them the integral deter-
mining aggregate shares was not analytic. This lead to a computational problem; it was
difficult to find the shares predicted by the model conditional on the model’s parameter
vector. This, in turn, made it difficult, if not impossible, to compute an estimator with
desirable properties. Similarly in micro studies the difficulty with allowing for unob-
served individual specific characteristics that determined the sensitivity of individuals
to different product characteristics was that once we allowed for them the integral de-
termining individual probabilities was not analytic. The literature circumvented these
problems as did Pakes (1986), i.e. by substituting simulation for integration, and then
worried explicitly about the impact of the simulation error on the properties of the esti-
mators [see Berry, Linton and Pakes (2004) and the discussion below].

1.2. Characteristic space: Details of a simple model

The simplest characteristic based models assumes that each consumer buys at most one
unit of one of the differentiated goods. The utility from consuming good j depends
on the characteristics of good j , as well as on the tastes (interpreted broadly enough
to include income and demographic characteristics) of the household. Heterogenous
households have different tastes and so may choose different products.

The utility of consumer (or household) i for good j in market (or time period) t if it
purchases the j th good is

(1)uijt = U(x̃jt , ξjt , zit , νit , yit − pjt , θ),

where x̃j t is a K-dimensional vector of observed product characteristics other than
price, pjt is the price of the product, ξjt represents product characteristics unobserved
to the econometrician, zit and νit are vectors of observed and unobserved (to the econo-
metrician) sources of differences in consumer tastes, yit is the consumer’s income, and
θ is a vector of parameters to be estimated. When we discuss decisions within a single
market, we will often drop the t subscript.
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Note that the “partial equilibrium” nature of the problem is incorporated into the
model by letting utility depend on the money available to spend outside of this market
(yi − pj ). In many applications, the expenditure in other markets is not explicitly mod-
elled. Instead, yi is subsumed into either νi or zi and utility is modelled as depending
explicitly on price, so that utility is

(2)uij = U(x̃j , ξj , zi , νi, pj , θ).

The consumer chooses one of j products and also has the j = 0 choice of not buying
any of the goods (i.e. choosing the “outside option”). Denote the utility of outside good
as

(3)ui0 = U(x̃0, ξ0, zi , νi, θ),

where x̃0 could either be a vector of “characteristics” of the outside good, or else could
be an indicator for the outside good that shifts the functional form of U (because the
outside good may be difficult to place in the same space of product characteristics as
the “inside” goods). The existence of the outside option allows us to model aggregate
demand for the market’s products; in particular it allows market demand to decline if all
within-market prices rise.

The consumer makes the choice that gives the highest utility. The probability of that
product j is chosen is then the probability that the unobservables ν are such that

(4)uij > uir , ∀r �= j.

The demand system for the industry’s products is obtained by using the distribution of
the (zi , νi) to sum up over the values for these variables that satisfy the above condition
in the market of interest.

Note that, at least with sufficient information on the distribution of the (zi, νi), the
same model can be applied when: only market level data are available, when we have
micro data which matches individuals to the choices they make, when we have stratafied
samples or information on the total purchases of particular strata, or with any combina-
tion of the above types of data. In principal at least, this should make it easy to compare
different studies on the same market, or to use information from one study in another.

Henceforth we work with the linear case of the model in Equations (2) and (3). Let-
ting xj = (x̃j , pj ), that model can be written as

(5)Uij = �kxjkθik + ξj + εij ,

with

θik = θk + θo ′
k zi + θu ′

k νi,

where the “o” and “u” superscripts designate the interactions of the product character-
istic coefficients with the observed and the unobserved individual attributes, and it is
understood that xi0 ≡ 1.

We have not written down the equation for Ui,0, i.e. for the outside alternative, be-
cause we can add an individual specific constant term to each choice without changing



Ch. 63: Econometric Tools for Analyzing Market Outcomes 4187

the order of preferences over goods. This implies we need a normalization and we chose
Ui,0 = 0 (that is we subtract Ui,0 from each choice). Though this is notationally conve-
nient we should keep in mind that the utilities from the various choices are now actually
the differences in utility between the choice of the particular good and the outside alter-
native.7

Note also that we assume a single unobservable product characteristic, i.e. ξj ∈ R,
and its coefficient does not vary across consumers. That is, if there are multiple unob-
servable characteristics then we are assuming they can be collapsed into a single index
whose form does not vary over consumers. This constraint is likely to be more bind-
ing were we to have data that contained multiple choices per person [see, for example
Heckman and Snyder (1997)].8 Keep in mind, however, that any reasonable notion of
equilibrium would make pj depend on ξj (as well as on the other product characteris-
tics).

The only part of the specification in (5) we have not explained are the {εij }. They
represent unobserved sources of variation that are independent across individuals for a
given product, and across products for a given individual. In many situations it is hard
to think of such sources of variation, and as a result one might want to do away with the
{εij }. We show below that it is possible to do so, and that the model without the {εij } has
a number of desirable properties. On the other hand it is computationally convenient to
keep the {εij }, and the model without them is a limiting case of the model with them
(see below), so we start with the model in (5). As is customary in the literature, we will
assume that the {εij } are i.i.d. with the double exponential distribution.

Substituting the equation which determines θik into the utility function in (5) we have

(6)Uij = δj + �krxjkzirθ
o
rk + �klxjkνilθ

u
kl + εij ,

where

δj = �kxjkθk + ξj .

Note that the model has two types of interaction terms between product and consumer
characteristics: (i) interactions between observed consumer characteristics (the zi) and
product characteristics (i.e. �krxjkzirθ

o
rk), and (ii) interactions between unobserved

consumer characteristics (the νi) and product characteristics (i.e. �klxjkνilθ
u
kl). It is

these interactions which generate reasonable own and cross price elasticities (i.e. they
are designed to do away with the IIA problem).

7 We could also multiply each utility by positive constant without changing the order, but we use this nor-
malization up by assuming that the εi,j are i.i.d. extreme value deviates, see below.
8 Attempts we have seen to model a random coefficient on the ξ have lead to results which indicate that

there was no need for one, see Das, Olley and Pakes (1996).
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1.3. Steps in estimation: Product level data

There are many instances in which use of the model in (6) might be problematic, and we
come back to a discussion of them below. Before doing so, however, we want to consider
how to estimate that model. The appropriate estimation technique depends on the data
available and the market being modelled. We begin with the familiar case where only
product level demand data is available, and where we can assume that we have available
a set of variables w that satisfies E[ξ |w] = 0. This enables us to construct instruments
to separate out the effect of ξ from that of x in determining shares. The next section
considers additional sources of information, and shows how the additional sources of
information can be used to help estimate the parameters of the problem. In the section
that follows we come back to the “identifying” assumption, E[ξ |w] = 0, consider the
instruments it suggests, and discuss alternatives.

When we only have product level data all individual characteristics are unobserved,
i.e. zi ≡ 0. Typically some of the unobserved individual characteristics, the νi will
have a known distribution (e.g. income), while some will not. For those that do not we
assume that distribution up to a parameter to be estimated, and subsume those parame-
ters into the utility function specification (for example, assume a normal distribution
and subsume the mean in θk and the standard deviation in θu

k ). The resultant known
joint distribution of unobserved characteristics is denoted by fν(·). We now describe
the estimation procedure.

The first two steps of this procedure are designed to obtain an estimate of ξ(·) as a
function of θ . We then require an identifying assumption that states that at θ = θ0, the
true value of θ , the distribution of ξ(·; θ) obeys some restriction. The third step is a
standard method of moments step that finds the value of θ that makes the distribution of
the estimated ξ(·, θ) obey that restriction to the extent possible.

STEP I. We first find an approximation to the aggregate shares conditional on a partic-
ular value of (δ, θ). As noted by McFadden (1974) the logit assumption implies that,
when we condition on the νi , we can find the choice probabilities implied by the model
in (6) analytically. Consequently the aggregate shares are given by

(7)σj (θ, δ) =
∫

exp[δj + �klxjkνilθ
u
kl]

1 +∑q exp[δq + �klxqkνilθ
u
kl]

f (ν) d(ν).

Typically this integral is intractable. Consequently we follow Pakes (1986) and use
simulation to obtain an approximation of it. I.e. we take ns pseudo-random draws
from fν(·) and compute

(8)σj

(
θ, δ, P ns) =

ns∑
r=1

exp[δj + �klxjkνilr θ
u
kl]

1 +∑q exp[δq + �klxqkνilr θ
u
kl]

,

where P ns denotes the empirical distribution of the simulation draws. Note that the use
of simulation introduces simulation error. The variance of this error decreases with ns
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but for given ns can be made smaller by using importance sampling or other variance re-
duction techniques [for a good introduction to these techniques see Rubinstein (1981)].
Below we come back to the question of how the simulation error affects the precision
of the parameter estimates.

STEP II. Let the vector of observed shares be sn = [sn
1 , . . . , sn

J ], where n denotes the
size of the sample from which these shares are calculated (which is often very large).
Step II finds the unique values of δ that makes the predicted shares for a given θ and set
of simulation draws equal to sn. BLP show that iterating on the system of equations

(9)δk
j (θ) = δk−1

j (θ) + ln
[
sn
j

]− ln
[
σj

(
θ, δk−1, P ns)]

leads to the unique δ that makes σj (θ, δ, P ns) = sn
j for all j .9

Call the fixed point obtained from the iterations δ(θ, sn, P ns). The model in (6) then
implies that

(10)ξj

(
θ, sn, P ns) = δ

(
θ, sn, P ns)− �kxjkθk.

I.e. we have solved for the {ξj } as a function of the parameters, the data, and our simu-
lation draws.

“IDENTIFICATION”. An identifying restriction for our model will be a restriction on
the distribution of the true ξ , the ξ obtained when we evaluate the above equation at
n = ns = ∞, that will only be satisfied by ξj (θ, s∞, P ∞) when θ = θ0 (but not at other
values of θ ). Different restrictions may well be appropriate in different applied cases,
and we come back to a discussion of possible restrictions below. For now, however, we
illustrate by assuming we have a set of instruments, say w that satisfy E[ξ(θ0)|w] = 0.
In that case the third and final step of the algorithm is as follows.

STEP III. Interact ξj (θ, sn, P ns) with function of w and find that value of θ that makes
the sample moments as close as possible to zero. I.e. minimize ‖GJ,n,ns(θ)‖ where

(11)GJ,n,ns(θ) =
∑
j

ξj

(
θ, sn, P ns)fj (w).

Formal conditions for the consistency and asymptotic normality of this estimator are
given in Berry, Linton and Pakes (2004), and provided one accounts for simulation and
sampling error in the estimate of the objective function, standard approximations to the
limit distribution work [see, for e.g. Pakes and Pollard (1989)]. A few of the properties
of this limit distribution are discussed below. For now we want only to note that there
is an analytic form for the θ parameters conditional on the θu; i.e. for the given θu the
solution for θ is given by the standard instrumental variable formula. So the nonlinear
search is only over θu.

9 Note that one has to recompute the shares at the “new” δ at each iteration. The system of equations is
a mapping from possible values of δ into itself. BLP prove that the mapping is a contraction mapping with
modulus less that one. The iterations therefore converge geometrically to the unique fixed point of the system.
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1.4. Additional sources of information on demand parameters

Often we find that there is not enough information in product level demand data to
estimate the entire distribution of preferences with sufficient precision. This should not
be surprising given that we are trying to estimate a whole distribution of preferences
from just aggregate choice probabilities. Other than functional form, the information
that is available for this purpose comes from differences in choice sets across markets
or time periods (this allows you to sweep out preferences for given characteristics),
and differences in preferences across markets or over time for a fixed choice set (the
preferences differences are usually associated with known differences in demographic
characteristics). The literature has added information in two ways. One is to add an
equilibrium assumption and work out its implications for the estimation of demand
parameters, the other is to add data. We now consider each of these in turn.

1.4.1. Adding the pricing equation

There is a long tradition in economics of estimating “hedonic” or reduced form equa-
tions for price against product characteristics in differentiated product markets [see, in
particular Court (1939) and Griliches (1961)]. Part of the reason those equations were
considered so useful, useful enough to be incorporated as correction procedures in the
construction of most countries’ Consumer Price Indices, was that they typically had
quite high R2’s.10 Indeed, at least in the cross section, the standard pricing equations
estimated by I.O. economists have produced quite good fits (i.e. just as the model pre-
dicts, goods with similar characteristics tend to sell for similar prices, and goods in parts
of the characteristic space with lots of competitors tend to sell for lower prices). Perhaps
it is not surprising then that when the pricing system is added to the demand system the
precision of the demand parameters estimates tends to improve noticeably (see, for e.g.
BLP).

Adding the pricing system from an oligopoly model to the demand system and es-
timating the parameters of two systems jointly is the analogue of adding the supply
equation to the demand equation in a perfectly competitive model and estimating the
parameters of those systems jointly. So it should not be surprising that the empirical
oligopoly literature itself started by estimating the pricing and demand systems jointly
[see Bresnahan (1981)]. On the other hand there is a cost of using the pricing equation.
It requires two additional assumptions: (i) an assumption on the nature of equilibrium,
and (ii) an assumption on the cost function.

The controversial assumption is the equilibrium assumption. Though there has been
some empirical work that tries a subset of the alternative equilibrium assumptions and
sees how they fit the data [see, for e.g. Berry, Levinsohn and Pakes (1999) or Nevo

10 For a recent discussion of the relationship between hedonic regressions and pricing equations with special
emphasis on implications for the use of hedonics in the CPI, see Pakes (2004).
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(2001)], almost all of it has assumed static profit maximization, no uncertainty, and that
one side of the transaction has the power to set prices while the other can only decide
whether and what to buy conditional on those prices. There are many situations in which
we should expect current prices to depend on likely future profits (e.g.’s include any sit-
uation in which demand or cost tomorrow depends on current sales, and/or where there
are collusive possibilities; for more discussion see the last section of this chapter). Ad-
ditionally there are many situations, particularly in markets where vertical relationships
are important, where there are a small number of sellers facing a small number of buy-
ers; situations where we do not expect one side to be able to dictate prices to another
[for an attempt to handle these situations see Pakes et al. (2006)].

On the other hand many (though not all) of the implications of the results that are of
interest will require the pricing assumption anyway, so there might be an argument for
using it directly in estimation. Moreover, as we have noted, the cross-sectional distrib-
ution of prices is often quite well approximated by our simple assumptions, and, partly
as a result, use of those assumptions is often quite helpful in sorting out the relevance
of alternative values of θ .

We work with a Nash in prices, or Bertrand, assumption. Assume that marginal cost,
to be denoted by mc, is log linear in a set of observables rkj and a disturbance which
determines productivity or ωj , i.e.

(12)ln[mcj ] =
∑

rk,j θ
c
k + ωj .

r will typically include product characteristics, input prices and, possibly the quantity
produced (if there are nonconstant returns to scale). As a result our demand and cost
disturbances (i.e. ξ and ω) will typically be mean independent of some of the compo-
nents of r but not of others. Also we might expect a positive correlation between ξ and
ω since goods with a higher unobserved quality might well cost more to produce.

Since we characteristically deal with multiproduct firms, and our equilibrium as-
sumption is that each firm sets each of its prices to maximize the profits from all of
its products conditional on the prices set by its competitors, we need notation for the
set of products owned by firm f , say Jf . Then the Nash condition is that firms set each
of their prices to maximize

∑
j∈Jf

(pj − Cj (·))Msj (·), where Cj is total costs. This
implies that for j = 1, . . . , J

(13)σj (·) +
∑
l∈Jf

(pl − mcl )M
∂σl(·)
∂pj

= 0.

Note that we have added a system of J equations (one for each price) and R = dim(r)

parameters to the demand system. So provided J > R we have added degrees of free-
dom.

To incorporate the information in (13) and (12) into the estimation algorithm rewrite
the first order condition as s + (p − mc)� = 0, where �i,j is nonzero for elements of
a row that are owned by the same firm as the row good. Then

p − mc = �−1σ(·).
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Now substitute from (12) to obtain the cost disturbance as

(14)ln
(
p − �−1σ

)− r ′θc = ω(θ),

and impose the restrictions that

Efj (w)ωj (θ) = 0 at θ = θ0.

We add the empirical analogues of these moments to the demand side moments
in (11) and proceed as in any method of moments estimation algorithm. This entails
one additional computational step. Before we added the pricing system every time we
evaluated a θ we had to simulate demand and do the contraction mapping for that θ .
Now we also have to calculate the markups for that θ .

1.4.2. Adding micro data

There are a number of types of micro data that might be available. Sometimes we have
surveys that match individual characteristics to a product chosen by the individual. Less
frequently the survey also provides information on the consumer’s second choice (see,
for e.g. MicroBLP), or is a panel which follows multiple choices of the same consuming
unit over time. Alternatively we might not have the original survey’s individual choice
data, but only summary statistics that provide information on the joint distribution of
consumer and product characteristics [for a good example of this see Petrin’s (2002)
use of Consumer Expenditure Survey moments in his study of the benefits to the in-
troduction of the minivan]. We should note that many of the micro data sets are choice
based samples, and the empirical model should be built with this in mind [see, for e.g.
MicroBLP (2004); for more on the literature on choice based sampling see Manski and
Lerman (1977) and Imbens and Lancaster (1994)].

Since the model in (6) is a model of individual choice, it contains all the detail needed
to incorporate the micro data into the estimation algorithm. Thus the probability of an
individual with observed characteristics zi choosing good j given (θ, δ) is given by

(15)

Pr(j |zi, θ, δ) =
∫

ν

exp[δj + �klxjkzilθ
o
kl + �klxjkνilθ

u
kl]

1 +∑q exp[δq + �klxqkzilθ
o
kl + �klxjkνilθ

u
kl]

f (ν) d(ν).

1.4.2.1. What can be learned from micro data Assume temporarily that we can actu-
ally compute the probabilities in (15) analytically. Then we can use maximum likelihood
to estimate (θo, θu). These estimates do not depend on any restrictions on the distribu-
tion of ξ . I.e. by estimating free δj coefficients, we are allowing for a free set of ξj .

On the other hand recall that

δj = �kxjkθk + ξj .

So we cannot analyze many of the implications of the model (including own and cross
price elasticities) without a further assumption which enables us to separate out the
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effect of ξ from the effect of the x on δ (i.e. without the identifying assumption referred
to above). The availability of micro data, then, does not solve the simultaneity problem.
In particular, it does not enable us to separate out the effect of price from unobservable
characteristics in determining aggregate demand. On the other hand there are a few
implications of the model that can be analyzed from just the estimates of (δ, θo, θu).
In particular, estimates of consumer surplus from the products currently marketed (and
hence “ideal” consumer price indices) depend only on these parameters, and hence do
not require the additional identifying assumption.

Now say we wanted to use the data to estimate θ . In order to do so we need a further
restriction so assume, as before, that we have instruments w, and can provide instru-
mental variable estimates of the θ . The number of observations for the instrumental
variable regressions is the number of products. That is, at least if we chose to estimate
(θo, θu) without imposing any constraints on the distribution of ξ , the precision of the
estimates of θ will depend only on the richness of the product level data. Moreover,
IV regressions from a single cross-section of products in a given market are not likely
to produce very precise results; in particular there is likely to be very little independent
variance in prices. Since additional market level data is often widely available, this ar-
gues for integrating it with the micro data, and doing an integrated analysis of the two
data sources.

One more conceptual point on survey data. What the survey data adds is information
on the joint distribution of observed product and consumer attributes. We would expect
this to be very helpful in estimating θo, the parameters that determine the interactions
between z and x. There is a sense in which it also provides information on θu, but that
information is likely to be much less precise. That is we can analyze the variance in
purchases among individuals with the same choice set and the same value of z and use
that, together with the i.i.d. structure of the ε, to try and sort out the variance-covariance
of the ν. However this requires estimates of variances conditional on z, and in practice
such estimates are often quite imprecise. This is another reason for augmenting cross-
sectional survey data with aggregate data on multiple markets (or time periods) in an
integrated estimation routine; then the observed variance in z could determine the θo

and differences in choice sets could help sweep out the impact of the θu parameter.
When the data does have second choice information, or when we observe the same

consuming unit purchasing more than one product, there is likely to be much more
direct information on θu. This because the correlation between the x-intensity of the
first choice and the second choice of a given individual is a function of both θo and the
θu terms, and the θo terms should be able to be estimated from only the first choice
data. A similar comment can be made for repeated choices, at least provided the utility
function of the consuming unit does not change from choice to choice.

Table 2 illustrates some of these points. It is taken from MicroBLP where the data
consisted of a single cross-sectional survey of households, and the market level data
from the same year. The survey contained information on household income, the number
of adults, the number of children, the age (of the head) of household, and whether their
residence was rural, urban, or suburban (and all of these were used in the estimation).
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Table 2
Price substitutes for selected vehicles, a comparison among models

Vehicle Full model Logit 1st Logit 1st and 2nd Sigma only

Metro Tercel Caravan Ford FS PU Civic
Cavalier Escort Caravan Ford FS PU Escort
Escort Tempo Caravan Ford FS PU Ranger
Corolla Escort Caravan Ford FS PU Civic
Sentra Civic Caravan Ford FS PU Civic
Accord Camry Caravan Ford FS PU Camry
Taurus Accord Caravan Ford FS PU Accord
Legend Town Car Caravan Ford FS PU LinTnc
Seville Deville Caravan Ford FS PU Deville
Lex LS400 MB 300 Econovan Ford FS PU Seville
Caravan Voyager Voyager Voyager Voyager
Quest Aerostar Caravan Caravan Aerostar
G Cherokee Explorer Caravan Chv FS PU Explorer
Trooper Explorer Caravan Chv FS PU Rodeo
GMC FS PU Chv FS PU Caravan Chv FS PU Chv FS PU
Toyota PU Ranger Caravan Chv FS PU Ranger
Econovan Dodge Van Caravan Ford FS PU Dodge Van

Source: From Berry, Levinsohn and Pakes (2004).

That study had particularly rich information on vehicle preferences, as each household
reported its second as well as its first best choice.

Table 2 provides the best price substitutes for selected models from demand systems
for automobiles that were estimated in four different ways: (i) the full model allows
for both the zi and the νi (i.e. for interactions between both observed and unobserved
individual characteristics and product characteristics), (ii) the logit models that allow for
only the zi , and (iii) the σ ’s only model allows for only the νi . The most important point
to note is that without allowing for the νi there is a clear IIA problem. The prevalence of
the Caravan and the Full Size (FS) pickups when we use the logit estimates (the models
without the νi) is a result of them being the vehicles with the largest market shares
and the apparent absence of the observed factors which cause different households to
prefer different product characteristics differentially. Comparing to column (iv) it is
clear that the extent of preference heterogeneity caused by household attributes not in
our data is large. MicroBLP also notes that when they tried to estimate the full model
without the second choice information their estimates of the θu parameters were very
imprecise; too imprecise to present. However when they added the second choice data
they obtained both rather precise estimates of the contributions of the unobserved factors
and substitution patterns that made quite a bit of sense. Finally we note that the fact that
there was only a single year’s worth of data made the estimates of θ quite imprecise,
and the paper uses other sources of information to estimate those parameters.
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1.4.2.2. Computational and estimation issues: Micro data There are a number of
choices to make here. At least in principal we could (i) estimate (θo, θu, δ) pointwise,
or (ii) make an assumption on the distribution of ξ (e.g. E[ξ |w] = 0), and estimate
(θo, θu, θ) instead of (θo, θu, δ). However the fact that ξ is a determinant of price, and
price is in the x vector, makes it difficult to operationalize (ii). To do so it seems that
one would have to make an assumption on the primitive distribution of ξ , solve out
for equilibrium prices conditional on (θ, ξ, x), substitute that solution into the choice
probabilities in (15), and then use simulation to integrate out the ξ and ν in the formula
for those probabilities. This both involves additional assumptions and is extremely de-
manding computationally. The first procedure also has the advantage that its estimates
of (θo, θu) are independent of the identifying restriction used to separate out the effect
of ξ from the effect of x on θ .

Assume that we do estimate (θo, θu, δ). If there are a large number of products or J ,
this will be a large dimensional search (recall that there are J components of δ), and
large dimensional searches are difficult computationally. One way to overcome this
problem is to use the aggregate data to estimate δ conditional on θ from the contraction
mapping in (9), and restrict the nonlinear search to searching for (θo, θu).

Finally since the probabilities in (15) are not analytic, either they, or some transform
of them (like the score), will have to be simulated. There is now quite a bit of work on
simulating the probabilities of a random coefficient logit model [see Train (2003) and
the literature cited there]. Here we only want to remind the reader that in the applications
we have in mind it is likely to be difficult to use the log (or a related) function of the
simulated probabilities in the objective function. Recall that if pns(θ) is the simulated
probability, and pns(θ) = p(θ) + ens, where ens is a zero mean simulation error, then

log
[
pns(θ)

] ≈ log
[
p(θ)

]+ ens

p(θ)
− (ens)2

2 × p(θ)2
.

So if the simulated probabilities are based on ns independent simulation draws each
of which has variance V (p(θ)) the bias in the estimate of the log probability will be
approximately

E log
[
pns(θ)

]− log
[
p(θ)

] ≈ − 1

2 × ns × p(θ)
,

and ns must be large relative to p(θ) for this bias to go away (this uses the fact that
Var(pns(θ)) ≈ p(θ)/ns).

In many Industrial Organization problems the majority of the population do not pur-
chase the good in a given period, and the probabilities of the inside goods are formed
by distributing the remainder of the population among a very large number of goods.
For example, in MicroBLP’s auto example, only ten per cent of households purchase a
car in the survey year, and that ten percent is distributed among more than two hundred
models of cars. So it was common to have probabilities on the order of 10−4. It should
not be a surprise then that they chose to fit moments which were linear functions of
the error in estimating the probabilities (they fit the covariances of car characteristics
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and household characteristics predicted by the model to those in the data) rather than
maximizing a simulated likelihood.

1.4.3. Identifying restrictions

Recall that the source of the endogeneity problem in the demand estimates is the
correlation of the product specific unobservable, our ξ , with some of the observable
characteristics of the product; in particular we are worried about a correlation of ξ with
price. The contraction mapping in (9) is helpful in this respect as it delivers ξ as a linear
function of observables. As a result, any of the standard ways of solving endogeneity
problems in linear models can be employed here.

