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ABSTRACT 

Conditional maximum Sharpe ratios implied by fully flexible four-factor and five-factor Gaus-
sian term structure models are astronomically high. Estimation of term structure models 
subject to a constraint on their Sharpe ratios uncovers properties that hold for a wide range 
of Sharpe ratios. These robust properties include (a) an inverse relation between a bond’s 
maturity and its average Sharpe ratio; (b) between 15 and 20 percent of annual excess re-
turns to bonds are predictable; and (c) variations in expected excess bond returns are driven 
by two factors. These factors operate at different frequencies. Nonrobust features include 
the mean level of the term structure. Unconstrained models imply that investors anticipated 
much of the decline of interest rates in the 1990s. Constrained models disagree. 
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1 Introduction 

How predictable are expected excess returns to Treasury bonds? Attempts to answer this 

question have evolved from the univariate regression approach of Fama and Bliss (1987) to 

high-dimensional predictive regressions and forecasts from multifactor no-arbitrage dynamic 

term structure models. These more flexible tools have uncovered substantial in-sample vari-

ability of conditional expected excess returns. 

Flexibility and overfitting go hand-in-hand. Estimated models may be uncovering sample-

specific patterns instead of features of the true data-generating process. A variety of standard 

econometric methods are used to analyze and adjust for overfitting, such as studying out-

of-sample properties. In addition, the built-in flexibility of dynamic term structure models 

is often pared down by imposing plausible parametric restrictions. But the most commonly 

applied check on overfitting is intuition. Is the estimated predictability unbelievably large? 

This metric is typically applied informally; in discussions, at conferences, and in the mind 

of the researcher. 

This paper puts some formal structure on our intuition through the use of conditional 

Sharpe ratios. No-arbitrage term structure models specify the dynamics of the stochastic 

discount factor used to price fixed-income instruments. Armed with estimates of a model’s 

parameters, we can construct maximum conditional Sharpe ratios, as well as conditional 

Sharpe ratios for arbitrary bond portfolios. Large Sharpe ratios are evidence of overfitting, 

thus the ratios can be used as an informal specification test. Similarly, more realistic models 

can be estimated by imposing a constraint on allowable Sharpe ratios. 

There are two clear limitations of this approach. First, plausible bounds on Sharpe ratios 

are unavoidably subjective. As researchers have uncovered ever more profitable investment 

strategies, acceptable bounds have risen. Ross (1976) uses a maximum annual Sharpe ratio 

of about 0.25. MacKinlay (1995) uses 0.6, while Cochrane and Saa-Requejo (2000) use 1.0. 

Second, existing dynamic term structure models are insufficiently flexible to capture the 

empirical dynamics of both conditional means and conditional covariances. Thus either the 

numerator or denominator of the conditional Sharpe ratio is likely misspecified. 

Faced with the choice of fitting either first or second moments, I follow much of the 

recent literature by examining Gaussian models. This choices maximizes the flexibility of 

conditional means. Gaussian models also give us a reasonably clean interpretation of the 

model-implied conditional Sharpe ratios. Because the models rule out time-variation in 

conditional covariances, model-implied Sharpe ratios are best thought of as expected ex-

cess returns divided by average standard deviations rather than by conditional standard 

deviations. 
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Owing to both of these limitations, it makes little sense to argue that a particular esti-

mated model is better than another because its maximum conditional annual Sharpe ratios 

are around, say, 1.0 instead of 2.0. In this paper I do not take (much of) a stand on the 

maximum plausible Sharpe ratio. Instead, I focus on two issues. First, I examine how 

the properties of estimated models vary as a constraint on maximum Sharpe ratios varies. 

What features of these models are robust to the level of the constraint, and which are highly 

sensitive? Second, I examine how a model with n factors compares to a model with n+1  fac-

tors, holding constant a constraint on maximum conditional Sharpe ratios. Are the models 

effectively similar when the constraint is imposed? 

I estimate the models using artificial zero-coupon Treasury bond yields that are assumed 

to be observed with noise. The data are monthly from 1971 through 2008. The likelihood 

function of the Kalman filter is maximized with and without constraining conditional Sharpe 

ratios. One clear result is that Sharpe ratios implied by unconstrained, high-dimensional 

Gaussian models are much too high. The magnitudes involved are stunning. For example, 

using simple returns, the sample mean of conditional maximum Sharpe ratios produced by 

an estimated five-factor model is on the order of 1030 . Such an extreme value is not just an 

artifact of particular data and model used here. The no-arbitrage model embedded in the 

estimates of Cochrane and Piazzesi (2005) produces a corresponding value on the order of 

1018 . 

Unless they are constrained in some way, estimated models with more than three factors 

are inconsistent with anyone’s view of sensible Sharpe ratio bounds. At least qualitatively, 

this conclusion is not surprising to researchers active in term structure estimation. Un-

constrained high-dimensional models are used only to illustrate specific points, such as the 

possible role of hidden factors explored in Duffee (2008) and the construction by Cochrane 

and Piazzesi (2005) of a model that reproduces arbitrary VAR dynamics. Models designed 

to be taken more seriously are restricted in a variety of ways. For example, Duffee (2002) sets 

to zero many parameters that are statistically insignificant. Joslin, Priebsch, and Singleton 

(2009) and Cochrane and Piazzesi (2008) adopt maintained assumptions about the number 

of factors that are allowed to drive variations in risk premia. 

The methodology here imposes no parameter-specific restrictions. Only Sharpe ratio 

constraints are imposed. This approach reveals some important features of the data sample 

that are not sensitive to the Sharpe constraint. First, unconditional Sharpe ratios for bonds 

are inversely related to maturity. For short maturities (say, three or six months), these ratios 

are in the neighborhood of the unconditional Sharpe ratio for the aggregate stock market. 

The two features of the data driving this inverse relation are (a) the average slope of the 

term structure is steeper at the short end; and (b) volatilities of yields vary little across 
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maturities. Dynamic term structure models attribute this pattern to risk premia on “level” 

and “slope” risk. Investors are compensated for the risk that the term structure jumps up; 

all bonds face this risk. Investors are also compensated for the risk that the slope of the 

term structure falls. Long-maturity bonds hedge this risk, while short-maturity bonds are 

exposed to this risk. 

Another feature that is robust to the constraint on Sharpe ratios is that more than one 

factor drives variations in expected excess bond returns. More precisely, we can construct a 

single factor that accounts for almost all the variation in expected excess monthly returns, 

and a single factor that accounts for almost all the variation in expected excess annual 

returns, but the factors are not the same. Instead, there are both high-frequency and low-

frequency variations in expected excess returns. Around 15 to 20 percent of annual excess 

bond returns are predictable. Of this predictable variation, roughly 30 percent is orthogonal 

to the factor that explains more than 99 percent of the variation in monthly excess returns. 

A constraint on maximum Sharpe ratios has large effects on two features of the term 

structure (other than on the Sharpe ratios themselves). First, tighter Sharpe ratio bounds 

correspond to higher unconditional mean yield curves. Unconstrained models imply that 

investors anticipated much of the decline in bond yields from the end of 1988 through the 

end of 2000; yields at year-end 1988 were substantially above their unconditional means. For 

reasonable Sharpe ratios, little to none of this drop was expected. Second, tighter Sharpe 

ratio bounds reduce the predictability of excess returns to short-maturity bonds substantially, 

and much more than the bounds reduce the corresponding predictability for long-maturity 

bonds. 

Using a root mean squared error metric, in-sample accuracy varies little across models 

with three to five factors, regardless of the constraint imposed on Sharpe ratios. When 

Sharpe ratios are constrained to be equal across models with different numbers of factors, 

neither cross-sectional accuracy nor forecast accuracy hinges on the dimension of the model. 

Differences in cross-sectional root mean squared errors are at most about three basis points 

of annualized yields, while differences in forecast accuracy at a twelve-month horizon are 

around one to three basis points. 

The next section briefly notes earlier uses of Sharpe ratios in model evaluation and 

estimation. Sharpe ratio mathematics is reviewed in Section 3 and the term structure setting 

is outlined in Section 4. Empirical evidence is contained in Sections 5 and 6. The final section 

concludes. 
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2 Some earlier literature on Sharpe ratios 

The first use of Sharpe ratios in model evaluation is Ross (1976), ten years after Sharpe (1966) 

introduced the concept. He imposes a subjective maximum Sharpe ratio on asset portfolios 

to estimate deviations from arbitrage pricing theory. MacKinlay (1995) uses a subjective 

bound on maximum Sharpe ratios as a specification test of the Fama-French model. In a 

no-arbitrage setting, Hansen and Jagannathan (1991) develop the link between maximum 

Sharpe ratios and the volatility of stochastic discount factors. Hansen and Jagannathan are 

also the first to use properties of returns to Treasury securities to estimate the volatility 

of the SDF. For maturities from three to twelve months, they report unconditional Sharpe 

ratios in the neighborhood of one at a quarterly horizon.1 

Cochrane and Saa-Requejo (2000) use the link between Sharpe ratios and stochastic 

discount factors to place “good-deal” bounds on the prices of derivative securities. They 

take the physical dynamics of various stochastic processes as given and use a bound on 

maximum conditional Sharpe ratios to place plausible bounds on the allowable equivalent-

martingale dynamics. By constrast, my approach here is to find the best combination, in 

a likelihood sense, of physical and equivalent-martingale dynamics subject to a bound on 

maximum conditional Sharpe ratios. 

Sangvinatsos and Wachter (2005) are probably the first to analyze conditional Sharpe 

ratios in dynamic term structure models. To study dynamic portfolio choice, they construct 

a time series of conditional maximum Sharpe ratios implied by a parameterized model and its 

factor realizations. They use the results to examine the variation in investment opportunities. 

I construct similar time series of Sharpe ratios but use them in model evaluation. 

3 Standard Sharpe ratio mathematics 

In a typical paper that uses model-implied Sharpe ratios, the discussion of Sharpe ratio 

mathematics takes one or two paragraphs. Unfortunately, I must devote many pages to 

the subject. The main reason for this in-depth analysis is that I calculate Sharpe ratios for 

returns measured over discrete horizons. Discrete horizons are necessary to line up a model’s 

results with empirically-observed Sharpe ratios. However, they also drive a wedge between 

Sharpe ratios calculated using simple returns and those calculated using log returns. 

The size of this wedge depends on the conditional volatility of the stochastic discount 

factor (SDF). For what we could call “realistic” conditional volatilities, the wedge is unim-

1They also study properties of shorter-maturity bills, but those results are not directly applicable to the 
empirical analysis here. 
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portant. But for the conditional volatilities that are implied by some of the models estimated 

here, the wedge is, to put it mildly, large. In addition, as we will see, the conditional cor-

relation between discrete-horizon simple bond returns and the stochastic discount factor 

decreases in the conditional volatility of the SDF. Thus when the volatility of the SDF is 

high, conditional Sharpe ratios of bond portfolios need not be close to maximum conditional 

Sharpe ratios that can be attained with other fixed-income instruments. 

