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ABSTRACT

Standard approaches to building and estimating dynamic term structure models rely on

the assumption that yields can serve as the factors. However, the assumption is neither

theoretically necessary nor empirically supported. This paper documents the presence of a

factor that has an almost imperceptible effect on the cross section of yields, but has strong

forecast power for future short-term interest rates and excess bond returns. The factor

appears to be related to short-run fluctuations in economic activity.
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1 Introduction

This paper advocates a significant change in the construction and estimation of multifactor

term structure models. In a literature spanning more than two decades, researchers have

almost universally assumed that the factors driving term structure dynamics can be repre-

sented as functions of yields. The assumption plays a critical role in all aspects of estimation.

However, because it rules out a potentially important class of term structure dynamics, we

need research methodologies that do not rely on the assumption.

The intuition behind the standard approach is so obvious that it is seldom mentioned.

Investors’ beliefs about future bond prices determine what investors are willing to pay for

bonds today. This suggests that today’s term structure contains all information relevant to

predicting both future returns to bonds and future bond yields. Put somewhat differently,

the term structure follows a Markov process.

Empirical work exploits this Markov structure in many ways. It helps researchers choose

the dimension of a model, because the same factors that determine the cross section of

yields also determine yield dynamics. Therefore factor analysis of unconditional covariances

among yields (the cross section) pins down the length of the state vector. It also simplifies

considerably the search for time-varying expected bond returns, because it implies that

time-t conditional expectations of returns can be expressed entirely in terms of forward rates

observed at t. Other data are unnecessary to model yield dynamics. In addition, the one-

to-one mapping from factors to yields implied by the Markov structure leads to tractable

estimation of very complicated term structure models.

Yet recent empirical evidence calls this assumption into question. Ludvigson and Ng

(2009) and Cooper and Priestly (2008) conclude that various measures of macroeconomic

activity contain information about future excess bond returns that is not in forward rates.

Cochrane and Piazzesi (2005) find that lagged forward rates contain information about future

excess bond returns that is not in current forward rates. One possible explanation, as noted

by Cochrane and Piazzesi, is that measurement error in yields obscures the Markov structure.

1



In other words, these empirical results hinge on our inability to precisely observe yields. But

plausible measurement error in Treasury yields is on the order of only a few basis points.

Thus it is incumbent upon us to attempt to understand, from a formal perspective, why

tiny measurement errors can cover up important information contained in the cross section

of yields.

I show that it is easy to build a multifactor model in which one of the factors plays an

important role in determining investors’ expectations of future yields, yet has zero effect on

current yields. I refer to such a factor as a “hidden” factor, in the sense that a snapshot of

the time-t yield curve conveys no information about its level. A hidden factor has opposite

effects on expected future interest rates and bond risk premia.

Consider, for example, economic news that raises risk premia and simultaneously leads

investors to believe the Fed will soon cut short-term interest rates. The increase in risk premia

induces an immediate increase in long-term bond yields, while the expected drop in short

rates induces an immediate decrease in these yields. In a Gaussian term structure model,

a single parameter restriction equates these effects, leaving the current term structure—but

not expected future term structures—unaffected by the news. More generally, factors that

drive risk premia and expected short rates in opposite directions can have arbitrarily small

effects on the cross section of yields, yet large effects on yield dynamics.

This theoretical result, although not well-known, can be inferred from the existing term

structure literature. Duffee (2002) contains an example in which the physical and equivalent-

martingale dynamics are driven by state vectors with different dimensions. But its impli-

cations for empirical work have not been recognized until this paper, and contemporaneous

and independent work by Joslin, Priebsch, and Singleton (2009). We take this idea in dif-

ferent directions. In a nutshell, I use a filtering approach to ask whether there are hidden

factors. Their work assumes the existence of two hidden factors that are linear combinations

of observed inflation and industrial production, and estimate the resulting model using both

yield and macroeconomic data.
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I look for hidden factors by fitting a five-factor Gaussian term structure model to monthly

Treasury yields over the period 1964 through 2007. The Kalman filter allows us to infer the

presence of hidden factors from term structure dynamics. Estimation uncovers a factor

that has an almost imperceptible effect on the cross section of Treasury yields but contains

substantial information about both expected future short rates and—necessarily—expected

excess bond returns. Based on the model’s point estimates, a one standard deviation change

in the factor lowers the expected one-year-ahead short rate by about 35 basis points and raises

the expected excess return to a five-year bond over the next year by about 1.3 percent. This

factor accounts for about 30 percent of the total variance in expected excess bond returns,

yet there is no linear combination of yields that captures most of the variation in the factor.

There is substantial uncertainty in these point estimates. If we relied only on the results

of the estimation, a skeptic easily could argue that the model is overfitting observed data, and

the hidden factor is spurious. However, evidence from the Survey of Professional Forecasters

confirms that survey-based expectations of future short rates move contemporaneously with

estimates of the factor. Moreover, the factor is related to short-run fluctuations in economic

activity. An increase in the factor corresponds to lower expected future short rates, higher

risk premia, and lower growth in industrial production.

The term structure model is presented in the next section. Section 3 summarizes prop-

erties of the estimated model. Section 4 compares the hidden factor to survey evidence

on expectations and links the factor to the macroeconomy. Concluding comments are in

Section 5.

2 The modeling framework

This section explains why some important determinants of the yield dynamics may be un-

detectable in the cross section. To make this point in the starkest terms, I build a model

in which n factors are necessary to model term structure dynamics, but only n − 1 factors
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appear in yields.

I follow much of the modern term structure literature by abstracting from standard

economic concepts such as utility functions and production technologies. Instead, both the

short rate and the nominal pricing kernel are functions of a latent state vector. The factors

and their dynamics can be viewed as reduced-form representations of inflation, business

cycles, and market clearing.

2.1 A Gaussian model

I use a standard discrete time Gaussian term structure framework. The use of discrete

time is innocuous. The role played by the Gaussian assumption is discussed in Section 2.6.

The one-period interest rate is rt. This rate is continuously compounded and expressed per

period. (For example, if a period is a month, rt = 0.01 corresponds to twelve percent/year.)

Interest rate dynamics are driven by a length-n state vector xt. The relation between the

short rate and the state vector is

rt = δ0 + δ′1xt. (1)

The state vector has first-order Markov dynamics

xt+1 = μ + Kxt + Σεt+1, εt+1|xt ∼ N (0, I) . (2)

The state vector is latent, hence identifying restrictions are typically imposed in estimation.

A convenient normalization is described in the paper’s empirical section.