The most familiar way of dealing with endogeneity problems in linear models is to
use instruments. The question then becomes what is an appropriate instrument for x’s
in the demand system, a question which has been discussed extensively in the context
of perfectly competitive models of supply and demand. As in those models cost shifters
that are excluded from demand and uncorrelated with the demand error are available as
instruments. The familiar problem here is that input prices typically do not vary much;
at least not within a single market. There are a couple of important exceptions. One
is when production takes place in different locations even though the products are all
sold in one market [as is common when investigating trade related issues, see Berry,
Levinsohn and Pakes (1999)]. Another is when a subset of the x’s are exogenous, the
cost factors are differentially related to different x’s, and the x-intensity of different
product varies. In this case interactions between the cost factors and those x’s should be
useful instruments.

In addition to cost instruments, Nevo (2001) uses an idea from Hausman (1996)
market-equilibrium version of the AIDS model, applied to a time-series/cross-section
panel of geographically dispersed set of markets. The underlying assumption is that de-
mand shocks are not correlated across markets while cost shocks are correlated across
markets. The prices of goods in other markets then become instruments for the price of
goods in a given market. Nevo (2001) studies breakfast cereals and so sources of com-
mon cost shocks include changes in input prices; sources of common demand shocks
(which are ruled out) include national advertising campaigns.

In oligopoly markets prices typically sell at a markup over marginal cost. So if the
product’s own (x̃j , rj )’s are used as instruments, then so might the (x̃−j , r−j ) of other
products, giving us a lot of potential instruments. Moreover, if price setting models like
the one in Equation (13) are appropriate (and recall that they often have a lot of explana-
tory power), the impact of the (x−j , r−j ) on pj will depend on whether the product’s
are owned by the same or by different firms. This type of reasoning dates back at least
to Bresnahan (1987), who notes the empirical importance of the idea that markups will
be lower in “crowded” parts of the product space and that they will be higher when
“nearby” products are owned by the same firm. BLP and Berry, Levinsohn and Pakes
(1999) rely on this sort of argument to propose the use of functions of rivals’ observed
product characteristics, and of the ownership structure of products, as instruments. Re-
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latedly exogenous changes in competitive conditions across markets are also candidate
instruments (say due to the size of the market, or heterogeneity in entry costs).

It is difficult to specify a priori how to make optimal use of the product characteristics
to predict markups. Both BLP and Berry, Levinsohn and Pakes (1999) try approxi-
mations to the “optimal instrument” formula suggested by Chamberlain (1984). This
assumes

E[ξj |x̃j , x̃−j , rj , r−j ] = E[ωj |x̃j , x̃−j , rj , r−j ] = 0,

homoscedasticity, and ignores the within market dependence induced by the market in-
teractions. Chamberlain’s results then imply that the optimal instrument for our problem
is the derivative of these expectations with respect to the parameter vector.

In our context this will be a difficult to compute function of all the product char-
acteristics. BLP tries to approximate this function “nonparametrically” using the ex-
changeable basis provided in Pakes (1994). Berry, Levinsohn and Pakes (1999), try
an alternative approximation which is more direct, but also more computationally bur-
densome. They use a first-stage estimate of the parameter vector, θ , to recalculate
equilibrium prices with all values of ξ = ω = 0. They then compute the derivative
of ξ and ω with respect to θ at the first stage estimate of θ and the new equilibrium
prices, and use it as an instrument. I.e. instead of evaluating the mean of the deriva-
tive they evaluate the derivative at the mean of the disturbance vector. Note that the
instrument is then a function only of exogenous variables, and so results in consistent
estimators (even though they are not quite efficient).

So far we have assumed mean independence of the unobservable characteristics, and,
as noted, there are plausible reasons to believe that product characteristics themselves
are correlated with ξ . After all the product design team has at least some control over the
level of ξ , and the costs and benefits of producing different levels of the unobservable
characteristics might well vary with the observed characteristics of the product. One
possible solution would be to completely model the choice of product characteristics,
as in the dynamic models considered later in this chapter.

That said since p is typically not as hard to adjust as the other product characteristics,
the relationship between ξ and x̃ does not seem to be nearly as direct as that between ξ

and p (which is the reason it is often ignored; just as it was in traditional models of
demand and supply). So one might be willing to make some reduced form assumption
which allows us to proceed without all the detail of a dynamic game. In particular, one
might try to use changes in demand over time, or across markets, for the same good to
control for the influence of unobserved product characteristics.

For example, suppose that we observe demand for the same product over time. It
might be reasonable to suppose that the product characteristics are correlated with the
unobservable in the year of product introduction. However one might also argue that any
changes in the level of unobserved characteristics over time are due to changes in either
perception of the product or in customer service that have little to do with the initial x

choices. So if t0 were the date of introduction of the good we might assume that

(16)ξj,t = ξj,t0 + ηj,t+1,
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where ηj,t+1 is mean independent of the observed characteristics of all products. Alter-
natively we could assume that ξj,t followed a first order Markov process with only ξj,t0 ,
and not the increments in the process, correlated with observed characteristics.

Relatedly if the data contains sales of the same product in many markets one could
think of restrictions on how the unobservable for a single product changes across mar-
kets. The most straightforward example of this is to require ξ to be the same across
markets. This is quite a powerful restriction, and one might question it on the basis of
differences in the distribution of consumer preferences across markets that impact on
their estimated ξ ’s. A weaker assumption would be that the difference between ξ ’s for
the same product across markets is uncorrelated with the observed x. Similarly, some
products within a market may differ only by the addition of some optional features and
we could restrict the way that ξ changes across products that vary only in their options.

1.5. Problems with the framework

We have motivated our discussion on demand estimation by noting how the recent liter-
ature dealt with the problems that arose in using representative agent models in product
space. There are many senses, however, in which the framework outlined above can be
too restrictive for particular problems. This section reviews some of the more obvious
of them. The impact of these problems depend upon the market one is analyzing and the
issues one is focusing on. Also, at least partial solutions to some of these problems are
available, and we will direct the reader to them where we can. In large part, however,
this section is an outline of agendas for future research on demand estimation for I.O.
problems.

We begin with multiple choice and/or dynamics, and then come back to the prob-
lem in the static discrete choice model considered above. Most empirical studies simply
ignore issues related to multiple choices and/or dynamics. The hope is that the esti-
mated demand system is still the best currently available approximation for analyzing
the question of interest. To us the surprising part of the results of those studies is that the
framework seems to provide a “reasonable” approximation to substitution patterns, and
even more surprisingly, a reasonable approximation to pricing patterns. This despite the
fact that we know that consumers’ demands and the market equilibrium outcomes are
products of much more complicated processes than those we model. Even so, as will
become clear presently, there are a number of issues of importance to I.O. which cannot
be studied empirically without a more detailed understanding of multiple choice and/or
the dynamic aspects of demand.

Multiple units of demand

There are many situations for which a model based on the choice of either one or zero
units of a good does not match reality.11 Models for choosing a finite number of units

11 Dubin and McFadden (1984) provide an earlier example with one discrete choice and one continuous
choice.
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from a set of substitute goods require a specification for the utility from multiple units.
Then, at least in principle, we are back to a discrete choice for “tuples” of goods. How-
ever to maintain tractability when the number of units can grow large the specification
is likely to require constraints which cut down the choice set by implying that some
choices are dominated by others (otherwise the size of the choice set grows as JC ,
where J is the number of products and C is the maximum number of purchases).

One example of the use of such constraints is Hendel’s (1999) two-stage multiple-
unit/multiple good framework for the demand of a firm for computers. He simplifies the
problem by imagining that the firm faces a random, discrete number of tasks. For each
task, it chooses only one type (brand) of computer and, according to the random size of
the tasks, a number of computers to purchase. This explicitly accounts for decisions to
purchase multiple units of multiple kinds of goods.

Gentzkow (2004) considers a problem with a small number of goods, but where there
are a small number of choices. In that study of online and print newspapers, some of the
goods are potentially complements, and this requires a different set of modifications.
Moreover, as Gentzkow shows the determination of whether goods are in fact comple-
ments or substitutes interacts with the issue of the form of consumer heterogeneity in
subtle ways reminiscent of the initial condition problems in panel data estimation [see
Heckman (1981)].

A related problem involves continuous choice over multiple goods. If all goods are
purchased in some positive amount by every consumer, then a traditional continuous
demand approach, equating marginal rates of substitution across all goods, is appropri-
ate. But many real-world consumer data problems involve a large number of goods with
many zero purchase decisions and many positive purchase decisions. Chan (2002) con-
siders the Kuhn–Tucker version of the traditional continuous choice problem to study
soft drink purchases.

Dynamic demand

Yet another set of problems arises when the demand for the good is inherently dynamic,
as occurs with either durable, storable, or experience goods. Models which are appro-
priate for dynamic demand estimation can become quite complex; they require forward
looking consumers whose behavior depends on the likely distribution of future (as well
as current) offerings. Moreover, in a complete model these future offerings would, in
turn, depend on producer’s perceptions of consumer demand. A number of new studies
make simplifying assumptions which allow them to make some headway.

Both Hendel and Nevo (2002) and Erdem, Imai and Keane (2003) consider a problem
of durable good demand in an explicitly dynamic framework. They consider shopping
decisions when consumers are allowed to store purchases, and use a reduced form as-
sumption on the process generating prices. It has been clear to I.O. economists for some
time that we are going to have to model intertemporal substitution of this form in order
to understand “sales” in retail markets [see Sobel (1984)].
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Two problems in this kind of study are that the rate of consumption (inventory re-
duction) at home is typically not observed and the dimension of the state space (which
involves both the current price vector, which predicts future prices, and also the vector
of household inventories of different brands). In these models new purchases are added
to a single-index of home inventories, with different brands of product receiving differ-
ent utility weights in the inventory stock. This single index of inventories reduces the
dimensionality of the state space. Another simplifying assumption is that unobserved
household consumption follows a simple rule.

Esteban and Shum (2002) consider a model of durable automobile purchases. They
assume a used-car market with zero transaction costs. The zero transaction costs imply
that the joint distribution of past choices and consumer characteristics are not a state
variable of the problem. Under these assumptions they are able to derive empirical im-
plications about the dynamic pricing problem of the durable goods manufacturer (in
determining current price the manufacturer has to worry about future aggregate supply
of the used goods). Many, if not most, manufacturing goods are durable.

Studies of demand for advertised experience goods include Erdem and Keane (1996),
Ackerberg (2003), and Crawford and Shum (2007). All of these papers feature Bayesian
consumers who learn both from experience and from adverting. This leads to a fairly
complex dynamic programming problems for the consumer. The studies largely ignore
the firm’s endogenous pricing and advertising decisions.

Problems with the static discrete choice specification

There are also aspects of the static discrete choice specification of the model outlined
above whose flexibility, and/or implications, are not yet well understood. One such
issue is whether the second derivatives of the demand function are very flexibly es-
timated. This will determine whether two goods are strategic substitutes or strategic
complements, and hence has implications for the analysis of the structure of strategic
interaction, and appears to be largely unexplored in the current literature. More gen-
erally there are a host of questions on what we can learn nonparametrically about the
structure of demand from different kinds of data that we have not touched on here (for
a discussion of some of them, see Matzkin’s contribution to this volume).

A second such issue concerns the role of the i.i.d. “idiosyncratic match values”, the
εij ’s, in the models above. These are added to the model largely for computational con-
venience; they do not seem to match any omitted causal demand determinant. Moreover,
the presence of the εij has implications. They imply that each product is “born” with a
distribution of consumer tastes whose conditional distribution, conditional on the tastes
for other products, has support that ranges from minus to plus infinity. This implies that
every conceivable product, no matter its characteristics and price, will have a strictly
positive (though perhaps quite tiny) expected market share.

Given the standard εij ’s, each product will also have a positive cross-price effect with
every other product: competition is never completely local. Perhaps most problematic,
it also implies that if we define a consumer by a (z, ν) combination, every consumer’s
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utility will grow without bound as we increase the number of products – regardless of
the characteristics or prices of the new products that are introduced. As a result there is
a worry about the ability of the model in (6) to provide an adequate approximation to
the benefits from introducing new goods.12

To investigate these issues more fully, Berry and Pakes (2005) consider a “pure char-
acteristic” model of demand. That model is exactly the model in Equation (6) once we
omit the εij terms. They consider the analytic properties of the model, then provide an
estimation algorithm for it and explore its computational properties, and finally provide
Monte Carlo evidence on its performance. Song (2004) has used this model to evaluate
the gains from new semiconductor chips. The pure characteristics model is somewhat
more computationally burdensome then the model in Equation (6), largely because the
equation for solving for δ for that model (the analogue to Equation (9)) is not necessar-
ily a contraction with modulus less than one. On the other hand its shares are easier to
simulate to sufficient accuracy. However the jury is still out on the major question; the
question of whether the pure characteristic model tends to provide a better approxima-
tion to the consumer surplus gains from new goods then the model with the εij .

Berry and Pakes (2005) and Bajari and Benkard (2005) discuss two different versions
of the “pure characteristics” model with “no ε”s. Berry and Pakes (2005) consider a
discrete choice version of the model, with a utility function of

(17)uij = xjβi − αipj + ξj ,

where βi and αi are random coefficients associated with consumer i’s tastes for char-
acteristics and price of product j . Berry and Pakes suggest a BLP-style estimation
algorithm.

In contrast, Bajari and Benkard (2005) obtain an estimate of the unobservable de-
mand component, ξj , from the pricing side of the model rather than the demand side.
The argument is that in a “pure characteristics” model, prices must be strictly increasing
in ξ conditional on other x’s. Following on recent econometric literature, they show that
a monotonic transformation of the ξ can be obtained from data on prices and x’s. This
transformed ξ is then used in the demand-side analysis to control for unobserved char-
acteristics. Note, however, that consistency of this approach relies on asymptotics in the
number of products, and further requires the assumption that products enter the market
in such a way that eventually they “fill up” the product space (i.e., for every product, it is
assumed that eventually there will be other products whose observed characteristics are
arbitrarily close to those of the given product). In practice it is clear that the approach

12 We hasten to note that estimating the consumer surplus generated by new products is an extremely difficult
task in any framework. This is because we typically do not have data on the demand for new products at
prices that are high enough to enable us to estimate the reservation prices of a large fraction of consumers.
The characteristic based demand model does use slightly more information in its estimation of consumer
surplus gains than do demand models in product space, since it uses the price variance for products with
similar characteristics. However the results are still not terribly robust. Petrin (2002), for example, reports
large differences in consumer surplus gains from differences in specifications and data sources.
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requires data with many products per market, but there has not been enough experience
to date to know what “many” means in this context.

1.6. Econometric details

This subsection summarizes results from Berry, Linton and Pakes (2004) who provide
limit theorems for the parameter estimates from differentiated product models. The ac-
tual form of the limit distributions depends on the type of data and type of model. We
will focus on the case where only one cross section of market level data is available.
Our purpose is to give the reader some indication of how the various estimation errors
that have been introduced are likely to effect the parameter estimates, and this is the
simplest environment in which to show that.13

Recall that the objective function minimized in the estimation algorithm or Equa-
tion (11) is a norm of

GJ

(
θ, sn, P ns) = 1

J

J∑
j=1

ξj

(
θ, sn, P ns)fj (w).

The ξj are defined implicitly as the solution to the system

sn
j = σj

(
ξ, x; θ, P ns),

where σ(·) is defined in (8), the w satisfy E[ξ |w, θ0] = 0, sn is the observed vector of
market shares, and P ns is notation for the vector of simulation draws used to compute
the market shares predicted by the model.

The objective function, ‖GJ (θ, sn, P ns)‖, has a distribution determined by three
independent sources of randomness: randomness generated from the draws on the prod-
uct characteristics (both observed and unobserved, in the full model these are vectors
{ξ, x̃, r, ω}), randomness generated from the sampling distribution of sn, and that gen-
erated from the simulated distribution P ns. Analogously there are three dimensions in
which our sample can grow: as n, as ns, and as J grow large.

The limit theorems allow different rates of growth for each dimension. Throughout
we take pathwise limits, i.e. we write n(J ) and ns(J ), let J → ∞, and note that our
assumptions imply n(J ), ns(J ) → ∞ at some specified rate. Note also that both sn

and σ(ξ, θ, P ) take values in RJ , where J is one of the dimensions that we let grow in
our limiting arguments. This is an unusual feature of the econometric model and causes
complications in the limiting arguments. As will become obvious sampling error (error

13 Cases in which there is data from many regional markets but the same goods are sold in each of them will
still have to deal with limits as the number of products grows large; it is just that then we might also want
to let the number of markets increase as we increase the number of products. Also in cases with regional
markets the computational problems we highlight will be even more severe, as then we will have to compute
ξ separately in each different market.
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in sn) plays an analogous role to simulation error (error in P ns), so for notational sim-
plicity assume that n is sufficiently large that we do not need to worry about sampling
error. When there is no sampling (simulation) error we set n (ns) equal to zero.

We need to find an approximation for the objective function which allows us to sep-
arate out the roles of the three sources of error. To this end write

(18)ξ
(
θ, s0, P ns) = ξ

(
θ, s0, P 0)+ {ξ(θ, s0, P ns)− ξ

(
θ, s0, P 0)}.

The function σ(ξ, θ, P ) is differentiable in ξ , and its derivative has an inverse, say

H−1(ξ, θ, P ) =
{

∂σ (ξ, θ, P )

∂ξ ′

}−1

.

Abbreviate σo(θ, s, P ) = σ(ξ(s, θ, P ), θ, P ) and Ho(θ, s, P ) = H(ξ(s, θ, P ), θ, P ),
and let

σ
(
ξ, P ns, θ

) = σ
(
ξ, P 0, θ

)+ εns(θ).

Then from the fact that we obtain ξ from σ(·) = σ(ξ, P 0, θ) + εns(θ) it follows that

ξ
(
θ, s0, P ns) = ξ

(
θ, s0, P 0)+ H−1

o

(
θ, s0, P 0){εns(θ)

}+ r
(
θ, sn, P ns),

where r(θ, sn, P ns) is a remainder term. Substituting into (18)

GJ

(
θ, sn, P ns) = GJ

(
θ, s0, P 0)+ 1

J
z′H−1

o

(
θ, s0, P 0){−εns(θ)

}
+ 1

J
z′r
(
θ, sn, P ns).

The limit theorems in Berry, Linton and Pakes (2004) work from this representa-
tion of GJ (θ, sn, P ns). To prove consistency they provide conditions which insure that:
(i) the second and third terms in this equation converge to zero in probability uniformly
in θ , and (ii) an estimator which minimized ‖GJ (θ, s0, P 0)‖ over θ ∈ Θ would lead to
a consistent estimator of θ0.

Asymptotic normality requires, in addition, local regularity conditions of standard
form, and a limiting distribution for H−1

o (θ, s0, P 0){−εns(θ)}. The rate needed for this
limit distribution depends on how the elements of the J × J matrix H−1

o (θ, s0, P 0)

grow, as J gets large. It is easiest to illustrate the issues that can arise here by going
back to the simple logit model.

In that model: ui,j = δj + εi,j , with the {εi,j } distributed i.i.d. type II extreme value,
and δj = xj θ + ξj . Familiar arguments show that σj = exp[δj ]/(1 + ∑q exp[δq ]),
while σ0 = 1/(1 +∑q exp[δq ]). In this case the solution to the contraction mapping
in (9) is analytic and

ξj

(
θ, so, P o

) = (ln[so
j

]− ln
[
so

0

])− xjβ.

Thus in this simple case

∂ξ

∂sj

∣∣∣∣
so

= 1

so
j

.
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Now consider how randomness affects the estimate of ξj (θ). In the simple logit model
the only source of randomness is in the sampling distribution of sn. That is we observe
the purchases of only a finite random sample of consumers. Letting their shares be sn

we have, sn − so = εn. The first order impact of this randomness on the value of our
objective function at any θ will be given by

H−1
o

(
θ, s0)× εn = ∂ξ

∂s

∣∣∣∣
s=s0

× εn.

This contains expressions like εn
j

1
so
j

. In the logit model as J → ∞, so
j → 0. So as J

grows large the impact of any given sampling error grows without bound.
A similar argument holds for the estimator of BLP’s model, only in this more com-

plicated model there are two sources or randomness whose impacts increase as J grows
large, sampling error and simulation error. Consequently Berry, Linton and Pakes show
that to obtain an asymptotically normal estimator of the parameter vector from this
model both n and ns must grow at rate J 2. Note the similarity here to the reason that
simulation error is likely to make use of maximum likelihood techniques with survey
data computationally demanding; i.e. the impact of the simulation error on the objective
function increases as the actual shares get smaller. The computational implication here
is that for data sets with large J one will have to use many simulation draws, and large
samples of purchasers, before one can expect to obtain an accurate estimator whose
distribution is approximated well by a normal with finite variance.

Interestingly, this is not the case for the pure characteristic model discussed in the last
subsection. We will not provide the argument here but Berry, Linton and Pakes (2004)
show that in that model both n and ns need only grow at rate J (and depending on the
pricing equilibrium, sometimes slower rates will do), for the normal limit distribution
to be appropriate. This gives the pure characteristic model a computational advantage
in calculating shares, though, as noted above, it is harder to compute the analogue of
the contraction mapping in (9) for the pure characteristics model, so it can still be com-
putationally demanding.

1.7. Concluding remark

The last decade has seen a rather dramatic change in the way I.O. researchers analyze
demand systems. There now is a reasonably substantial body of academic research us-
ing the new techniques, and it seems to indicate that, at least for many situations, they
allow us to get better approximations to substitution patterns and the likely demand for
new goods than had been possible previously. Perhaps not surprisingly then, the tech-
niques have been picked up, to varying extents, by: the consulting community, various
government offices, and even by a part of the business community. On the other hand,
as we have tried to emphasize, there are empirically important issues and data sets that
the new techniques are not able to analyze – at least not without substantial further de-
velopments. We welcome those developments. Moreover, we hope that they will not
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be judged by any absolute criteria but rather by the simple test of whether they allow
for improvements in our ability to empirically analyze one or more issue of substantive
interest.

2. Production functions

As noted in the introduction, the advent of new micro data sets on the inputs and out-
puts from the production process has generated a renewed interest in the estimation of
production functions and their use in the analysis of productivity. We begin this sec-
tion by reviewing the basic simultaneity and selection issues that the recent literature on
production function estimation has faced. We then consider the traditional solutions to
these issues, pointing out why those solutions are not likely to be terribly helpful in our
context.

Next we introduce an approach based on explicit models of input choices and exit
decisions that was first introduced in a paper by Olley and Pakes (1996). Our presenta-
tion of the Olley–Pakes model will stress the assumptions they used which either we,
or others before us, see as questionable (at least in certain environments). These in-
clude assumptions on: the timing of input choices, the cost of changing the levels of
different inputs over time, the process by which productivity evolves over time, and the
relationship of investment to that process. The rest of the section focuses on ways of
testing these assumptions, and details recently proposed modifications to the estimation
procedure which might be used when they seem appropriate.

2.1. Basic econometric endogeneity issues

We can illustrate all issues that will concern us with simple Cobb–Douglas production
technology

Yj = AjK
βk

j L
βl

j

with one output (Yj ) and two inputs; capital (Kj ) and labor (Lj ). Aj represents the
Hicksian neutral efficiency level of firm j , which is unobserved by the econometri-
cian.14

Taking natural logs results in a linear equation

(19)yj = β0 + βkkj + βllj + εj ,

where lowercase symbols represent natural logs of variables and ln(Aj ) = β0 + εj .
The constant term β0 can be interpreted as the mean efficiency level across firms, while

14 The methods discussed in this chapter are equally applicable to many other production functions. As we
shall see the major requirements will be that variable inputs have positive cross-partials with productivity, and
that the value of the firm is increasing in fixed inputs.
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εj is the deviation from that mean for firm j . εj might represent innate technology or
management differences between firms, measurement errors in output, or unobserved
sources of variance in output caused by weather, machine breakdowns, labor problems,
etc.

We have known since Marschak and Andrews (1944) that direct OLS estimation
of (19) is problematic. The problem is that the right-hand side variables, capital and
labor, are generally chosen by the firm. If the firm has knowledge of its εj (or some part
of εj ) when making these input choices, the choices will likely be correlated with εj .
For example, suppose that firms operate in perfectly competitive input and output mar-
kets (wj , rj , and pj being the prices of labor, capital, and output, respectively), that
capital is a fixed input, that firms perfectly observe εj before choosing labor, and that
firms’ current choices of labor only impact current profits and have no effect on future
profits. Then the firm’s optimal short-run choice of labor input is given by

(20)Lj =
[

pj

wj

βle
β0+εj K

βk

j

] 1
1−βl

.

Since choice of Lj (and thus lj ) depends directly on εj , OLS will generate biased
coefficient estimates. In more general models, firms’ choices of Kj will also typically
be correlated with εj .15

There is a second, less well documented, endogeneity problem often inherent in OLS
estimation of (19). Firm level datasets usually have a considerable level of attrition. For
example, over a wide range of manufacturing industries, Dunne, Roberts and Samuelson
(1988) find exit rates higher than 30% between 5 year census pairs. In applied work,
one only has data on firms prior to exiting. If firms have some knowledge of εj prior to
exiting, the firms that continue to produce will have εj draws from a selected sample,
and the selection criteria will be partially determined by the other fixed inputs. Again
as a simple example, suppose that firms are monopolies that are exogenously endowed
with different fixed levels of capital. Firms then observe εj , decide whether to exit or
not, and choose labor and produce if they have not exited. Also for simplicity suppose
that after production firms disappear, so that the firms have no dynamic considerations.
Firms in this situation will have an exit rule of the following form:

χ(εj ,Kj ; pj ,wj , β) = 0 (or exit) iff Π(εj ,Kj ; pj ,wj , β) < Ψ,

where β is the set of parameters (β0, βl, βk) and Ψ is the nonnegative selloff value of the
firm. Π is the argmax (over the variable input labor) of variable profits. This condition
states that firms exit if variable profits are not at least as high as the selloff value of the
firm.16

15 Empirical results have lead practitioners to conclude that most often the bias imparted on the labor coeffi-
cient βl is larger than the bias imparted on the capital coefficient βk . This is consistent with models of input
choice where labor is more easily adjustable than capital (i.e. labor is a “more variable” input than capital).
The intuition here is that because it is more quickly adjustable, labor is more highly correlated with εj .
16 This is a very simple example of an exit rule. More realistic models of exit would be dynamic in nature
and distinguish between fixed and sunk costs; see the discussion below.
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The key point is that this exit condition will generate correlation between εj and
Kj conditional on being in the dataset (i.e. on not exiting). In the Cobb–Douglas case,
both εj and Kj positively impact variable profits. As a result, selection will generate
negative correlation between εj and Kj , since firms with higher Kj will be able to
withstand lower εj without exiting. Thus, even if Kj is exogenous in the sense that it
is uncorrelated with εj in the entire population of potentially active firms, selection can
generate negative correlation in one’s sample.