3.1 Sharpe ratios using simple excess returns 

Financial instrument i, which may be a portfolio or investment strategy, has a period-t value 

Pi,t and a payoff next period that is the sum of a cash flow Di,t+1 and an ex-dividend value 

Pi,t+1. If  the  period-t price is nonzero, define the gross simple return as 

Pi,t+1 + Di,t+1
Ri,t+1 ≡ , Pi,t = 0. (1)

Pi,t 

Assume there is a one-period riskless bond with gross return in period t+1  of  Rf,t+1. Define 

the excess simple return to portfolio i as 

⎧ ⎨Ri,t+1 − Rf,t+1, Pi,t = 0;  
Re = (2)i,t+1 ⎩Di,t+1 + Pi,t+1, Pi,t = 0. 

Define instrument i’s Sharpe ratio using simple returns as 

e 
i EtRi,t+1

St ≡ . (3) 
Vart R

e 
i,t+1 

The upper-case S denotes a Sharpe ratio using simple returns. Ratios for log returns, defined 

in Section 3.2, use a lower-case s. 

The law of one price implies the existence of a possibly unique stochastic discount factor 

(SDF) Mt+1 = πt+1/πt such that 

0 =  Et R
e Mt+1 . (4)i,t+1 

Similarly, the gross return to the riskless bond satisfies 

1 
Rf,t+1 ≡ exp (rt) =  , (5)

Et(Mt+1) 

where rt is the riskless bond’s continuously compounded yield. Then (4) and (5) can be used 
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to express the Sharpe ratio of instrument i as 

eSt
i = −Rf,t+1Cort Ri,t+1,Mt+1 Vart (Mt+1). (6) 

An upper-case Θ denotes the maximum Sharpe ratio using simple returns, 

Θt = Rf,t+1 Vart (Mt+1). (7) 

This Sharpe ratio can be attained if there are investment strategies with payoffs given by 

Ds,t+1 + Ps,t+1 = c0,t − c1,tMt+1, c1,t > 0, Ps,t ≥ 0, (8) 

for scalar c0,t and c1,t. The only restriction on c0,t is that it is sufficiently large so that Ps,t is 

nonnegative. One such strategy is a zero-cost portfolio that shorts a single-period instrument 

that pays off c1,tMt+1 and invests the short-sale proceeds in the riskfree asset. 

3.2 Sharpe ratios using log excess returns 

Sharpe ratios can be defined using log returns for instruments with strictly positive cum-

dividend value processes. Denoting the log return to instrument i as ri,t+1, the Sharpe ratio 

using log returns is 
1Etri,t+1 − rf,t+1 + Vart(ri,t+1) 

s it ≡ 
Vart(ri,t 

2

+1) 
. (9) 

The requirement of a strictly positive cum-dividend process is quite restrictive. It typically 

rules out portfolios that contain a short position in one or more instruments. Because short 

positions commonly appear in portfolios designed to maximize Sharpe ratios, simple returns 

are necessarily used in such a context. For example, Gibbons, Ross, and Shanken (1989) 

and Hansen and Jagannathan (1991) examine portfolios that maximize the simple-return 

Sharpe ratio given a vector of expected returns to assets and a covariance matrix of the 

asset’s return shocks. 

However, log returns are more tractable than simple returns when studying the properties 

of individual assets in conditionally Gaussian models. Hence log returns are commonly used 

in both term structure models and general consumption-based asset pricing models, such 

as those surveyed by Campbell (2003). Assume that the SDF and asset i’s return are both 

lognormally distributed, so that 

log Mt+1 mt+1 mt+1 mt+1≡ ∼ MVN  Et ,Vart . (10)
log Ri,t+1 ri,t+1 ri,t+1 ri,t+1 
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Recall that when xi and xj are jointly normally distributed with moments 

E(xi) =  μi, Var(xi) =  σi 
2 , Cov(xi, xj ) =  σij , (11) 

then the corresponding moments for exp(xi) and  exp(xj) are  

μi+σ2 
i /2E (e xi ) =  e , 

2 2σij μi+μj +(σ +σ )/2 . (12)Cov (e xi , e  xj ) =  (e − 1) e i j 

Standard algebraic manipulation produces a Sharpe ratio formula for log returns, 

s it = −Cort(ri,t+1, mt+1) Var(mt+1) (13) 

Sharpe ratios using simple returns and log returns in (6) and (13) are not equal, although 

they will be close to each other for expected log returns and variances in the neighborhood 

of zero. 

A lower-case  θ denotes the maximum Sharpe ratio using log returns, 

θt = Vart (mt+1). (14) 

This ratio can be attained if there are investment strategies with payoffs given by 

log (Dl,t+1 + Pl,t+1) =  c0,t − c1,tmt+1, c1,t > 0, (15) 

where c0,t is unrestricted. The payoff is strictly positive, thus Pl,t > 0. These strategies do 

not attain the maximum Sharpe ratio defined for simple returns. 

3.3 Conditional and unconditional Sharpe ratios 

The Sharpe ratios defined in (3) and (9) are conditional Sharpe ratios. More precisely, they 

are period-t calculations for returns in t+1. Empirical analyses often work with unconditional 

Sharpe ratios, and implicitly treat conditional means and variances as constant. Dynamic 

term structure models allow for the estimation of conditional Sharpe ratios. 

For brevity, whenever this paper refers to a Sharpe ratio, it is a conditional Sharpe 

ratio unless otherwise noted. Unconditional Sharpe ratios are seldom discussed outside of 

Section 5’s preliminary empirical analysis. The main use of the term “conditional” is when 

referring to the unconditional properties of conditional Sharpe ratios. An example that 

plays an important role in the empirical analysis is the sample mean of (14), which is sample 
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unconditional mean of the conditional maximum Sharpe ratio using log returns. This sample 

mean should not be confused with the sample unconditional Sharpe ratios. 

4 Sharpe ratios in Gaussian term structure models 

This section describes the Gaussian term structure framework. It is designed to set up 

notation and formulas. Nothing in it is original, therefore the model is only briefly sketched 

in Section 4.1. Formulas for Sharpe ratios of bonds and bond portfolios are presented in 

Section 4.2, and formulas for maximum Sharpe ratios are presented in Section 4.3. 

4.1 A Gaussian model 

The starting point of most term structure models is a state vector that determines the 

dynamics of the SDF. There is a length-n state vector xt that follows a Gaussian vector 

autoregression. The dynamics of the state are 

xt+1 = μ+ Kxt + Σ  t+1,� t+1 ∼ MV  N(0, I). (16) 

The continuously-compounded riskfree rate is an affine function of the state vector, 

rt = δ0 + δ1 
∗ xt. (17) 

The log SDF has the form 

mt+1 = −rt − 
1
Λt 

∗ Λt − Λt 
∗ 

t+1. (18)
2 

Thus the SDF is conditionally lognormally distributed with conditional mean and variance 

Etmt+1 = −rt − 
1
Λ ∗ Λt, Vart (mt+1) = Λ  ∗ Λt. (19)
2 t t 

The vector Λt is the period-t compensation investors require to face factor risk. 

To compute bond prices, we must specify the functional form of Λt. The essentially affine 

version, introduced in Duffee (2002), is 

Λt = Σ
−1 ( 0 +  1xt) . (20) 
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The essentially affine equivalent-martingale dynamics of xt are 

x = μq + Kqxt + Σ  q q ∼ MVN(0, I), (21)t+1 t+1,� t+1 

where 

μq = μ−  0, Kq = K −  1. (22) 

Denote the price, log price, and continuously-compounded yield on a k-maturity zero-
(k) (k) (k)

coupon bond by P , p  , and  y respectively. Applying the intuition of Duffie and Kan t t t 

(1996), Ang and Piazzesi (2003) show that log bond prices in this setting are affine in the 

state vector. Write the log bond price as 

p
(k) 
= Ak + B ∗ t. (23)t kx 

The loading of the log price on the state vector is 

∗ ∗ −1 kBk = −δ1 (I − Kq) I − (Kq) (24) 

and the constant term satisfies the difference equation 

∗ μq ∗ A1 = −δ0, Ak+1 = −δ0 + Ak + Bk +
1 
BkΣΣ ∗ Bk. (25)
2 

4.2 Sharpe ratios for bonds and bond portfolios 

Log returns to individual bonds are easy to analyze in this model. The log return to a 

k-period bond from t to t+ 1 is normally distributed and given by 

(k−1) (k) ∗ ∗ ∗ p − p = rt + B ( 0 +  1xt) − 
1 
B ΣΣ ∗ Bk−1 + B Σ t+1. (26)t+1 t k−1 k−1 k−12 

Denote the time-invariant standard deviation by 

σ(k) ≡ Bk 
∗
−1ΣΣ ∗ Bk−1

1/2 
. (27) 

For future reference, denote this log return’s conditional mean and covariance with the return 

to a j-period bond by 

1 2(k) ∗ σ(k) σ(k,j) ≡ B ∗ μt ≡ rt + Bk−1( 0 +  1xt) − 
2 

, k−1ΣΣ ∗ Bj−1. (28) 
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The bond’s Sharpe ratio using log returns is 

∗ 
(k) Bk−1( 0 +  1xt) 
st = . (29)

σ(k) 

Because this Sharpe ratio is linear in xt, its unconditional properties are analytically tractable. 

For example, the unconditional mean of (29) simply replaces the realization of the state in 

the numerator with its unconditional expectation. Note that the unconditional mean of 

(29) is the unconditional expectation of the bond’s conditional Sharpe ratio, not the bond’s 

unconditional Sharpe ratio. The unconditional Sharpe ratio using log returns is 

B∗ ( 0 +  1E(xt))(k) k−1 s = . (30)
1/2 

(σ(k))
2 
+ Bk 

∗
−1 1Var(xt) ∗ 

1Bk−1 

The two terms in the denominator of (30) are the one-period-ahead conditional variance of 

the bond’s excess return and the unconditional variance of the one-period-ahead conditional 

mean excess return. 

Sharpe ratios of bond portfolios must be studied using simple returns, because a portfolio 

of assets with lognormally-distributed returns does not have a lognormally-distributed return. 

For a given factor realization xt, Sharpe ratios using simple returns can be calculated easily 

for both individual bonds and bond portfolios. 
(k)

Denote the simple one-period return to a k-period bond by R Using properties of the t+1. 

lognormal distribution in (12), the period-t expectation of the simple excess return is 

1 2(k) (k) 
σ(k)Et R − Rf,t+1 = exp  μ + − exp (rt) . (31)t+1 t 2 

The conditional covariance of this return with the simple excess return to a j-period bond is 

(k) (j) 
σ(k,j) (k) (j) 1 

σ(k) 2 
σ(j) 2 

Covt Rt+1, R  = exp − 1 exp μ + μ + + . (32)t+1 t t 2 

Denote the excess return vector to d zero-coupon bonds by Re Denote the conditional t+1. 

covariance matrix of the excess returns by  t. Although the dimension of the state vector is 

n, the covariance matrix of simple returns can have rank greater than n because bond prices 

are nonlinear functions of the state. Denote the dollar investments in each bond by a vector 

ρt. The Sharpe ratio, using simple returns, of the portfolio is 

ρ∗ Et(R
e )

Sp t t+1 = . (33)t 1/2(ρt 
∗  tρt) 
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4.3 Maximum Sharpe ratios 

Straightforward algebra reveals that for this Gaussian model, the maximum Sharpe ratio 

based on simple excess returns is 

Θt = exp (Λt 
∗ Λt) − 1. (34) 

Similar calculations produce the maximum Sharpe ratio based on log returns, 

θt = Λ∗ 
tΛt. (35) 

Thus the squared maximum Sharpe ratio using log returns is a first-order Taylor series 

approximation to the squared ratio using simple returns. The expansion is around the point 

Vart(mt+1) = 0.  