The period-t price of a zero-coupon bond that pays a dollar at t + m is denoted P
(m)
t .

The corresponding continuously-compounded yield is y
(m)
t . Bond prices satisfy the law of

one price

P
(m)
t = Et

(
Mt+1P

(m−1)
t+1

)
(3)
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where Mt+1 is the pricing kernel. The pricing kernel has the log linear form

log Mt+1 = −rt − Λ′
tεt+1 − 1

2
Λ′

tΛt. (4)

The vector Λt is the compensation investors require to face shocks to state vector. The price

of risk satisfies

ΣΛt = λ0 + λ1xt, (5)

which is the essentially affine form introduced in Duffee (2002). Bonds are priced using the

equivalent martingale dynamics

xt+1 = μq + Kqxt + Σεq
t+1, (6)

where the equivalent martingale parameters are

μq = μ − λ0, Kq = K − λ1. (7)

The discrete-time analogues of the restrictions in Duffie and Kan (1996) imply that zero-

coupon bond yields can be written as

y
(m)
t = Am + B′

mxt, (8)

where the scalar Am and the n-vector Bm are functions of the parameters in (1) and (6).

The focus of this paper is on yield factor loadings, which can be written as

B′
m =

1

m
δ′1
(
I + Kq + (Kq)2 + · · · + (Kq)m−1

)
=

1

m
δ′1 (I − Kq)−1 (I − (Kq)m) . (9)

5



2.2 Information in the cross section

Absent specific parameter restrictions, the period-t state vector can be inferred from a cross

section of period-t bond yields. Stack the yields on n zero-coupon bonds in the vector ya
t .

We can write this vector as

ya
t = Aa + Baxt (10)

where Aa is a length-n vector containing Am for each of the n bonds and Ba is a square

matrix with rows B′
m for each bond. In general, Ba is invertible. Put differently, element

i of the state vector affects the n bond yields in a way that cannot be duplicated by a

combination of the other elements. With invertibility, the term structure contains the same

information as xt. We can write

xt = (Ba)−1 (ya
t − Aa). (11)

Since xt follows a first-order Markov process, the term structure of yields also follows a

first-order Markov process.

Although this result is derived here in a Gaussian setting, it applies more generally to

the class of affine term structure models. The entire empirical literature on dynamic term

structure models (setting aside the current paper and Joslin et al. (2009)) takes it for granted.

For example, the handbook treatment of Piazzesi (2009) does not mention that Ba may not

invertible. The next subsection explains why, from an empirical perspective, invertibility is

a very useful property.

2.3 The role of invertibility in empirical analysis

Invertibility allows us to infer the dimension of the state vector n from properties of the cross

section of yields. One method, introduced by Stambaugh (1988), studies the predictability

of excess bond returns. He infers n by using a condition equivalent to (11): conditional
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expectations of excess bond returns are functions of n forward rates. This methodology

remains at the leading edge of the literature through Cochrane and Piazzesi (2005). Another

method to infer n is factor analysis of the unconditional covariance matrix of yields or

differenced yields. Litterman and Scheinkman (1991) conclude three factors explain, in a

statistical sense, all but a negligible fraction of the variation in the term structure. Duffee

(2002) and Brandt and Chapman (2003) use this result and (11) to justify the choice of

n = 3.

Equation (11) implies that maximum likelihood estimation of affine term structure models

requires only a panel of n yields and the density function of the state vector.1 In fact, Piazzesi

(2009) defines likelihood-based estimation of affine models in terms of (11). Pearson and Sun

(1994) are the first to exploit this result. Chen and Scott (1993) expand the panel’s cross

section to d yields by assuming that n linear combinations of yields are observed without

error and d − n are observed with error. In the special case of Gaussian models, maximum

likelihood estimation is also feasible when all d yields are observed with measurement error.

Yet even with Gaussian models, estimation is simplified considerably when factors are treated

as linear combinations of yields. Cochrane and Piazzesi (2008) and Joslin, Singleton, and

Zhu (2009) are recent applications that use (11) to estimate Gaussian models.

Invertibility implies that only yields are necessary to estimate affine models, but it does

not rule out the use of other data. Ang and Piazzesi (2003) introduced macroeconomic

variables into Gaussian term structure models, leading to an explosion of macro-finance

research. This literature is not designed to produce more accurate term structure models,

but rather to explicitly link the term structure to its fundamental determinants, such as

inflation and monetary policy.

Although invertibility is widely assumed and useful, it need not hold. I now consider

special cases of the Gaussian framework where Ba has rank less than n, so that the state

vector cannot be extracted from the term structure. An example illustrates the mathematics

1The likelihood function for discretely observed observations may need to be evaluated numerically.
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and the economic intuition.

2.4 A two-factor example

Consider a two-factor Gaussian model. Because the latent factors in this model can be arbi-

trarily rotated, the state vector can be transformed into the short rate and some other factor,

denoted ft. For this rotation, the dynamics of the state vector are (explicitly indicating the

elements of the feedback matrix)

⎛
⎜⎝ rt+1

ft+1

⎞
⎟⎠ = μ +

⎛
⎜⎝ k11 k12

k21 k22

⎞
⎟⎠
⎛
⎜⎝ rt

ft

⎞
⎟⎠+ Σεt+1. (12)

When k12 does not equal zero, time-t expectations of future short rates depend on both

rt and ft. Thus we can think of ft as all information about future short rates that is not

captured by the current short rate.

If investors are risk-neutral, the level of ft necessarily affects the term structure through

expectations of future changes in the short rate. But if risk premia also vary with ft, the net

effect of ft on yields is ambiguous. The restriction adopted in this example is that changes

in risk premia exactly cancel expectations of future short rates, leaving yields unaffected by

ft. Formally, the requirement is kq
12 = 0, or k12 = λ1(12). Then the equivalent martingale

dynamics of the state are

⎛
⎜⎝ rt+1

ft+1

⎞
⎟⎠ = μq +

⎛
⎜⎝ kq

11 0

kq
21 kq

22

⎞
⎟⎠
⎛
⎜⎝ rt

ft

⎞
⎟⎠+ Σεq

t+1. (13)

A glance at (13) reveals that under the equivalent martingale measure, the short rate follows

a (scalar) first-order Markov process. The loading of the m-period bond yield on the state
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vector is, from (9),

Bm =

⎛
⎜⎝ 1

m
(1 − kq

11)
−1

(1 − (kq
11)

m
)

0

⎞
⎟⎠ . (14)

Thus the matrix Ba in (10) cannot be inverted because it has a column of zeros. The factor

ft is hidden, in the sense that it has no effect on the period-t term structure. Even if an

econometrician knows the parameters of the model, she cannot infer ft from the cross section

of yields at t. Nor can ft be backed out of the price of some other fixed-income instrument,

such as bond options.