2.2. Traditional solutions

As is often the case, the two traditional solutions to these endogeneity problems are
instrumental variables and fixed effects. Before discussing these approaches, we make
two slight changes to our basic model. First, to explicitly consider the use of longitudinal
panel data, we index our variables by time t . Second, to be precise about where exactly
the endogeneity problems are coming from, we divide the unobservable εjt into two
components, ωjt and ηjt , i.e.

(21)yjt = β0 + βkkjt + βllj t + ωjt + ηjt .

The ηjt here are intended to represent unobservables that are not observed (or pre-
dictable) by the firm before input and exit decisions at time t . As such, they will not be
correlated with these choices of inputs or exit behavior. On the other hand we do allow
the possibility that ωjt is observed (or predictable) by firms when they choose inputs
and make exit decisions. Intuitively, ωjt might represent factors like managerial ability
at a firm, expected down-time due to machine breakdowns or strikes, or the expected
rainfall at a farm’s location. ηjt might represent deviations from expected breakdown
rates in a particular year or deviations from expected rainfall at a farm. Another valid
interpretation of ηjt is that it is classical measurement error in yjt that is uncorrelated
with inputs and exit decisions. The basic point here is that we have consolidated our
endogeneity problems into ωjt . ηjt is not a concern in that regard. We will often refer
to ωjt as the firms “unobserved productivity”.

2.2.1. Instrumental variables

Instrumental variables approaches rely on finding appropriate instruments – variables
that are correlated with the endogenous explanatory variables but do not enter the
production function and are uncorrelated with the production function residuals. For-
tunately, the economics of production suggests some natural instruments. Examining
input demand functions (such as (20)) suggests that input prices (rjt and wjt ) directly
influence choices of inputs. In addition, these prices do not directly enter the production
function. The last necessary condition is that the input prices need to be uncorrelated
with ωjt . Whether this is the case depends on the competitive nature of the input mar-
kets that the firm is operating in. If input markets are perfectly competitive, then input
prices should be uncorrelated with ωjt since the firm has no impact on market prices.
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This is the primary assumption necessary to validate input price instruments. Note why
things break down when firms have market power in input markets. If this is the case,
input prices will be a function of the quantity of purchased inputs, which will generally
depend on ωjt .17

While using input prices as instruments may make sense theoretically, the IV ap-
proach has not been uniformly successful in practice. We believe there are at least four
reasons for this. First input prices are often not reported by firms, and when firms do
report the labor cost variable, i.e. wjt , is often reported in a way that makes it difficult
to use. Labor costs are typically reported as average wage per worker (or average wage
per hour of labor). Optimally, we would want this variable to measure differences in
exogenous labor market conditions faced by firms. Unfortunately, it may also pick up
some component of unmeasured worker quality. Suppose we as econometricians do not
observe worker quality, and that some firms employ higher quality workers than oth-
ers. Presumably, the firms with higher quality workers must pay higher average wages.
The problem here is that unobserved worker quality will enter the production function
through the unobservable ωjt . As a result, ωjt will likely be positively correlated with
observed wages wjt , invalidating use of wjt as an instrument.

Second, to use prices such as rjt and wjt as instruments requires econometrically
helpful variation in these variables. While input prices clearly change over time, such
time variation is not helpful when one wants to allow flexible effects of time in the pro-
duction function (e.g. allowing β0 to be a flexible function of t). One generally needs
significant variation in rjt and wjt across firms to identify production function coeffi-
cients. This can be a problem as we often tend to think of input markets as being fairly
national in scope. One might not expect, for example, the price of capital or labor mar-
ket conditions to vary that much between states. Summarizing, to use the IV approach
one: (1) has to observe significant variation in input prices across firms in the data, and
(2) believe that this variation is due primarily to differences in exogenous input market
conditions, not due to differences in unobserved input quality.

A third problem with IV is that it relies fairly strongly on an assumption that ωjt

evolves exogenously over time, i.e. firms do not choose an input that affects the evo-
lution of ωjt . Allowing ωjt to be affected by chosen inputs that we do not control for
is very problematic econometrically for the IV approach, for then it would be hard to
imagine finding valid instruments for observed input choices. One would need to find
variables that affect one input choice but that do not affect other input choices. In gen-
eral this will be hard to do, since individual input choices typically depend on all input
prices.

17 Another possible instrument is output prices, as long as the firm operates in competitive output markets.
These instruments have been used less frequently, presumably because input markets are thought to be more
likely to be competitive. Other related instruments are variables that shift either the demand for output or the
supply of inputs. While these types of instruments are typically harder to come by, one can argue that they are
valid regardless of the competitive nature of input or output markets.
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Finally, the IV approach only addresses endogeneity of input choice, not endogenous
exit. Endogenous exit will tend to invalidate the direct use of input prices as instruments.
The reason for this is that it is probable that the exit decision will be based in part on
input prices. For example, we might expect that firms who face higher input prices to
be more likely to exit (i.e. would exit at a higher ωjt ). This is likely to generate pos-
itive correlation between the instruments and the residuals in the production function.
While direct application of IV in this situation is problematic, it is possible that one
could combine the population orthogonality assumptions with a selection model [e.g.
Gronau (1974), Heckman (1974, 1976, 1979)] to generate a consistent estimator of the
production function parameters.

2.2.2. Fixed effects

A second traditional approach to dealing with production function endogeneity issues is
fixed effects estimation. In fact, fixed effects estimators were introduced to economics
in the production function context [Hoch (1962), Mundlak (1961)]. Fixed effects ap-
proaches make explicit use of firm panel data. The basic assumption behind fixed effects
estimation is that unobserved productivity ωjt is constant over time, i.e.

(22)yjt = β0 + βkkjt + βllj t + ωj + ηjt .

This allows one to consistently estimate production function parameters using either
mean differencing, first differencing, or least squares dummy variables estimation tech-
niques. First differencing, for example, leads to

(23)yjt − yjt−1 = βk(kjt − kjt−1) + βl(lj t − lj t−1) + (ηjt − ηjt−1).

Given the assumption that the ηjt ’s are uncorrelated with input choices ∀t ,18 this
equation can be consistently estimated by OLS.19 Note that this approach simultane-
ously solves the selection problem of endogenous exit, at least if exit decisions are
determined by the time invariant ωj (and not by the ηjt ’s). While fixed effects ap-
proaches are fairly straightforward and have certainly been used in practice, they have
not been judged to be all that successful at solving endogeneity problems in production
functions either. Again, there are a number of reasons why this may be the case.

First, it is clearly a strong assumption that ωj is constant over time. This is especially
true given the longer time frames for which panel data is now becoming available.
In addition, researchers are often interested in studying periods of data containing
major economic environmental changes (e.g. deregulation, privatization, trade policy

18 The assumption that ηjt ’s are uncorrelated with input choices (and possibly entry/exit decisions) at all time
periods t is often described as a “strict” exogeneity assumption. One can often estimate these fixed effects
models under weaker, “sequential” exogeneity assumptions, i.e. that ηjt ’s are uncorrelated with input choices
at all time periods � t . See Wooldridge (2002) for a discussion of these issues.
19 Note that generic OLS standard errors are wrong because the residuals will be correlated across observa-
tions.
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changes, . . . ). Typically these changes affect different firms’ productivities differently,
and those firms that the change impacts positively will be more likely to increase their
inputs and less likely to exit.20

A second potential problem with fixed effects estimators is that when there is mea-
surement error in inputs, fixed effects can actually generate worse estimates than stan-
dard level (OLS) estimators. Griliches and Hausman (1986) note that when inputs are
more serially correlated over time than is input measurement error, differencing can
lower the signal to noise ratio in the explanatory variables.21 This can generate higher
biases in fixed effects estimators than in OLS estimators, even if ωj is constant over
time and correlated with the explanatory variables.22

Lastly, fixed effects estimators simply have not performed well in practice. One often
gets unreasonably low estimates of capital coefficients.23 Even one of the seminal pa-
pers, Hoch (1962), for example, finds estimates of returns to scale around 0.6 – almost
certainly an unrealistically low number. Another empirical finding that appears to con-
tradict the fixed effect assumption concerns the comparison of fixed effects estimates on
balanced panels (containing only observations for firms appearing throughout the sam-
ple) to those on the full panel. As mentioned above, if ωj is constant over time, fixed
effects estimation completely addresses selection and input endogeneity problems. As
a result, one should obtain similar fixed effects estimates whether one uses the balanced
sample or the full sample. Olley and Pakes (1996), for example, find very large differ-
ences in these two estimates, suggesting that the fixed effects assumption is invalid. That
said, whether or not one takes fixed effects estimates as serious estimates of structural
production function parameters, the fixed effect decomposition of variation into within
and between components often provides a useful reduced form look at a dataset.

2.3. The Olley and Pakes (1996) approach

A recent paper by Olley and Pakes (1996) (henceforth OP) takes a different approach
to solving both the simultaneity and selection problems inherent in production function
estimation. Their empirical context is that of telecommunications equipment producers

20 The restriction that ωj is constant over time is one that has been relaxed (in parametric ways) in the dy-
namic panel data literature, e.g. Chamberlain (1984), Arellano and Bond (1991), Arellano and Bover (1995),
and Blundell and Bond (1999). For example, these methods can allow ωjt to be composed of a fixed effect
plus an AR(1) process.
21 By signal to noise ratio, Griliches and Hausman mean the variance in an observed explanatory variable due
to true variance in the variable, vs. variance in the observed explanatory variable due to measurement error.
This signal to noise ratio is inversely related to the bias induced by measurement error.
22 Note that in this case (i.e. when there is measurement error in inputs), both fixed effects and OLS estimators
are biased. Also, note that the more structural approaches discussed later in this chapter are likely also prone
to this critique.
23 “Unreasonable” is clearly not a completely precise statement here. We are referring to cases where the
estimated capital coefficient is considerably below capital’s cost share or where returns to scale are extremely
low.
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(using data from the US Census Bureau’s longitudinal research database). The basic
empirical goal is to measure the impact of deregulation and the breakup of AT&T on
measures of plant level productivity. Our focus is on the OP methodology for addressing
the endogeneity problems rather than the actual empirical results.

As we work through the OP approach, it is useful to keep in mind three types of as-
sumptions that will be important in the approach. First there are assumptions on timing
and the dynamic nature of inputs. Timing refers to the point in time when inputs are
chosen by the firm relative to when they are utilized in production. “Dynamic nature”
refers to whether the input choices of the current period affect the cost of input use in
future periods; if it does not the input is labelled nondynamic and if it does the input is
labelled as dynamic (and its current value becomes a “state variable” in the problem).
Second, there will be a scalar unobservable assumption. This assumption limits the di-
mensionality of the econometric unobservables that impact firm behavior. Third, there
will be a strict monotonicity assumption on the investment demand function – basically
that investment level is strictly monotonic in the scalar unobservable (at least for firms
whose investment level is strictly positive). We will see that this last assumption can
be generated by more basic assumptions on economic primitives. While some of these
assumptions can be relaxed in various ways, we delay that discussion until the next
subsection.

Lastly, note that we focus on how to use the OP methodology in practice. We do
not address the higher level technical aspects of the methodology, e.g. semiparametric
consistency proofs and alternative standard error derivations for their two-step estima-
tors. For discussion of these issues, e.g. see Pakes and Olley (1995) and the literature
they cite. One might also look at Wooldridge (2004), who presents a concise, one-step,
formulation of the OP approach for which standard error derivations are more straight-
forward.24 This one-step approach may also be more efficient than the standard OP
methodology.

The rest of this section discusses in detail the workings of the OP methodology. We
start by describing a simple, bare bones, version of the model and methodology that
ignores potential selection problems. We then move on to the full OP model, which
does address selection. Lastly, we discuss caveats and extensions of the OP procedure.

2.3.1. The model

The OP approach considers firms operating through discrete time, making production
choices to maximize the present discounted value (PDV) of current and future profits.
The environment is as follows. First, the assumed production function is similar to (21),
with an additional input ajt

(24)yjt = β0 + βkkjt + βaajt + βllj t + ωjt + ηjt

24 Though Woolridge deals with input endogeneity, he does not explicitly consider the selection issue. How-
ever similar ideas can be used when one needs to incorporate selection corrections.
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the natural log of the age (in years) of a plant. The interest in the age coefficient stems
from a desire to separate out cohort from selection effects in determining the impact of
age of plant on productivity.

Second, unobserved productivity ωjt is assumed to follow an exogenous first order
Markov process. Formally,

(25)p
(
ωjt+1

∣∣{ωjτ }tτ=0, Ijt

) = p(ωjt+1|ωjt ),

where Ijt is the firm’s entire information set at time t . This is simultaneously an econo-
metric assumption on unobservables and an economic assumption on how firms form
their perceptions on (i.e. learn about) the evolution of their productivity over time.
Specifically, a firm in period t , having just observed ωjt , infers that the distribution
of ωjt+1 is given by p(ωjt+1|ωjt ). Firms thus operate through time, realizing the value
of ωjt at period t and forming expectations of future ωj ’s using p(ωjt+1|ωjt ). Note that
this first-order Markov assumption encompasses the fixed effects assumption where ωjt

is fixed over time (i.e. ωjt = ωj ). OP also assume that p(ωjt+1|ωjt ) is stochastically
increasing in ωjt . Intuitively, this means that a firm with a higher ωjt today has a “bet-
ter” distribution of ωjt+1 tomorrow (and in the more distant future). Lastly, note that the
ωjt process is assumed to be a time-homogeneous Markov process, i.e. p is not indexed
by t .25

Third, capital is assumed to be accumulated by firms through a deterministic dynamic
investment process, specifically

kjt = (1 − δ)kjt−1 + ij t−1.

Here we will assume that ij t−1 is chosen by the firm at period t − 1. That is, we are
assuming that the capital that the firm uses in period t was actually decided upon at
period t − 1; so it takes a full production period for new capital to be ordered, received,
and installed by firms.26 This assumes that capital is a fixed (rather than variable) input.

Lastly, OP specify single period profits as

π(kjt , ajt , ωjt ,�t ) − c(ij t ,�t ).

Note that labor lj t is not explicitly in this profit function – the reason is that labor is as-
sumed to be a variable and nondynamic input. It is variable in that (unlike capital), lj t is
chosen at period t , the period it actually gets used (and thus it can be a function of ωjt ).
It is nondynamic in the sense that (again, unlike capital) current choice of labor has no

25 This assumption is not as strong as it might seem, as, e.g. one can easily allow average productivity to
vary across time by indexing β0 by t , i.e. β0t . The assumption can also be relaxed in some cases, i.e. allowing
pt (ωjt+1|ωjt ) to be indexed by t .
26 We note that there is a long literature on trying to determine the distributed lag which translates investment
expenditures into a productive capital stock [see, for e.g. Pakes and Griliches (1984) and the literature cited
there], and one could incorporate different assumptions on this distributed lag into the OP framework. OP
themselves also tried allowing current investment to determine current capital, but settled on the specification
used here.
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impact on the future (i.e. it is not a state variable). This nondynamic assumption rules
out, for example, fixed hiring or firing costs of labor. We discuss relaxing this assump-
tion in Section 2.4. For now π(kjt , ajt , ωjt ,�t ) can be interpreted as a “conditional”
profit function – conditional on the optimal static choice of labor input.

Note also that both π(·) and c(·) depend on �t , which represents the economic en-
vironment that firms face at a particular point in time. �t could capture input prices,
characteristics of the output market, or industry characteristics like the current distri-
bution of the states of firms operating in the industry. The OP formulation allows all
these factors to change over time, although they are assumed constant across firms in
a given time period. Including market structure in the state space allows some of the
competitive richness of the Markov-perfect dynamic oligopoly models of Ericson and
Pakes (1995).27

Given this economic environment, a firm’s maximization problem can be described
by the following Bellman equation:

V (kjt , ajt , ωjt ,�t )

= max
{
Φ(kjt , ajt , ωjt ,�t ), max

ij t�0

{
π(kjt , ajt , ωjt ,�t ) − c(ij t ,�t )

+ βE
[
V (kjt+1, ajt+1, ωjt+1,�t+1)

∣∣kjt , ajt , ωjt ,�t , ij t

]}}
.

kjt , ajt and ωjt are sufficient to describe the firm specific component of the state space
because labor is not a dynamic variable and because (kjt , ajt , ωjt ) (and the control iit )
are sufficient to describe firms perceived distributions over future (kjt+1, ajt+1, ωjt+1).

The Bellman equation explicitly considers two decisions of firms. First is the exit
decision – note that Φ(kjt , ajt , ωjt ,�t ) represents the sell off value of the firm. Second
is the investment decision ij t , which solves the inner maximization problem. Under
appropriate assumptions,28 we can write the optimal exit decision rule as

(26)χjt =
{

1 (continue) if ωjt � ω(kjt , ajt ,�t ) = ωt(kjt , ajt ),

0 (exit) otherwise,

and the investment demand function as

(27)ij t = i(kjt , ajt , ωjt ,�t ) = it (kjt , ajt , ωjt ).

27 See Gowrisankaran (1995), Doraszelski and Satterthwaite (2007), and the third section of this chapter for
more discussion of such equilibria.
28 Other than assuming that an equilibria exists, the main assumption here is that the difference in profits
between continuing and exiting is increasing in ωjt . Given that ωjt positively affects current profits and that
the distribution p(ωjt+1|ωjt ) is stochastically increasing in ωjt , the value of continuing is clearly increasing
in ωjt . Thus as long as Φ(kjt , ωjt ,�t ) either does not depend on ωjt , decreases in ωjt , or does not increase
too fast in ωjt , this will be satisfied. Note that to get the specific selection bias discussed in Section 2.1 above
(i.e. kjt negatively correlated with ωjt ), we also need the difference in returns between continuing and exiting
to be increasing in kjt .
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Note the slight change in notation – we are now representing the dependence on �t

through the subscript t . See Pakes (1994) for a discussion of conditions under which this
investment demand function is strictly increasing in ωjt in the region where ij t > 0.
That is, conditional on kjt and ajt , firms with higher ωjt optimally invest more. This is
an intuitive result – because p(ωjt+1|ωjt ) is assumed stochastically increasing in ωjt ,
ωjt positively impacts the distribution of all future ωjτ ’s. Since ωjτ ’s positively impact
the marginal product of capital in future periods τ , current investment demand should
increase. The importance of this strict monotonicity condition will be apparent momen-
tarily.

2.3.2. Controlling for endogeneity of input choice

Given the setup of the model, we can now proceed with the OP estimation strategy. We
first focus on dealing only with the endogeneity of input choice, i.e. we assume there are
no selection problems due to exit. We will also assume for now that investment levels
are always positive, i.e. ij t > 0, ∀(j, t). Later we will relax both these assumptions.

Given that (27) is strictly monotonic in ωjt , it can be inverted to generate

(28)ωjt = ht (kjt , ajt , ij t ).

Intuitively, this says that conditional on a firm’s levels of kjt and ajt , its choice of
investment ij t “tells” us what its ωjt must be. Note that the ability to “invert” out ωjt

depends not only on the strict monotonicity in ωjt , but also the fact that ωjt is the only
unobservable in the investment equation.

This is the scalar unobservable assumption mentioned earlier. This, for example,
means that there can be no unobserved differences in investment prices across firms,29

no other state variables that the econometrician does not observe, and no unobserved
separate factors that affect investment but not production. It also prohibits ωjt from
following higher than a first order Markov process.30 We discuss both tests for this
assumption and the possibilities for relaxing it in Section 2.4.

Substituting (28) into the production function (24) gives

(29)yjt = β0 + βkkjt + βaajt + βllj t + ht (kjt , ajt , ij t ) + ηjt .

The first stage of OP involves estimating (29) using semiparametric methods that treat
the inverse investment function ht (kjt , ajt , ij t ) nonparametrically. Note the advantages
of treating ht (kjt , ajt , ij t ) nonparametrically. it (·) (and thus its inverse ht (·)) are com-
plicated functions that depend on all the primitives of the model (e.g. demand functions,

29 Recall that changes in the price of investment over time are permitted as they are picked up by the function
h through its dependence on t .
30 If, for example, ωjt followed a second order process, both ωjt and ωjt−1 would enter the state space and
the investment decision. With two unobservables in the investment function, it would not be possible to invert
out ωjt in the current model.
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the specification of sunk costs, the form of conduct in the industry, etc.). These functions
are also solutions to a potentially very complicated dynamic game. The OP nonparamet-
ric approach therefore avoids both the necessity of specifying these primitives, and the
computational burden that would be necessary to formally compute ht (·).

Given the nonparametric treatment of ht (kjt , ajt , ij t ), it is clear that β0, βk and βa

cannot be identified using (29). If, for example, ht (kjt , ajt , ij t ) is treated as a polyno-
mial in kjt , ajt and ij t , the polynomial will be colinear with the constant, kjt , and ajt

terms. Thus, we combine these terms into φt (kjt , ajt , ij t ), i.e.

(30)yjt = βllj t + φt (kjt , ajt , ij t ) + ηjt .

Representing φt with a high order polynomial in kjt , ajt and ij t [an alternative would
be to use kernel methods, e.g. Robinson (1988)] and allowing a different φt for each time
period, OP estimate this equation to recover an estimate of the labor coefficient β̂l . To
summarize this first stage, the scalar unobservable and monotonicity assumptions essen-
tially allow us to “observe” the unobserved ωjt – this eliminates the input endogeneity
problem in estimating the labor coefficient. Note that it is important here that labor is
assumed to be a nondynamic input – if labor had dynamic implications, it would enter
the state space, and thus the investment function and φt . As a result, βl would not be
identified in this first stage. Again, this is an assumption that can potentially be relaxed –
see Section 2.4.

The second stage of OP identifies the capital and age coefficients βk and βa . First,
note that the first stage provides an estimate, φ̂j t , of the term

φt (kjt , ajt , ij t ) = β0 + βkkjt + βaajt + ωjt .

If one uses a polynomial approximation to φt (kjt , ajt , ij t ), φ̂j t is just the estimated
sum of the polynomial terms for a particular (kjt , ajt , ij t ) pair. This means that given a
particular set of parameters (β0, βk, βa), we have an estimate of ωjt for all j and t

(31)ω̂j t (β0, βk, βa) = φ̂j t − β0 − βkkjt − βaajt .

Next decompose ωjt into its conditional expectation given the information known by
the firm at t − 1 (denote this by Ijt−1) and a residual, i.e.

ωjt = E[ωjt |Ijt−1] + ξjt

= E[ωjt |ωjt−1] + ξjt

(32)= g(ωjt−1) + ξjt

for some function g. The second line follows from the assumption that ωjt follows an
exogenous first order Markov process. By construction, ξjt is uncorrelated with Ijt−1.
One can think of ξjt as the innovation in the ω process between t − 1 and t that is
unexpected to firms. The important thing is that given the information structure of the
model, this innovation ξjt is by definition uncorrelated with kjt and ajt . The reason is
that kjt and ajt are functions of only the information set at time t − 1. Intuitively, since
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kjt was actually decided on at time t − 1 (from the investment decision ij t−1), it cannot
be correlated with unexpected innovations in the ω process that occurred after t − 1.
Lastly, note that since the stochastic process generating ωjt has been assumed constant
over time, the g function need not be indexed by t .31

Next, consider rewriting the production function as

(33)yjt − βllj t = β0 + βkkjt + βaajt + ωjt + ηjt .

Substituting in both (32) and (31) results in

yjt − βllj t

(34a)= β0 + βkkjt + βaajt + g(ωjt−1) + ξjt + ηjt

= β0 + βkkjt + βaajt + g(φjt−1 − β0 − βkkjt−1 − βaajt−1) + ξjt + ηjt

(34b)= βkkjt + βaajt + g̃(φjt−1 − βkkjt−1 − βaajt−1) + ξjt + ηjt ,

where g̃ encompasses both occurrences of β0 in the previous line. The key point in (34a)
is that, as argued above, the residual ξjt +ηjt is uncorrelated with all the right-hand side
variables.

We do not observe βl or φjt−1, but we do have estimates of them from the first stage.
Substituting β̂l and φ̂j t−1 for their values in the equation above, and treating g̃ nonpara-
metrically we obtain

√
n consistent estimates of βk and βa . If one uses polynomials to

approximate g̃, NLLS can be used for estimation.32

Alternatively one can adapt the suggestion in Wooldridge (2004) to combine both
stages into a single set of moments and estimate in one step. This should be more
efficient than the OP approach (as it uses the information in the covariances of the
disturbances, and any cross equation restrictions). The moment condition in this case is

E

[
ηjt ⊗ f1(kjt , ajt , ij t , lj t )

(ξjt + ηjt ) ⊗ f2(kjt , ajt , kjt−1, ajt−1, ij t−1)

]
= 0,

where f1 and f2 are vector valued instrument functions, and ⊗ is the Kronecker product
operator. Appropriate choices for f1 and f2 lead to moments similar to those used by
OP. Note that there is a different set of conditioning variables for the moment in ηjt

than that in the moment for ξjt + ηjt (since lj t can be correlated with ξjt ).33

31 Were we to allow p(ωjt+1|ωjt ) to vary across time, we would simply index g by t .
32 An alternative way to construct a moment condition to estimate (34b) is as follows [see Ackerberg, Caves

and Fraser (2004)]. Given βk and βa , construct ω̂j t = φ̂j t − βkkjt − βaajt , ∀t . Non-parametrically regress

ω̂j t on ω̂j t−1 to construct estimated residuals ξ̂j t (note that if using polynomial approximation, this can be

done using linear methods (since βk and βa are given)). Construct a moment condition interacting ξ̂j t with kjt

and ajt . Estimation then involves searching over (βk, βa) space to make this moment close to zero.
33 As Wooldridge notes, one can add further lags of variables to these instrument functions, increasing the
number of moments; though more lags will not be able to be used on the observations for the initial years.
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2.3.3. Controlling for endogenous selection

Next we relax the assumption that there is no endogenous exit. Firms now exit according
to the exit rule given in (26). A first important observation is that the first stage of the
OP procedure is not affected by selection. The reason is that by construction, ηjt , the
residual in the first stage equation (30), represents unobservables that are not observed
(or predictable) by the firm before input and exit decisions. Thus there is no selection
problem in estimating (30). Intuitively, the fact that in the first stage we are able to
completely proxy ωjt means that we can control for both endogenous input choice and
endogenous exit.