Investments that attain the former Sharpe ratio have payoffs 

Ds,t+1 + Ps,t+1 = c0,t − c1,t exp (−Λ ∗ t+1) , c1,t > 0, Ps,t ≥ 0. (36)t 

Investment strategies that attain the latter Sharpe ratio have payoffs 

log (Dl,t+1 + Pl,t+1) =  c0,t + c1,tΛ ∗ t t+1, c1,t > 0. (37) 

In general, investment strategies in bond portfolios cannot attain either maximum Sharpe 

ratio.2 However, if the financial market allows the trading of instruments with payoffs 

that are arbitrary functions of bond prices, then outside of special cases such fixed-income 

instruments can attain both maximum Sharpe ratios. 

The payoffs of the derivative instruments are written in terms of log bond prices. Stack 

log prices of n bonds into the vector pt. (Recall that n is the dimension of the state vector.) 

Using the notation 

pt = A+ Bxt, (38) 

where A and B are stacked versions of Ak and Bk in (23), spanning requires that B is 

invertible. For general Gaussian models this requirement is satisfied, although Duffee (2008) 

notes that in special cases B is singular. One fixed-income instrument that attains the 

maximum period-t conditional Sharpe ratio for simple returns has a single payoff at t + 1  

2This is obvious for log returns, since bond portfolios do not have normally-distributed log returns. Section 
6 discusses why maximum Sharpe ratios produced using bond portfolios can be much less than maximum 
Sharpe ratios implied by an SDF. 
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given by 

DB = c0,t − exp −Λ ∗ . (39)s,t+1 tΣ
−1B−1(pt+1 − A) 

A fixed-income instrument that attains the maximum Sharpe ratio for log returns can be 

constructed in similar fashion. 

Standard portfolio mathematics tells us that for simple returns, the maximum Sharpe 

ratio for the bond portfolio in (33) is 

Θp = Et(Re )∗ −1Et(Re ). (40)t t+1 t t+1 

Similarly, the unconditional maximum Sharpe ratio for a fixed-weight portfolio is 

Θp = E(Re)∗Var(Re)−1E(Re). (41) 

Monte Carlo simulations can be used to study the properties of these Sharpe ratios. 

5 A preliminary look at unconditional Sharpe ratios 

Two broad themes are apparent in the literature analyzing unconditional returns to Treasury 

securities. First, unconditional Sharpe ratios of long-term Treasury securities are low relative 

to unconditional Sharpe ratios of equity portfolios. A classic reference is Fama and French 

(1993), who estimate a monthly unconditional Sharpe ratio of 0.02 for bonds with maturities 

from six to ten years. They refer to the risk premium as “puny.” Second, unconditional 

Sharpe ratios of short-maturity Treasury bills are suspiciously high; see, e.g., Hansen and 

Jagannathan (1991). High excess returns at the very short end are typically attributed to 

bid-ask spreads as in Luttmer (1996) or idiosyncratic market conditions as in Duffee (1996). 

Undoubtedly part of the computed Sharpe ratios at maturities near zero are illusory, in 

the sense that they overstate Sharpe ratios that large investors can attain by trading in those 

instruments. (I drop the adjective “unconditional” because every Sharpe ratio in this section 

is unconditional.) But we should not be quick to conclude that Sharpe ratios of longer-term 

instruments are a good measure of attainable Sharpe ratios on shorter-term instruments. 

Even if we ignore the shortest-maturity instruments, Sharpe ratios are inversely related to 

maturity. For example, we can infer from other estimates in Fama and French that a portfolio 

containing Treasury bonds with less than five years to maturity has a monthly Sharpe ratio 

that slightly exceeds the monthly Sharpe ratio of the stock market. Evidence in Campbell 

and Viceira (2001) also supports the inverse relation between Sharpe ratios and maturity.3 

3Notwithstanding its title, Campbell and Viceira (2005) does not discuss Sharpe ratios across maturities. 
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But the largest Sharpe ratio they calculate using quarterly data from 1952 to 1996 is not 

much more than half the Sharpe ratio for the stock market. 

Table 1 updates and extends the relevant evidence of Fama/French and Campbell/Viceira. 

Treasury bonds are sorted by maturity and placed in seven portfolios. The short end is a 

one-month to six-month bucket and the long end is a five-year to ten-year bucket. The data 

are from the Center for Research in Security Prices (CRSP) and span the period January 

1952 through December 2008. Following Fama and French, the table reports means and 

standard deviations of simple excess monthly returns, along with corresponding Sharpe ra-

tios. The riskfree rate is the return to one-month Treasury bills, as calculated by Ibbotson 

Associates and made available on the website of Ken French. Following Campbell/Viceira, 

the table also reports these values at a quarterly frequency.4 The riskfree rate is the return 

to three-month Treasury bills from CRSP. 

The table supports three main conclusions. First, it confirms that the inverse relation 

between maturity and Sharpe ratio holds across the term structure. Second, after adjusting √ 
for the horizon (divide the quarterly values by 3), reported Sharpe ratios at the monthly 

horizon are higher than those at the quarterly horizon. Third, Sharpe ratios for bonds 

with maturities less than two years are close to or exceed the stock market’s Sharpe ratio 

at both monthly and quarterly horizons. At the quarterly horizon, this last result differs 

from Campbell and Viceira because of an additional 12 years of returns that were kinder to 

bondholders than stockholders. 

The high Sharpe ratios at the monthly horizon relative to those at the quarterly horizon 

are driven by the use of the one-month bill yield. Effectively, the monthly Sharpe ratios are 

calculated assuming the one-month yield is a rate at which investors can borrow and lend 

risklessly. Given the evidence of Duffee (1996), a reasonable view is that owing to market 

imperfections—in particular, the inability of investors to issue their own bills—the yield 

on this bill is typically lower than the rate at which market participants can borrow and 

lend risklessly. Hence after adjusting for the pure time effect of the horizon, true monthly 

Sharpe ratios on individual bonds are probably better calculated from the quarterly results. 

Therefore the next section uses maximum unconditional monthly Sharpe ratios between 0.15 

and 0.20 as benchmarks for a complete bond market. 

Sharpe ratios of the stock market are not studied further in this paper. But it is worth 

emphasizing that the maximum Sharpe ratio of a portfolio of Treasury bonds comfortably 

exceeds the Sharpe ratio for the market. Nonetheless, the book “Treasury securities for the 

Its use of the phrase “term structure” refers to investors with heterogeneous investment horizons. 
4The table uses simple returns, while Campbell and Viceira use log returns. Quarterly returns are built 

up from rolling over monthly positions in the portfolios. 

13 



long run” is unlikely to be a bestseller. To match mean excess returns to stocks, investors 

will have to leverage up to buy portfolios of Treasury bonds. Following Luttmer (1996), the 

trading costs of frequently rolling over these positions will erode the high Sharpe ratios for 

all but large financial institutions. 

6 Empirical analysis 

This long section describes the results of estimating Gaussian term structure models. The 

number of factors ranges from two to five. The models are estimated with maximum like-

lihood, with or without a constraint on the model’s maximum Sharpe ratio. The first two 

subsections describe the data and estimation technique for unconstrained models. The next 

two subsections summarize some important properties of the estimated unconstrained mod-

els. Section 6.5 describes how the models are estimated subject to a Sharpe ratio constraint 

and Sections 6.6 and 6.7 summarize properties of the estimated constrained models. Sec-

tion 6.8 interprets the results in terms of principal components of yields, while Section 6.9 

compares forecast accuracy of many of the estimated models. 

6.1 Data for term structure estimation 

The empirical implementation treats each period as a month. The models are estimated 

using a monthly panel of eight zero-coupon Treasury bond yields. Because of the problems 

with one-month yields mentioned in Section 5, the shortest-maturity yield I use is the three-

month yield (bid/ask average) from CRSP. Artificially-constructed yields on zero-coupon 

bonds with maturities of one, two, three, four, and five years are also from CRSP. Yields on 

six-year and ten-year bonds are from the Federal Reserve Board’s website and are constructed 

using the procedure of Gurkaynak, Sack, and Wright (2006). The sample period is November 

1971 through December 2008. The starting month is the month when the cross-section of 

Federal Reserve data expands. 

6.2 Estimation methodology for unconstrained models 

Estimation and hypothesis testing are performed with maximum likelihood via the Kalman 

filter. Stack the observed yields in the d-vector yt, which are observed in months 1, . . . , T . 

Using state-space language, the transition equation of the underlying state is (16) and the 

measurement equation is 

yt = A + Bxt + ηt, ηt ∼ MVN(0, ση 
2I). (42) 
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In (42), A is a d-vector and B is a d × n matrix. They are determined by the Duffie-Kan 

restrictons (24) and (25). 

The transition and measurement equations are underidentified because the state vector 

is latent. For identification, the vector can be arbitrarily scaled, rotated, and translated. For 

estimation purposes, I normalize the transition equation (16). The constant term μ is zero, 

the feedback matrix K is diagonal, and the lower-triangular volatility matrix Σ has ones 

along the diagonal. Thus there are n+ n(n− 1)/2 free parameters in the transition equation, 

n + 1 free parameters in the short-rate equation (17), n + n2 additional free parameters in 

the equivalent-martingale dynamics (21), and a final free parameter ση in the measurement 

equation (42). 

The unconstrained n-factor model is estimated for n = 2, . . . , 5. The number of free 

parameters ranges from 13 for n = 2  to  52  for  n = 5. The estimated values of the individual 

parameters are not of direct interest here, and thus are not reported. Instead, I focus on 

features of the estimated models related to Sharpe ratios. 

6.3 Sharpe ratios of unconstrained models 

This subsection summarizes properties of four different Sharpe ratios, as implied by the 

estimated models. Two are the maximum conditional Sharpe ratios attainable with a com-

plete fixed-income market. The simple return version is (34) and the log return version is 

(35). The other two are maximum conditional and maximum unconditional Sharpe ratios 

attainable with a complete zero-coupon bond market for maturities up to ten years. 

This hypothetical bond market contains 120 bonds with maturities ranging from one to 

120 months. Not all of these bonds are needed to form a complete bond market, at least up 

to machine precision. (Recall that simple returns are nonlinear functions of the state, thus 

more than n bonds are needed.) More precisely, the covariance matrices of returns in (40) 

and (41) are singular, up to machine precision, with such a large portfolio. Trial and error 

is used to determine a set of bonds, for each n, that spanned the bond market for maturities 

up to ten years. 