Although the factor does not affect yields, investors observe it. They take it into account

when setting bond prices and forming expectations of future yields (or equivalently, future

returns to holding bonds). For concreteness, consider the case k12 > 0. Then for fixed rt,

an increase in ft raises investors’ expectations of future short rates. For example, consider

macroeconomic news, such as unexpectedly high GDP growth, that raises the likelihood

of future tightening by the Federal Reserve. If investors’ willingness to bear interest risk

does not change with ft, this news raises current long-maturity bond yields. But with the

restriction k12 = λ1(12), investors accept lower expected excess bond returns. The change in

willingness to bear risk offsets exactly the news about expected future short rates, leaving

yields unaffected.

The functional relation between expected excess returns and ft can be seen in the formula

for the expected excess log return, from t to t + 1, on a bond with maturity m at period t.

(Here, “excess” is in excess of the short rate.) The period-t expectation is

Et

(
xr

(m)
t,t+1

)
≡ my

(m)
t − (m − 1)Et

(
y

(m−1)
t+1

)
− rt

= mAm − (m − 1)Am−1

+(1 − kq
11)

−1
[
(1 − (kq

11)
m) −

(
1 − (kq

11)
(m−1)

)
k11 − 1

]
rt

−(1 − kq
11)

−1
(
1 − (kq

11)
(m−1)

)
k12ft. (15)
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The final term in (15) captures the dependence of expected excess returns on ft.

In this example, the short rate follows a two-factor Markov process under the physical

measure and a one-factor Markov process under the equivalent martingale measure. A single

parameter restriction is required to generate this structure. Armed with the intuition of

this example, it is straightforward to proceed to the more general case in which the short

rate follows an n-factor Markov process under the physical measure and an (n − 1)-factor

Markov process under the equivalent martingale measure. As in the two-factor case, a single

parameter restriction is required.

2.5 The n-factor version

Latent state vectors in affine term structure models are inherently arbitrary. Dai and Sin-

gleton (2000) describe in detail how they can be translated and rotated without observable

consequences. One particular rotation simplifies considerably the analysis here. Beginning

with the standard n-factor Gaussian model of Section 2.1, diagonalize the equivalent mar-

tingale feedback matrix Kq into

Kq = PV P−1 (16)

where the columns of P are eigenvectors and V is a diagonal matrix of eigenvalues. Define

a rotated state vector

x∗
t = Pxt. (17)

The equivalent martingale dynamics of the rotated state vector are

x∗
t+1 = Pμq + V x∗

t + PΣεq
t+1. (18)

With this rotation, each individual factor follows its own univariate first-order Markov pro-

cess because V is diagonal. Innovations among the factors can be correlated. The loading
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of the short rate on the rotated state vector is

(δ∗1)
′ = δ′1P

−1 (19)

Here, as in the two-factor case, a single parameter restriction produces a model where

physical dynamics of the short rate follow an n-factor process and equivalent martingale

dynamics follow an (n − 1)-factor process. The restriction is that for some i,

δ∗1,i = 0. (20)

This restriction implies that element i of the state vector drops out of the equivalent mar-

tingale dynamics of the short rate. It is immediate from (20) that the period-t values of the

other n − 1 factors are sufficient to determine the period-t short rate. Similarly, the short

rate at t + τ depends only on the period-(t + τ) values of n − 1 factors. Since each factor

follows a univariate Markov process under the equivalent martingale measure, the period-t

equivalent martingale expectation of the short rate at t + τ depends only on the period-t

values of those same n − 1 factors. Therefore period-t yields depend only n − 1 factors.

As in the two-factor case, physical dynamics of the short rate depend on all n factors.

The physical dynamics of the rotated state vector are

x∗
t+1 = Pμ + PKP−1x∗

t + PΣεt+1. (21)

As long as risk premia vary with the state vector (λ1 �= 0), the matrix P that diagonalizes Kq

will not diagonalize K. Then in general, each factor in the state vector contains information

about the evolution of the short rate.
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2.6 The role of the Gaussian setting

Section 2.5 shows that with an appropriate restriction on a term structure model, only n−1

factors of an n-dimensional state vector affect bond yields. Models exhibiting unspanned

stochastic volatility (USV), as described in Collin-Dufresne and Goldstein (2002), can be

described similarly. Here I clarify the relation between the approach here and the USV

approach.

In this model, short rate dynamics are described by an n-factor Markov process under

the physical measure and an (n− 1)-factor Markov process under the equivalent martingale

measure. All n−1 factors that appear in the equivalent martingale process affect bond yields.

Thus we can say that under the equivalent martingale measure, the term structure follows an

(n − 1) factor Markov process. By contrast, the USV framework is concerned only with the

equivalent martingale measure. The physical measure is not specified. Under the equivalent

martingale measure of a USV model, the short rate is determined by a n-dimensional state

vector that follows a Markov process. Bond yields nonetheless do not depend on all n factors.

(Prices of some other fixed-income instruments will depend on all n factors.) Thus under

the equivalent martingale measure, the term structure does not follow a Markov process.

The economic interpretations of the two sets of parameter restrictions differ substantially.

In this model, variations in expected future short rates are offset by variations in risk premia.

With USV, variations in equivalent martingale expectations of future short rates are offset

by variations in the Jensen’s inequality component of bond yields. Stochastic volatility is

thus critical to USV models (hence the name of the model class), but does not appear here.

Although USV models appear to have little in common with the model here, they can

provide an alternative mechanism driving a wedge between the factors driving dynamics of

yields and those driving the cross section of yields. Set risk premia to zero so that physical

and equivalent martingale measures coincide. Then n factors are necessary to capture yield

dynamics, while n − 1 factors affect bond yields. I do not pursue this approach because the

parameter restrictions necessary in a USV model are very tight.
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One reason I use the Gaussian framework is to avoid complications associated with

stochastic volatility. Reconsider the two-factor example of Section 2.4. If the conditional

covariance matrix of factor innovations is allowed to be linear in ft (a discrete-time approx-

imation to a square-root diffusion model), then the level of ft affects bond yields even when

kq
12 = 0. Variations in risk premia can offset variations in expected future short rates, but do

not offset variations in the Jensen’s inequality component of yields. This problem does not

arise in the two-factor example if conditional variances are allowed to depend on the short

rate instead of ft.