In contrast, the second stage estimation procedure is affected by endogenous exit.
Examining (34b), note that the residual contains not only ηjt , but ξjt . Since the firm’s
exit decision in period t depends directly on ωjt (see (26)), the exit decision will be
correlated with ξjt , a component of ωjt .34

We now correct for the selection. Starting from (33), take the expectation of both
sides conditional on both the information at t − 1 and on χjt = 1 (i.e. being in the
dataset at t). This results in

E[yjt − βllj t |Ijt−1, χjt = 1]
= E[β0 + βkkjt + βaajt + ωjt + ηjt |Ijt−1, χjt = 1]

(35)= β0 + βkkjt + βaajt + E[ωjt |Ijt−1, χjt = 1].
The last line follows because: (1) kjt and ajt are known at t − 1, and (2) ηjt is by
definition uncorrelated with either Ijt−1 or exit at t . Focusing on the last term, we
have

E[ωjt |Ijt−1, χit = 1] = E
[
ωjt

∣∣Ijt−1, ωjt � ωt(kjt , ajt )
]

=
∫ ∞

ωt (kjt ,ajt )

ωjt

p(ωjt |ωjt−1)∫∞
ωt (kjt ,ajt )

p(ωjt |ωjt−1) dωjt

dωjt

(36)= g
(
ωjt−1, ωt (kjt , ajt )

)
.

The first equality follows from the exit rule. The second and third equalities follows
from the exogenous first order Markov process assumption on the ωjt process.

While we do know ωjt−1 conditional on the parameters (from (31)), we do not di-
rectly observe ωt(kjt , ajt ). Modelling ωt(kjt , ajt ) as a nonparametric function of kjt

34 This correlation relies on OP allowing firms to know the realization of ξjt before making the exit decision.
Otherwise exit would not cause a selection problem. The longer the time period between observations the
more serious the selection problem is likely to be. This point comes out clearly in OP’s comparison of results
based on their “balanced” panel (a data set constructed only from the observations of plants that were active
throughout the sample period), to results from their full panel (a panel which keeps the observations on exiting
firms until the year they exit and uses observations on new startups from the year they enter). Selection seemed
a far larger problem in the balanced than in the full panel.
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and ajt might be a possibility, but this would hinder identification of βk and βa due to
collinearity problems. What we can do is try to control for ωt(kjt , ajt ) using data on
observed exit. Recall that our exit rule is given by

(37)χjt =
{

1 (continue)

0 (exit)
according as ωjt � ωt(kjt , ajt ).

This means that the probability of being in the data (at period t) conditional on the
information known at t − 1 is

Pr(χjt = 1|Ijt−1) = Pr
(
ωjt � ωt(kjt , ajt )

∣∣Ijt−1
)

= Pr
(
χjt = 1

∣∣ωjt−1, ωt (kjt , ajt )
) = ˜̃ϕt

(
ωjt−1, ωt (kjt , ajt )

)
(38)= ϕ̃t (ωjt−1, kjt , ajt ) = ϕt (ij t−1, kjt−1, ajt−1) = Pjt .

The second to last equality holds because of (28), and the fact that kjt and ajt are
deterministic functions of ij t−1, kjt−1, and ajt−1.

Equation (38) can be estimated nonparametrically, i.e. modelling the probability
of surviving to t as a nonparametric function of ij t−1, kjt−1, and ajt−1. OP do this
in two alternative ways – first using a probit model with a 4th order polynomial in
(ij t−1, kjt−1, ajt−1) as the latent index, second using kernel methods. For a plant char-
acterized by (ij t−1, kjt−1, ajt−1), these estimates allow us to generate a consistent
estimate of the probability of the plant surviving to period t (P̂j t ).

Next, note that as long as the density of ωjt given ωjt−1 is positive in an area around
ωt(kjt , ajt ), (38) can be inverted to write ωt(kjt , ajt ) as a function of ωjt−1 and Pjt ,35

i.e.

(39)ωt(kjt , ajt ) = f (ωjt−1, Pjt ).

Substituting (39) into (36) and (35), and using (31) gives us

E[yjt − βllj t |Ijt−1, χjt = 1] = β0 + βkkjt + βaajt + g
(
ωjt−1, f (ωjt−1, Pjt )

)
= β0 + βkkjt + βaajt + g′(ωjt−1, Pjt )

= β0 + βkkjt + βaajt + g′(φjt−1 − β0

(40)− βkkjt−1 − βaajt−1, Pjt ).

This is similar to (35), only differing in the additional Pjt term in the nonparametric
g′ function. Pjt controls for the impact of selection on the expectation of ωjt – i.e. firms
with lower survival probabilities who do in fact survive to t likely have higher ωjt ’s than
those with higher survival probabilities.

35 Formally, (38) implies that Pjt = ˜̃ϕt (ωjt−1, ωjt ). With positive density of ωjt around ωjt , ˜̃ϕt is strictly
monotonic in ωjt , so this can be inverted to generate (39).
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Equation (40) implies that we can write

yjt − βllj t

= β0 + βkkjt + βaajt + g′(φjt−1 − β0 − βkkjt−1 − βaajt−1, Pjt ) + ζjt

(41)= βkkjt + βaajt + g̃(φjt−1 − βkkjt−1 − βaajt−1, Pjt ) + ζjt + ηjt ,

where, as in (34b), the two β0 terms have been encompassed into the nonparametric
function g̃. By construction the residual in this equation satisfies E[ζjt + ηjt |Ijt−1,

χjt = 1] = 0. Substituting P̂j t , φ̂j t and β̂l for Pjt , φjt and βl , (41) can also be estimated
with NLLS, approximating g̃ with either a polynomial or a kernel.36

In this estimation procedure information on βk and βa is obtained by comparing labor
productivities of firms with the same ωjt−1 and Pjt but different kjt and ajt . In addition,
since the functions ϕt (·) and Pt(·) vary across t with changes in industry conditions
(while g(·) is assumed constant over time), it also uses information from variation in
inputs across firms in different time periods that have the same ωjt−1 and Pjt .

In the selection literature, P̂j t is referred to as the propensity score – for discussion of
these techniques, see, e.g. Heckman (1974, 1978, 1979), Rosenbaum and Rubin (1983),
Heckman and Robb (1985), and Ahn and Powell (1993). An important difference be-
tween OP and this selection literature is that controlling for the propensity score is not
sufficient for OP’s model; they require a control for both ωjt−1 and for ωjt−1.

A number of recent papers have applied the OP procedure successfully. As an ex-
ample consider Table 3, which displays the results from the food processing industry
in Pavcnik (2002) – this is the first out of the eight industries in her Table 2. Compar-
ing the OLS to the OP estimates, we see the changes that we should expect. Returns
to scale decrease (consistent with positive correlation between unobserved productiv-
ity and input use), with the coefficients on the more variable inputs accounting for all
of the fall (consistent with this correlation being more pronounced for the variable in-
puts). Consistent with selection, the capital coefficient rises moving from OLS to OP.
The fixed effects estimates are the most difficult to understand, as they generate a co-
efficient for capital near zero, and an estimate of economies of scale below 0.9. These
results are indicative of those for the other industries in Pavcnik’s Table 2. The aver-
age of the returns to scale estimate across industries when estimated by OLS is 1.13,
when estimated by OP it is 1.09, and when estimated by fixed effects it is 0.87. The
average of the capital coefficients across industries from OLS is 0.066, from OP 0.085,
and from fixed effects only 0.021 (with two industries generating negative capital coef-
ficients).

OP themselves compare their estimates to estimates obtained using OLS and fixed
effect on both a balanced panel (a panel constructed only from firms that were operating
during the entire fifteen year sample period) and from the full sample (constructed by
keeping firms that eventually exit until the year prior to their exit and introducing new

36 OP try both the kernel and a polynomial with only minor differences in results.
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Table 3
Production function estimates from Pavcnik (2002)

OLS Fixed effects Olley–Pakes

Unskilled labor 0.178 0.210 0.153
(0.006) (0.010) (0.007)

Skilled labor 0.131 0.029 0.098
(0.006) (0.007) (0.009)

Materials 0.763 0.646 0.735
(0.004) (0.007) (0.008)

Capital 0.052 0.014 0.079
(0.003) (0.006) (0.034)

Source: From Pavcnik (2002).

entrants as they appear). The difference between the balanced sample estimators and OP
estimators on the full sample are truly dramatic, and those between the OLS and fixed
effect estimators on the full sample and the OP estimators are similar to those reported
above (though somewhat larger in absolute value). In both papers, the OP estimator
generates standard errors for the labor coefficient that are not too different then those
generated by OLS, but, as might be expected, standard errors for the capital coefficient
do increase (though much less so in the OP results than in Pavcnik’s).

2.3.4. Zero investment levels

For simplicity, we assumed above that investment levels for all observations were
nonzero. This allowed us to assume that the investment equation was strictly monotonic
in ωjt everywhere (and hence could be inverted to recover ωit for every observation).
Observations with zero investment call into question the strict monotonicity assumption.
However, the OP procedure actually only requires investment to be strictly monotonic
in ωjt for a known subset of the data. OP themselves take that subset to be all ob-
servations with it > 0, i.e. they simply do not use the observations where investment
equals 0.

Even with this selected sample, first stage estimation of (29) is consistent. Since ωjt

is being completely proxied for, the only unobservable is ηjt , which is by assumption
uncorrelated with labor input and with the selection condition iit > 0. Second stage
estimation of (41) is also consistent when OP discard the data where ij t−1 = 0 (φ̂j t−1 −
β0 − βkkjt−1 − βaajt−1 is not computable when ij t−1 = 0). The reason is that the
error term in (41) is by construction uncorrelated with the information set Ijt−1, which
contains the investment level ij t−1. In other words, conditioning on ij t−1 = 0 does not
say anything about the unobservable ζjt .

While the OP procedure can accommodate zero investment levels, this accommo-
dation is not without costs. In particular, there is likely to be an efficiency loss from
discarding the subset of data where ij t > 0. Levinsohn and Petrin (2003) (henceforth
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LP) suggest an alternative estimation routine whose primary motivation is to eliminate
this efficiency loss. They start by noting that in many datasets, particularly those from
developing countries, the set of observations with zero investment can be quite large.
For example, in LP’s dataset on Chilean plants more than 50% of the observations have
zero investment (note that in OP’s US plant data, this proportion is much less, ≈8%).
To avoid a potentially large efficiency loss, LP suggest using variables other than in-
vestment to proxy for the unobserved ωjt . In particular, LP focus on firms’ choices of
intermediate inputs (e.g. electricity, fuels, and/or materials) – these are rarely zero.37

Consider the production function

(42)yjt = β0 + βkkjt + βllj t + βmmjt + ωjt + ηjt

with additional input mjt (e.g. materials). LP assume that like labor, mjt is a variable
(i.e. chosen at t), nondynamic input, and consider the following material demand equa-
tion

(43)mjt = mt(kjt , ωjt ).

As with the OP investment equation, the demand equation is indexed by t to al-
low, e.g. input prices, market structure, and demand conditions to vary across time.38

LP state conditions under which this demand equation is monotonic in ωjt . Given this
monotonicity, estimation proceeds analogously to OP. First, (43) is inverted to give

(44)ωjt = ht (kjt , mjt ).

Next, (44) is substituted into (42) to give

(45)yjt = β0 + βkkjt + βllj t + βmmjt + ht (kjt , mjt ) + ηjt .

Treating the ht function nonparametrically results in the following estimating equa-
tion

(46)yjt = βllj t + φt (kjt , mjt ) + ηjt ,

where βk and βm are not separately identified from the nonparametric term. As in OP,
the first stage of LP involves estimating (46) to obtain β̂l and φ̂j t . The second stage
of LP again proceeds following OP, the main difference being that the parameter on
the intermediate input, βm, still needs to be estimated. Moving the labor term to the

37 An alternative to LP might be to augment the original OP procedure with a more complete model of
investment and/or distributional assumptions on ω, allowing one to utilize the zero investment observations.
38 Given that materials are a static choice (in contrast to dynamic investment), one might be more willing
to make parametric assumptions on this input demand function (since it depends on fewer primitives, e.g.
it does not depend on expectations about the future). However, there are caveats of such an approach, see
Section 2.4.1.
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left-hand side and using (32) gives39

(47)ỹj t = βkkjt + βmmjt + g̃(φjt−1 − βkkjt−1 − βmmjt−1) + ξjt + ζjt ,

and nonparametric estimates of φjt and of g̃(·) are used in estimation.
Note that since kjt is assumed decided at t − 1, it is orthogonal to the residual,

ξjt + ηjt . However, since mjt is a variable input, it is clearly not orthogonal to ζjt ,
the innovation component of ωjt . LP address this by using mjt−1 as an instrument for
mjt in estimation of (47). In their application LP find biases that are generally consistent
with those predicted by OP, but some differences in actual magnitudes of coefficients.

2.4. Extensions and discussion of OP

The OP model was designed to produce estimates of production function coefficients
which are not subject to biases due to simultaneity and selection problems generated
by the endogeneity of input demands and exit decisions. We begin this section with a
test of whether the coefficient estimates obtained using OP’s assumptions are robust to
different sources of misspecification.

There are a variety of reasons why this test could fail and the rest of this subsection
considers some of the more likely candidates. Each time a source of possible misspeci-
fication in OP’s assumption is introduced, we consider modifications to their estimation
techniques which produce consistent estimates of production function coefficients un-
der that misspecification. This is in keeping with our belief that different modifications
are likely to be appropriate for different industries and data sets. Though the extended
models may well be of more general interest, as they typically will produce richer dy-
namics with more detailed policy implications, we limit ourselves to considering their
implications for estimating production function coefficients.

In this context we first investigate relaxing assumptions on the dynamic implications
of inputs (e.g. that labor choices today have no dynamic implications) and on the timing
of input choices. We then investigate the potential for relaxing the scalar unobservable
assumptions of OP. Most of the discussion regarding the timing and dynamic implica-
tions of inputs is based on Ackerberg, Caves and Fraser (2004) (ACF) [also see Buettner
(2004a) for some related ideas], while much of the discussion on nonscalar unobserv-
ables is taken from Ackerberg and Pakes (2005). We also briefly discuss two recent
contributions by Buettner (2004b) and Greenstreet (2005).

2.4.1. A test of Olley and Pakes’ assumptions

This subsection combines results from Section 4.1 in OP with results from ACF. Broadly
speaking, there are two questionable implications of the assumptions used in OP that

39 While the LP procedure does not formally address selection, they note that their procedure could be ex-
tended to control for it in the same way as OP.
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are central to their estimation strategy. First there is the implication that, conditional on
capital and age, there is a one to one mapping between investment and productivity (we
give reasons for doubting this implication below). Second there is the direct assumption
that the choice of labor has no dynamic implications; i.e. that labor is not a state variable
in the dynamic problem.

Focusing on the second assumption first, assume instead that there are significant
hiring or firing costs for labor, or that labor contracts are long term (as in, for exam-
ple, unionized industries). In these cases, current labor input choices have dynamic
implications, labor becomes a state variable in the dynamic problem, and Equation (28)
becomes

(48)ωjt = ht (kjt , lj t , ajt , ij t ).

Now the labor coefficient will not be identified in the first stage; i.e. from Equa-
tion (34b) – the first stage cannot separate out the impact of labor on production, or βl ,
from its impact on the h(·) function.

ACF point out that under these assumptions βl can still be identified from the second
stage. To see this note that the second stage is now

yjt = βllj t + βkkjt + βaajt + g̃(φjt−1 − βllj t−1 − βkkjt−1 − βaajt−1)

(49)+ ξjt + ηjt .

After substituting φ̂j t−1 for φjt−1, we can estimate the production function parameters
using a semiparametric GMM procedure related to the above. Note, however, that if
we maintain the rest of OP’s assumptions, then lj t differs from kjt in that labor can
adjust to within period variation in productivity. This implies that unlike kjt , lj t can be
correlated with ξjt . As a result we need to use an “instrument” for lj t when estimat-
ing Equation (49). A fairly obvious instrument is lj t−1. Since lj t−1 was decided on at
t − 1, it is uncorrelated with ξjt , and lj t and lj t−1 are typically highly correlated. With
this modification, estimation can proceed as before using, say, a polynomial or kernel
approximation to g̃.

Note that even though the first stage does not directly identify any of the parame-
ters of the model in this procedure, we still need the first stage to generate estimates
of φ̂j t−1. Indeed we still need (an extended version) of the assumptions that generates
the first stage equation. Before we needed the assumption that conditional on values
for (kjt , ajt ) there was a one to one map between productivity and investment. Now
we need the assumption that conditional on values of (kjt , ajt , lj t ) there is a one to one
map between productivity and investment.

In fact Equation (49) is closely related to the test for the inversion proposed in OP.
Recall that they assume that labor is not a dynamic input. In that case when they subtract
their first stage estimate β̂l times l from both sides of their second stage equation they
obtain
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yjt − β̂l lj t = (βl − β̂l)lj t + βkkjt + βaajt + g̃(φ̂j t−1 − βkkjt−1 − βaajt−1)

(50)+ ξjt + ηjt ,

which is an equation with over identifying restrictions.40

In particular, the term (βl − β̂l)lj t in Equation (50) should be zero if the inversion
which leads to the estimate of the labor coefficient is a good approximation to reality.
Further the inversion implies that what we must subtract from our estimate of φjt−1 to
obtain lagged productivity is determined by the contribution of (kjt−1, ajt−1) to pro-
duction of yjt−1, i.e. by (βk, βa). These coefficients also determine the contribution of
(kjt , ajt ) to yjt given ωjt−1. If our inversion were seriously in error we would expect
that φjt−1 − βkkjt−1 − βaajt−1 would not be perfectly correlated with ωjt−1 and as a
result there would be a residual component of productivity we are not controlling for.
Provided there was an endogeneity problem in the first place, this residual should be
correlated with (kjt , ajt ). Thus OP allow the coefficients on (kjt , ajt ) to differ from
those on (kjt−1, ajt−1) in Equation (50), use (lj,t−1, kjt , ajt ) and powers and lags of
these variables as instruments, and then test whether β̂l − βl = 0, and whether the
coefficients on the current and lagged values of k and a are equal.41

As noted previously, when the current labor choice has dynamic implications the first
stage estimate of βl obtained by OP is inconsistent (regardless of whether the inversion
is correct). However even if labor is dynamic, Equation (49) still generates over iden-
tifying restrictions; the existence of the inversion implies that the current and lagged
values of (l, k, a) should enter in this equation with the same factors of proportion-
ality. In other words, if the inversion is correct then what we must subtract from our
estimate of φjt−1 to obtain lagged productivity is determined by the contribution of
(lj t−1, kjt−1, ajt−1) to production of yjt−1, i.e. by (βl, βk, βa). These coefficients also
determine the contribution of (lj t , kjt , ajt ) to yjt given ωjt−1. That is if we were to
estimate

yjt = β∗
l lj t + β∗

k kjt + β∗
a ajt + g̃(φjt−1 − βllj t−1 − βkkjt−1 − βaajt−1)

(51)+ ξjt + ηjt ,

and then test whether (β∗
l , β∗

k , β∗
a ) = (βk, βl, βa), with a large enough data set we

should reject the null of equality if assumptions which underlie the inversion are wrong.
Given the additional parameters one will need additional instruments to estimate this
specification. Natural instruments would be those used in OP, i.e. (lj,t−1, kjt , ajt ) and
powers and lags of these variables.

Two other points about the test. First, the OP test conditions on the fact that labor
is variable (i.e. it is not a state variable) and endogenous (current labor is correlated

40 We have omitted a term that results from substituting φ̂j t−1 for the true φjt−1 in this equation. The addi-

tional term’s impact on the parameter estimates is op(1/
√

J ), and so does not effect their limit distributions.
41 Note that we cannot use both current and lagged values of ajt as instruments for the two are collinear. We
could, however, use different functions of ajt as additional instruments.
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with ξjt ), and then tests whether the inversion is a good approximation. We could have
alternatively proceeded by conditioning on the inversion and then tested one or both
of the assumptions that; labor is dynamic and/or labor choices are fixed prior to the
realization of ξt . We would do this by estimating both stages of ACF simultaneously
and then testing constraints. The constraint to be tested in asking whether labor can be
treated as a nondynamic (or variable) input is whether φ(ljt , ij t , kjt , ajt ) = βllj t +
φ(ijt , kjt , ajt ). To test whether labor is endogenous (in the sense that it can react to ξjt )
we estimate the system once using lj t−1 as an instrument for lj t in Equation (49) and
once using lj t as an instrument for itself. Exactly what it makes sense to condition on
(and what to test for) is likely to depend on the characteristics of the industry being
studied. Alternatively we could improve the power of the omnibus test in Equation (49)
by estimating the first stage in ACF simultaneously with this equation and then asking
whether (β∗

l , β∗
k , β∗

a ) = (βl, βk, βa). If that is accepted we could then test the additional
(nested) constraints implied by an assumption that labor is not endogeous.42

Finally a word of caution on the usefulness of these tests. First we have made no
attempt to look at the power of these tests. Though OP find very precise estimates of
differences in coefficients from (51), their data seems to deliver more precise estimates
than many other data sets (see, for e.g. ACF). Second it is important to realize that the
test that (β∗

l , β∗
k , β∗

a ) = (βl, βk, βa) is designed to ask the limited question of whether
making our approximations greatly hinders our ability to obtain reasonable produc-
tion function coefficients. As a result we are using the difference in these coefficients,
normalized by the variance-covariance of those differences, as our metric for “reason-
ableness”. There are other metrics possible, one of which would be to have some prior
knowledge of the characteristics of the industry the researcher is working on (and we
expect these results to vary by industry). Further there may well be independent rea-
sons for interest in the timing of input decisions or in our invertibility assumption (see
the discussion below), and a test result that our approximations do not do terrible harm
to production function estimates does not imply that they would do little harm in the
analysis of other issues (for example in the analysis of the response of labor hiring to a
change in demand, or in the response of investment to an infrastructure change which
increases productivity).

42 Note that both these ideas: that one can allow labor to have dynamic effects and that some of the as-
sumptions behind these procedures are testable – are related to the dynamic panel literature cited above [e.g.
Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1999)] in that further lags
of inputs are typically used as instruments. If one were willing to assume that the ηj,t are independently
distributed across time then the residuals should be uncorrelated with past values of output also. However if
ηjt represented serially correlated measurement error in the observations on yt then the ηjt may be serially
correlated, and we could not expect a zero correlation between past output and the disturbance from (51).
ACF flesh out the distinction between their methods and the dynamic panel literature further.
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2.4.2. Relaxing assumptions on inputs

This subsection assumes that there is an inversion from productivity to investment con-
ditional on the state variables of the problem, and investigates questions regarding the
nature of the input demands given this inversion. ACF note that there are two dimen-
sions along which we can classify inputs in this context, and the two dimensions have
different implications for the properties of alternative estimators. First inputs can either
be variable (correlated with ξjt ) or fixed (uncorrelated with ξjt ). Second the inputs can
either be dynamic, i.e. be state variables in the dynamic problem and hence conditioned
on in the relationship between productivity and investment, or static. So if we general-
ize, and allow for inputs of each of the four implicit types we have

(52)yjt = βvsXvs
j t + βvdXvd

j t + βfsXfs
j t + βfdXfd

j t + ωjt + ηjt ,

where the input acronyms correspond to these dimensions, e.g. Xvs
j t represent variable,

nondynamic inputs, while Xfd
j t represent fixed, dynamic inputs, and so on.

The various coefficients can be identified in different ways. βvs, like labor in the
original OP framework, can be identified either in the first stage, or in the second stage
using Xvs

j t−1 as an instrument (because Xvs
j t is variable and thus potentially correlated

with ξjt , it cannot be used as an instrument in the second stage). βfd, like capital in the
original OP framework, cannot be identified in the first stage, but it can be identified in
the second stage using either Xfd

j t or Xfd
j t−1 (or both) as instruments. βvd, the coefficients

on the inputs that are variable and dynamic, also cannot be identified in the first stage,
but can be identified in the second stage using Xvd

j t−1 as an instrument. Lastly, βfs can

be identified either in the first stage or in the second stage using either Xfs
j t or Xfs

j t−1 (or
both) as instruments.

Note also that if we have any static or fixed inputs we have over identifying restric-
tions.43 This over identification can potentially be useful in testing some of the timing
assumptions. For example, suppose one starts by treating capital as a fixed, dynamic
input. One could then estimate the second stage using both kit−1 and kit as instruments,
an over identified model. In the GMM context, one could test this over identification
with a J-test [Hansen (1982)]. Since kit is a valid instrument only when capital is truly
fixed (yet kit−1 is a valid instrument regardless) rejection of the specification might be
interpreted as evidence that capital is not a completely fixed input. Consistent estima-
tion could then proceed using only kit−1 as an instrument. Again, the Wooldridge (2004)
framework makes combining these multiple sources of identification and/or testing very
convenient.

ACF also look deeper into the various assumptions on inputs. They note that, under
the assumption that lj t is a variable input, for it to have the independent variance needed

43 In all these cases, further lags (prior to t − 1) of the inputs can be used as instruments and thus as over
identifying restrictions, although it is not clear how much extra information is in these additional moment
conditions, and one will not be able to use these additional lags in the initial time periods.
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to estimate our first stage equation (30), there must be a variable, say zjt , that impacts
firms’ choices of lj t but that does not impact choices of investment at t . This variable
zjt must also have some variance that is independent of ωjt and kjt . If this were not
the case, e.g. if lj t = ft (ωjt , kjt ), then one can show that lj t is perfectly collinear
with the nonparametric function in Equation (30), implying that one cannot estimate
βl from that equation. Note that the variable zjt does not need to be observed by the
econometrician.

Thus, to proceed as OP do we need the demand function for labor to be

lj t = ft (ωjt , kjt , zjt ),

where zjt are additional factors that affect demand for labor (or more generally, demand
for the variable inputs) with nonzero conditional variance (conditional on ωjt , kjt ). Note
that the zjt cannot be serially correlated. If this were the case, then zjt would become
part of the state space, influence ij t , and one would not be able to do the inversion.44

Even with this restriction, there are at least two possible zjt ’s here: i.i.d. firm specific
input price shocks and i.i.d. random draws to the environment that cause differences
in the variance of ηjt over time (since the profit function is a convex function of η

the variance in this variable will affect labor demand). The latter could be associated
with upcoming union negotiations, the likelihood of machine break downs due to age of
equipment, or the approach of maintenance periods. One problem with the i.i.d. input
price shock story is that it is somewhat at odds with the assumptions that all other
components of prices are constant across firms and that the other unobservables (ωjt )
in the model are serially correlated over time.