I calculate both sample and population means of the three conditional maximum Sharpe 

ratios discussed here. Sample means use filtered values of the state vector. For each estimated 

model, the Kalman filter produces a time series of filtered values, denoted x̂t. The filtered 

state, combined with parameter estimates, implies a filtered estimate Λ̂ 
t from (20). If we 

assume that the fixed-income market is complete, there is an admissible investment strategy 

that achieves the Sharpe ratio for simple returns Θ̂ 
t from (34) and for log returns θ̂  

t from 

(35). Similarly, given the filtered state and parameter estimates, conditional mean excess 
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simple bond returns and the conditional covariance matrix among these returns are produced 

following the steps in Section 4.2 and maximum Sharpe ratios Ŝ 
t
p are then calculated using 

(40). 

Population means are calculated using Monte Carlo simulations. For each estimated 

model, a simulated time series of 300,000 months is generated and the population properties 

of the conditional Sharpe ratios are computed. The simulation is also used to compute the 

maximum unconditional Sharpe ratio of the complete bond market. 

Panel A of Table 2 reports the relevant information. The table is easy to summarize. 

The Sharpe ratios for the two-factor model are a little low. The ratios for the three-factor 

model are a little high, and those for the four-factor and five-factor models are impossibly 

large. Recall that Section 5 set a benchmark between 0.15 and 0.20 for the unconditional 

maximum Sharpe ratio of the bond market. The population value for the three-factor model 

is 0.19, while the values for the four-factor and five-factor models are around two to three 

times the benchmark range, respectively. The plausibility of these high-dimensional models 

drops further when we look at means of maximum conditional Sharpe ratios. 

Assuming a complete fixed-income market, the sample mean of the maximum conditional 

Sharpe ratio is about 0.8 for the four-factor model and about 1030 for the five-factor model. 

Since the former value looks quite modest by comparison, it is helpful to recall it corresponds 

to an annual Sharpe ratio of 2.7. 

What is the source of the bizarre five-factor, complete-market Sharpe ratio? In a nutshell, 

it is the nonlinearity inherent in the SDF. Because the SDF is bounded below by zero, high 

SDF volatility corresponds to a highly skewed SDF. Simple monthly returns to bonds are 

close to linear in the state vector. Thus the greater the skewness, the lower the conditional 

correlation between the SDF and the return to a portfolio of bonds. The appendix discusses 

this point in detail in the context of a one-factor model. 

The four-factor and five-factor models imply substantial predictability of excess bond 

returns, which in turn implies quite high conditional maximum Sharpe ratios for bond port-

folios. Table 2 reports the sample means of these monthly Sharpe ratios for the four-factor 

and five-factor models are close to 0.6 and 2.8 respectively, or the annual equivalent of 2.0 

and 9.7. For the five-factor model, the largest value in the sample of 446 months is about 48. 

The only way the model can reproduce this bond-market Sharpe ratio is with an SDF that 

is astronomically volatile, and has near-zero correlations with returns to bond portfolios. 

Nonlinearities disappear when working with log returns and the log SDF. Hence, as Table 

2 reports, mean maximum Sharpe ratios using log returns are not eye-popping for the five-

factor model, although they remain totally unrealistic. It is worth noting, though, that the 

information in the maximum Sharpe ratios for log returns is identical to that in the maximum 
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Sharpe ratios for simple returns; they are monontonic transformations of each other. 

Figure 1 displays the time series of filtered maximum Sharpe ratios using log returns, 

assuming a complete fixed-income market.5 The models disagree substantially about the 

periods when Sharpe ratios are high and when they are low. The correlation between the 

two-factor estimates and the three-factor estimates is 0.72, but the correlation between the 

two-factor and five-factor estimates is only 0.03. 

A natural concern of the reader is that the absurdly high Sharpe ratios of the five-

factor model are somehow an artifact of this paper’s data sample or estimation procedure. 

Perhaps Sharpe ratios would be lower if the three-month bill yield is excluded, restricting 

the analysis to longer-maturity yields. Alternatively, perhaps shifting the focus to annual 

changes in yields rather than monthly changes produces more sensible results. Conveniently, 

the on-line appendix to Cochrane and Piazzesi (2005) describes how to construct analytically 

a no-arbitrage dynamic model that replicates the results from their annual-horizon vector 

autoregression. The appendix to this paper follows their procedure, which uses bonds with 

maturities of one through five years. The resulting implied time series of maximum Sharpe 

ratios using simple returns has a sample mean of about 1018 . 

An obvious conclusion is that unconstrained term structure models with more than three 

factors wildly overfit the data. One approach to this problem is to impose parameter restric-

tions prior to estimation. For example, Cochrane and Piazzesi (2008) construct a four-factor 

model in which there is a single priced risk and a single factor that drives variation in that 

priced risk. Joslin, Priebsch, and Singleton (2009) construct a five-factor model with a vari-

ety of parametric restrictions on risk compensation. If we are confident that we understand 

how risk premia vary over time, this approach is probably the best way to avoid overfitting. 

But because I am unwillng to make a priori assumptions about the precise dynamic behavior 

of risk premia, I instead impose a Sharpe ratio constraint. To discuss how the constraint 

affects the results of term structure estimation, we first need to look at a few more properties 

of unconstrained models. 

6.4 Other features of unconstrained models 

Although the four estimated unconstrained models differ substantially in their Sharpe ratio 

implications, they agree on many unconditional properties of the term structure over the 

range of maturities used to estimate the model. For maturities from three months to ten 

years, the models generate roughly matching mean yields, mean standard deviations of yields, 

and mean conditional Sharpe ratios. They also agree on the persistence of long-maturity 

5Simple returns are not used because the scale of the figure for the five-factor model is meaningless. 
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yields. The two main areas of disagreement are (a) means and standard deviations of yields 

outside of this range of maturities—in particular, at the short end of the yield curve; and 

(b) the fraction of variability in yields that is forecastable. These disagreements drive the 

Sharpe ratio patterns across the estimated models. 

Surprisingly (at least at first glance), the models agree that unconditional mean yields 

from three months to ten years are about one percentage point per year lower than the 

corresponding means in the data sample. The relevant evidence is in Table 3. The last row 

of the table reports sample mean yields, while the first four rows report unconditional mean 

yields implied by the estimated unconstrained models. (For now, ignore the rows containing 

results for constrained models.) For example, the ten-year yield has a sample mean of about 

7.5 percent per year and population means of about 6.5 percent across all four estimated 

models. The reason for this discrepancy is that on average, yields fell during the sample 

period. The term structure was about four percentage points higher in November 1971 than 

in December 2008. The autoregressive data-generating process interprets this decline as 

yields reverting toward their means, thus unconditional means are less than sample means. 

The relevant evidence about standard deviations is also in Table 3. For example, model-

implied one-month-ahead standard deviations of shocks to the ten-year yield range from 

0.32 to 0.33 annual percentage points across the four unconstrained models. Unconditional 

standard deviations of the same yield range from 2.6 to 2.7 percentage points. The sample 

standard deviation is 2.4 percentage points. This discrepancy is typical with highly persistent 

data. An estimate of this persistence is in Table 4. The table reports that model-implied 

unconditional correlations between the month-t ten-year yield and the month t+120 ten-year 

yield is about 0.3 across the four models. 

As Section 6.6 discusses, a major difference between unconstrained and constrained es-

timates is the extent to which investors could foresee the drop in bond yields during the 

1990s. To set the stage, consider December 1988, at the end of the Reagan administration. 

The ten-year yield was 9.0 percent. According to all of the unconstrained models, investors 

at that time expected a yield of 7.1 percent twelve years later. (This information is not 

reported in any table.) The actual yield in December 2000 was 5.3 percent. Put differently, 

half of the actual decline was predicted by investors. 

The one-month yield is outside of the range of maturities in estimation. Its implied 

behavior depends critically on the number of factors in the model. Table 3 reports that the 

mean slope between the one-month and three-month yields rises with n. For the two-factor 

model, the slope is seven basis points. It rises to 10, 18, and an eye-popping 63 basis points 

for n = 3, n  = 4,  and  n = 5 respectively. The yield’s one-month-ahead standard deviation 

ranges from 0.6 to 1.3 annual percentage points across the unconstrained models. 
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The mean slope of the yield curve affects mean Sharpe ratios. Investors who buy a three-

month bond and hold it for a month expect to profit by sliding down the yield curve. Table 

4 reports model-implied unconditional mean conditional Sharpe ratios for three-month, five-

year, and ten-year bonds. (Log returns are used.) For the five-year and ten-year bonds, the 

models roughly agree. Estimates for the former range from 0.09 to 0.11, while estimates for 

the latter range from 0.07 to 0.09. But for the three-month bond, the estimates range from 

0.11 with two factors to an astronomical 0.75 with five factors. 

The other main difference across the unconstrained models is the amount of predictability 

in yields (and returns). A detailed discussion of this predictability is deferred to Section 6.7. 

Here it is sufficient to note that the unconditional standard deviations of bonds’ conditional 

Sharpe ratios rise substantially with the number of factors. For example, Table 4 reports 

that the standard deviation of the ten-year bond’s conditional Sharpe ratio ranges from 0.15 

for the two-factor model to 0.31 for the five-factor model. The next subsections describe 

how this predictability depends on the constraint imposed on maximum Sharpe ratios. 

6.5 Constrained model estimation 

I estimate the models with maximum likelihood subject to the constraint 

θ̂t   c. (43) 

In words, the sample mean of the filtered conditional maximum Sharpe ratios (using log 

returns) cannot exceed the scalar c. Alternatively (or additionally), constraints could be 

placed on population means or on maximum Sharpe ratios computed with simple returns. 

The choice of (43) is dicated by its coding simplicity. 

For a given number of factors n, the constraint c steps down in increments of 0.015 from 

the unconstrained sample mean reported in Table 2 to no less than 0.05. For example, for 

n = 4, I estimate the model 33 additional times, each time tightening the constraint by 0.015 

until it reaches c = 0.061. In practice, a fairly complicated algorithm is employed to ensure 

that the numerical optimization procedure locates the global maximum. 

Some information from the sequences of parameter estimates for n = 4 and  n = 5  are  

displayed in Figures 2 and 3. For example, Panel A of Figure 2 displays the effect of the 

constraint on the log-likelihood. Recall that for a five-factor model, the unconstrained sample 

mean of θ̂  
t is about 1.8. The figure shows that effect of the constraint on the five-factor log-

likelihood is negligible for c >  0.8. At its tightest, the constraint of c = 0.05 produces a 

log-likelihood 70 below the unconstrained log-likelihood. 

In addition to these sequences of constrained estimations, the model is estimated subject 
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to c = 0.25 for each of n = 3, 4, and 5. Detailed information about these estimated models 

is presented in various tables, including Panel B of Table 2. Trial and error revealed that 

this choice produces unconditional maximum Sharpe ratios for a complete bond market that 

are close to the benchmark range, from Section 5, of 0.15 to 0.20. The table reports that 

the population value of this ratio is 0.18 for the constrained three-factor and four-factor 

models and 0.17 for the constrained five-factor model. Additional features of these models 

are discussed in the following subsections. 