2.7 From theory to practice

There is no measurement error in the yield equation (8). Therefore the parameter restriction

(20) is knife-edge. If the parameter differs from zero by an arbitrarily small amount, then

the exact mapping from factors to n yields in (10) implies that all factors can be inferred

from the cross section using (11).

However, in real-world data the mapping is not exact. Equation (10) implies that the

unconditional covariance matrix of d > n bond yields has a rank no greater than n. (It

equals n in the standard case and n − 1 in when (20) holds.) Yet in the data, sample

covariance matrices of zero-coupon bond Treasury yields are nonsingular for even large d

(say, greater than ten). One interpretation of this result is that n is large, perhaps even

infinite, as in Collin-Dufresne and Goldstein (2003). But from a variety of perspectives, it

is more appealing to view bond yields as contaminated by small, transitory, idiosyncratic

noise.

This noise is generated from three sources. First, there are market imperfections that

distort bond prices, such as bid/ask spreads. Second, there are market imperfections that

distort payoffs to bonds (and thus distort what investors will pay for bonds), such as special

RP rates. Third, there are distortions created by the mechanical interpolation of zero-coupon

bond prices from coupon bond prices.
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I model the noise as classic measurement error. A vector of d period-t yields on bonds

with maturities m1, . . . , md is expressed as

yt = A + Bxt + ηt, ηt ∼ N(0, Iσ2
η) (22)

where ηt is a vector of measurement errors. For simplicity, in (22) the measurement error

for each yield has the same variance. Element i of the vector A contains Ami
and row i of

the matrix B contains B′
mi

.

Equation (22) cannot be pushed to its logical limits. Since the measurement error is

uncorrelated across maturities and time, (22) suggests that using either more points on

the term structure or higher frequency data eliminates the effects of noise. Instead, the

specification should be viewed as an approximation to a world in which noise dies out quickly

and is roughly uncorrelated across the widely-spaced maturities used in empirical analysis.

Measurement error eliminates the knife-edge nature of (20). A factor may be an important

determinant of expected future yields, yet have an infinitesimally small effect on the current

term structure—so small that the effect is lost in the noise ηt in (22). One way to measure

the extent to which factor i is hidden is the regression

xi,t = b0 + b′1yt + ηi,t. (23)

Absent measurement error, the R2 of this regression is either one (the standard case) or zero

(i is a hidden factor). An econometrician cannot estimate (23) because the state vector is

unobserved, but population values coefficients can be computed from an estimated dynamic

term structure model.

2.8 Implications for term structure estimation

If we take seriously the possibility that more factors affect yield dynamics than affect the cross

section of yields, how should we estimate dynamic term structure models? One requirement
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is to build necessary flexibility into the model through the dimension of the state vector.

Three state variables are needed to describe the cross section of Treasury yields. Thus if

there is some variable hidden from the cross section, a model without at least four state

variables is misspecified.

Given a sufficiently-flexible model, there are two broad paths to follow. They differ

primarily in the data used in estimation. The direction taken in this paper is to infer

the presence of hidden factors from the dynamics of yields, which we can call a “yields-

only” approach. Alternatively, yield data can be augmented by other data that contain

independent information about factors that drive yield dynamics, which I call a “yields-

plus” approach.

Yields-only estimation of models with hidden factors can be done with filtering. Pennac-

chi (1991) introduces filtering into affine term structure estimation. The usual motivation,

as noted in Piazzesi (2009), is to extract information about the period-t state vector from

the entire period-t cross section, thus avoiding the ad hoc assumption that exactly n yields

are observed without error. But filtering also uses dynamics to infer this vector. Intuitively,

filtering is equivalent to learning by the econometrician. The period-t forecast error (the

difference between realized yields and the econometrician’s t − 1 forecast of yields) is pro-

duced by both true period-t shocks and the error in the econometrician’s t− 1 prediction of

the t − 1 state vector. The cross sectional pattern of the period-t forecast errors helps the

econometrician revise her prediction of the state vector at t − 1 and form her prediction of

the state vector at t.

In adition, it may be possible to infer the period-t state vector from period-t observations

of non-yield data. Recall that hidden factors have equal and opposite effects on expected

future short-term interest rates and risk premia. Data that depend separately on these two

components (or weight them differently) will reveal such factors. Perhaps the most obvious

choice is survey data on interest rate forecasts, such as that used by Kim and Orphanides
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(2005).2 In line with the literature’s recent focus on macro-finance models, Joslin et al. (2009)

use inflation and output growth. They assume two hidden factors are linear combinations

of these variables.

The tradeoffs between a yields-only and a yields-plus approach are straightforward. Es-

timation using additional data is a more powerful approach, but also at greater risk of

misspecification. Holding the sample length constant, and under the maintained hypotheses

that (1) the additional data are functions only of state vector that drives bond yields, and (2)

the data reveal otherwise hidden factors, the yields-plus approach will produce more precise

estimates of the term structure model. It is much easier to infer period-t factors from direct

observation of variables at t than from teasing them out of dynamics.

However, samples of survey data are shorter than samples of bond yields. Long time

series of macro data are available, but the requirement that the macro variables are spanned

by the variables that drive yields is often problematic. In particular, the relation between

the macroeconomy and time-varying risk premia is an active area of research, but one with

with few uncontroversial conclusions. The yields-only approach does not take a stand on the

relation between the term structure and the macroeconomy, and thus avoids the possibility

of misspecifying the relation.

The empirical analysis in this paper is a bit of a hybrid. The next section uses a long

sample of yields to estimate a term structure model. Section 4 links the hidden factor un-

covered through this estimation to both a shorter sample of surveys of interest rate forecasts

and a long sample of industrial production data.

3 Empirical analysis

This section estimates a five-factor Gaussian term structure model using only yield data.

The main question is whether there are factors that have little or no effect on the cross

2Kim and Orphanides use a three-factor model, which does not give them the flexibility to capture both
the cross section and potential hidden factors.
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section of yields yet are important for modeling dynamics. The conclusion is that a hidden

factor drives a substantial fraction of the predictability of excess returns, although there is

considerable statistical uncertainty in the estimates. Section 4 confirms the importance of

the factor using non-yield data.

3.1 The choice of five factors

Section 2.8 argues that, since three factors are needed to explain the cross section of yields,

at least four factors are necessary to uncover the presence of a hidden factor. However,

Cochrane and Piazzesi (2005) find that information from five points on the yield curve to

form forecasts of excess bond returns. If we take this result literally, a six-factor model is

needed here. Unfortunately, the number of free parameters is unmanageable for six or more

factors. A five-factor Gaussian canonical term structure model has 52 free parameters. As

we will see, extracting information about each of these parameters is close to (or beyond)

the limits imposed by available data and estimation techniques. Moreover, it is difficult to

convince a skeptic that they have something to learn from a model with 52 parameters. A

six-factor canonical model has more than 70 free parameters. It is beyond the ability of the

author to convince anyone to take seriously the parameter estimates of a 70+ parameter

model.