ACF provide two additional ways of overcoming this problem. First they note that if
one weakens OP’s timing assumptions slightly, one can still identify lj t in the first stage.
Their observation also reopens an avenue of research on the timing of input decisions
which dates back at least to Nadiri and Rosen (1974). Suppose that lj t is actually not a
perfectly variable input, and is chosen at some point in time between period t − 1 and
period t . Denote this point in time as t − b, where 0 < b < 1. Suppose that ω evolves
between the subperiods t − 1, t − b, and t according to a first order Markov process, i.e.

p(ωjt |Ijt−b) = p(ωjt |ωjt−b) and p(ωjt−b|Ijt−1) = p(ωjt−b|ωjt−1).

In this case, labor input is not a function of ωjt , but of ωjt−b, i.e.

lj t = ft (ωjt−b, kjt ).

Since ωjt−b cannot generally be written as a function of kjt , ajt , and ij t , lj t will not
generally be collinear with the nonparametric term in (30), allowing the equation to
be identified. The movement of ω between t − b and t is what breaks the collinearity
problem between lj t and the nonparametric function. The second alternative suggested

44 Note also that observing zjt would not help in this serially correlated case. While one would now be able
to do the inversion, zjt would enter the nonparametric function, again generating perfect collinearity.
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by ACF avoids this collinearity problem by abandoning the first stage identification of
the labor coefficient. Instead, they suggest identifying the labor coefficient in the second
stage using lj t−1 as an instrument.

Importantly, ACF argue that this collinearity problem is more severe when using the
LP procedure. They contend that it is considerably harder to tell a believable story in
which the assumptions of LP hold and where lj t varies independently of the nonpara-
metric function in (46). The reason for this is that it is hard to think of a variable zjt

that would affect a firms’ labor choices but not their material input choices (either di-
rectly or indirectly through the labor choice).45 ACF suggest a couple of procedures
as alternatives to LP.46 The first, based on the discussion above, again involves simply
identifying the labor coefficient in the second stage. This can be done using either lj t

or lj t−1 to form an orthogonality condition, depending on what one wants to assume
about the timing of the labor choice. Moreover, it can also be done in a manner that is
also consistent with labor having dynamic effects. The second procedure is more com-
plicated and involves sequentially inverting the value of ωjt at each point in time at
which inputs are chosen. While this procedure depends on independence (rather than
mean independence) assumptions on innovations in ωjt , it has the added advantage of
allowing one to infer something about the point in time that labor is chosen. Bond and
Söderbom (2005) make a somewhat related point regarding collinearity. They argue that
in a Cobb–Douglas context where input prices are constant across firms, it is hard if not
impossible to identify coefficients on inputs that are perfectly variable and have no dy-
namic effects. This is important for thinking about identification of coefficients on Xvs

j t

in the above formulation.

2.4.3. Relaxing the scalar unobservable assumption

The assumption of a scalar unobserved state variable is another aspect of the OP ap-
proach that might be a source of concern. We begin with three reasons for worrying
about this assumption and then provide a way of modifying the model to account for
each of them. In each case we bring information on additional observables to bear on
the problem. As a result, one way of looking at this section is as a set of robustness tests
conducted by asking whether the additional observables affect the results.

Our three concerns in order of increasing difficulty are as follows. First productivity
itself is a complex functions of many factors, and it may not be appropriate to assume

45 ACF note that one probably will not observe this perfect collinearity problem in practice (in the sense
that the first stage procedure will actually produce an “estimate”). However, they point out that unless one
is willing to make what they argue are extremely strong and unintuitive assumptions, the lack of perfect
collinearity in practice must come from misspecification in the LP model.
46 An alternative approach to dealing with these collinearity problems might be to model the input demand
functions (investment or materials) parametrically. If g( ) is parametric, one does not necessarily have this
collinearity problem. However, at least in the LP situation this does not guarantee identification. ACF show
that in the Cobb–Douglas case, substituting in the implied parametric version of the material input function
leads to an equation that cannot identify the labor coefficient.
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that one can represent it as a first order Markov process. Second investment might well
respond to demand factors that are independent of the firm’s productivity. Then there is
no longer a one to one mapping between investment and productivity given capital and
age. Consequently we cannot do the inversion in Equation (28) underlying the first stage
of the OP procedure. Finally, at least in some industries we often think of two sources
of increments in productivity, one that results from the firm’s own research investments,
and one whose increments do not depend on the firm’s behavior. A process formed
from the sum of two different first order Markov processes is not generally a first order
Markov process, and if one of those processes is “controlled” it may well be difficult to
account for it in the same way as we can control for exogenous Markov processes.

First assume that productivity follows a second order (rather than first order) Markov
process. This changes the investment demand equation to

(53)ij t = it (kjt , ajt , ωjt , ωjt−1).

Since there are the two unobservables (ωjt , ωjt−1) the investment equation cannot be
inverted to obtain ωjt as a function of observables, and the argument underlying the first
stage of the OP process is no longer valid.

One possible solution to the estimation problem is through a second observed control
of the firm. Suppose, for example, one observes firms’ expenditures on another invest-
ment (advertising, expenditure on a distributor or repair network), say sit .47 Then we
have the bivariate policy function(

ij t

sj t

)
= Υt(kjt , ajt , ωjt , ωjt−1).

If the bivariate function Υt ≡ (Υ1,t , Υ2,t ) is a bijection in (ωjt , ωjt−1) (i.e. it is onto),
then it can be inverted in ωjt to obtain

ωjt = Υ −1
t (kjt , ajt , ij t , sj t ).

Given this assumption the first stage proceeds as in OP, except with a higher dimensional
nonparametric function to account for current productivity (it is a function of sjt as well
as (kjt , ajt , ij t )).

OP’s second stage is modified to be

ỹj t = βkkjt + βaajt

+ g̃(φ̂j t−1 − βkkjt−1 − βaajt−1, φ̂j t−2 − βkkjt−2 − βaajt−2)

+ ξjt + ηjt ,

where ỹj t = yjt − β̂lj t and the φ̂j t variables are obtained from the first stage estimates
at t − 1 and t − 2. Note that since the conditional expectation of ωjt given Ijt−1 now

47 One can modify this argument to allow also for a second state variable, the stock of advertising or the size
of the repair network, provided that stock is known up to a parameter to be estimated.
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depends on ωjt−2 as well as ωjt−1, we need to use estimates of φ from two prior periods.
The extension to control for selection as well is straightforward. Moreover, provided the
number of observed control variables is at least equal to the order of the Markov process,
higher order Markov processes can be handled in the same way.

We now move on to allow investment to depend on an unobservable demand shock
that varies across firms, in addition to the (now first order) ωjt process. Suppose that
the demand shock, μjt , also follows a first order Markov process that is independent of
the ωjt process. Then the investment function will be a function of both unobservables,
or ij t = it (kjt , ajt , ωjt , μjt ). Again we will assume the existence of a second control
and use it to allow us to substitute for ωjt in the first stage of OP’s procedure.

More precisely, assume we also observe the firms’ pricing decisions pjt . At the risk of
some notational confusion, again let the bivariate policy function determining (ij t , pjt )

be labelled Υ (·), and assume it is a bijection in (ωjt , μjt ) conditional on (kjt , ajt ).
Then it can be inverted to form

(54)ωjt = Υ −1
t (kjt , ajt , ij t , pjt )

and one can proceed with the first stage of estimation as above.
For the second stage observe that since the μjt process is independent of the ωjt

process the firm’s conditional expectation of ωjt given Ijt−1 only depends on ωjt−1.
Thus, the second stage is

(55)ỹj t = βkkjt + βaajt + g̃(φ̂j t−1 − βkkjt−1 − βaajt−1) + ξjt + ηjt .

Note that the demand shock, if an important determinant of ij t , may help with the
precision of our estimates, as it generates independent variance in φ̂.

The estimation problem becomes more complicated if, for some reason, the two
Markov processes are dependent. The problem is that in this case, the firm’s conditional
expectation of ωjt given Ijt−1 depends on both ωjt−1 and μjt−1. Then Equation (55)
will have to be amended to allow g̃(·) to also depend on μjt−1. If we let

(56)μjt−1 = Υ −1
2,t−1(kjt−1, ajt−1, ij t−1, pjt−1),

our second stage can then be written as

ỹj t = βkkjt + βaajt + g̃(ωjt−1, μjt−1) + ξjt + ηjt

= βkkjt + βaajt

+ g̃
(
φjt−1 − βkkjt−1 − βaajt−1, Υ

−1
2,t−1(kjt−1, ajt−1, ij t−1, pjt−1)

)
(57)+ ξjt + ηjt .

Unfortunately, this equation cannot identify βk and βa since it requires us to condi-
tion on a nonparametric function of (kjt−1, ij t−1, ajt−1). More formally, since kjt =
(1 − δ)kjt−1 + ij t−1 (and ajt = ajt−1 + 1), there is no remaining independent variance
in (kjt , ajt ) to be used to identify βk and βa .



Ch. 63: Econometric Tools for Analyzing Market Outcomes 4231

To avoid this problem, we need an explicit ability to solve for or estimate μjt−1.
This would generally require demand side data. For example, the Berry, Levinsohn and
Pakes (1995) demand estimation procedure produces estimates of a set of “unobserved
product characteristics” which might be used as the μjt ’s. Of course, once one brings
in the demand side, there is other information that can often be brought to bear on
the problem. For example, the production function estimates should imply estimates of
marginal cost which, together with the demand system, would actually determine prices
in a “static” Nash pricing equilibrium (see the first section of this chapter). We do not
pursue this further here.

Finally we move to the case where there are two sources of productivity growth, one
evolving as a controlled Markov process, and one as an exogenous Markov process. In
this case the production function is written as

yjt = β0 + βkkjt + βaajt + βllj t + ω1
j t + ω2

j t + ηjt ,

where ω1
j t is the controlled, and ω2

j t is the exogenous, first order Markov process.
Assume now that we have data on both R&D expenditures, say rt , which is the input

of the controlled process, and a “technology indicator” or Tt (like patents, or licensing
fees) which is an output of the controlled process. As above, assume the policy functions
for physical and R&D investment are a bijection, so we can write

ω1
j t = Υ −1

1t (kjt , ajt , ij t , rj t ),

(58)ω2
j t = Υ −1

2t (kjt , ajt , ij t , rj t ).

Now the first stage consists of using the technology indicator to isolate ω1
j t . In other

words, we assume

(59)Tjt = ω1
j t θ + η2j t ,

where η2,t is mean independent of all the controls. We then substitute a nonparametric
function of (kjt , ajt , ij t , rj t ) for ω1

j t in Equation (59). This provides us with an estimate

of ω1
j t θ , say Υ̂ −1

1tj .

Our second stage mimics the first stage of OP except we treat Υ̂ −1
1tj as an input. That

is, we estimate

(60)yjt = βllj t + φ(kjt , ajt , ij t , rj t ) + ηjt ,

where

φ(kjt , ajt , ij t , rj t ) = βkkjt + βaajt + θ−1Υ̂ −1
1j t + ω2

j t .

Then, without a selection correction, the third stage becomes

ỹj t = βkkjt + βaajt + g̃
(
φjt−1 − βkkjt−1 − βaajt−1, Υ̂

−1
1j t−1

)+ ξjt + ηjt .

Once again, we can modify this to allow for selection by using the propensity score as
an additional determinant of g̃(·).
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Buettner (2004b) explores a related extension to OP. While he only allows one un-
observed state variable, he does allow the distribution of ωjt to evolve endogenously
over time, i.e. firms invest in R&D and these investments affect the distribution of ωjt

(conditional on ωjt−1).48 Unlike the above, Buettner does not assume that a “technol-
ogy indicator” is observed. He develops a dynamic model with investments in R&D and
physical capital that generates invertible policy functions such that the first stage of OP
can be directly applied (and the labor coefficient can be estimated). However, second
stage estimation is problematic, since the conditional expectation of ωjt now depends
on the full state vector through the choice of R&D. Furthermore, with the endogenous
productivity process, he cannot rely on exogenous variation (such as changes in the
economic environment over time) for identification. It remains to be seen whether this
problem can be solved.

Greenstreet (2005) proposes and utilizes an alternative model/methodology that,
while related to the above procedures, does not require the first stage inversion. This is
a very nice attribute since as a result, the procedure does not rely at all on the key scalar
unobservable and monotonicity assumptions of the OP/LP/ACF procedures. Greenstreet
achieves this by making a different assumption on firms’ information sets. Specifically,
instead of observing ωjt and ηjt individually (after production at t), firms only ever
observe the sum ωjt + ηjt . Because of this alternative informational assumption, the
econometrician does not need the first-stage inversion to recreate the information set of
the firms. While this does avoid the scalar unobservable and monotonicity assumptions,
Greenstreet’s approach still relies on similar timing assumptions, involves a slightly
more complicated learning process than the above procedures (requiring Kalman filter-
ing), and also generates some new initial conditions problems that require additional
assumptions to solve.

2.5. Concluding remark

The increase in the availability of plant and/or firm level panels together with a desire
to understand the efficiency implications of major environmental and policy changes
has led to a renewed interest in productivity analysis. Most of this analysis is based
on production function estimates, and the literature has found at least two empirical
regularities. First, there are indeed large efficiency differences among firms and those
differences are highly serially correlated. Second, at least in many environments, to
obtain realistic production function estimates the researcher must account for the possi-
bility of simultaneity and selection biases.

Put differently, to study either the changes in the allocative efficiency of production
among firms of differing productivities, or the correlates of productivity growth within
individual establishments, we first have to isolate the productivity variable itself. Since
firms’ responses to the changes in the environment being studied typically depend on

48 Recall that “endogenous” evolution of ωjt is problematic for IV approaches.
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how those changes impacted their productivity, movements in productivity cannot be
isolated from changes in input and exit choices without an explicit model of how those
choices are made.

The appropriateness of different models of how these decisions are made will un-
doubtedly depend on the environment being studied. We have presented a number of
alternatives, and discussed their properties. However this is an empirically driven sub-
field of estimation, and there are undoubtedly institutional settings where alternative
frameworks might be better to use. It is not the precise framework that is important,
but rather the fact that productivity studies must take explicit account of the fact that
changes in productivity (or, if one prefers, sales for a given amount of inputs) in large
part determine how firms respond to the changes being studied, and these must be taken
into account in the estimation procedure.

3. Dynamic estimation

This chapter considers structural estimation of dynamic games. Despite a blossoming
empirical literature on structural estimation of static equilibrium models, there has been
relatively little empirical work to date on estimation of dynamic oligopoly problems.
Four exceptions are Gowrisankaran and Town (1997), Benkard (2004), Jofre-Bonet and
Pesendorfer (2003), and Ryan (2006). The literature’s focus on static settings came
about not because dynamics were thought to be unimportant to market outcomes, but
rather because empirical analysis of dynamic games was seen as too difficult. In particu-
lar, while some of the parameters needed to analyze dynamic games could be estimated
without imposing the dynamic equilibrium conditions, some could not and, until very
recently, the only available methods for estimating these remaining parameters were
extremely burdensome, in terms of both computation time and researcher time.

This computational complexity resulted from the need to compute the continuation
values to the dynamic game in order to estimate the model. The direct way of obtaining
continuation values was to compute them as the fixed point to a functional equation,
a high order computational problem. Parameter values were inferred from observed be-
havior by computing the fixed point that determines continuation values at different trial
parameter values, and then searching for the parameter value that makes the behavior
implied by the continuation values “as close as possible” to the observed behavior. This
“nested fixed point” algorithm is extremely computationally burdensome because the
continuation values need to be computed many times.

However, a recent literature in industrial organization [Aguirregabiria and Mira
(2007), Bajari, Benkard and Levin (2007), Jofre-Bonet and Pesendorfer (2003), Pakes,
Ostrovsky and Berry (2007), and Pesendorfer and Schmidt-Dengler (2003)] has devel-
oped techniques that substantially reduce the computational and programming burdens
of estimating dynamic games. This literature extends a basic idea that first appeared in
the context of single agent problems in Hotz and Miller (1993). Hotz and Miller (1993)
provided a set of assumptions under which one could obtain a nonparametric estimate
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of continuation values without ever computing the fixed point.49 Rust (1994) suggests
the extension of these ideas to the context of dynamic games. The recent literature in
industrial organization has shown that, at least under a certain set of assumptions, these
approaches can be extended to estimate continuation values in a wide variety of dynamic
games, even in the presence of multiple equilibria.

This chapter summarizes the currently available techniques for estimating dynamic
games, concentrating on this recent literature. The chapter proceeds as follows. We first
outline the goals of the estimation procedure and consider what might be gained by
modelling dynamics in an oligopoly situation. Then we present a general framework
for dynamic oligopoly problems, with three simple examples from the recent literature.
Next we overview existing estimation methods, providing details for the three examples.
We conclude with a brief discussion of techniques available to ameliorate one (of many)
outstanding problems; that of serially correlated unobserved state variables.

We note that there are at least two issues that appear in the literature and are not
considered here. First we do not consider identification issues (at least not directly).
Our feeling is that many of the parameters determining behavior in dynamic games can
be estimated without ever computing an equilibrium, and those parameters that remain
depend on the nature of the problem and data availability. Second, we do not consider
“timing” games, such as those in Einav (2003) and in Schmidt-Dengler (2003). Our
only excuse here is our focus on the evolution of market structure in oligopolies.

3.1. Why are we interested?

One contribution of the recent literature is that it provides a means of obtaining informa-
tion about certain parameters that could not be obtained via other methods. For example,
the sunk costs of entry and the sell-off values (or costs) associated with exit are key de-
terminants in the dynamics of market adjustments to policy and environmental changes.
Knowledge of the level of sunk costs is critical, for example, in a regulatory author-
ity’s decision of whether to approve a merger, or in the analysis of the likely impacts
of changes in pension policy on shut down decisions. However, actual data on sunk
costs are extremely rare. Besides being proprietary, and thus hard to access, sunk costs
can also be very difficult to measure. Thus, in many cases the only option for learning
the extent of sunk costs may be to infer them from equilibrium behavior using other
variables that we can observe. Since sunk costs are only paid once upon entry, while
firms may continue to operate for many periods, inferring the level of sunk costs from
equilibrium behavior requires a dynamic framework. Similar arguments can be made
regarding the parameters determining, among other diverse phenomena, the transaction

49 In related work Olley and Pakes (1996) use nonparametrics to get around the problem of computing the
fixed point needed to obtain an agent’s decision rule in a multiple agent framework; but they use the non-
parametric estimates to control for unobservables and do not recover the implied estimates of continuation
values.
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costs of investments (including installment, delivery, and ordering costs), the costs of
adjusting output rates or production mix, and the extent of learning-by-doing.

There are a number of other uses for techniques that enable us to empirically analyze
dynamic games. For example, there are many industries in which an understanding of
the nature of competition in prices (or quantities) requires a dynamic framework. In such
cases, the empirical literature in industrial organization has often used static models to
approximate behavior that the authors are well aware is inherently dynamic. For exam-
ple, there has been much work on identifying and estimating the form of competition in
markets [e.g. Bresnahan (1982, 1987), Lau (1982)]. This literature typically compares a
static Nash equilibrium with particular static “collusive” pricing schemes. In reality, the
set of collusive pricing schemes that could be supported in equilibrium depends on the
nature of the dynamic interactions [e.g. Abreu, Pearce and Stacchetti (1986), Green and
Porter (1984), Rotemberg and Saloner (1985), Fershtman and Pakes (2000)]. A related
point is that static price or quantity setting models are known to be inappropriate when
future costs depend directly on the quantity sold today, as in models with learning by
doing or adjustment costs, and/or when future demand conditions depend on current
quantities sold, as in models with durable goods, experience goods, the ability to hold
inventory, and network externalities.

Similarly, most of the existing empirical literature on entry relies on two-period sta-
tic models. While these models have proven very useful in organizing empirical facts,
the two period game framework used makes little sense unless sunk costs are absent.
Therefore, the results are not likely to be useful for the analysis of policy or envi-
ronmental changes in a given market over time. This leaves us with an inability to
analyze the dynamic implications of a host of policy issues, and there are many sit-
uations where dynamics may substantially alter the desirability of different policies.
For example, Fershtman and Pakes (2000) show that because collusive behavior can
help promote entry and investment, it can enhance consumer welfare. Similarly, a sta-
tic analysis would typically suggest that mergers lower consumer welfare by increasing
concentration, whereas a dynamic analysis might show that allowing mergers promotes
entry, counterbalancing the static effects.

3.2. Framework

This section outlines a framework for dynamic competition between oligopolistic com-
petitors that encompasses many (but not all) applications in industrial organization.
Examples that fit into the general framework include entry and exit decisions, dynamic
pricing (network effects, learning-by-doing, or durable goods), dynamic auction games,
collusion, and investments in capital stock, advertising, or research and development.
The defining feature of the framework is that actions taken in a given period affect future
payoffs, and future strategic interaction, by influencing only a set of commonly observed
state variables. In particular, we will assume that all agents have the same information
to use in making their decisions, up to a set of disturbances that have only transitory
effects on payoffs.
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We use a discrete time infinite horizon model, so time is indexed by t = 1, 2, . . . ,∞.
At time t , prevailing conditions are summarized by a state, st ∈ S ⊂ R

G, that reflects
aspects of the world relevant to the payoffs of the agents. Relevant state variables might
include firms’ production capacities, the characteristics of the products they produce,
their technological progress up to time t , the current market shares, stocks of consumer
loyalty, or simply the set of firms that are incumbent in the market. We assume that these
state variables are commonly observed by the firms. Note that we have not yet specified
which state variables are observed by the econometrician. This distinction will be made
in the applications below.

Given the state st at date t , the firms simultaneously choose actions. Depending on
the application, the firms’ actions could include decisions about whether to enter or exit
the market, investment or advertising levels, or choices about prices and quantities. Let
ait ∈ Ai denote firm i’s action at date t , and at = (a1t , . . . , aNt ) the vector of time t

actions, where Nt is the number of incumbents in period t (entry and exit, and hence Nt ,
are endogenous in these models).

We also assume that before choosing its action each firm, i, observes a private shock
νit ∈ R, drawn independently (both over time and across agents) from a distribution
G(·|st ).50 Private information might derive from variability in marginal costs of produc-
tion that result, say, from machine breakdowns, or from the need for plant maintenance,
or from variability in sunk costs of entry or exit. We let the vector of private shocks be
νt = (ν1t , . . . , νNt ).

In each period, each firm earns profits equal to πi(at , st , νit ). Profits might include
variable profits as well as any fixed or sunk costs, including the sunk cost of entry
and the selloff value of the firm. Conditional on the current state, s0, and the current
value of the firm’s private shock, νi0, each firm is interested in maximizing its expected
discounted sum of profits

(61)E

[ ∞∑
t=0

βtπi(at , st , νit )

∣∣∣∣s0, νi0

]
,

where the expectation is taken over rival firms’ actions in the current period as well as
the future values of all state variables, the future values of the private shock, and all
rivals’ future actions. We assume firms have a common discount factor β.

The final aspect of the model is to specify the transitions between states. We as-
sume that the state at date t + 1, denoted st+1, is drawn from a probability distribution
P(st+1|st , at ). The dependence of P(·|st , at ) on the current period actions at reflects
the fact that some time t decisions may affect future payoffs, as is clearly the case if the
relevant decision being modelled is an entry/exit decision or a long-term investment.
Of course, not all the state variables necessarily depend on past actions; for example,

50 Here we assume that firm i’s private shock is a single scalar variable. However, as will be seen in the
examples below, there is no conceptual difficulty in allowing the shock to be multi-dimensional.
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one component of the state could be a transitory i.i.d. shock that affects only the current
payoffs, such as an i.i.d. shock to market demand.

Note that we have assumed that firms’ private information does not influence state
transitions directly (i.e. it only influences transitions through its impact on ait ). For ex-
ample, incumbent firms care only about whether or not a potential entrant enters the
market, and not what the entrant’s sunk cost of entry was. On the other hand this as-
sumption does rule out applications where firms’ investment outcomes are their private
information [e.g. Fershtman and Pakes (2005)].

We are interested in equilibrium behavior. Because the firms interact repeatedly and
the horizon is infinite, there are likely to be many Nash, and even subgame perfect
equilibria, possibly involving complex behavioral rules. For this reason, we focus on
pure strategy Markov perfect equilibria (MPE).

In our context a Markov strategy for firm i describes the firm’s behavior at time t as
a function of the commonly observed state variables and firm i’s private information
at time t . Formally, it is a map, σi : S × R → Ai . A profile of Markov strategies is a
vector, σ = (σ1, . . . , σn), where σ : S × R

n → A. A Markov strategy profile, σ , is a
MPE if there is no firm, i, and alternative Markov strategy, σ ′

i , such that firm i prefers
the strategy σ ′

i to the strategy σi given its opponents use the strategy profile σ−i . That
is, σ is a MPE if for all firms, i, all states, s, and all Markov strategies, σ ′

i ,

(62)Vi(s, νi |σi, σ−i ) � Vi

(
s, νi

∣∣σ ′
i , σ−i

)
.

If behavior is given by a Markov profile σ , firm i’s present discounted profits can be
written in recursive form

Vi(s, νi |σ ) = Eν−i

[
πi

(
σ (s, ν), s, νi

)
(63)+ β

∫
Vi

(
s′, ν′

i

∣∣σ ) dG
(
ν′
i

∣∣ s′) dP
(
s′∣∣σ (s, ν), s

)]
.

3.2.1. Some preliminaries

The framework above is a generalization of the Ericson and Pakes (1995) model. The ex-
istence proofs for that model that are available have incorporated additional assumptions
to those listed above [see Gowrisankaran (1995), and Doraszelski and Satterthwaite
(2007)]. Typically, however, the algorithms available for computing an equilibrium do
find an equilibrium even when the available sets of sufficient conditions for existence
are not satisfied (i.e. the algorithm outputs policies and values that satisfy the fixed point
conditions that define the equilibrium up to a precision determined by the researcher).
There may, however, be more than one set of equilibrium policies [for an explicit exam-
ple see Doraszelski and Satterthwaite (2007)].

If the regularity conditions given in Ericson and Pakes (1995) are satisfied, each equi-
librium generates a finite state Markov chain for the st process. That is, the vector of
state variables can only take on a finite set of values, a set we will designate by S, and
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the distribution of the future {sτ }∞τ=t conditional on all past history depends only on the
current value of st . Every sequence from this finite state Markov chain will, in finite
time, wander into a subset of the states called a recurrent class or an R ⊂ S, and once
in R will stay there forever. Every s ∈ R will be visited infinitely often.51

Throughout we assume that agents’ perceptions of the likely future states of their
competitors depend only on st (i.e. we assume that st is a complete description of
the state variables observed by the firms). As detailed by Pakes, Ostrovsky and Berry
(2007), this implies that there is only one equilibrium policy for each agent that is con-
sistent with the data generating process; at least for all st ∈ R. To see this it suffices to
note that since we visit each point in R infinitely often, we will be able to consistently
estimate the distribution of future states of each firm’s competitors given any st ∈ R.
Given that distribution, each agent’s best response problem is a single agent problem.
Put differently, since reaction functions are generically unique, once the agent knows the
distribution of its competitors’ actions, its optimal policy is well defined. Thus, given
the data generating process, policies are well defined functions of the parameters and
the state variables. Consequently, standard estimation algorithms can be used to recover
them.52

Finally, in all of the examples below we will assume that the discount factor, β, is one
of the parameters that is known to the econometrician. It is a straightforward extension
to estimate the discount parameter. However, our focus here is on obtaining estimates
of parameters that we have little other information on.