6.6 Sharpe ratios and the unconditional term structure 

The level and shape of the unconditional mean yield curve are sensitive to the Sharpe ratio 

constraint. Tightening the constraint raises mean yields for all maturities and flattens the 

slope at the short end. Some visual evidence is in Panel B of Figure 2, which displays the 

unconditional mean short rate as a function of the tightness of the constraint c. Tightening 

the constraint raises the mean short rate. At the tightest value of c, the mean short rates 

are both above 8.5 percent. Means of other yields are reported in Table 3 for constrained 

models that impose c = 0.25. The wedge between unconstrained and constrained models is 

largest for the five-factor model. For the constrained model, mean three-month and ten-year 

yields are 9.3 and 10.3 percent respectively. The higher mean yields reduce mean conditional 

Sharpe ratios because they effectively convert expected declines in interest rates (and thus 

expected capital gains on long-maturity bonds) into positive shocks to capital gains. 

Reconsider investor expectations, as of December 1988, of the ten-year yield in December 

2000. The unconstrained models imply investors predict about a two percentage point drop 

in yields. Imposing c = 0.25 wipes this out. For the three-factor model, where the constraint 

is least binding, investors anticipate only a 50 basis point drop in yields. For the four-factor 

and five-factor models, investors actually anticipate an increase in yields of between 50 and 

90 basis points, respectively. 

Constraining Sharpe ratios also lowers the spread between mean three-month and one-

month yields, thus lowering mean Sharpe ratios for short-maturity bonds. Some visual 

evidence is in Figure 2. Panel C reports the unconditional mean Sharpe ratio for a three-

month bond. It declines almost linearly in c; the slope is about 0.5. Panel D illustrates 

that the constraint has a much smaller effect on the mean unconditional Sharpe ratio of a 

ten-year bond. Again the relation is approximately linear, but the slope is closer to 0.05. 

Similar evidence is reported in Table 3 for c = 0.25. For each value of n, the mean Sharpe 

ratio of the three-month bond is about 0.16 and the mean Sharpe ratio of the ten-year bond 

is about 0.06. 
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Note that in Figure 2, the mean Sharpe ratio of the short-maturity bond exceeds that 

of the long-maturity bond for each value of c. Put differently, the conclusion that mean 

Sharpe ratios are inversely related to maturity is robust to beliefs about about the maximum 

plausible Sharpe ratio. We return to this result in Section 6.8. 

6.7 Return predictability and time-variation in Sharpe ratios 

In Gaussian models, Sharpe ratios vary over time because of predictability in excess returns. 

The four-factor and five-factor models estimated here exhibit three basic types of excess 

return predictability. The first is short-horizon predictability in short-maturity bond returns. 

The second is short-horizon predictability in long-maturity bond returns. The third is long-

horizon predictability in long-maturity bond returns. I discuss them in turn. 

Short-horizon return predictability to short-maturity bonds is probably the most dra-

matic but economically the least interesting. As discussed in Section 6.4, the high-dimensional 

unconstrained models imply unrealistic properties of very short-maturity yields, which are 

not used in estimating the model. One of these unrealistic properties is that the forward 

rate from two months to three months swings wildly from month to month, generating large 

swings in predicted excess returns and thus large variations in Sharpe ratios. Panel A of 

Figure 3 reports population R2s of regressions of monthly excess log returns to a three-month 

bond on the lagged factors. Unless Sharpe ratios are tightly constrained, the R2s for  the  

four-factor and five-factor models exceed 10 percent. These high R2s are equivalent to the 

large standard deviations of conditional Sharpe ratios for the three-month bond, as discussed 

in Section 6.4. As reported in Table 4, the constraint c = 0.25 damps considerably both 

the mean and the standard deviation of this conditional Sharpe ratio. For the constrained 

models, the mean ranges from 0.15 to 0.17, and the standard deviation ranges from 0.15 to 

0.22. 

Over the range of maturities used in estimation, the unconstrained models generate much 

more sensible (i.e., smaller) excess return predictability. Table 5 reports population R2s of  

regressions of monthly excess returns to a ten-year bond on the lagged factors. They range 

from 2.2 percent for the two-factor model to 8.9 percent for the unconstrained five-factor 

model. Tightening the constraint has a relatively small effect, as displayed in Panel B of 

Figure 3. Table 3 also reports that when the constraint is set to c = 0.25, the models all 

generate population R2s in the neighborhood of three to four percent. 

How many factors drive expected excess returns? To begin answering this question, I 

follow Joslin et al. (2009) and construct model-implied principal components of the covariance 

matrix of conditional expected excess monthly returns to a set of bonds. I use bonds with 
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maturities  of  2,  3,  . . . ,  10  years.  The  first  principal  component  explains  more  than  99.5  

percent of the variation in these monthly excess returns. This result holds regardless of the 

number of factors and regardless of the constraint imposed on Sharpe ratios. (Panel C of 

Figure 3 plots this percentage for four-factor and five-factor models, but the figure simply 

looks like it has a rather thick line at the point where the fraction equals one.) Thus a 

robust conclusion is that monthly excess returns are driven by a single factor (outside of 

very short-maturity bonds). 

But when we turn to annual excess returns, the results are more complicated. Aside from 

the two-factor model, the unconstrained models all agree that about 20 percent of annual 

excess returns to a ten-year bond are predictable. The evidence is in Table 5. Constraining 

Sharpe ratios modestly reduces this predictability, again as shown in Table 5. With c = 0.25, 

the population R2s are in the range of 15 to 19 percent. The complication shows up in 

the fraction of predictable annual excess returns that are explained by the first principal 

component of monthly excess returns. The fraction is reported in the final column of Table 

5. 

The four-factor and five-factor models imply that a substantial fraction of predictable 

annual excess returns are orthogonal to the first principal component of monthly excess 

returns. For the unconstrained four-factor and five-factor models, the amounts are 30 and 

50 percent respectively. When c = 0.25, the amounts fall to 22 percent and 36 percent 

respectively. Even for the three-factor model, 15 percent of the predictable variation in 

annual excess returns is orthogonal to the factor driving predictable monthly returns. 

How should we interpret the different kinds of variation in excess returns to long-maturity 

bonds? To put some structure on this variation, I use a standard decomposition of the term 

structure. 

6.8 Principal components decompositions of yields 

Term structure factors can be rotated into level, slope, curvature, and everything else. The 

perceived importance of the final category has grown substantially since the work of Cochrane 

and Piazzesi (2005). Here, I use this sort of rotation to interpret the sources of average risk 

compensation and time-varying risk compensation. 

There are three main conclusions. First, the inverse relation between maturity and mean 

Sharpe ratios is driven by the average compensation investors require to face slope risk. 

Long-maturity bonds hedge this risk, while short-maturity bonds face this risk. Second, 

variations in slope of the term structure are associated with fairly long-lived variations in 

expected excess returns. Finally, the fourth principal component is associated with short-
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lived variations in these expectations. The factor has a minimal effect on current yields, but 

significant effects on short-run expectations of current risk premia and future yields. 

I document these conclusions by focusing on a single estimated model: the four-factor 

model that is constrained by c = 0.25. Results for the unconstrained four-factor model, as 

well as constrained and unconstrained five-factor models, are very similar. The four factors 

are rotated into the four principal components of the unconditional covariance matrix of bond 

yields.6 . These factors have the usual properties. The first row of Table 6 reports that the 

first factor (level) explains close to 98 percent of the total unconditional variation in the term 

structure. The second factor (slope) picks up two percent, the third factor (curvature) picks 

up 0.1 percent, and the fourth factor explains virtually none of the unconditional variation. 

As we will see, it picks up conditional variation in yields. 

The shock to the log return on a k-maturity bond is the vector of factor loadings Bk−1 

times the factor shocks. The factors are normalized to mean zero, thus the mean compensa-

tion to face shock i is, from (26), element i of Bk−1 times element i of  0. The next set of rows 

of Table 6 report this product for each factor and three different bonds. The products are 

divided by the unconditional standard deviation of the bond’s log excess return. Summing 

across the factors produces the mean Sharpe ratio for the bond. 

These components of mean Sharpe ratios are easy to interpret. Investors require com-

pensation to face the risk that the level of the term structure unexpectedly rises. The first 

column tells us that investors receive roughly the same compensation for this risk across the 

reported range of maturities. Investors also require compensation to face the risk that the 

slope of the term structure unexpectedly tilts down. Such a tilt lowers the prices of short-

maturity bonds (raises their yields) and raises the prices of long-maturity bonds (lowers their 

yields). Thus short-maturity bonds exacerbate this risk and long-maturity bonds hedge this 

risk. This pattern explains the cross-sectional variation in risk compensation for the second 

factor. Mean compensations for the remaining two factors are negligible. 

The next set of rows in Table 6 show that the slope and as-yet unnamed fourth factor 

each account for about half the variation in conditional expected log excess monthly returns. 

The final set of rows show that the slope factor is much more important in accounting for 

variations of conditional expected log excess annual returns. It picks up about 85 percent 

of the total variation. Figure 4 helps to explain the difference between monthy and annual 

return horizons. 

Panels A and B in the figure display impulse responses to the second factor. The factor 

is assumed to increase by one standard deviation at month zero, holding the other factors 

6The included yields are those on all maturities from one month to 120 months. A pseudo-inverse is used 
to compute the principal components. 
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constant. In Panel A, the month-zero response to the second factor is for short-maturity 

yields to fall by more than 100 basis points and for long-maturity yields to rise by about 

50 basis points. This is shown by the black dashed line. The panel also shows the impulse 

response for month 12, which is a blue dotted-dashed line. Both short-maturity and long-

maturity yields have begun to drift back, but the slope remains steep. 

Panel B displays the effect on expected excess monthly returns across the term structure. 

As is well-known, a steeper slope predicts higher excess returns. For the ten-year bond, the 

immediate increase in the monthly excess return is close to 50 basis points. Twelve months 

later, expected excess returns remain 35 basis points above normal. 

Similar information is displayed in Panels C and D for the fourth factor. Panel C shows 

that the factor has a trivial month-zero effect on yields. At most, there are some wiggles 

at the short end. However, the factor predicts that during the next twelve months, the 

level of the term structure will drop by around 20 to 25 basis points. Since month-zero 

yields are unchanged, month-zero expected excess returns accordingly jump. For the ten-

year bond, the increase in expected excess return is about 40 basis points. Twelve months 

later, expected excess returns are back to normal. 

The results summarized here, as well as in Section 6.7, complicate the econometrician’s 

job of term structure estimation. It is straightforward to impose parametric assumptions 

on a model, such as those adopted by Cochrane and Piazzesi (2008), to limit the model’s 

flexibility. They assume a single priced risk and a single factor that creates variation in the 

price. But the evidence here points to multiple priced risks and multiple sources of variation 

in these prices.7 Similarly, the results of Section 6.6 illustrate an important shortcoming 

in the common assumption, made for estimation convenience, that factors’ unconditional 

means equal their sample means. Such a restriction has hidden, but important and perhaps 

unwanted implications for Sharpe ratios. 