3.2 An unrestricted model

The model is estimated without imposing any parameter restrictions that produce hidden

factors. The main reason for estimating an unrestricted model is that it is hard to ask whether

there are hidden factors using a model that a priori imposes their existence. In addition,

such parameter restrictions are difficult to motivate on economic grounds. It seems quite

unlikely that there truly is a factor for which variations in expected future short rates are

exactly offset by variations in required expected returns.

The more important practical question is whether there are factors that have effects on
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yields that are indistinguishable from measurement error. It is easy to tell stories in which

news has opposite effects on expected future short rates and investors’ required expected

excess returns. For example, the Taylor (1993) rule and its variants (see, e.g., Clarida, Gaĺı,

and Gertler (2000)) suggest that good news about future output is also news that future

short rates are likely to rise. If willingness to bear interest rate risk covaries positively with

the business cycle, the immediate effect of such news on bond yields is ambiguous and might

be very close to zero.

3.3 Data

Treasury bond yields are from the Center for Research in Security Prices (CRSP). The yield

on a three-month Treasury bill is from the Riskfree Rate file (bid/ask average). Artificially-

constructed yields on zero-coupon bonds with maturities of one, two, three, four, and five

years are from the Fama-Bliss file. Yields are observed at the end of each month from

January 1964 through December 2007. The first observation is chosen to align with the

sample studied by Cochrane and Piazzesi (2005).

An alternative source of zero-coupon bond yields is a panel produced by the Federal

Reserve Board. The advantage of the Fed data is that yields are available for maturities

greater than five years. The crucial disadvantage, at least for the purposes of this paper, is

that Gurkaynak, Sack, and Wright (2006) produce yields by fitting a smooth function to the

term structure. Cochrane and Piazzesi (2008) find that this smoothing removes a significant

component of the forecasting power of the term structure. In some preliminary work with

only the Federal Reserve yields that match the maturities of the CRSP yields, I confirm their

result and find that the smoothing also weakens the evidence for a hidden factor. (These

results are not reported in detail in the paper.)

Panel A of Table 1 reports means and standard deviations of the CRSP yields. Panel

B reports the magnitudes of the first five principal components of the six yields, monthly

changes in the yields, and annual returns to bonds with initial maturities of one through
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five years. Note that in the table, yields are expressed in percent per year, while the model

is written in terms of decimal points per month. This transformation is used in all of the

tables.

The characteristics of the principal components are well known. The first three principal

components of levels explain more than 99.9 percent of their total variation. The corre-

sponding percentages for monthly changes and annual returns are 98.6 and 99.9 respectively.

Not shown in Table 1 are the shapes of the principal components. The first three are the

level, slope, and curvature of the term structure. Section 3.6 takes a detailed look at these

shapes.

3.4 An identifying normalization

The factors can be arbitrarily rotated. To help interpret the extent to which any factors are

hidden from the cross section, I rotate them to equal principal components of uncontaminated

yields—yields without measurement error. Denote the vector of six observed yields by yt

and its uncontaminated counterpart by ỹt. Drop the three-year bond from the latter vector,

denoting the vector of remaining five uncontaminated yields by ỹ\3,t.

The estimated model will imply a population covariance matrix of the vector ỹ\3,t. Be-

cause the parameter restriction for a hidden factor is not imposed, this matrix will nonsin-

gular. Diagonalize it into

Var
(
ỹ\3,t

)
= C0ΩC−1

0 (24)

where Ω is the diagonal matrix of the covariance eigenvalues.

The state vector xt is normalized to equal the vector of mean-zero principal components

of ỹ\3,t, ordered from largest to smallest. Its dynamics are

xt+1 = Kxt + Σεt+1, (25)
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where

Var(xt) = Ω. (26)

The appendix explains how the normalization is imposed in estimation.

3.5 Model estimation

Estimation is with the Kalman filter, which produces correct conditional means and covari-

ances in a Gaussian setting. The transition equation is (25) and the measurement equation

is (22).

Table 2 reports the point estimates of these two equations. There are 77 parameters in

the table, although the model has only 52 free parameters. There are 15 restrictions built

into these parameters that derive from equation (26), the requirement that the factors are

principal components of the yields. Standard errors are in parentheses. They are constructed

from Monte Carlo simulations. Assuming that the estimated model is true, 528 months of

yields are randomly generated for a given simulation. The model is estimated with maxi-

mum likelihood using these data and the parameter estimates are stored. This procedure is

repeated 1000 times to construct the standard errors in Table 2. The covariance matrix of

the 77 parameter estimates has rank 52.

Note that Table 2 does not report estimates of the short-rate equation (1) or the equivalent-

martingale parameters of (6). They are not of direct interest here, and are reported in the

appendix.

3.6 Estimates of the factors’ role in the cross section

The estimates in Table 2 are reported for only for completeness. There is not much to be

learned from the individual parameters. Instead, I summarize the important properties of

the estimated model. This subsection focuses on the cross sectional properties. A quick

summary is that only the first three factors play a noticeable role in the cross section. The
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remaining factors are hard to disentangle from noise in yields.

Table 3 describes the cross sectional relation between the factors and bond yields. Since

the factors are, by construction, principal components of yields, it is not surprising that the

first few factors explain almost all of the variation in yields. We see in the first column that

population standard deviations of these orthogonal factors range from 6.02 for the first factor

to 0.04 for the fifth.3 Standard errors of these population standard deviations, computed

from Monte Carlo simulations, are in parentheses.

The precise mapping from factors to yields is displayed in Figure 1, which plots the matrix

of estimated factor loadings B scaled by the factor standard deviations. The first panel plots

loadings on the first three factors. They are the usual level, slope, and curvature factors. For

example, a one standard deviation increase in the first factor raises all annualized yields by

about 2.5 percentage points. The second panel plots loadings on the fourth and fifth factors.

There is no obvious cross sectional interpretation for these two factors, which appear to be

economically tiny. Note the difference in scale between the two panels. A one standard

deviation in the fifth factor does not change any yield by more than four basis points.