3.2.2. Examples

The framework above is general enough to cover a wide variety of economic models. We
provide three examples below. In general the objects that need to be recovered in the es-
timation are the period profit function, π(·), the transition probabilities, P(st+1|st , at ),
and the distribution of the private shocks, G(·|s).

EXAMPLE 1 (A simple model of entry/exit). This example is based on Pakes, Ostrovsky
and Berry (2007). Let the state variables of the model be given by a pair, st = (nt , zt ),
where nt denotes the number of firms active at the beginning of each period, and zt is a
vector of profit shifters that evolve exogenously as a finite state. In the model, operating
profits are determined solely by these variables. In any period, t , in which a firm is
active it earns profits equal to

π̃ (nt , zt ; θ).

51 Formally, the dynamics of the model are described by a Markov matrix. Each row of the matrix provides
the probability of transiting from a given s to each possible value of s ∈ S. Ericson and Pakes (1995) also
provide conditions that imply that the Markov matrix is ergodic, that is there is only one possible R.
52 Note that if our data consists of a panel of markets, this implicitly assumes that, conditional on st , the
policy rule (our σ ) in one market is the same as in the other.
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The model focuses on entry and exit. In each period, each incumbent firm receives a
random draw, denoted φit , determining the selloff value of the firm. The selloff values
are assumed to be private information. However, their distribution is commonly known
to the agents. The firm chooses to exit if the selloff value of the firm is greater than the
expected discounted value of continuing in the market. Otherwise, the firm continues in
the market.

Entry is described similarly. For ease of exposition, we assume that there are E poten-
tial entrants each period, where E is known to the agents.53 Each period, each potential
entrant firm receives a random draw, denoted κit , determining its sunk cost of entry.
As above, the entry cost is private information, but its distribution is commonly known.
The firm enters the market if the expected discounted value of entering is greater than
the entry cost. Otherwise, the entrant stays out of the market and earns nothing.

To see how this model fits into the general framework, let χit = 1 for any firm i that
is active in the market in period t , and χit = 0 otherwise. Note that we assume that
when an incumbent firm exits, χit = 0 thereafter. In that case the period profit function
is

πi(at , st , νit ) = {χit = 1}π̃(nt , zt ; θ) + (χit − χi,t−1)
−φit − (χit − χi,t−1)

+κit ,

where the notation {χit = 1} denotes an indicator function that is one if the firm is
active and zero otherwise, the notation f + ≡ {f > 0}f , for any function f , and
similarly f − ≡ {f < 0}|f |. On the right-hand side, χ represents firms’ actions, a;
n and z represent the states, s; and φ and κ represent the private shocks, ν.

Note that while this model does not allow for observed heterogeneity among incum-
bent firms, this can be achieved by allowing for multiple entry locations. We consider
this extension below. Note further that this model is a special case of the Ericson and
Pakes (1995) model in which investment is not modelled. We add investment back to
the model in the next example.

EXAMPLE 2 (An investment game with entry and exit). This example is a straightfor-
ward extension of the Ericson and Pakes (1995) model due to Bajari, Benkard and Levin
(2007). Similarly to the above example, there are a set of incumbent firms competing
in a market. Firms are heterogeneous, with differences across firms described by their
state variables, sit , which are commonly known. For ease of exposition, we will omit
any other exogenous profit shifters from the set of state variables.

Each period, firms choose investment levels, Iit � 0, so as to improve their state
the next period. Investment outcomes are random, and each firm’s investment affects
only its own state so that there are no investment spillovers. Therefore, each firm’s state
variable, sit , evolves according to a process Pr(si,t+1|sit , Iit ).

Here are some examples of models that are consistent with this framework.

53 The extension to a random number of entrants is straightforward. See Pakes, Ostrovsky and Berry (2007)
for details.
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(i) Firms’ state variables could represent (one or more dimensions of) product qual-
ity, where investment stochastically improves product quality.

(ii) Firms’ state variables could represent the fraction of consumers who are aware
of the firm’s product, where investment is a form of advertising that increases
awareness [e.g. Doraszelski and Markovich (2007)].

(iii) Firms’ state variables could represent capital stock, where investment increases
a firm’s capital stock.

Firms earn profits by competing in a spot market. Because quantity and price are
assumed not to influence the evolution of the state variables, they are determined in
static equilibrium conditional on the current state. In any period, t , in which a firm is
active in the market it earns profits equal to

(64)qit (st , pt ; θ1)
(
pit − mc(sit , qit ; θ2)

)− C(Iit , νit ; θ3),

where qit is quantity produced by firm i in period t , pt is the vector of prices, mc is
the marginal cost of production, νit represents a private shock to the cost of investment,
θ = (θ1, θ2, θ3) is a parameter vector to be estimated, and we have assumed that the
spot market equilibrium is Nash in prices.

The model also allows for entry and exit. Each period, each incumbent firm has the
option of exiting the market and receiving a scrap value, Φ, which is the same for
all firms (this differs from the prior example in which there is a distribution of exit
costs). There is also one potential entrant each period with a random entry cost, κit .54

The entrant enters if the expected discounted value of entering exceeds the entry cost.
As above, the entry cost is assumed to be private information, but its distribution is
commonly known.

Relative to the general framework above, current period returns are given by

πi(at , st , νit ) = {χit = 1}[qit (st , pt ; θ1)
(
pit − mc(sit , qit ; θ2)

)− C(Iit , νit ; θ3)
]

+ (χit − χi,t−1)
−Φ − (χit − χi,t−1)

+κit .

On the right-hand side, prices (p), investment (I ), and entry/exit (χ) are the actions (a),
while the private shocks are the shock to investment (νit ) and the entry cost (κit ).

EXAMPLE 3 (A repeated auction game with capacity constraints). This example is
based on Jofre-Bonet and Pesendorfer (2003). In this example, a set of incumbent
contracting firms compete in monthly procurement auctions. The auctions are hetero-
geneous because the contracts that become available each month are of differing size
and scope. The firms bidding on the contracts are also heterogeneous as each has a dif-
ferent cost of completing each contract. In a given month, each firm also has a different
backlog of contracts, which might affect its ability to take on new contracts.

Let zt be the characteristics of the contract to be auctioned in month t , including
both the contract size (in dollars), and the number of months required to complete the

54 It is straightforward to generalize the model to have a random number of potential entrants each period.
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contract. We assume that zt evolves exogenously as a finite state. Let ωi,t be the backlog
of work for firm i in period t and ωt = (ω1,t , . . . , ωN,t ) be the vector of backlogs.
A firm’s backlog of work represents the remaining size in dollars, and the remaining
number of days left until completion of each contract previously won by the firm. It
therefore evolves deterministically depending on the current auction outcome according
to the map

ωt+1 = Γ (ωt , zt , j ),

where j is the winner of the time t auction and the map Γ is known. The state variables
of the model are st = (ωt , zt ). All states are assumed to be common knowledge.

Each firm also has a different cost, cit , for each contract that is private information to
the firm. Bidders’ costs are drawn independently from a distribution G(cit |ωit , ω−it , zt )

that is commonly known.
In each period, each firm views its cost for the contract being offered and then chooses

a bid, bit . Each firm earns current profits equal to

(65)πi(at , st , νit ) = (bit − cit )
{
bit � min

j
(bjt )

}
,

where the indicator function takes the value one if firm i submits the lowest bid and
hence wins the auction (assume there are no ties). On the right-hand side the bids (bjt )

are the action variables (at ) and the costs cit are the private shocks (νit ).
Note that the state variables do not directly enter current profits in this model. How-

ever, the state variables influence all firms’ costs and hence a firm’s optimal bid depends
on the current state both through its own costs directly and through the firm’s beliefs
about the distribution of rivals’ bids. For the same reason, expected profits are also a
function of the current state.

Note also that an important distinction between the investment model above and this
example is that, in this example, each firm’s choice variable (in this case, its bid) affects
the evolution of all firms’ states. In the investment model above, a firm’s investment
affects only the evolution of its own state. This distinction is important because many
I.O. models share this feature. For example, models of dynamic pricing (learning by
doing, network effects, or durable goods) would have this feature when firms compete
in prices (though not if firms compete in quantities). Such models can be placed in the
general EP framework we have been using, but to do so we need to adjust that frame-
work to allow the control that affects the distribution of current profits (bids, quantities,
or prices) to also have an impact on distribution of future states; see the discussion in
Pakes (1998). We note that to our knowledge Jofre-Bonet and Pesendorfer (2003) were
the first to show that a two-step estimation approach was feasible in a dynamic game.

3.3. Alternative estimation approaches

In order to conduct policy analysis in any of the economic models above, it is typically
necessary to know all of the parameters of the model, including the profit function, the
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transition probabilities, and the distribution of the exogenous shocks. Often many of the
parameters can be estimated “off line”, that is, without needing to compute equilibria of
the dynamic game. At one extreme here is Benkard’s (2004) analysis of the commercial
aircraft industry. He was able to obtain a large amount of cost data on sunk as well as
marginal costs which, together with generally available information on demand, enabled
him to estimate all the parameters he needed off line. Given these parameters he could
focus on computing the dynamic implications of alternative policies.

However, such an approach is rarely possible. More typically, at least cost data are
unavailable, either because they are proprietary and hence difficult for researchers to
access, or because they are hard to measure. In static settings we often solve the prob-
lem of a lack of cost data by inferring marginal costs from their implications in an
equilibrium pricing equation. A similar approach can be taken in this dynamic setting.
However, characterizing the relationship between the data generating process and equi-
librium play in the models above is complicated by the fact that the model involves
repeated interactions.

Observed behavior in the model represents the solution to a maximization problem
that involves both the profit function, which typically has a known parametric form,
and the value function, which results from equilibrium play and therefore has unknown
form. For example, the value of entering a market depends both on current profits, and
expected future profits, which in turn depend on future entry and exit behavior. In or-
der to describe the data generating process, then, we need the ability to compute the
equilibrium continuation values.

Thus, conceptually, estimation of dynamic models can be separated into two main
parts. The first part involves obtaining the continuation values for a given parameter
value, θ . The second part is to use the continuation values obtained in the first part to
maximize an objective function in the parameters, θ . Note that the continuation values
must be obtained for many different values of θ in order to perform this maximization,
and thus the first part is the source of most of the computational burden of the estimation.
The key differences in estimation approaches lie in the details of how each of these two
parts is performed.

3.3.1. The nested fixed point approach

The nested fixed point approach is a logical extension of the method of Rust (1987) to
games. The general idea is as follows:

1. Given a parameter vector, θ , compute an equilibrium to the game, V (s; θ), numer-
ically, using the computer.

2. Use the computed values, V (s; θ), to evaluate an objective function based on the
sample data.

3. Nest steps one and two in a search routine that finds the value of θ that maximizes
the objective function.

A framework capable of computing equilibria to models like those above has existed
for some time [Pakes and McGuire (1994)], and recent papers by Pakes and McGuire
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(2001), Doraszelski and Judd (2004), and Weintraub, Benkard and Van Roy (2007) en-
able significant improvements in computational times, at least in some problems [for
a discussion of these, and other alternatives, see Doraszelski and Pakes (2007)]. All of
these algorithms rely on similarities between the dynamic framework above and dy-
namic programming problems. The general idea of these algorithms is to start with an
initial guess at the value function, V 0(s; θ), and substitute that into the right-hand side
of the Bellman equation (Equation (63)). Then, at each state point and for each firm,
solve the maximization equation on the right-hand side of (63) yielding a new estimate
of the value function, V 1(s; θ). This procedure is iterated until convergence is achieved,
so that the new and old value functions are the same. Unlike single agent problems,
in the context of a game, convergence of the algorithm is not guaranteed (the mapping
is not a contraction) and, indeed, initial iterations will often seem to move away from
equilibrium. However, in practice the algorithms typically converge and, once they do,
the value functions obtained must represent an equilibrium.

An important feature of the nested fixed point algorithm is that the first step is per-
formed without using any data. As a result, the value functions are obtained precisely;
that is, they contain no sampling error. This lack of sampling error makes the second
part of the algorithm, in which the parameters are estimated, straightforward.

On the other hand the algorithm is computationally burdensome. For models rich
enough to use in empirical work, it is often difficult to compute an equilibrium even
once, and in the nested fixed point algorithm it is necessary to compute an equilibrium
once for each iteration of the maximization routine; implying that up to hundreds, if
not thousands, of fixed points must be calculated. Moreover, setting up an efficient al-
gorithm often requires a large amount of complex computer programming, creating a
relatively large burden on researcher time. As a result there are very few examples in
the literature where the nested fixed point algorithm has been applied to estimate para-
meters.

One exception is Gowrisankaran and Town (1997), who use a nested fixed point ap-
proach to apply a model similar to the investment model above to data for the hospital
industry. In each iteration of the estimation they compute an equilibrium using the al-
gorithm of Pakes and McGuire (1994). They then estimate the model using a GMM
objective function that matches cross-sectional moments such as average revenue per
hospital, average expenditures per hospital, average investment per hospital, and aver-
age number of hospitals of each type (nonprofit and for-profit) per market. The nested
fixed point approach was feasible in their application because their model was parsimo-
nious and there were never more than three hospitals in any market in the data.

Another difficulty with the nested fixed point algorithm arises from the fact that dy-
namic oligopoly models can admit more than one equilibria. While the assumptions
given above in principle allow the researcher to use the data to pick out the correct equi-
librium, actually achieving this selection using the nested fixed point algorithm is likely
to be difficult. Moreover, equilibrium selection has to take place for every candidate
value of the parameters to be estimated. Alternative sets of assumptions could be used
to select different equilibria, but unless we were willing to assume “a priori” that equi-
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librium was unique, somehow we must investigate the issue of the relationship between
the equilibrium computed in the algorithm, and that observed in the data.

3.3.2. Two-step approaches

The biggest obstacle to implementing the nested fixed point algorithm in practice is
the heavy computational burden that results from the need to compute equilibria for
each trial parameter value. Fortunately, the recent literature [Aguirregabiria and Mira
(2007), Bajari, Benkard and Levin (2007), Jofre-Bonet and Pesendorfer (2003), Pakes,
Ostrovsky and Berry (2007), and Pesendorfer and Schmidt-Dengler (2003)] has de-
rived methods for estimating dynamic oligopoly models that impose the conditions of
a dynamic equilibrium without requiring the ability to compute an equilibrium. The
new literature sidesteps the equilibrium computation step by substituting nonparamet-
ric functions of the data for the continuation values in the game. These nonparametric
estimates are in general much easier to compute than the fixed point calculations in
the nested fixed point algorithm. As a result, these methods have substantially lower
computational burden.

Below we outline five different two-step methods of estimating dynamic games. The
overall approach is similar throughout, but each method does both the first and sec-
ond steps of the estimation differently. To our knowledge, Hotz and Miller (1993)
were the first to show that it was possible to estimate the continuation values in a dy-
namic programming problem nonparametrically instead of computing them. In a single
agent dynamic discrete choice problem, Hotz and Miller showed that the agent’s dy-
namic choice problem mimics a static discrete choice problem with the value functions
replacing the mean utilities. Thus, the agent’s continuation values can be obtained non-
parametrically by first estimating the agent’s choice probabilities at each state, and then
inverting the choice problem to obtain the corresponding continuation values. This in-
version is identical to the one commonly used in discrete choice demand estimation to
obtain the mean utilities.

We begin our discussion of estimation by showing that if the game has only dis-
crete actions, and there is one unobserved shock per action for each agent in the
game, then under the information structure given in the general framework above, es-
timators very similar to those of Hotz and Miller (1993) can still be used [see also
Aguirregabiria and Mira (2007)]. Sticking with the single agent framework, Hotz et al.
(1994) use estimated probabilities to simulate sample paths. They then calculate the
discounted value of utility along these paths, average those values for the paths emanat-
ing from a given state, and use these averages as the continuation values at that state.
The Bajari, Benkard and Levin (2007) paper discussed below shows that related ideas
can be used to incorporate continuous controls into estimation strategies for dynamic
games.

Pakes, Ostrovsky and Berry (2007) also consider dynamic discrete games but, instead
of inverting the choice problem, they estimate the continuation values directly by com-
puting (approximately) the average of the discounted values of future net cash flows
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that agents starting at a particular state actually earned in the data (at least up to the
parameter vector of interest). Econometrically, they use a nonparametric estimate of the
Markov transition probabilities that determine the evolution of the state of the system to
form an analytic estimate of the probability weighted average of the discounted returns
earned from different states. Given equilibrium play, these averages will converge to the
true expected discounted value of future net cash flow, that is of the continuation values
we are after.

Bajari, Benkard and Levin (2007) instead begin by projecting the observed actions on
the state variables to compute nonparametric estimates of the policy functions of each
agent at each state. Then they use the estimated policies to simulate out the discounted
values of future net cash flows. This procedure is computationally light even in models
with large state spaces and is easily applied to models with continuous controls, such as
investment, quantity, or price (including models with both discrete and continuous con-
trols like the investment game above). Given equilibrium play, the continuation values
obtained in this fashion will be consistent estimates of the continuation values actually
perceived by the agents.

Berry and Pakes (2002) provide an alternative approach for estimating models with
continuous controls that is likely to be useful when the dynamic environment is com-
plex, but sales and investment data are available. They assume that current period net
returns are observable up to a parameter vector to be estimated, but do not require that
the state variables of the model be observed, or even specified (so it would not be possi-
ble to estimate policy functions conditional on those state variables as in Bajari, Benkard
and Levin). They derive an estimating equation from the first order condition for the
continuous control (investment in our example) by substituting observed profit streams
for the expected profit streams, and noting that the difference must be orthogonal to
information known at the time investment decisions are made.

Jofre-Bonet and Pesendorfer (2003) provide an estimator for the dynamic auction
model. They show that it is possible to derive an expression for the equilibrium contin-
uation values in the auction game that involves only the bid distributions. Since bids are
observed, the bid distributions can be recovered nonparametrically from the data and
then substituted into these expressions. Provided that agents are bidding close to opti-
mally, the continuation values obtained from this procedure will be consistent estimates
of the continuation values perceived by the agents.

In many of the cases we consider several of the methods could be used in estimation.
In these cases it is not currently known how the methods compare to one another on
such dimensions as computational burden and econometric efficiency. Hybrid methods
are also possible in which features of two or more of the approaches could be combined.
We expect these issues to be sorted out in the future.

Finally, there are also some costs associated with the two-step approaches. First, be-
cause the continuation values are estimated rather than computed, they contain sampling
error. This sampling error may be significant because these models often have state
spaces that are large relative to the available data. As we will see below, this influ-
ences the properties of the second step estimators in important ways. To summarize, the
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choice of second stage estimation method will be influenced as much or more by a need
to minimize small sample bias caused by error in the continuation value estimates as it
is by the desire to obtain asymptotic efficiency.

Second, for the two step approaches to produce estimators with desirable properties
the data must visit a subset of the points repeatedly. Formally the requirement for the
limit properties of the estimators is that all states in some recurrent class R ⊆ S be
visited infinitely often. Moreover, equilibrium strategies must be the same every time
each point in R is visited. Whether or not this assumption is reasonable for the problem
at hand depends on the nature of the available data and the institutional setting which
generated it. If the data consists of a time series on one market then we would require
stationarity of the process over time. There are different ways to fulfill this requirement
in panels (i.e. when we follow a cross section of markets over time); one possibility is
that the initial state in each market is a random draw from a long run ergodic distribution.
Note that the nested fixed point approach has a weaker data requirement.

These costs must be weighed against the benefit that the two-step estimators eliminate
most of the computational burden of the nested fixed point approach. Indeed, the entire
two-step algorithm might well have less computational burden than one iteration of the
nested fixed point algorithm.

3.4. A starting point: Hotz and Miller

Because of the similarity of this section to the previous literature on single agent prob-
lems, we will keep this section short, concentrating mainly on extending Hotz and Miller
to games. For more detail on the approach in single agent problems see Hotz and Miller
(1993), Hotz et al. (1994), Magnac and Thesmar (2002), and Rust (1994). See also
Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2003) for a dis-
cussion in the context of entry games.

The idea behind Hotz and Miller’s estimation method for single agent problems is to
set up a dynamic discrete choice problem such that it resembles a standard static discrete
choice problem, with value functions taking the place of standard utility functions. This
allows a two step approach in which a discrete choice model is used as a first step for
recovering the value functions, and the parameters of the profit function are recovered
in a second step once the value functions are known.

We make two simplifying assumptions that will assist in the exposition. First, we
suppose that agents’ current profits do not depend on rivals’ actions (though they do
depend on rival’s states whose evolution depends on those actions). Second, we assume
that the unobserved shocks are additive to profits. In that case, current profits are given
by

πi(at , st , νit ) = π̃ (ait , st ) + νit (ait ),

where νit is agent i’s vector of profitability shocks and νit (ait ) is the shock associated
with agent i’s action ait .
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The first assumption simplifies the agents’ choice problem because, if agents’ current
profits depend on rivals’ actions then, since rivals’ actions depend on their own current
shocks, in its own maximization problem each agent would have to integrate current
profits over all rivals’ current actions. This would not change the overall approach but
would complicate the computations below [we would need to integrate over distribu-
tions of competitors outcomes to compute the expected profits; see Aguirregabiria and
Mira (2007) for a model in which profits do depend on rivals’ actions]. The second
simplification, additive separability in the private shocks, is also not strictly required.
If the error terms entered profits nonlinearly then we could rewrite the problem in
terms of expected profits and an additively separable projection error and work with
that framework instead. However, such an approach does have the unattractive prop-
erty that it changes the interpretation of the profit function. Thus, it is typically the
case that in practice people assume that the profit function has additive structural error
terms.

With these assumptions the Bellman equation can be simplified to (suppressing the
subscripts)

(66)V (s, ν) = max
a

{
π̃(a, s) + ν(a) + β

∫
V (s′, ν′) dG(ν ′|s′) dP(s′|s, a)

}
.

Equation (66) represents a discrete choice problem in which the mean utilities are given
by

(67)va(s) = π̃ (a, s) + β

∫
V (s′, ν′) dG(ν ′|s′) dP(s′|s, a).

Thus, since the private shocks are independent across time and across agents, the choice
probabilities for a given agent can be generated in the usual manner of a static discrete
choice problem

(68)Pr(a|s) = Pr
(
va(s) + ν(a) � va′(s) + ν(a′),∀a′).

Assuming that the data consists of a large sample of observations on states and ac-
tions, the probability of each action at each state, Pr(a|s), can be recovered from the
data. In that case, the left-hand side of (68) is known, at least asymptotically. Let P(s)
be the vector of choice probabilities for all feasible actions. Hotz and Miller show that
for any distribution of the private shocks there is always a transformation of the choice
probabilities such that

(69)va(s) − v1(s) = Qa

(
s, P (s)

)
.

That is, the differences in the choice specific value functions can be written as a func-
tion of the current state and the vector of choice probabilities. The transformation on
the right-hand side is the same as the inversion used in the discrete choice demand es-
timation literature. Berry (1994) proves that the solution is unique. Berry, Levinsohn
and Pakes (1995) provide a transformation from the data to the mean utilities which is
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a contraction, and hence enables the researcher to actually compute the mean utilities
(for more discussion see the first part of this chapter).

In general, this transformation can be used to recover the normalized choice specific
value functions, va−v1, at each state, using the estimated choice probabilities. If the dis-
tribution of the private shocks is known, the mapping does not depend on any unknown
parameters. For example, in the case of the logit

(70)Qa

(
s, P (s)

) = ln
(
Pr(a|s))− ln

(
Pr(a1|s)

)
.

However, in general the mapping may be a function of unknown parameters of the
distribution of the private shocks.

Note that, as in static discrete choice models, only the value differences can be recov-
ered nonparametrically. Thus, some further information is required to obtain the values
themselves. This difficulty is not just a feature of this particular estimation approach,
but comes from the underlying structure of the discrete choice framework, in which
only utility differences are identified from the observed choices. One consequence of
this is that, even if the discount factor and the distribution of private shocks are com-
pletely known, the profit function cannot be recovered nonparametrically [see Magnac
and Thesmar (2002) for a detailed proof and analysis for single agent dynamic discrete
choice problems, and Pesendorfer and Schmidt-Dengler (2003) for results extended to
dynamic discrete games]. This feature is inherent to the dynamic discrete choice setup
and carries through to the context of a dynamic discrete game. As noted earlier our feel-
ing is that the appropriate resolution of identification issues, such as this one, is context
specific and will not be discussed here.

To obtain the continuation values from the choice specific values we can use the fact
that

(71)V (s, ν) = max
a

{
va(s) + ν(a)

}
.

Because the continuation values are obtained by inverting from the observed choice
probabilities, the structure of the profit function has not yet been imposed on them, and
they are not yet functions of the profit function parameters. In order to estimate the
profit function parameters, Hotz and Miller iterate the Bellman equation once, inserting
the estimated continuation values on the right-hand side,

V̂ (s; θ) =
∫

max
a

{
π̃ (a, s; θ) + ν(a)

(72)+ β

∫
V̂ (s′, ν′) dG(ν ′|s′) dP(s′|s, a)

}
dG(ν|s).

Note that for some distributions such as those of type GEV the integral on the right-hand
side has an analytic form. In other cases it can be simulated.

These new estimates of the continuation values contain the profit function parameters
(θ ) and can be used in an estimation algorithm to estimate θ . The way this is typically
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done is to compute new predicted choice probabilities, (68), based on the new continu-
ation value estimates, V̂ (s; θ). Then, these choice probabilities can be used to construct
either a pseudo-likelihood or some other GMM objective function that matches the
model’s predictions to the observed choices.

As noted above, the nonparametric estimates of the continuation values and transition
probabilities on the right-hand side of (72) introduce estimation error into the second
stage objective function nonlinearly. Hotz and Miller show that if this estimation error
disappears quickly enough then the estimator obtained is consistent and asymptotically
normal. However, there are other methods that may be preferable in this context to a
pseudo-likelihood. Because of the nonlinearity of the pseudo-likelihood in the continu-
ation values, estimation error in the continuation values causes increased small sample
bias in the parameter estimates obtained using this method. We discuss methods that at
least partially address this problem in the next section.