Thus these modeling choices affect the way we interpret economically the risk premia of 

fixed-income instruments. However, from another economic perspective, differences among 

all of these models—whether a two-factor model or a five-factor model, whether Sharpe 

ratios are constrained or unconstrained—are barely worth mentioning. This perspective is 

considered next. 
7For the four-factor and five-factor models estimated in this paper, the effect of the slope and fourth 

factors on time-varying risk premia is almost entirely a result of varying the price of level risk. These results 
are not reported in any table or figure. 
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6.9 Cross-sectional and forecast errors 

How accurately do these models fit the observed data? The models make both cross-sectional 

errors (e.g., a three-factor model does not produce a month-t term structure that fits exactly 

each yield observed at t) and forecast errors. Here I examine the magnitude of these errors. 

Three conclusions stand out from the others that are drawn from this evidence. First, 

differences in forecast accuracy across all models with at least three factors are very small— 

at most a few basis points. Second, maximum likelihood accommodates the Sharpe ratio 

constraint by giving up a small amount of in-sample forecast accuracy. There is no loss 

in cross-sectional accuracy. Third, for a fixed Sharpe ratio constraint, a model with n + 1  

factors has smaller cross-sectional errors than an n factor model and it has slightly larger 

forecast errors. 

This analysis is restricted to the four unconstrained models and the three-factor, four-

factor, and five-factor models estimated subject to the constraint c = 0.25. I construct 

cross-sectional errors by subtracting from observed yields the yields implied by the filtered 

state vector produced by the Kalman filter. I construct forecast errors at the three-month and 

twelve-month horizons. The filtered state vector, combined with estimated factor dynamics, 

produces expected state vectors at these horizons. The corresponding implied bond yields 

are subtracted from actual yields observed at the future dates. Forecast errors are also 

constructed using the assumption that yields at all maturities follow random walks. 

The relevant information is in Table 7. To summarize the information in forecast errors, 

I focus on forecast errors in level, slope, and curvature. These are defined following Duffee 

(2009) as the five-year yield, the five-year yield less the three-month yield, and the two-year 

yield less the average of the three-month and five-year yields. The two-factor model does 

a poor job fitting the cross section, with a RMSE exceeding 15 basis points of annualized 

yields. It also does a relatively poor job forecasting curvature. For example, the RMSE at a 

three-month horizon is 28 basis points. No other model has a corresponding RMSE greater 

than 22 basis points. 

Aside from the two-factor model, forecast accuracies for all models are within a couple 

of basis points. For example, at the twelve-month horizon, RMSEs for the level of the 

term structure range from 79 to 82 basis points. The range at the same horizon for slope 

(curvature) is 77 to 80 basis points (25 to 27 basis points). Differences in cross-sectional 

accuracy are also on the order of a few basis points, but they are proportionally much larger. 

For example, the three-factor models have cross-sectional RMSEs of 7.5 basis points, which 

is more than 1.5 times the cross-sectional RMSEs of the four-factor models. 

For a given number of factors, the unconstrained and constrained models have identical 

cross-sectional accuracy and slightly different forecast accuracy. The five-factor model has 
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the largest differences. At the three-month horizon the constrained five-factor model has 

RMSEs for level, slope and curvature that are about one basis point higher than the uncon-

strained model’s RMSEs. At the twelve-month horizon the differences are about three basis 

points. 

Finally, note that among the constrained models, forecasts from the three-factor model 

are slightly more accurate than those from the four-factor model. These, in turn, are typically 

slightly more accurate than those from the five-factor model, although this pattern does not 

hold for three-month-ahead forecasts of the level. All of the differences are on the order 

of one or two basis points. These economically small differences are statistically large. 

Inspection of the log-likelihoods reported in Panel B of Table 2 for these models shows that 

the log-likelihood of the four-factor model exceeds that of the three-factor model by 560. 

The difference between the five-factor and four-factor models is about 100. 

It is worth emphasizing that this analysis is concerned only with in-sample errors. Anal-

ysis of out-of-sample errors is considerably more complicated because it requires constrained 

ML estimation on data samples through t, t +  1,  . . . ,  T . Whether differences in forecast 

accuracy are also small out-of-sample is an open question. 

7 Concluding comments 

This paper explores the role of Sharpe ratios in term structure models. Constraints on 

Sharpe ratios are imposed without specific parametric restrictions. This approach allows us 

to determine which features of the models remain after imposing a reasonableness standard 

on Sharpe ratios. 

The next step is to transform the results into parametric restrictions. A natural choice, 

given the evidence here, is a four-factor model. The first two principal components of 

yields (level and slope) are priced factors, while the other two factors are unpriced. Risk 

compensation varies with the slope and fourth factor. The model’s mean short rate should 

be fixed to a relatively high level. Whether such a model generates reasonable Sharpe ratios 

without explicitly constraining them is the subject of future work. 

8 Appendix 

8.1 Cochrane and Piazzesi (2005) 

Cochrane and Piazzesi (2005) use five forward rates to predict excess log annual returns 

to Treasury bonds. The forward rates are for maturities between i and i + 1  years,  for  
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i = 1, . . . , 4. The returns are for zero-coupon bonds with maturities of two through five 

years, in excess of the return to a one-year zero-coupon bond. Their appendix constructs 

a no-arbitrage model that fits exactly the coefficients of the predictive regressions. Here I 

follow their procedure and calculate various Sharpe ratios implied by the model. 

The model’s factors are log bond prices with maturities from one to five years. Consider 

the regression in which log bond prices are predicted with year-ago log bond prices. The 

notation of the stacked regressions is 

pt+12 = μ + Kpt + Σ  t+12,� t+12 ∼ MV  N(0, I). (A1) 

Cochrane and Piazzesi treat these regressions as a VAR(1) in annual data that is estimated 

with overlapping observations. The regressions contain the same information as regressions 

of log excess returns from t to t + 12  on  five  month-t forward rates. In the body of their 

paper, the authors focus on a single linear combination of forward rates that forecasts. 

No parameter restrictions are imposed on (A1), thus the estimated model is equivalent to 

allowing different linear combinations to forecast excess returns to different bonds. 

Cochrane and Piazzesi construct equivalent-martingale dynamics of (A1) that are consis-

tent with the use of log prices as factors. These dynamics are not pinned down completely by 

no-arbitrage, thus they focus on the dynamics that minimize the variance of the stochastic 

discount factor. Define Q, R, and  V as 

⎛ ⎞ ⎛ ⎞ 
1 0  0 0 0  −1 1 0 0  0  ⎜ ⎟ ⎜ ⎟ ⎜ 0 1  ⎜Q = 

0 0 0  ⎟ ⎟ , 
⎜ ⎜R = 
−1 0 1 0  0  ⎟ ⎟ , V = ΣΣ  ∗ . ⎜ 0 0  1 0 0  ⎟ ⎜ −1 0 0 1  0  ⎟ ⎝ ⎠ ⎝ ⎠ 

0 0  0 1 0  −1 0 0 0  1  

In the notation of Section 4, the parameters of risk compensation are 

−1 1 
 0 = V Q  ∗ (QVQ ∗ ) Qμ + Q diag(V ) ,

2 

 1 = V Q  ∗ (QV Q ∗ )−1 
(QK − R) . 

The parameters  0 and  1, combined with the panel of factors pt, allow calculation of com-

pensation for factor risk using equation (18) in the paper’s text. Maximum Sharpe ratios 

can also be constructed. 

I estimate the dynamics (A1) using overlapping monthly observations of log bond prices. 

One sample period is January 1965 through December 2003, which matches Cochrane and 
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Piazzesi. Another is 1972 through 2008, which is (almost) the sample period studied in this 

paper. I then calculate Sharpe ratios. Table A1 reports sample means of maximum Sharpe 

ratios (using both simple and log returns). It also reports sample means of maximum Sharpe 

ratios for portfolios constructed with excess simple returns to bonds with maturities of two 

to fifteen years. Finally, the table reports unconditional maximum Sharpe ratios for the 

same bond portfolios. Figure A1 displays the time series of all three maximum conditional 

Sharpe ratios for the 1965–2003 period. 

The properties of Sharpe ratios in the table are consistent with those of the unconstrained 

five-factor model reported in the paper’s Table 2. In both periods, the sample mean Sharpe 

ratios using simple returns exceed 1016 . For both samples, the maximum unconditional 

Sharpe ratios using bonds with maturities no greater than 15 years comfortably exceeds the 

sample unconditional Sharpe ratio for stocks over the same period.8 (Sharpe ratios for the 

aggregate stock market are not reported in the Table.) 

Cochrane and Piazzesi emphasize the high R2s of regressions that predict excess log 

returns to bonds. However, the estimated dynamics of (A1) imply much greater predictability 

of excess returns to strategies that buy a bond and short two bonds with maturities on either 

side of the purchased bond. Denote the excess log return to a k-year bond from month t to 
(k)

month t + 1  by  xr The regressions are t,t+12. 

1(k) (k+1) (k−1) (k)
xr − xrt,t+12 + xrt,t+12 = bk,0 + b ∗ k,1ft + t,t+12, k  = 3, 4,t,t+12 2 

where ft is a vector of the five forward rates used by Cochrane and Piazzesi. For the sample 

1965 through 2003, the R2s of these two regressions are 0.52 and 0.61. For the more recent 

sample, the corresponding R2s are 0.51 and 0.58. The fitted no-arbitrage model, because it 

reproduces the OLS estimates of (A1), exhibits variations in prices of risk that are necessary 

to rationalize these R2s. 

8.2 Sharpe ratio intuition in a one-factor setting 

Section 6 documents that when Sharpe ratios are calculated using simple returns, conditional 

monthly Sharpe ratios of bonds can be substantially less than maximum conditional monthly 

Sharpe ratios. This appendix uses a one-factor setting to explain this result. 

Briefly, both bond prices and the stochastic discount factor are log-normally distributed 

over finite horizons. A log-normally distributed variable is a nonlinear function of shocks to 

the state, where the magnitude of the nonlinearity is increasing in volatility. Volatilities of log 

8Annual simple returns to the stock market are constructed using CRSP value-weighted returns. Excess 
returns are constructed by subtracting the simple return to a one-year Treasury bond. 
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bond returns are sufficiently small over monthly horizons that nonlinearities are negligible. 

Thus when the volatility of the log SDF is very high, bond returns (close to linear in the 

state) and the SDF (highly nonlinear) are only weakly correlated. 

8.2.1 A one-factor model in discrete time 

Here the short rate is the only factor. It follows a first-order autoregression 

rt+1 = μ + Krt + σ� t+1,� t+1 ∼ N(0, 1). 