Because of measurement error, it is difficult to extract the final two factors from the

cross section of the term structure, even if we know the model’s parameters. Table 2 reports

the estimated standard deviation of measurement error is less than half a basis point of

monthly yields, or about about five and a half basis points of annualized yields. Although

economically small, this measurement error is enough to obscure the effects of these factors

on yields. One way to see this is through the R2 of the population regression of factors on

yields in equation (23). The point estimates of the model allow analytic calculation of the

R2s.

The second column of statistics in Table 3 reports the R2s for each factor. The effects

of the first three factors on yields are sufficiently large to dominate measurement error. The

R2s for these factors range from 1.0 to 0.95. However, the R2s for the fourth and fifth factors

3Recall that the model is estimated using yields expressed in decimal form per month. The values here
have been multiplied by 1200 to put them in terms of percent per year.
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are only 0.62 and 0.43 respectively. Hence most of the variation in the fifth factor cannot be

explained by contemporaneous yields; it is largely hidden from the cross section.

Because it uses information from dynamics, Kalman filtering produces more accurate

estimates of the factors. Population properties of the Kalman filter are proxied by simulating

one million months of bond yields (the maturities are three months and one through five

years), where the “true” model is the model estimated with ML. The Kalman filter is then

applied to these data, using the true parameters in the filter. The final column of Table

3 reports correlations between true and Kalman smoothed estimates of the factors. These

correlations are 0.87 and 0.86 for the fourth and fifth factors. Naturally, smoothed estimates

of the factors are more closely related to observed yields than are true factors (since observed

yields are used in the smoothing), as documented in the third column of statistics in Table

3.

Since only the first three factors make noticeable contributions to the cross section of

yields, why should we care about our ability to infer the other factors from the data? The

reason is that according to the model’s point estimates, the fifth factor plays an important

role in yield dynamics and expected excess bond returns.

3.7 Estimates of the factors’ role in yield dynamics

Consider investors’ j-month-ahead forecast of the yields used in estimation of the model.

The vector of forecasts is (recall that investors know the true state vector)

Et (yt+j) = A + BEt (xt+j)

= A + BKjxt. (27)

The unconditional covariance matrix of these forecasts is

Var (Et(yt+j)) = BKjΩB′(Kj)′. (28)
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Because the unconditional covariance matrix of the factors Ω is diagonal, the variance in

(28) can be unambiguously expressed as the sum of components attributable to each of the

five factors.

Table 4 reports information about this decomposition. To simplify interpretation, the

table reports standard deviations rather than variances. To illustrate the results, consider the

first row. The table reports that twelve-month-ahead forecasts of the three-month annualized

bill yield have a standard deviation of 2.28 percentage points. More than 95 percent of

the variance is due to the first, “level” factor. The standard deviation of twelve-month-

ahead forecasts attributable to this factor is 2.23 percentage points. Standard deviations

attributable to all other factors are much smaller.

The surprising result in this first row is that much of the remaining variance in twelve-

month-ahead forecasts is captured by the fifth factor. The standard deviation of the forecast

attributable to this factor is 36 basis points, which is larger than the amount attributable to

any other non-level factor. This pattern holds for all maturities included in the table. The

vast majority of the variation in twelve-month-ahead forecasts is driven by the level factor,

while the fifth factor picks up most of the remainder.

Visual evidence of the contributions of the factors to short-rate forecasts is in Figure 2.

The figure displays impulse responses of the three-month bill yield to one standard deviation

changes in each factor. For example, in the first panel the month-zero yield is 2.73 percentage

points above its mean. Two years later, the yield remains 1.72 percentage points above its

mean. The second (slope) factor corresponds to an immediate drop in the short rate of about

60 basis points, half of which has disappeared after a year. The third and fourth factors

contribute little to current or future short rates. The effect of the fifth factor is qualitatively

different from all of the other factors. It has no effect on the short rate at month zero. One

year later, the short rate has dropped 35 basis points, where it remains for the next year.

Because the factor has no immediate effect on the term structure, I refer to this fifth factor

as the hidden factor.
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I use Monte Carlo simulations to calculate the bias and uncertainty in Table 4’s point

estimates. An individual simulation begins by assuming the model estimated here is correct.

Then a panel of 528 months of yields is simulated. Using these simulated data, the model is

estimated with the Kalman filter. The simulations reveal that the total standard deviations of

twelve-month-ahead forecasts are downward biased. For example, as noted above, the ‘true’

model implies a standard deviation of three-month yield forecasts of 2.28 percentage points.

The mean standard deviation from the Monte Carlo simulations is only 1.86 percentage

points, as displayed in parentheses. The 2.5 and 97.5 percentile values are 0.87 and 3.15

percentage points respectively, as displayed in brackets.

There is substantial statistical uncertainty about the role of the hidden factor in yield

dynamics. Under the null that the estimated model is true, point estimates of the contribu-

tion of the factor to twelve-month-ahead forecasts are downward biased. Their confidence

intervals are also very wide. For example, when the hidden factor truly accounts for 36 basis

points of standard deviation in twelve-month-ahead forecasts of the short rate, ML estima-

tion using 528 months of data produces a mean point estimate of 30 basis points. A 95

percent confidence interval ranges from 3 to 64 basis points. Thus if we restrict ourselves to

using only bond yields, it is probably impossible to make even qualitative statements about

the role of the hidden factor. Below I also draw on evidence from the Survey of Professional

Forecasters and the growth of industrial production.

Because the hidden factor plays the central role in the remainder of the paper, it is useful

to take a quick look at its time-series behavior. Figure 3 plots smoothed estimates of this

factor over the sample period 1964 through 2007. The factor is normalized by its model-

implied population standard deviation. Its persistence is fairly low. The model’s parameter

estimates imply that a shock to the factor (holding all other factors constant) has a half life

of five months. Any relation between the factor and economic fluctuations is not obvious

from this figure, which also displays NBER turning points. Section 4.3 uncovers a relatively

high-frequency relation between the factor and economic activity.
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3.8 Estimates of the factors’ role in excess return dynamics

Although the level factor is the dominant driver of yields, it plays a much less important role

in expected excess returns. In this section I focus on the behavior of the log return from t

to t + j on a bond with period-t maturity m, in excess of the log return on a j-period bond.

Expressed in terms of yields, the observed excess return is

xr
(m)
t,t+j ≡ my

(m)
t − (m − j)y

(m−j)
t+j − jy

(j)
t . (29)

Using the model’s description of yield dynamics, this return is

xr
(m)
t,t+j = mAm − (m − j)Am−j − jAj

+
(
mB′

m − (m − j)B′
m−jK

j − jB′
j

)
xt

−(m − j)B′
m−j

(
j∑

i=1

Kj−iεt+i

)

+mη
(m)
t − jη

(j)
t − (m − j)η

(m−j)
t+j . (30)

The four lines on the right side of (30) are, respectively, the unconditional mean, the variation

in the conditional mean owing to the period-t state vector, the return innovation owing to

shocks to the state vector, and the measurement error component.