3.5. Dynamic discrete games: Entry and exit

In this section we consider estimation of the entry/exit game in example one using
the methods of Pakes, Ostrovsky and Berry (2007) (henceforth POB). We maintain the
assumption that all of the state variables, (nt , zt ), are observed and that the number
of entrants (et ) and exitors (xt ) are also observed. Entry and exit costs are assumed
not to be observed and are the objects of interest in the estimation. We discuss the
possibilities for estimation when there are one or more unobserved state variables in
Section 3.8.1.

Consider first exit behavior. Redefining the value function from the start of a period,
prior to the point at which the private scrap value is observed, the Bellman equation for
incumbent firms is given by (t subscript suppressed)

(73)V (n, z; θ) = π̃(n, z; θ) + βEφ

[
max

{
φi, VC(n, z; θ)

}]
,

where VC denotes the continuation value of the firm, which equals

(74)VC(n, z; θ) ≡
∑

z′,e,x
V (n + e − x, z′; θ)P (e, x|n, z, χ = 1)P (z′|z).

In the above equation, e and x denote the number of entering and exiting firms, and
P(e, x|n, z, χ = 1) denotes the incumbent’s beliefs about the likely number of entrants
and exitors starting from state (n, z) conditional on the incumbent itself continuing
(χ = 1).

If the equilibrium continuation values, VC(n, z; θ), were known, then it would be
straightforward to construct a likelihood function since the probability of exit is given
by

(75)Pr(i exits|n, z; θ) = Pr
(
φi > VC(n, z; θ)

)
,

and is independent across firms. Thus, we need to find a simple way to construct the
equilibrium continuation values using observed play.
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The continuation values represent the expected discounted value of future profits
conditional on the incumbent continuing. They are a function of the profit function,
π̃(n, z; θ), which determines future profits at each state (n, z), and the processes deter-
mining the evolution of the state variables, n and z. The profit function is known up to
the parameters, θ . Therefore, in order to construct the continuation values as a function
of the parameters, we need only estimate the evolution of the number of firms, which
is determined by entry and exit, and the evolution of the profit shifters, P(z′|z). The
easiest way to do this is to use their empirical counterparts. Starting from a certain state,
to estimate the evolution of the number of firms we can use the actual evolution of the
number of firms each time that state was observed in the data. Similarly, we can use
the observed evolution of the profit shifters to estimate the process P(z′|z). That way
the estimated continuation values reflect, approximately, the actual profits of firms that
were observed in the data. The next subsection outlines this process in detail.

3.5.1. Step 1: Estimating continuation values

To facilitate estimation of the continuation values, it helps to rewrite the Bellman equa-
tion in terms of the continuation values, VC,

VC(n, z; θ) =
∑
n′,z′

[
π̃(n′, z′; θ)

(76)+ βEφ

[
max

{
φi, VC(n′, z′; θ)

}]]
P(n′|n, z, χ = 1)P (z′|z),

where to shorten the notation we let n′ ≡ n + e − x.
Next, rewrite (76) in vector form. Let VC(θ) be the #S × 1 vector representing

VC(n, z; θ) for every (n, z) pair, and define π̃(θ) similarly. Also let Mi be the #S × #S
matrix whose (i, j) element is given by P(nj |ni, zi, χ = 1)P (zj |zi). This is the matrix
whose rows give us the equilibrium transition probabilities from a particular (n, z) to
each other possible (n, z). Note that if we were not conditioning on χ = 1 an unbiased
estimate of the rows of this matrix could be obtained by simply counting up the fraction
of transits from (n, z) that were to each other state. Since the continuation value the
agent cares about is the continuation value should the agent continue, these estimates
have to be modified for conditioning on χ = 1, see the discussion below.

With this notation, (76) becomes

(77)VC(θ) = Miπ̃(θ) + βMi
Eφ

[
max

{
φi, VC(θ)

}]
.

In this last equation, π̃(θ) is a known vector (up to θ ). In a structural model the dis-
tribution of φ would also typically be known up to a parameter vector. Therefore, the
only unknowns in the equation are Mi and VC(θ). If Mi were known, VC(θ) could be
calculated as the solution to the set of equations (77). We discuss the estimation of Mi

below and turn first to the solution for VC(θ).
One of the insights of POB is that the expectations term on the right-hand side of (77)

can sometimes be simplified, making computation of VC(θ) simple. Expanding the
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expectations term at a single state (n, z) gives

Eφ

[
max

{
φi, VC(n, z; θ)

}]
= Pr

(
φi < VC(n, z; θ)

) ∗ VC(n, z; θ)

+ Pr
(
φi > VC(n, z; θ)

) ∗ Eφ

[
φi

∣∣φi > VC(n, z; θ)
]

= (1 − px(n, z)
) ∗ VC(n, z; θ) + px(n, z) ∗ Eφ

[
φi

∣∣φi > VC(n, z; θ)
]
,

where px(n, z) is the probability of exit at state (n, z). Provided that the distribution of
scrap values is log-concave, the above equation is a contraction mapping [see Heckman
and Honoré (1990)]. In that case, given estimates of Mi and px , the equation can be
solved for VC(·) in a straightforward manner. Moreover, when the distribution of scrap
values is exponential, a distribution often thought to be reasonable on a priori grounds,

Eφ

[
φi

∣∣φi > VC(n, z; θ)
] = σ + VC(n, z; θ),

where σ is the parameter of the exponential, and

Eφ

[
max

{
φi, VC(n, z; θ)

}]
= (1 − px(n, z)

) ∗ VC(n, z; θ) + px(n, z) ∗ [VC(n, z; θ) + σ
]

= VC(n, z; θ) + σpx(n, z).

Substituting this expression into (77) and iterating gives

VC(θ) = Mi
[
π̃(θ) + βσpx

]+ (Mi
)2[

π̃(θ) + βσpx

]+ (Mi
)3

VC(θ) + · · ·

=
∞∑

τ=1

(
Mi
)τ [

π̃(θ) + βσpx

]
(78)= (I − βMi

)−1
Mi
[
π̃(θ) + βσpx

]
.

The only thing that remains is to estimate Mi and px using the data. Both can be esti-
mated in a variety of different ways, but the simplest approach, and the one supported
by POB’s Monte Carlo results, is to use their empirical counterparts. Let

T (n, z) = {t : (nt , zt ) = (n, z)
}

be the set of periods in the data with the same state (n, z). Then, the empirical counter-
part to px is

p̂x(n, z) = 1

#T (n, z)

∑
t∈T (n,z)

xt

n
.

Due to the Markov property, p̂x(n, z) is a sum of independent draws on the exit proba-
bility, and therefore it converges to px(n, z) provided #T (n, z) → ∞.

Similarly, the matrix Mi can be estimated element-by-element using

M̂i
i,j =

∑
t∈T (ni ,zi )

(ni − xt )1{(nt+1, zt+1) = (nj , zj )}∑
t∈T (ni ,zi )

(ni − xt )
.
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This expression weights the actual observed transitions from (ni, zi) in different periods
by the number of incumbents who actually continue in those periods. This weighting
corrects the estimated transition probabilities for the fact that incumbents compute con-
tinuation values under the assumption that they will continue in the market.

Note that because this procedure uses empirical transition probabilities it never re-
quires continuation values or transition probabilities from points not observed in the
data. As a result there is no need to impute transition probabilities or continuation val-
ues for states not visited.55 Since typical data sets will only contain a small fraction of
the points in S, this reduces computational burden significantly.

Substituting the estimated transition and exit probabilities into (78) provides an ex-
pression for the estimated continuation values

(79)V̂C(θ, σ ) = (I − βM̂i
)−1

M̂i
[
π̃(θ) + βσ p̂x

]
.

Note first that the estimates of continuation values using the expression in (79) are,
approximately, the averages of the discounted values of the incumbents who did con-
tinue.56 This makes the relationship between the data and the model transparent. Pro-
vided only that the specification of the profit function is correct, the actual average of
realized continuation values should be close to the expected continuation values used
by the agents in making their decisions.

Second, note how easy it is to compute the estimated continuation values. If the dis-
count factor is known, then,

(80)V̂C(θ, σ ) = Ãπ̃(θ) + ãσ,

where Ã = (I − βM̂i)−1M̂i and ã = β(I − βM̂i)−1p̂x . Both Ã and ã are independent
of the parameter vector and can therefore be computed once and then held fixed in the
second step of the estimation.

Finally, note that the parameters of the entry distribution do not enter into the calcu-
lation of the continuation values. The reason for this is that sunk costs of entry are paid
only once at the time of entry. After that, the sunk costs distribution only affects profits
indirectly through rival firms’ entry decisions. Thus, all that matters for computing con-
tinuation values is the probability of entry, not the associated level of sunk costs. As a
result the computational burden of the model does not depend in any major way on the
form of the entry cost distribution, a fact which is particularly useful when we consider
models with multiple entry locations below.

Entry behavior can be described similarly. A potential entrant enters the market if
the expected discounted value of entering is greater than the entry cost, i.e. if χe is the

55 Strictly speaking this is only true if the last period’s state in the data was visited before. If it were not we
would have to impute transition probabilities for it.
56 This is only approximately true because the transitions for all firms that reached a state (n, z) are used to
compute transitions for each firm, so information is pooled across firms in computing the continuation values.
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indicator function which is one if the potential entrant enters and zero elsewhere

β VE(n, z; θ) � κ,

where

VE(n, z; θ) ≡
∑

z′,e,x
V (n + e − x, z′; θ)P

(
e, x
∣∣n, z, χe = 1

)
P(z′|z),

similarly to VC before. The main difference here is that the entrant is not active in the
current period and therefore forms beliefs slightly differently from the incumbent.

The incumbent forms beliefs conditional on it remaining active. The entrant forms
beliefs based on it becoming active. In vector form, the expression for the entrants’
continuation values is

VE(θ, σ ) = Me
(
π̃ + β VC(θ) + βpxσ

)
,

where the elements of Me represent a potential entrant’s beliefs about the distribution
over tomorrow’s states conditional on that entrant becoming active. An estimator for
Me that is analogous to the one above is given by

M̂e
i,j =

∑
t∈T (ni ,zi )

et1{(nt+1, zt+1) = (nj , zj )}∑
t∈T (ni ,zi )

et

.

Accordingly, a consistent estimator of V̂E(θ, σ ) is given by

(81)V̂E(θ, σ ) = B̃π̃(θ) + b̃σ,

where B̃ = M̂e(I + βÃ), and b̃ = βM̂e(ã + p̂x).

3.5.2. Step 2: Estimating the structural parameters

If the continuation values (VE and VC) were known, any of a number of method of
moments algorithms would provide consistent estimators of (θ, σ ) and maximum like-
lihood would provide the efficient estimator. Since V̂E and V̂C are consistent estimators
of the unknown continuation values, an obvious way to obtain a consistent estima-
tor is to substitute them for VC and VE in any of these algorithms and proceed from
there. For example, the implied “pseudo” maximum likelihood estimator would maxi-
mize

l(xt , et |θ, σ ) = (nt − xt ) log Fφ
[
V̂C(nt , zt ; θ, σ )

]
+ xt log

[
1 − Fφ

(
V̂C(nt , zt ; θ, σ )

)]
+ et log Fκ

[
V̂E(nt , zt ; θ, σ )

]
+ (E − et ) log

[
1 − Fκ

(
V̂E(nt , zt ; θ, σ )

)]
,

where Fφ is the distribution of scrap values and Fκ is the distribution of entry costs.
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POB stress the importance of remembering that V̂E and V̂C contain sampling error.
Though this sampling error does converge to zero with sample size, the fact that we
have to estimate separate continuation values for each sample point means that, for
standard sample sizes, the sampling error should not be ignored. This has implications
both for the choice of estimators, and for how we compute standard errors for any given
choice.

In this context there are two problems with the pseudo maximum likelihood estimator.
First since it does not “recognize” that there is sampling error in the probabilities it uses,
events can occur that the likelihood assigns zero probability to, no matter the value of
(θ, σ ) (even though the true probabilities of these events are nonzero; POB shows that
this tends to occur in their two location model). If this happens even once in the data,
the pseudo maximum likelihood estimator is not defined. Second, even if the pseudo-
likelihood is well defined, its first order condition involves a function that is both highly
nonlinear in, and highly sensitive to, the sampling error. The nonlinearity implies that
the impact of the sampling error on the first order conditions will not average out over
sample points. The sensitivity is seen by noting that the first order effect of the sampling
error on the log likelihood will be determined by one over the probabilities of entry and
exit, and these probabilities are typically quite small.

POB consider two alternatives to the likelihood approach. The first is a pseudo min-
imum χ2 estimation algorithm that minimizes the sum of squares in the difference
between the observed and predicted state specific entry and exit rates (i.e. the entry
and exit rates for each observed (n, z) pair), where the predicted state specific entry and
exit rates are given by

E[xt |nt , zt ] = nt ∗ Pr
(
φi > VC(nt , zt ; θ, σ )

)
, and

E[et |nt , zt ] = E ∗ Pr
(
κ < VE(nt , zt ; θ, σ )

)
.

Their second estimator matches the overall entry and exit rates (across all observed
state pairs) to those predicted by the model, or more generally takes a sum of squares in
the differences between the predicted and actual entry and exit rates at different states
multiplied by a known function of the state variables at those states.

They show that in finite samples the pseudo minimum χ2 estimator has an extra bias
term that reflects the sampling covariance between the estimated probability and its
derivative with respect to the parameter vector, and their Monte Carlo evidence indicates
that the extra bias term can have large effects. Thus they prefer the simplest method of
moments algorithm and show that with moderately sized samples this estimator is both
easy to calculate and performs quite well.

The second general point is that the variance of the second stage estimates, (θ̂ , σ̂ ),
depends on the variance of the first stage estimates.57 It is possible to use standard
semiparametric formulae to obtain the asymptotic variance of the parameter estimates

57 This follows from the fact that the derivative of the objective function with respect to the estimates of VC
and VE are not conditional mean zero.
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analytically. However these formula are somewhat complex and can be difficult to eval-
uate. Moreover, there is little reason to do the calculation. Since we have a complete
model and the computational burden of obtaining estimates is minimal it is relatively
easy to obtain estimates of standard errors from a parametric bootstrap.

For an empirical example which uses these techniques see Dunne et al. (2006). They
estimate the parameters of a dynamic entry game from data on entry and exit of dentists
and chiropractors in small towns. They first estimate the variable profit function (which
depends on the number of active competitors) from observed data on revenues and costs.
They then employ POB’s method to provide estimates of the sunk costs of entry and
of exit values. Their parameters could be used, for example, to predict the effect of a
government subsidy intended to increase the number of medical service professionals
in small towns.

3.5.3. Multiple entry locations

We now show how to generalize the model to allow for observed heterogeneity among
incumbents. We do this by allowing entrants to choose from multiple entry locations.
For ease of exposition, we will consider only two locations. However, expanding this to
a larger number is straightforward.

Entrants have entry costs (κ1, κ2) in the first and second locations respectively, where
entry costs are drawn from a distribution, Fκ(κ1, κ2|θ), that is independent over time
and across agents. Note that we place no restrictions on Fκ so that entry costs of the
same potential entrant at the different locations may be freely correlated. Once in a
particular location, the entrant cannot switch locations, but can exit to receive an exit
fee. Exit fees are an i.i.d. draw from the distribution F

φ
1 (·|θ) if the incumbent is in

location one, and an i.i.d. draw from F
φ
2 (·|θ) if the incumbent is in location two.

The Bellman equation for an incumbent in the two location model is

V1(n1, n2, z; θ) = π̃1(n1, n2, z; θ) + βEφ

[
max

{
φi, VC1(n1, n2, z; θ)

}]
,

where the subscript “1” indicates the value function for a firm in location one and the
continuation values are

VC1(n1, n2, z; θ) ≡
∑

z′,e1,e2,x1,x2

V1(n1 + e1 − x1, n2 + e2 − x2, z′; θ)

× P(e1, e2, x1, x2|n1, n2, z, χ = 1)P (z′|z).
Behavior of incumbent firms is identical to before, with the probability of exit given
by (75) except using the new continuation values. However, because they have poten-
tially different continuation values and different scrap values, firms in location one will
in general behave differently than firms in location two.

Behavior of potential entrant firms is different from before because potential entrant
firms now have three options. They can enter location one, enter location two, or not
enter at all. A potential entrant will enter into location 1 if and only if it is a better
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alternative than both not entering anywhere, and entering into location 2, i.e. if

β VE1(n1, n2, z; θ) � κ1 and

β VE1(n1, n2, z; θ) − κ1 � β VE2(n1, n2, z; θ) − κ2.

The entry process therefore generates a multinomial distribution with probabilities de-
rived from the inequalities above.

Firms’ beliefs are now comprised of the probability of exit for an incumbent in lo-
cation one, the probability of exit for an incumbent in location two, the three entry
probabilities (location one, location two, or not at all), and the distribution determining
the evolution of the profit shifters. In computing the continuation values we now have
to consider all of these together.

Consistent estimates of a location-one incumbent’s perceived transition probabilities
from state (ni1, ni2, zi) to (nj1, nj2, zj ) are obtained analogously to before using

M̂
i,1
i,j =

∑
t∈T (ni1,ni2,zi )

(ni1 − xt1)1{(nt+1,1, nt+1,2, zt+1) = (nj1, nj2, zj )}∑
t∈T (ni1,ni2,zi )

(ni1 − xt1)
.

Similarly, estimates of a potential location-one entrant’s perceived transition probabili-
ties can be obtained using

M̂
e,1
i,j = 1

#T (ni1, ni2, zi)

×
∑

t∈T (ni1,ni2,zi )
et11{(nt+1,1, nt+1,2, zt+1) = (nj1, nj2, zj )}∑

t∈T (ni1,ni2,zi )
et1

.

As before these estimates are not exactly equal to the empirical frequency of state tran-
sitions but are a weighted average based on the fact that, when computing continuation
values, an incumbent assumes it will continue, and a potential entrant assumes that it
will enter.

As in the single location model, given the matrix inversion formula for continuation
values, the computational burden of obtaining estimates for the parameters of the model
is minimal. Indeed in their Monte Carlo results POB show that in two location models
with relatively large data sets (on the order of 7500 observations) one finds estimates
in under fifteen minutes on a five year old desktop computer. Most of that computation
time is devoted to computing the Markov transition matrix and its inverse. The time
required to compute the inverse can grow polynomially in the number of distinct states
and, at least given market size, this typically increases with the number of locations.
Whether it does or not depends on the structure of the matrix being inverted, and the
way one computes the inverse. Models which only allow transitions to “near by” states,
which are likely to dominate in I.O. applications, should not be as problematic in this
respect.

Second, though the estimators remain consistent when the number of entry states is
increased, their small sample properties may change. In particular, the estimates of the
continuation values will become noisier in small samples and this is likely to cause
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increased small sample bias and variance in the second stage estimates. POB show that
the use of smoothing techniques, such as those discussed in the next section, can be
helpful in this context.

3.6. Models with discrete and continuous controls: Investment games

In this section we consider Bajari, Benkard and Levin’s (2007) (henceforth BBL) es-
timation approach in the context of the investment model in example two. The main
conceptual difference in BBL’s general approach that separates it from the above meth-
ods is that, instead of estimating continuation values directly, BBL first estimate policy
functions. Then, the estimated policy functions are used to simulate the continuation
values. As noted earlier this is similar to the single agent approach of Hotz et al. (1994),
but BBL show that there are assumptions and techniques that allow the researcher to
use this approach in a wide class of models, including models with both discrete and
continuous controls such as investment models, some models of dynamic pricing, and
dynamic auction problems. The assumptions used do carry with them some restrictions,
and we will try to be clear on those restrictions below.

The presence of both discrete and continuous controls in the investment model af-
fects both the first and second stage of the estimation. In particular, the second stage
is augmented in order to incorporate information from firms’ investment, as well as its
entry/exit, choices. Additionally, when the stress is on investment we generally consider
models with larger state spaces, and, as noted above, both computation of the estimates
of continuation values, and the precision of those estimates, can become problematic.
BBL introduce simulation techniques that, depending on the structure of the model,
can cause a significant reduction in the computational burden of obtaining estimates of
the continuation values. They also use techniques that smooth estimated continuation
values across states to lower the mean square error of those estimates.

In the investment model from example two there are three policies (entry, exit, and
investment) that are set in dynamic equilibrium, and one policy (price) that is set in
static equilibrium. Since the pricing equilibrium is consistent with a large past literature
on demand estimation, we will not consider estimation of the demand and marginal cost
functions (θ1 and θ2) here as they would typically be estimated using existing methods.
Instead, we will treat those parameters as if they were known and focus on estimation
of the investment cost function (θ3) and the entry and exit costs parameters.

We assume that all of the state variables, s, are observed, as well as entry, exit, quan-
tity, price, and investment levels. Entry and exit costs, the cost of investment function,
and marginal costs are not observed. Note that it would be possible for some of the
state variables to be unobserved as long as they could be recovered beforehand during
estimation of the demand and cost systems. We discuss the issue of unobserved states
further in Section 3.8.1.

Let π̃i(s) represent the profits earned by firm i in the spot market equilibrium at
state s. Since the demand and marginal cost functions are assumed to be known, the
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function π̃i (·) is also known, as the spot market equilibrium can be computed from
these primitives.

Firms maximize the expected discounted value of profits. From the beginning of a
period (prior to realization of the private shock), and for incumbent firms, this is

(82)E

∞∑
t=0

βt
[{χit = 1}(π̃i(st ) − C(Iit , νit ; θ3)

)+ (χit − χi,t−1)
−Φ
∣∣s0
]
,

where χit = 1 indicates that the incumbent continues in the market at period t and
χit = 0 indicates that the incumbent exits, and it is understood that each exiting firm
receives the same exit value and never operates thereafter. Note that unlike in the en-
try/exit example above, in this model we assume that the incumbent’s choice of its
discrete control (whether or not to exit) is not subject to a random cost shock.

For expositional (and computational) simplicity we will assume the following
quadratic cost of investment function

(83)C(I, ν; θ3) = {I � 0}(θ3,0 + θ3,1I + θ3,2I
2 + θ3,3νI

)
.

The indicator function for I � 0 above allows for an adjustment cost that is incurred
only if investment is nonzero. Zero investment is a phenomenon that is often observed
and can easily result from either flatness of the value function reflecting low returns
to investment [see Ericson and Pakes (1995)], or nonconvex investment costs [e.g.
Caballero and Engel (1999)].

Potential entrant firms’ expected discounted values are similar to (82), except that in
the initial period they must pay a random entry cost, κit , in order to enter. We assume
that entrants take one period to setup the firm and therefore do not earn profits in the
spot market and do not invest until the subsequent period. For ease of exposition, we
also assume that entrants always enter at the same initial state.58

3.6.1. Step 1: Estimating continuation values

The goal of the first step of the estimation procedure is to compute the continuation
values given by the expected discounted values in (82), under equilibrium strategies.
These expected discounted values are functions of the profits earned at each state and
the probability distributions determining future states and actions conditional on the
starting state, s0.

BBL compute estimates of the continuation values by first estimating policies for
each state, then using the estimated policies to simulate sample paths of industry states
and actions, and then evaluating discounted profits on each sample path. In order to do
this we need both the ability to simulate sample paths of states and actions, and the
ability to evaluate profits along those paths given the states and actions in each period.

58 It is straightforward to allow entrants’ initial state to be randomly determined.
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Evaluating profits requires a (possibly flexible) description of the profit function and
knowledge of the distribution of the private shocks, at least up to a parameter vector to
be estimated. We treat these two as “primitives” of the dynamic model.

The evolution of the states depends on firms’ entry, exit, and investment policies. BBL
recover these policy functions using the observed data. In our investment model, private
information is known to the firms before any actions are taken, so in MPE, strategies for
investment, exit and entry are functions of both the states and this private information

I (st , νit ), χ(st , νit ), and χe(st , κit ),

where χ is the exit policy function for incumbent firms, χe is the entry policy function
and χe = 1 indicates that the entrant enters the market. Since potential entrants cannot
invest in the first period, entry strategies depend only on the random entry cost. Both
the investment and exit strategies depend only on the shock to the marginal cost of
investment.

Consider first exit and entry. The optimal exit policy has the form of a stopping rule

χi,t = 1 iff νit � ν̄(st ).

All we require is a nonparametric estimate of the probability that χ = 1 conditional
on st . Similarly, there a critical entry level of κ conditional on st that determines entry,
and the entry policy is obtained as a nonparametric estimate of the probability of entry
conditional on st . In both cases we also have the restriction that the policies are ex-
changeable in rivals’ states. In models with large state spaces, such that there are some
states in the data with few or zero observations, it would typically be optimal to employ
some smoothing in these estimates. In their Monte Carlo studies, BBL found that local
linear methods worked well for this.

As far as investment is concerned, one can show that, conditional on a firm continuing
in the market, investment is a (weakly) monotone function of νit , I (st , νit ). Thus, if we
knew the distribution of investment at each state, F(Iit |st ), we could map the quantiles
of ν into investment levels at each state. More precisely, the investment policy function
is given by

F−1
I |s
(
G(ν|s)).

The function G is a primitive of the model known up to a parameter vector, and the
function F can be recovered nonparametrically.

There is an additional complication and that is that investment is not observed for
firms that exit the market, which happens if νit > ν̄(st ). However, since both the exit
and investment rules are monotonic in the shock, this is handled easily. Conditional on
a firm continuing in the market, we observe the distribution of investment conditional
on s that corresponds to νit � ν̄(st ). Therefore, if we first estimate the probability of exit
at each state, and then recover the distribution of investment at each state conditional
on staying in the market, then we have a complete description of the optimal exit and



4260 D. Ackerberg et al.

investment policy functions.59 Note also that in the simulations below it is important
that we maintain this link between exit and investment since one draw on the private
shock to investment, νit , determines both policies.