The log SDF is 
1 
Λ2 mt+1 = −rt − t − Λt t+1. 
2 

It is helpful to write the SDF as the product of the inverse of the gross risk-free return and 

the Radon-Nikodym derivative, 

1 
= R−1 Λ2ξt+1, ξt+1 = exp  Mt+1 f,t+1 − − Λt (44)t t12 

The log return to a k-period bond from  t to t + 1 is normally distributed and given by 

(k−1) (k)
pt+1 − pt = rt + Bk−1σΛt − 

1 
Bk 

2 
−1σ

2 + Bk−1σ� t+1. 
2 

With a single factor, log returns to all bonds are perfectly correlated, and their correlation 

with the log SDF is either one or minus one. Each bond’s absolute conditional Sharpe ratio 

using log returns equals the maximum conditional Sharpe ratio (using log returns), 

θt = |s( 
t
k)| = |Λt|. (45) 

The independence between maturity k and the Sharpe ratio does not quite carry over to 

bonds’ absolute conditional Sharpe ratios using simple returns, which are 

(k) |1 − exp (−Bk−1σΛt) ||S | = . (46)t 1/2 
exp Bk 

2 
−1σ

2 − 1 

When the terms inside the exp functions in (46) are sufficiently close to zero, applying the 

approximation (exp(x) − 1 ≈ x) to both the numerator and denominator produces |Λt|. 
Thus for Bk−1σ close to zero, conditional Sharpe ratios for log bond returns and simple 

bond returns coincide. By contrast, using simple returns, the maximum conditional Sharpe 
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ratio among fixed-income instruments is 

Θt = exp(Λt 
2) − 1 

1/2 
. (47) 

Armed with this machinery, it is easy to demonstrate that the curvature inherent in the 

Radon-Nikodym derivative function in (44) drives the wedge between the two maximum 

Sharpe ratios in (45) and (47). Since log bond returns are homoskedastic, heteroskedasticity 

in the Radon-Nikodym derivative is necessary to generate time-varying expected excess log 

bond returns. Because the derivative is bounded below by zero, heteroskedasticity corre-

sponds to time-varying curvature in the relation between realizations of the derivative and 

realizations of interest-rate shocks. 

When the volatility of the derivative is high, and curvature of the derivative function is 

also high. By contrast, the relation between realized simple bond returns and interest-rate 

shocks is nearly linear, regardless of the volatility of the Radon-Nikodym derivative. Thus 

times when the maximum conditional Sharpe ratio is very high are also times when simple 

bond returns have relatively low correlations with the Radon-Nikodym derivative. Thus 

bond returns do not attain the maximum Sharpe ratio using simple returns. 

I use a parameterization of this one-factor model to illustrate the effect.9 Panel A of 

Figure A2 reports the term in brackets in 

� 
(k)

Pt+1 = exp  (Ak + BkEt(rt+1)) exp (Bkσ� t+1) 

for k = 60 (a five-year bond). It is a scaled version of function mapping the short-rate shock 

t+1 to the bond price. Naturally, positive shocks to the short rate lower the bond price. 

Over the range of the horizontal axis, which is plus and minus two standard deviations of 

the short-rate shock, the function is nearly linear. 

The remaining panels in the figure display the ξt+1 functions for three choices of Λt. Panel  

B is constructed using the unconditional mean of Λt, while Panels C and D are constructed 

using Λt’s that are minus and plus one (unconditional) standard deviation around the mean. 

In  Panel B, Λt = −0.06. The positive slope in Panel B indicates that investors prefer pay-

offs that are unexpectedly high when the short rate jumps up. Thus bonds, on average, have 

positive expected excess returns to compensate investors for the negative covariance between 

9The parameterization is chosen to reproduce high mean conditional Sharpe ratios, which cannot be done 
in a one-factor model with realistic parameters. The parameters are μ = 0.000015, K = 0.997, σ = 0.0087, 
λ0 = −0.001, and λ1 = 0.1. Interpreting a period as a month, these parameters imply a mean short rate of 
6 percent/year, a mean five-year bond yield of 7.65 percent/year, a monthly standard deviation of 87 basis 
points (three percent/year). In addition, a whopping 63 percent of the variation in monthly excess log bond 
returns are predictable. 
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their payoffs and the Radon-Nikodym derivative. Because the Radon-Nikodym derivative 

function is almost linear in the short-rate shock, the correlation between realizations of the 

bond price and the derivative is close to perfect (−0.995). Therefore the bond’s conditional 
Sharpe ratio using simple returns is almost identical to the maximum conditional Sharpe 

ratio using simple returns. The former is 0.0575 and the latter is 0.0578. 

In  Panel C, Λt = −1.35. The strong curvature of the Radon-Nikodym derivative results 

in a correlation with the bond price of only −0.56. Therefore, although the maximum Sharpe 

ratio using simple returns is 2.28, the bond’s conditional Sharpe ratio using simple returns 

is only 1.27. In Panel D, the price of risk changes sign; Λt = 1.23. Bonds are hedges. 

The correlation between the bond’s price and the Radon-Nikodym derivative is 0.69. The 

bond’s absolute conditional Sharpe ratio using simple returns is 1.30, while the maximum 

conditional Sharpe ratio using simple returns is 1.89. 

I use Monte Carlo simulations to calculate the mean of the period-t maximum conditional 

Sharpe ratios using log and simple returns, as well as the mean of the absolute Sharpe ratio 

for simple returns to five-year bond. The mean maximum conditional Sharpe ratio using 

log returns is 1.030. The mean absolute conditional Sharpe ratio for the five-year bond is 

1.033. The mean maximum conditional Sharpe ratio using simple returns is 2,692.3. Again, 

this example is chosen to illustrate what happens when conditional Sharpe ratios can reach 

unreasonably high values. 

8.2.2 A continuous-time model 

In the discrete-time model, bonds do not attain the maximum conditional Sharpe ratio using 

simple returns because they are not perfectly correlated with the stochastic discount factor. 

The same discrete-time result holds in a continuous-time model. An illustration using the 

Vasicek (1977) model is sufficient. The short rate follows the process 

dr = (μ − krt)dt + σdW. 

The dynamics of the state-price density are 

dπ 
= −rtdt − ΛdW. 

π 

All risky financial instruments attain the same absolute instantaneous Sharpe ratio (with√ 
the usual abuse of notation), |Λ| dt. There is no distinction between Sharpe ratios of log 

returns and simple returns. 

Sharpe ratios for finite-horizon simple returns differ across instruments. Put differently, 
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Sharpe ratios at finite horizons are partly determined by the choice of dynamic trading 

strategy. depend on dynamic trading strategies, Compute excess returns from t to s, s > t, 

by subtracting the return to a bond that matures at s. Then the Sharpe ratio for the simple 

return to asset i is 

Ri,t,s − Rf,t,s πs πs 
= −Rf,t,sCort Ri,t,s, Vart . 

Vart (Ri,t,s) πt πt 

A security with a single payoff at time s of a − b(πs/πt) has the maximum Sharpe ratio for 

this horizon. 

Computation of the variance of πs/πt is more difficult in the continuous-time model than 

in the discrete-time model because the short rate varies over the interval (t, s). When this 

variation is small relative to the variation in the Radon-Nikodym derivative (equivalently, 

when σ is small relative to Λ), the maximum simple-return Sharpe ratio in the continuous-

time model approaches the counterpart of (47). It is 

Θt ≈ exp(Λ2(s − t)) − 1 
1/2 

. 

Sharpe ratios for simple bond returns depend on the model’s parameters. For plausible√ 
choices of σ, these Sharpe ratios are close to Λ s − t for s − t on the order of a month. At 

this horizon, nonlinearities in bond returns are negligible. 
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Table 1. Sample unconditional Sharpe ratios, 1952 through 2008 

The table reports sample means, standard deviations, and unconditional Sharpe ratios of 
excess nominal returns to Treasury bond portfolios and the aggregate stock market. The 
sample is January 1952 through December 2008. Monthly excess returns are constructed 
by subtracting the return to one-month Treasury bills as calculated by Ibbotson Associates. 
At the quarterly horizon, the return to three-month Treasury bills is used. The table also 
reports maximum Sharpe ratios for unconstrained positions in the portfolios of Treasury 
bonds. Means and standard deviations are in percent per horizon (monthly or quarterly). 

Monthly horizon Quarterly horizon 
Portfolio 
(m in months) Mean Std dev Sharpe Mean Std dev Sharpe 

0 < m   6 0.039 0.139 0.28 0.061 0.263 0.23 

6 < m   12 0.062 0.344 0.18 0.130 0.673 0.19 

12 < m   24 0.088 0.613 0.14 0.206 1.190 0.17 

24 < m   36 0.112 0.936 0.12 0.281 1.777 0.16 

36 < m   48 0.126 1.171 0.11 0.323 2.226 0.14 

48 < m   60 0.123 1.376 0.09 0.306 2.594 0.12 

60 < m   120 0.143 1.672 0.09 0.361 3.113 0.12 

Stock market 0.493 4.292 0.11 1.483 7.844 0.19 

Max using final 
six bond portfolios – – 0.23 – – 0.26 
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Table 2. Maximum Sharpe ratios of estimated term structure models 

Gaussian dynamic term structure models are estimated with maximum likelihood using the 
Kalman filter. The data are a panel of 446 months of Treasury yields from November 1971 
through December 2008. Conditional maximum monthly Sharpe ratios for both log returns 
and simple returns are calculated for each month, assuming complete fixed-income markets 
up to a ten-year maturity. Ratios are also calculated for simple returns assuming a complete 
bond market. The table reports sample means of these monthly Sharpe ratios (top number) 
as well as model-implied population means (bottom number). For a complete bond market, 
the table also reports the population unconditional maximum monthly Sharpe ratio using 
simple returns. 

Panel A. Unconstrained models 

Bond market, Mean of conditional maximum ratios 
unconditional 

Number maximum ratio, Fixed-income market Bond market 
of factors log like simple returns log returns simple returns simple returns 

2 28502.52 0.116 0.200 
0.181 

0.203 
0.184 

0.201 
0.182 

3 29987.21 0.192 0.331 
0.310 

0.352 
0.326 

0.337 
0.316 

4 30562.39 0.337 0.556 
0.590 

0.784 
0.727 

0.578 
0.613 

5 30675.15 0.561 1.762 
2.339 

4.9 × 1030 

4.2 × 1031 
2.804 
3.712 

Panel B. Constraint on sample mean of max Sharpe ratios 

Bond market, Mean of conditional maximum ratios 
unconditional 

Number maximum ratio, Fixed-income market Bond market 
of factors log like simple returns log returns simple returns simple returns 

3 29985.18 0.180 0.250 
0.265 

0.259 
0.274 

0.253 
0.268 

4 30544.26 0.180 0.250 
0.310 

0.264 
0.326 

0.252 
0.312 

5 30641.82 0.166 0.250 
0.336 

0.269 
0.357 

0.251 
0.338 
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Table 3. Properties of yields implied by estimated term structure models 

Gaussian dynamic term structure models are estimated with maximum likelihood using the 
Kalman filter. The data are a panel of 446 months of Treasury yields from November 1971 
through December 2008. Constrained models have a restriction on the model’s conditional 
maximum Sharpe ratios. For each estimated model, the table reports implied uncondi-
tional means, one-month-ahead standard deviations, and unconditional standard deviations 
of yields. Unconditional standard deviations are the top numbers and one-month-ahead 
standard deviations are the bottom numbers. Sample means and standard deviations are 
reported in the final row. Yields are expressed in percent per year. 