The estimates of A and B allow to study directly the population properties of this excess

return for a one-year horizon (j = 12) and for bonds with maturities of two, three, four,

and five years. Panel A of Table 5 reports unconditional means and standard deviations

of these returns. Standard deviations are calculated for both true returns (i.e., excluding

measurement error) and observed returns. The panel also reports the fraction of the total

variance attributable to factor-driven variations in the conditional mean.

Unconditional mean excess annual returns are less than one percent for all of these bonds.

Population standard deviations of the returns range from 1.8 percent for the two-year bond

to 5.6 percent for the five-year bond. We see in the panel that measurement error contributes
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very little to the volatility of observed returns; differences in standard deviations between

true and observed returns are at most a basis point.

Panel A also reports that predictable variations in returns account for about 20 percent

of total return variance. Panel B decomposes this predictable variance into components

attributable to each factor. The structure of Panel B mirrors that of Table 4. Consider, for

example, the month-t expectation of the annual excess log return to a five-year bond. The

estimated unconditional standard deviation of this expectation is 2.53 percent. Most of this

variation is due to “slope” factor. The standard deviation attributable to this factor is 1.97

percent.

Given the well-known relation between the slope of the term structure and expected

excess bond returns, it is not surprising that for each bond, the slope factor accounts for

over half of the predictable variance. A glance at Figures 1 and 2 explains why. The slope

factor simultaneously raises long-term bond yields and lowers expected future short rates.

The more interesting result in Panel B is that the fifth, hidden factor explains up to 30

percent of the predictable variance. Again, a glance at the two figures explains why. The

hidden factor lowers expected future short rates while leaving long-term yields unchanged.

Table 5 documents substantial statistical uncertainty about the contribution of the hidden

factor to expected excess returns. This mirrors the results for yield dynamics in Table 4.

For example, when the hidden factor truly accounts for 1.35 percentage points of standard

deviation in annual excess returns to a five-year bond, ML estimation using 528 months of

data produces a mean point estimate of 1.15 percentage points. A 95 percent confidence

interval ranges from 24 basis points to 2.12 percentage points.

These results, along with the results in the previous subsections, lead to two main conclu-

sions. First, the point estimates imply an economically important role for the hidden factor.

It drives both expectations of future yields and excess returns, although its role in the cross

section is negligible. Put differently, factors that are most important for determining the

shape of the term structure are not the most important in determining expected excess bond
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returns. This conclusion is consistent with the theory of Section 2.5. Second, the uncertainty

in these point estimates is very large. Based only on this evidence, we cannot be confident

that the results are not spurious.

From a statistical perspective, the main problem is that the hidden factor is difficult to

infer from a panel of yields. We need to look at other sources of information to learn more

about this factor.

4 Additional evidence of the hidden factor

Is the estimated hidden factor truly capturing investors’ expectations, or is it simply the

consequence of overfitting a particular sample? A natural way to answer this question is

to compare the factor to investors’ actual forecasts. At the end of the first month of every

quarter since 1981Q3, participants in the Survey of Professional Forecasters are asked for

their forecasts of the average level of the three-month Treasury bill during each of the next

four quarters. This section examines the relation between mean forecasts (where the mean

is taken across the participants) and contemporaneous values of the hidden term structure

factor. Here, “contemporaneous” means the smoothed estimate for the end of the first month

in the quarter.

If the smoothed factor is spurious, forecasters’ contemporaneous expectations should be

unrelated to it. For example, assume the quarter-t level of the smoothed hidden factor

predicts that the short rate will decline over the next few quarters. If this prediction is

simply an ex-post interpretation of the data by the maximum likelihood estimation, then

the survey responses in quarter t will not anticipate a decline in rates. Thus we can test the

null hypothesis that the hidden factor is entirely spurious by examining its covariation with

survey forecasts of changes in rates.

Before presenting the regression results, it is instructive to study in detail two particular

observations.
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4.1 A tale of two Octobers

Panel A of Figure 4 displays term structures for the month-ends of October 2001 and October

2004. (The plotted points are yields for maturities of three months and one through five

years.) The shapes of the term structures are similar. The three-month bill yields are both

around two percent. The largest difference between the term structures is at the long end,

where the October 2001 observation is 37 basis points above the October 2004 observation.

The dates were chosen both because the term structures are similar and the smoothed

estimates of the fifth factor are not.4 The October 2001 estimate of this factor is about 0.8

standard deviations, while the October 2004 estimate is about −1.1 standard deviations.

This large difference in estimates of the fifth factor corresponds to a large difference in

expected excess bond returns. Panel B of the figure displays model-implied expectations, as

of October 2001 and October 2004, of one-year log returns to bonds in excess of the yield on

a one-year bond. In 2001, the expectations are positive for all of the plotted maturities (two

through five years), from 0.4 percent for the two-year bond to 1.7 percent for the five-year

bond. In 2004, the expectations are negative, ranging from −0.4 percent to −1.2 percent.

Differences in expected excess returns are largely accounted for by the difference in the

expected time path of the three-month bill rate. Panel C reports that for 2001, the bill rate

is expected to decline slightly for a few months, then rise modestly. By contrast, in 2004 the

bill rate is expected to rise substantially over the next year. The average difference between

the two sets of forecasts over the upcoming year (November through December of the next

year) is about 65 basis points.

Are these model-implied expectations reasonably consistent with investors’ expectations

at the time? According to the Survey of Professional Forecasters, they are. For the surveys

returned in early November 2001, the mean forecasts of the three-month bill rate for the next

four quarters (2002Q1 through 2002Q4) are 1.9, 2.0, 2.4 percent, and 2.8 percent respectively.

Three years later, mean forecasts are about 50 basis points higher. The forecasts for 2005Q1

4In particular, the months were not chosen based on the contemporaneous survey forecasts.
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through 2005Q4 are 2.3, 2.6, 2.9, and 3.2 percent. Investors (or at least those investors with

beliefs similar to those embodied by the mean forecasts of the survey particpants) anticipated

lower expected excess returns in October 2004 than in October 2001.