If there was a second unobservable, say a random exit fee φit , then the exit decision
would depend on both (νit , φit ). The probability of exit could still be obtained as above,
but the distribution of investment conditional on not exiting would depend on both νit

and φit . Then, without further restrictions it would not be possible to invert the observed
distribution of investment to obtain the policy decision as a function of ν conditional
on s and not exiting.60

There also remains the question of how best to estimate the investment function, and
this depends to some extent on its likely properties. Here it is important to keep in mind
that investment is a complicated function of the primitives. Indeed the only restriction
we have on its form is that it is exchangeable in the states of the competitors (which is
already embodied in the definition of s). Standard nonparametric approaches assume a
certain amount of smoothness that is not necessarily guaranteed by the primitives of the
model. The theoretical properties of the investment function in the EP model depend
on the underlying properties of the family {P(sit+1|Iit , sit )}. If conditional on sit the
points of support of this family do not depend on Iit ,61 then by appropriate choice of
primitives one can ensure that the investment function is smooth; see EP, the Monte
Carlo evidence in BBL, and the generalizations of this in Doraszelski and Satterthwaite
(2007). In their Monte Carlo studies BBL also found that local linear regression worked
well for estimating the investment function.

Assume now that, for each state, we have consistent estimators of the entry probabil-
ity, the exit probability, the investment distribution, and the distribution of future states.
This is all one needs to compute consistent estimates of the continuation values in (82)
as a function of the parameters. To do so analytically, however, would involve high di-
mensional integration, so what BBL do is show how to extend the “forward simulation”
idea in Hotz et al. (1994) to simplify the analysis of the more complex problems they
deal with.

Starting from a given state, s0, one draw is taken on the shock to the marginal cost
of investment for the firm of interest, νi . This draw determines the firm’s investment
and exit policies through the estimated policy functions above (i.e. the same draw de-
termines the correct quantile for both investment and exit, as discussed above). These
policies, along with the state and the value of the private shock, determine current profits

59 We cannot use the data to learn what an exiting firm would have invested had it stayed in the market, but
it is not necessary to know this.
60 Note that the problem here is that there is more than one error influencing the choice of investment.
Therefore, a feasible alternative would be to allow a random exit cost but no shock to the marginal cost of
investment.
61 This assumption allows for stochastic outcomes to investment processes which is an assumption often
made in Industrial Organization. However it does rule out the deterministic accumulation models traditionally
used in growth theory.
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as a function of the parameters. Draws are then taken for the investment shocks for the
remaining incumbent firms, and one draw on the entry distribution is taken for the po-
tential entrant. These draws, along with draws determining the outcomes of each firm’s
investment process, determine s1. The process is repeated to obtain one simulated path
of states and the associated discounted stream of profits. Many such paths can be sim-
ulated to obtain an estimate of Vi(s0). Consistency of the estimation algorithm requires
that the number of simulated paths goes to infinity.

This forward simulation procedure is not too computationally burdensome, though
one does have to hold one set of simulation draws in memory and use these same draws
to evaluate the continuation values at the different values of θ tried in the estimation
algorithm. Moreover, much of what computational burden remains disappears when we
deal with models that are linear in the parameters. For example, suppose we consider
the investment model above where the private shock to investment has a normal distrib-
ution, ν ∼ N(0, 1). (The investment shock is normalized to be standard normal without
loss of generality because its mean and variance parameters are absorbed into the para-
meters θ3,0 and θ3,3.) Since all of the parameters enter the continuation values linearly,
they can be factored out as follows

Vi(s0; σi, σ−i ) = E

∞∑
t=0

βt {χit = 1}π̃i(st ) − θ3,0E

∞∑
t=0

βt {χit = 1}{Iit � 0}

− θ3,1E

∞∑
t=0

βt {χit = 1}{Iit � 0}Iit

− θ3,2E

∞∑
t=0

βt {χit = 1}{Iit � 0}I 2
it

− θ3,3E

∞∑
t=0

βt {χit = 1}{Iit � 0}Iit νit

+ Ψ E

∞∑
t=0

βt (χit − χi,t−1)
−

(84)≡ Wi

(
s0; σi, σ

′
i

)′ ( 1
θ3
Ψ

)
,

where Wi(s0, σi, σ−i ) represents the expected discounted value terms above when i

follows policy σi and rival firms follow policy σ−i . The estimated continuation values
are then computed by plugging in the estimated policies and simulating the expectations
terms

V̂i

(
s0; σ̂i , σ̂

′
i

) = Ŵi

(
s0; σ̂i , σ̂

′
i

)′ ( 1
θ3
Ψ

)
.
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The key observation here is that if the model is linear in the parameters, then the para-
meters factor out of the continuation value calculations. In that case the W terms need
only be computed once, and the continuation values at different values of the parameter
vector can be obtained by multiplying two small dimensional vectors.

This simplification is an extension of the one used in the entry/exit example above,
except here we exploit linearity in the investment cost parameters as well as the linearity
in the period profits. Since the continuation values need to be calculated many times
in the second step of the estimation, and since computing continuation values is the
primary source of computational burden, such simplifications can lead to a substantial
reduction in the overall computational burden of the estimator.

3.6.2. Step 2: Estimating the structural parameters

As with the entry model above, once the continuation values have been estimated there
are potentially many ways of estimating the structural parameters. The main difference
is that now there is one continuous control variable (investment) in addition to the two
discrete controls (entry/exit), and we want to use the information in the continuous
control to help estimate the parameters. Accordingly all the issues that arose in the
discussion of estimation of the entry/exit model are also relevant here. In particular,
there is error in the estimated continuation values that can contaminate the second stage
estimates, so it is desirable to find a second step estimator that is close to linear in the
estimated continuation values.

There are at least three possible estimators: (i) an inequality estimator that finds a
value of the parameter vector that insures that the observed policies generate higher
simulated continuation values than alternative policies (see below), (ii) a method of mo-
ments estimator that fits the mean of the policies implied by the simulated continuation
values (i.e. at each state in the data you substitute the simulated continuation values
into the right-hand side of the Bellman equation (63) and solve for the optimal policy)
to nonparametric estimates of the policies at each state, and (iii) a method of moments
estimator that fits the nonparametric estimates of the distribution of the polices to the
distribution of policies predicted by the simulated continuation values at each state. BBL
provide Monte Carlo evidence on the first two of these. Here we review the inequality
estimator, that is the estimator found by satisfying the optimality inequalities (62) that
define the MPE for the simulated values.

At the true values of the parameters, for all states, s0, all firms, i, and all alternatives,
σ ′

i , it must be that

Wi (s0; σi, σ−i )
′
( 1

θ3
Ψ

)
� Wi

(
s0; σ ′

i , σ−i

)′ ( 1
θ3
Ψ

)
.



Ch. 63: Econometric Tools for Analyzing Market Outcomes 4263

Let x refer to a particular (i, s0, σ
′) combination, such that x indexes inequalities, and

let

g(x; θ3, Ψ ) = (Wi (s0; σi, σ−i ) − Wi

(
s0; σ ′

i , σ−i

))′ ( 1
θ3
Ψ

)
.

Then it must be the case that g(x; θ3, Ψ ) � 0 at the true values of the parameters for
every x.

A natural thing to do in estimation would be to compute g at the estimated policies
from the first stage and then find the values of the parameters that best satisfy the entire
set of inequalities. However, when there are continuous controls this is difficult because
there are too many possible alternative policies. Instead, BBL use simulation to choose a
small subset of the inequalities to impose in estimation. The inequalities can be chosen
according to any random rule that selects all of them asymptotically. However, it is
important to remember that the exact rule used will influence efficiency. In their Monte
Carlo studies, for investment alternatives BBL use policies of the form

I ′(st , νit ) = Î (st , νit ) + ε′,
where ε′ is drawn from a normal distribution with mean zero and standard deviation
chosen by the researcher. Alternative entry and exit policies were chosen similarly by
shifting the cutoff rule by an amount ε′ drawn from a normal distribution.

Suppose ni inequalities are sampled, and let ĝns (x; θ3, Ψ ) be a simulator for
g(x; θ3, Ψ ) evaluated at the estimated policy functions, where ns is the number of sim-
ulation draws used to simulate each Wi term. Then the inequality estimator minimizes
the objective function

1

nI

nI∑
k=1

1
{
ĝns (xk; θ3, Ψ ) < 0

}
ĝns (xk; θ3, Ψ )2.

Because the estimator is computationally light, it is easy to choose (nI , ns) to be large
enough that the simulation contributes nothing to the variance of the estimator. All of
the variance comes from error in the estimation of the continuation values. BBL work
out the asymptotic distribution of the estimator. However, the expression is difficult to
evaluate and in practice the simplest way to compute standard errors is to use subsam-
pling or a bootstrap.

The inequality estimator has several advantages. One is that it is very easy to im-
plement even in complex models. It is conceptually simple and requires a minimum
of computer programming, the main programming burden being the forward simulation
routine. Additionally, the method can be used with very little alteration even if the model
is only set-identified. In that case, all that is required is to use an alternative method for
computing standard errors [see BBL, as well as Chernozhukov, Hong and Tamer (2007)
for details].

However, one potential disadvantage of the approach is that, similarly to the pseudo-
likelihood methods shown in the examples above, the estimator is nonlinear in the first
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stage estimates, and therefore the estimates obtained are likely to contain small sample
bias. For that reason, BBL also tested a natural alternative estimator based on a set
of moment conditions that match the observed choice data. The general idea of this
estimator is to substitute the estimated continuation values into the right-hand side of
the Bellman equation and then solve for an optimal policy rule conditional on those
continuation values. This estimator is linear in the estimated continuation values, though
those values are still nonlinear functions of the estimated policies. The expected value
of the optimal policy is then matched against the average policy observed at each state
in the data. In their Monte Carlo studies BBL found that this second estimator did help
reduce small sample bias in the second stage estimates.

For an empirical example that uses these techniques see Ryan (2006). He estimates
the parameters of a dynamic oligopoly model of US cement producers. In the first stage
he estimates the static profits demand and cost parameters using demand data and a
static equilibrium assumption. He also estimates the entry, exit, and investment policy
functions using data on the set of firms operating in a panel of markets and their ca-
pacities. In the second stage he uses BBL’s inequality estimator to estimate the sunk
costs of entry and exit, as well as the adjustment costs of investment. He finds that the
1990 amendments to the Clean Air Act significantly raised the sunk costs of entry in
the cement industry, and that a static analysis would have missed an associated welfare
penalty to consumers.

3.6.3. An alternative approach

Berry and Pakes (2002) provide an alternative approach for estimating models with
continuous choice variables that uses quite different assumptions from POB or BBL.
They assume that profits are observable up to a parameter vector to be estimated, but do
not require that the state variables that determine current and expected future profits are
observed, and do not even require the researcher to specify what those state variables
are. In applications where the environment is complex, but sales and investment data
are quite good, this alternative set of assumptions can be quite attractive.

Let the random variable τi refer to the period in which firm i exits the market. Then,
firm i’s continuation value in the investment game starting at state s0 is

(85)Vi(st ) = E

[
τi∑

r=t

βr−t
(
π̃i (sr ) − C

(
σ(sr ); θ3

))+ βτi−tΦ

∣∣∣∣st

]
,

where σ is the equilibrium policy function. Note that we have assumed there is no
private shock to investment; an assumption that is needed for the consistency of this
estimator.

Berry and Pakes note that, if firms have rational expectations, then the actual dis-
counted stream of profits earned by a given firm is an unbiased estimate of its expected
discounted profits. Suppose that profits (π̃it ), investment (Iit ), and exit (χit ) are ob-
served. Then the actual discounted sum of profits earned by the firm (corresponding
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to (85)) is

(86)V̂i(st ; θ3, Φ) ≡
τi∑

r=t

βr−t
(
π̃ir − C(Iir ; θ3)

)+ βτi−tΦ,

where, in a slight abuse of notation, τi now refers to the actual period in which the firm
exited. By rational expectations we have that, at the true values of the parameters,

V̂i(st ; θ3, Φ) = Vi(st ) + εit ,

where E[εit |st ] = 0.
A unique feature of the Berry and Pakes approach is that the estimated continua-

tion values here are unbiased. However, in contrast to POB and BBL, Berry and Pakes
(2002) do not have a first stage that provides consistent estimates of continuation val-
ues. Since the state variables are assumed not to be observed, there is no longer any way
of identifying a set of data points that correspond to the same state vector. Thus, there
is no way to average out across observations so as to obtain consistent estimates of the
continuation values, as in POB and BBL.

Berry and Pakes get around the problem of having only unbiased, and not consistent
estimates of continuation values, by using an estimating equation that has the error in the
estimated continuation value entering linearly. More precisely, their estimating equation
is derived from the first order condition for the firm’s continuous control. Conditional
on investment being strictly positive (a condition that is determined by the information
available when the investment decision is made, and hence that is independent of the
realization of εit ), that first order condition is obtained by setting the derivative of (85)
equal to zero. Using the cost of investment function after eliminating the i.i.d. shock to
investment this gives us

0 = −θ3,1 − 2 ∗ θ3,2 ∗ Iit + β
∑
st+1

Vi(st+1)
∂

∂I
P (st+1|Iit , st , χit = 1)

= −θ3,1 − 2 ∗ θ3,2 ∗ Iit

+ β
∑
st+1

Vi(st+1)

∂
∂I

P (st+1|Iit , st , χit = 1)

P (st+1|Iit , st , χit = 1)
P (st+1|Iit , st , χit = 1)

= −θ3,1 − 2 ∗ θ3,2 ∗ Iit

(87)+ βE

[
Vi(st+1)

∂ ln P(st+1|Iit , st , χit = 1)

∂I

∣∣∣∣st , Iit , χit = 1

]
.

Adding and subtracting a term in V̂ (st+1; θ3, Ψ ) gives

0 = −θ3,1 − 2 ∗ θ3,2 ∗ Iit + V̂i (st+1; θ3, Φ)
∂ ln P(st+1|Iit , st , χit = 1)

∂I

(88)+ ηit (θ3, Φ),
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where we have defined

ηit (θ3, Φ) ≡ βE

[
Vi(st+1)

∂ ln P(st+1|Iit , st , χit = 1)

∂I

∣∣∣∣st , Iit , χit = 1

]
(89)− V̂i (st+1; θ3, Φ)

∂ ln P(st+1|Iit , st , χit = 1)

∂I
,

and consequently

(90)E
[
ηit (θ3, Φ)

∣∣st

] = 0,

at the true values of the parameters vector. Condition (90) follows from the twin facts
that Vi(st+1) = V̂i (st+1; θ3, Φ) − εi,t+1 and

E

[
∂ ln P(st+1|Iit , st , χit = 1)

∂I

]
εi,t+1 = 0,

as the derivative is a function of information known at t . It follows that (88) provides a
set of conditional moment restrictions that can be used as the basis for estimation.

There are a number of disadvantages of this approach. One that can potentially be
corrected is that as presented in Berry and Pakes (2002) the algorithm does not incor-
porate the additional information in the data that comes from the choice of discrete
controls (e.g. entry and exit), or from controls chosen to be at a corner of the choice set
(e.g. Ii,t = 0). One could add a set of inequality constraints to the Berry–Pakes model to
account for entry and exit and the Ii,t = 0 case. Also, as mentioned above, it is difficult
to incorporate a shock to the cost of investment into this model.

However the major difference between this model and the other models discussed
above is that Berry and Pakes do not need to specify and control for all the state variables
in the dynamic system. This is an obvious advantage for complex problems. Of course,
if we cannot identify and control for all the state variables of the system, we cannot
make use of averaging techniques that enable us to use information on similar states
to construct estimates of the policies and returns at a given state. In problems where
the state variables are easy to identify and control for, averaging techniques can be very
helpful in reducing variance. It remains to be seen if hybrids can be developed that make
effective use of all of these techniques.

3.7. A dynamic auction game

In this section we consider estimation of the auction model in example three. This sec-
tion closely follows Jofre-Bonet and Pesendorfer (2003) (henceforth JP). We assume
that all bids, contract characteristics, and bidders’ state variables are observed. A unique
feature of the auction model is that the period payoff function is not a function of any
unknown parameters. The goal of estimation, then, is to recover the distribution of bid-
ders’ privately known costs at each state.

Since the outcome of the auction affects not only current profits but also the firm’s
backlog, firms choose their bids so as to maximize the expected discounted value of
future profits. Recall that zt provides the characteristics of the contracts to be auctioned
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in month t and evolves as a Markov process, ωi,t provides the backlog of work of firm i

in period t , and if ωt = (ω1,t , . . . , ωN,t ), then ωt+1 = Γ (ωt , zt , j ) where j is the
winning bidder.

It is convenient to write the maximization problem from the beginning of a period,
prior to realization of the private shock and prior to realization of the contract char-
acteristics. Then firms choose their bidding strategy so as to maximize the expected
discounted sum

(91)E

[ ∞∑
t=0

βt (bit − cit )
{
bit � min

j
(bjt )

}∣∣∣∣ω0, z−1

]
,

where z−1 refers to last period’s contract and where the expectation is defined over
rival’s bids in all periods as well as over the firm’s own costs in all periods. Due to the
Markov structure, this maximization problem can be written recursively

Vi(ωt , zt−1) =
∫∫

max
bit

[
(bit − cit ) Pr(i wins|bit ,ωt , zt )

+ β

N∑
j=1

Pr(j wins|bit ,ωt , zt )

(92)× Vi

(
Γ (ωt , zt , j ), zt

)]
dF(cit |ωt , zt ) dG(zt |zt−1).

As is now common practice in the empirical auctions literature [Guerre, Perrigne and
Vuong (2000)], JP show that bidders’ costs can be recovered by inverting the first order
condition associated with the optimal bid. Let Gi(·|ωt , zt ) be the distribution of bids
submitted by bidder i conditional on the state variables and gi(·|ωt , zt ) be the density
function. Let

hi(·|ωt , zt ) = gi(·|ωt , zt )

1 − Gi(·|ωt , zt )

denote the associated hazard function, and note that

∂ Pr(i wins|bit ,ωt , zt )

∂bi,t

= −
∑
j �=i

hj (bit |ωt , zt ) Pr(i wins|bit ,ωt , zt )

while

∂ Pr(j wins|bit ,ωt , zt )

∂bi,t

= hj (bit |ωt , zt ) Pr(i wins|bit ,ωt , zt ).

Using these expressions, the first order condition for optimal bids yields the equation

bit = cit + 1∑
j �=i hj (bit |ωt , zt )

− β
∑
j �=i

hj (bit |ωt , zt )∑
l �=i hl(bit |ωt , zt )

(93)× [Vi

(
Γ (ωt , zt , i), zt

)− Vi

(
Γ (ωt , zt , j ), zt

)]
.
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The optimal bid equals the cost plus a markup that has two terms. The first term reflects
competition in the current auction. The second term accounts for the incremental effect
on future profits of firm i winning today’s auction.

Since the first order condition is strictly increasing in c it can be inverted to obtain

(94)c = φ(b|ωt , zt ),

where φ is a function of the observed bids, the hazard function of bids, h, the transition
function, Γ , and the continuation values, V . The transition function is a known func-
tion. Since the bids, contract characteristics, and state variables are observed, the hazard
function of bids can be obtained from the data. Thus, if the continuation values were
known, then the relationship in (94) could be used to infer bidders’ costs. Hence, as in
the examples above, in order to estimate the parameters of the cost distribution we need
first to obtain estimates of the continuation values.

3.7.1. Estimating continuation values

In order to estimate the continuation values, JP note that the continuation values can
be written as a function only of the distribution of bids. The easiest way to see this
is to inspect (91). The expected discounted value involves terms in the probability of
winning, which can be derived from the distribution of bids, and terms in the expected
markup. Equation (93) shows that the optimal markup is a function of the distribution
of bids and the continuation values. JP show that by combining these two equations
it is possible to write the continuation values as a function only of the distribution of
bids.

The derivation is long so we omit it here and instead refer readers to the appendix of
JP. Proposition 1 in JP shows that Equations (92) and (93) can be manipulated to obtain

Vi(ωt , zt−1) =
∫ {∫

1∑
j �=i hj (·|ωt , zt )

dG(i)(·|ωt , zt )

+ β
∑
j �=i

[
Pr(j wins|ωt , zt )

+
∫

hi(·|ωt , zt )∑
l �=i hl(·|ωt , zt )

dG(j)(·|ωt , zt )

]
(95)× Vi

(
Γ (ωt , zt , j ), zt

)}
dG(zt |zt−1),

where the notation

G(i)(·) =
∏
k �=i

[
1 − Gk(b|ωt , zt )

]
gi(b|ωt , zt ).

The terms in square brackets in the second line of (95) sum to one and therefore
can be interpreted as transition probabilities. This interpretation leads to the following
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construction. Assume that the state space is discrete and let Ai be a vector with one
element for each state representing the first term above

Ai(s) =
∫∫

1∑
j �=i hj (·|ωt , zt )

dG(i)(·|ωt , zt ) dG(zt |zt−1).

Next, construct the matrix Mi such that each element (k, l) reflects the transition prob-
abilities above

Mi
k,l =

⎧⎪⎨⎪⎩
[Pr(j wins|ωk, zl) + ∫ hi(·|ωk,zl )∑

l �=i hl (·|ωk,zl)
dG(j)(·|ωk, zl)] Pr(zl |zk),

if ωl = Γ (ωk, zl, j),

0, otherwise.

Then the value function can be expressed as

(96)Vi = [I − βMi
]−1

Ai.

The matrices Mi and Ai can be estimated using estimates of the bid distribution.

3.7.2. Estimating the cost distribution

Once the continuation values are known, estimating the cost distribution is straightfor-
ward. There is a relationship between the cost distribution and the bid distribution that
is given by

F(c|ωt , zt ) = G
(
b(c,ωt , zt )

∣∣ωt , zt

) = G
(
φ−1(c|ωt , zt )

∣∣ωt , zt

)
(provided that φ is invertible). The function φ can be estimated using the first order
condition (93) and the estimated continuation values. The estimated φ can then be sub-
stituted into the estimated bid distribution in order to obtain an estimate of the cost
distribution.

3.8. Outstanding issues

The literature on structural estimation of dynamic games is relatively recent. As a result
our focus has been on reviewing assumptions and techniques that make it feasible to
use the implications of dynamic games to make inferences on parameters of interest to
I.O. We have paid little attention to a host of related issues including; the asymptotic
efficiency of alternative estimators, the small sample properties of those estimators,
identification in the absence of auxiliary information, and the likely validity of various
assumptions.

It is not our intention to minimize any of these issues. Indeed we think it important to
explore all of them, particularly the assumptions underlying the analysis. This includes
the behavioral assumptions and the assumptions regarding the selection of equilibria,
as well as more traditional assumptions on the properties of the unobservables in the
model. The simple fact is that we have little to report on most of these issues. There
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is however one exception; problems that arise due to the presence of serially correlated
unobserved state variables. Since this is an issue that has appeared in several related
literatures, we do have some idea of how to deal with it in the context of estimating
dynamic games.

3.8.1. Serially correlated unobserved state variables

In all of the examples above it is assumed that all of the states that are commonly known
to the agents are also observed by the econometrician. In many empirical applications
this assumption is questionable. For example, in many cases we might expect there to
be an aggregate shock to profits that is known to all of the firms, but not controlled
for by the econometrician. The models presented above can be modified to accommo-
date these shocks if they are i.i.d. over time. However we would often expect aggregate
shocks to be serially correlated, just as most aggregate variables are. In that case, be-
havior in previous periods would depend on previous realizations of the unobserved
states, leading to a correlation between today’s values of the observed and unobserved
states.

The statement of the problems caused by unobserved serially correlated state vari-
ables in dynamic models with discrete outcomes dates back at least to Heckman (1981).
Pakes (1994) reviews three possible solutions to the problem: (i) solving for the un-
observed states as a function of observables, (ii) simulating the model from a truly
exogenous distribution of initial conditions, and (iii) using the ergodic distribution to
model the long run relationship between the unobserved and observed states. With the
advent of longer panels there is also the possibility of using techniques that allow one
or more parameters to differ across markets in a panel of markets (say a market specific
time invariant profit parameter, or a separate initial condition for each market), and then
estimate those parameters pointwise.

The first case is quite promising in contexts where there is an observable continuous
response to the unobservable state. Then conditional on the parameter vector, there is
often a one to one relationship between the unobserved states and the observed states
and controls. Several papers in the literature on static demand system estimation [Berry
(1994), Berry, Levinsohn and Pakes (1995), and Bajari and Benkard (2005)] have used
such a condition to recover serially correlated unobserved product characteristics using
data on quantities, prices, and observed product characteristics. Timmins (2002) uses a
similar procedure to control for the initial conditions in a single agent dynamic control
problem with unobserved state variables. Olley and Pakes (1996) use the implications
of a dynamic Markov perfect equilibrium model to recover a serially correlated produc-
tivity term. These methods could be used to recover the unobserved state variables prior
to the dynamic estimation, and then the unobserved state variables could be treated as
if they were observed in the dynamic estimation algorithm (at least up to estimation
error).

Things become more difficult when the unobserved states are not recoverable in this
way. In single-agent dynamic models, several papers [e.g. Pakes (1986) and Keane and
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Wolpin (1997)] have used exogenous initial conditions to solve the problem of serially
correlated unobserved states. Starting with an exogenous initial distribution of states,
the model can be used to simulate the relationship between the observed and unob-
served states in future periods. However, while there may be many reasonable ways of
modelling initial conditions for a single agent (be it a firm or an individual), such con-
ditions tend to be less realistic for an industry, whose history is typically much longer
than the available data.

The third case is perhaps more appropriate for industry studies. Instead of using an
exogenous initial condition for the unobserved states at the time the market starts up, we
assume that the draws on the joint distribution of the unobserved states and the initial
condition are draws from an invariant distribution. That distribution is then estimated
along with the other parameters of the problem. The rational here is that if the mar-
kets in question have been in existence long enough, the joint distribution of the initial
condition and the unobserved state will not depend on the early years of the industry’s
evolution. Rather it will depend only on the limiting structure of the Markov process
generated by the nature of the dynamic game, a structure we can analyze.

Aguirregabiria and Mira (2007) implement one version of this solution. They allow
for an unobserved fixed effect which varies across markets and assume both that the
fixed effect can only take on a finite number of values and that the transition probabilities
for the observed exogenous variables are independent of the values of the fixed effect.
They then solve for an invariant distribution of the state of the system and the fixed
effect, form the conditional distribution of the initial condition given the fixed effect,
and integrate out over possible values of the fixed effect. They report that allowing for
the fixed effect has a noticeable impact on their empirical results.

Of course, if one has a reasonably long panel of markets one should be able to esti-
mate the fixed effect (or some other unobserved initial condition) pointwise; our fourth
solution possibility. In that case continuation values could be estimated as described
above but separately for each market in the data. The observations across markets could
then be pooled together in the second stage in order to estimate the structural parame-
ters that are the same across markets. This would lead to substantially higher estimation
error in the continuation values, and one might want to think hard about estimators that
would be designed to minimize the impact of these errors.62 Some Monte Carlo work
on just how long a panel is likely to be required for this procedure to be fruitful would
be extremely helpful.
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