Means Standard deviations 
Number Maturity (months) Maturity (months) 
of factors Constrained 1 3 60 120 1 3 60 120 

2 N 4.95 5.02 6.08 6.53 3.27 
0.58 

3.24 
0.56 

2.88 
0.37 

2.58 
0.33 

3 N 4.86 4.96 6.02 6.51 3.19 
0.59 

3.19 
0.56 

2.87 
0.39 

2.62 
0.32 

4 N 4.63 4.81 5.89 6.39 3.29 
0.61 

3.30 
0.56 

2.99 
0.38 

2.72 
0.32 

5 N 4.28 4.91 5.99 6.48 3.79 
1.29 

3.25 
0.56 

2.93 
0.38 

2.67 
0.32 

3 Y 6.31 6.41 7.44 7.85 3.84 
0.60 

3.84 
0.57 

3.44 
0.39 

3.15 
0.32 

4 Y 8.09 8.19 9.13 9.44 4.16 
0.62 

4.13 
0.58 

3.46 
0.39 

3.14 
0.33 

5 Y 9.19 9.28 10.09 10.31 4.42 
0.64 

4.40 
0.58 

3.80 
0.39 

3.44 
0.33 

Data sample - 5.93 7.03 7.46 - 3.03 2.66 2.42 
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Table 4. Properties of the term structure implied by estimated term structure models 

Gaussian dynamic term structure models are estimated with maximum likelihood using the 
Kalman filter. The data are a panel of 446 months of Treasury yields from November 1971 
through December 2008. Constrained models have a restriction on the model’s conditional 
maximum Sharpe ratios. For each estimated model, the table reports the population serial 
correlation of the ten-year yield at the ten-year horizon. It also reports unconditional means 
and standard deviations of conditional monthly Sharpe ratios (log returns) for bonds of 
various maturities. Yields are expressed in percent per year. Standard deviations are in 
parentheses. 

Conditional 
Sharpe ratio 

Number Ten-year Maturity (months) 
of factors Constrained correlation 3 60 120 

2 N 0.27 0.11 0.09 0.07 
(0.13) (0.15) (0.15) 

3 N 0.30 0.17 0.09 0.08 
(0.19) (0.20) (0.22) 

4 N 0.30 0.29 0.09 0.08 
(0.38) (0.24) (0.27) 

5 N 0.28 0.75 0.11 0.09 
(1.76) (0.31) (0.31) 

3 Y 0.46 0.17 0.08 0.07 
(0.15) (0.16) (0.18) 

4 Y 0.36 0.17 0.07 0.06 
(0.21) (0.18) (0.20) 

5 Y 0.50 0.15 0.06 0.05 
(0.22) (0.20) (0.21) 
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Table 5. Excess return predictability implied by estimated term structure models 

Gaussian dynamic term structure models are estimated with maximum likelihood using the 
Kalman filter. The data are a panel of 446 months of Treasury yields from November 1971 
through December 2008. Constrained models have a restriction on the model’s conditional 
maximum Sharpe ratios. For each estimated model, the table summarizes population values 
of the predictability of excess log returns to a ten-year zero-coupon bond. Monthly and an-
nual returns are in excess of returns to one-month and one-year Treasury bonds respectively. 
The “monthly factor” is the first principal component of conditional expectations of monthly 
excess log returns to bonds with maturities of 2, 3, . . . , 10 years. 

Excess return Fraction explained 
Number of standard dev R2 by ’monthly factor’ 
factors Constrained Month Ann Month Ann Month Ann 

2 N 0.033 0.109 0.022 0.143 0.997 0.998 

3 N 0.033 0.105 0.046 0.190 0.998 0.845 

4 N 0.033 0.108 0.069 0.200 0.996 0.696 

5 N 0.034 0.109 0.089 0.190 0.992 0.483 

3 Y 0.033 0.104 0.031 0.147 0.998 0.841 

4 Y 0.033 0.110 0.037 0.195 0.999 0.778 

5 Y 0.033 0.109 0.042 0.141 0.999 0.641 

39 



Table 6. Principal components decomposition of a four-factor model 

A four-factor gaussian dynamic term structure models is estimated with maximum likeli-
hood using the Kalman filter. The data are a panel of 446 months of Treasury yields from 
November 1971 through December 2008. In estimation, the sample mean of conditional 
maximum Sharpe ratios is constrained to be no greater than 0.25. The factors are rotated 
into principal components of yields. 

Factor 
1 2 3 4 

Fraction explained of 
total variance in yields 0.978 0.021 0.001 0.000 

Mean risk compensation 
per standard dev of 
excess return 
1-year bond 
5-year bond 
10-year bond 

0.076 
0.093 
0.098 

0.046 
−0.014 
−0.053 

0.003 
−0.008 
0.020 

−0.007 
0.004 
−0.006 

Fraction of predictable 
variation in monthly 
log excess returns 
1-year bond 
5-year bond 
10-year bond 

0.061 
0.006 
0.000 

0.381 
0.580 
0.548 

0.002 
0.015 
0.018 

0.556 
0.399 
0.434 

Fraction of predictable 
variation in annual 
log excess returns 
2-year bond 
5-year bond 
10-year bond 

0.060 
0.011 
0.000 

0.823 
0.887 
0.874 

0.046 
0.030 
0.028 

0.071 
0.072 
0.097 
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Table 7. The accuracy of estimated term structure models 

Gaussian dynamic term structure models are estimated with maximum likelihood using the 
Kalman filter. The data are a panel of 446 months of Treasury yields from November 1971 
through December 2008. Constrained models have a restriction on the model’s conditional 
maximum Sharpe ratios. For each estimated model, the table reports root mean squared 
cross-sectional and forecast errors. The cross-sectional error is the sample mean, across all 
observed bonds and dates, of the squared difference between the actual yield and the yield 
implied by the Kalman filter. The forecast errors are for the five-year yield (level), the 
five-year yield less the three-month yield (slope), and the two-year yield less the average 
of the three-month and five-year yields (curvature). The table also reports the root mean 
squared error for the assumption that all yields follow random walks. Errors are expressed 
in annualized percentage points. 

Number of Three-month horizon Twelve-month horizon 
factors Constrained Cross section Level Slope Curve Level Slope Curve 

2 N 15.3 60 61 28 81 79 29 

3  N  7.5  58  61  22  79  77  26  

4  N  4.8  58  61  22  79  77  26  

5  N  4.1  57  60  21  79  77  25  

3  Y  7.5  59  61  22  79  78  26  

4  Y  4.8  59  62  22  81  80  27  

5  Y  4.1  58  62  22  82  80  27  

Random walk - 60 66 23 82 89 30 
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Table A1. Maximum Sharpe ratios implied by the model of Cochrane and Piazzesi 

Bond yields are observed at a monthly frequency. Overlapping observations are used to 
construct an annual frequency model. Conditional maximum annual Sharpe ratios for both 
log returns and simple returns are calculated for each month, assuming complete fixed-
income markets. Ratios are also calculated for simple returns assuming a complete bond 
market up to a fifteen-year maturity. The table reports sample means of these Sharpe ratios 
(top number) as well as model-implied population means (bottom number). For a complete 
bond market, the table also reports the population unconditional maximum annual Sharpe 
ratio using simple returns. 

Bond market, Mean of conditional maximum ratios 
unconditional 

Number of maximum ratio, Fixed-income market Bond market 
factors simple returns log returns simple returns simple returns 

1965–2003 0.504 1.755 3.4 × 1016 2.653 
1.954 2.1 × 108 2.743 

1972–2008 0.447 1.656 1.6 × 1018 2.175 
1.901 1.9 × 109 2.346 
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Fig. 1. Conditional maximum Sharpe ratios (log returns) implied by estimates of Gaussian 

term structure models. The models differ in the number of factors, ranging from two to five. 

They are estimated on monthly data from November 1971 through December 2008. For each 

month, the conditional maximum monthly Sharpe ratios, using log returns, are displayed in 

this figure. Note that the scale of the vertical axes differs across the panels. 
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A. Log−likelihoods relative 
to unconstrained 5−factor model B. Unconditional mean short rate 
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Fig. 2. Characteristics of estimated term structure models. The figure summarizes features 

of about 100 sets of estimates of Gaussian term structure models. Four-factor and five-factor 

models are estimated with maximum likelihood, using Treasury yields from November 1971 

through December 2008. For a given estimation, model-implied sample means of conditional 

maximum Sharpe ratios are constrained to not exceed the values on the x-axis. Panel A 

reports the maximized value of the log-likelihood less the log-likelihood of the unconstrained 

five-factor model. Panel B reports the unconditional mean yield of a one-month bond. Panels 

C and D report unconditional means of conditional Sharpe ratios for three-month and ten-

year bonds. Solid black lines and dashed blue lines correspond to four-factor and five-factor 

estimates respectively. 
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Fig. 3. Additional characteristics of estimated term structure models. Its construction 

follows that of Fig. 2. Panel A reports the fraction of month t+1’s excess log return to a three-

month bond that is explained  by  the month-t state. Panel B reports the same fraction for a 

ten-year bond. For Panels C and D, the factor rotation corresponds to principal components 

of the covariance matrix of predictable log excess monthly returns to bonds with maturities 

ranging from two to ten years. Panel C displays the fraction of this covariance matrix 

explained by the first factor, denoted the “monthly prediction” factor. Panel D displays 

the fraction of the predictable log excess annual return to a ten-year bond that is explained 

by the monthly prediction factor. Solid black lines and dashed blue lines correspond to 

four-factor and five-factor estimates respectively. 
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B. Second factor’s effect on 
A. Second factor’s effect on yields expected excess log returns 
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D. Fourth factor’s effect on 
C. Fourth factor’s effect on yields expected excess log returns 
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Fig. 4. Some dynamics implied by estimates of a four-factor Gaussian term structure model. 

In estimation, the sample mean of conditional maximum Sharpe ratios is constrained to be 

no greater than 0.25. The factors are rotated into principal components of yields. Panels A 

and C report the reaction of the yield curve to one-standard-deviation changes in the month-

t values of the second and fourth factors, respectively. The black dashed line is the month-t 

effect and the dotted-dashed blue line is month-t expectation of the effect in month t + 12. 

Panels B and C report similar information for the conditional expectation of one-month 

log excess returns to bonds. The dashed black line is the effect on month t’s expectation 

of month t + 1’s excess returns and the dotted-dashed blue line is the effect on month t’s 

expectation of month t + 13’s excess returns. 
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A. Maximum Sharpe ratio using simple returns 
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Fig. A1. Conditional maximum annual Sharpe ratios implied by the no-arbitrage model of 

Cochrane and Piazzesi (2005). The sample period is 1965 through 2003. Panels A and B 

assume a complete fixed-income market. Panel A uses simple excess returns and Panel B 

uses log returns. Panel C uses simple excess returns to bonds with maturities from two to 

fifteen years. 
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A. Five−year bond price as function B. Radon−Nikodym derivative function 
of short−rate shock (scaled) at mean price of risk 
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Fig. A2. The price of a five-year bond and the Radon-Nikodym derivative expressed as 

functions of the short-rate shock in a one-factor Gaussian discrete-time term structure model. 
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