Differences in expected excess returns across these two months may be related to antici-

pated macroeconomic activity. Forecasters responding to the 2001Q4 survey were much more

pessimistic about near-term economic growth than were those responding to the 2004Q4 sur-

vey. The 2001Q1 mean forecast of real GDP growth in 2002 was 0.8 percent. By contrast,

the 2004Q4 forecast of real GDP growth in 2005 was 3.5 percent. The link between the

hidden factor and expected future economic growth is pursued in Section 4.3.

A single comparison of two months is illuminating, but not statistically compelling. The

next subsection contains some regression evidence.

4.2 Regression results

Denote the quarter-t mean survey forecast of the three-month bill in quarter t + j less the

quarter-t bill yield as SPF EXPECT(t, j). To align the bill yield with the survey timing,

the quarter-t yield is defined as the three-month yield as of the end of the first month in

the quarter. The continuously compounded yield from CRSP is converted to a discount

basis to match the survey’s yield convention. Denote quarter-t smoothed estimates of the

hidden factor as MODEL HIDDENt. Following the timing convention of yields, I define the

quarterly factor as the smoothed estimate for the end of the first month in the quarter. To

simplify interpretation of the estimated regression coefficients, this factor is normalized by

its population standard deviation. The sample period is 1981Q3 through 2007Q4.

I first estimate the regression

MODEL HIDDENt = b0 + b1SPF EXPECT(t, j) + ej,t (31)

for forecast horizons of one through four quarters (j = 1, . . . ,). Under the null hypothesis
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that the smoothed estimate of the hidden factor is spurious, the coefficient b1 should be

zero. Because quarterly survey forecasts are serially correlated, standard errors use the

Newey-West adjustment for four lags of moving average residuals. Although the regression

is probably more intuitive if the regressor and regressand are switched, there is a generated

regressor problem when using the smoothed estimate of the hidden factor as the explanatory

variable.

The coefficient should be negative if the model’s factor is not spurious. As shown in Figure

2, the model implies that a one standard deviation increase in the hidden factor corresponds

to an expected drop in the three-month bill rate of 35 basis points over the subsequent year.

Reversing the order of this comparison for the purposes of (31), an expected increase in the

bill rate of one percentage point corresponds to −2.9 standard deviations of the factor.

Coefficient estimates for each forecast horizon are displayed in Panel A of Table 6. The

null hypothesis is overwhelmingly rejected. The point estimates are reliably negative, with

asymptotic t statistics ranging from −3.0 to −4.2. The point estimates are less than the

model predicts, ranging from −0.5 to −1.3. In other words, the estimated factors respond

less to true variations in expected changes in short rates than the model implies.

These regressions are estimated over the entire sample for which forecasts are available

from the Survey of Professional Forecasters. From a statistical perspective, one unfortunate

feature of this sample is that the estimated term structure factors are not uncorrelated.

Over the entire 1964 through 2007 sample, the sample correlation between smoothed values

of the level and hidden factors is very close to zero. But from 1981Q3 through 2007Q4, the

sample correlation is about 0.27. As Figure 2 shows, both the level and hidden factors have

the same qualitative effect on expected future short rates. When the factors are high, short

rates are expected to decline. Hence it is possible that the negative point estimates for (31)

are proxying for the relation between the level of rates and expected future changes in rates.

(Note, though, that this proxy story does not explain the tale of two Octobers.)

To control for the level of the term structure, I reverse (31) and add the estimated level
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factor as an additional explanatory variable. The regression is

SPF EXPECT(t, j) = b0 + b1MODEL LEVELt + b2MODEL HIDDENt + ej,t. (32)

Both explanatory variables are generated regressors. Because the hidden factor is harder to

extract from the yield curve than is the level factor, there is likely to be more noise in the

model’s estimate of the former factor than the latter.

Coefficient estimates for each forecast horizon are displayed in Panel B of Table 6. Both

factors are negatively associated with survey expectations of future changes in the bill yield.

More importantly, the statistical significance of the relation between the hidden factor and

survey expectations does not disappear when the level factor is included. The asymptotic t

statistics for the coefficients on the hidden factor range between −2.2 and −2.6.

This evidence supports the model’s conclusion that the hidden factor is known by in-

vestors. In order for this factor to not affect the term structure, its predictive power for

future short rates must be offset by variations in risk premia. Such a story is more plausible

if the hidden factor can be linked to the business cycle.

4.3 The hidden factor and economic activity

I examine the lead/lag relation between smoothed estimates of the hidden factor and monthly

changes in log industrial production. The estimated regression is

100(log(IPt) − log(IPt−1)) = b0,i + b1,iMODEL HIDDENt−i + et,i, i = −6, . . . , 6. (33)

The change in IP lags the hidden factor for i < 0 and leads it for i > 0. Log changes in

IP are serially correlated. A typical serial correlation of fitted residuals for (33) is about

0.3. I therefore report Newey-West standard errors adjusted for two lags of moving average

residuals. As in Section 4.2, the hidden factor is normalized by its population standard

deviation.
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Estimation results are in Table 7. There is an inverse relation between industrial produc-

tion and the hidden factor. In other words, low growth in industrial production corresponds

to high risk premia accompanied by expected future declines in short-term rates. Growth

in industrial production begins to drop a few months prior to the increase in the hidden

factor, continuing for a couple of months after the increase in the hidden factor. If the

smoothed hidden factor is a standard deviation above its mean in month t, monthly growth

in industrial production in months t − 4 through t + 2 averages about 10 basis points per

month below average. (To put the 10 basis points in perspective, the standard deviation of

monthly IP growth is about 70 basis points.)

These results are comforting because they are qualitatively consistent with a simple story.

Investors believe that the Fed will attempt to offset some types of short-lived macroeconomic

shocks with monetary policy actions. The Fed action is not anticipated to be immediate;

short rates may not change for a number of months. The same macroeconomic shocks change

investors’ willingness to bear risk. Thus the net effect of the macro shocks on current yields

is muted because the expected change in short rates and the change in risk premia work in

opposite directions.

5 Conclusion

In the context of a Gaussian dynamic term structure model, the evidence presented here

points to the presence of a hidden factor. The factor contains substantial information about

expected future yields but has a negligible immediate effect on the term structure. The factor

is related to both real activity and survey reports of investors’ interest rate expectations.

An important lesson to draw from this evidence is that an econometrician should not rely

on estimation techniques that extract information exclusively from the cross section. Such

techniques are standard in the literature on dynamic term structure models. Instead, she

needs to build models that accommodate hidden factors, and use estimation techniques that
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are robust to the presence of these factors. The method adopted here is filtering, which uses

information from yield dynamics to infer factor properties. Another potentially valuable

approach is to use information from sources other than bond yields.

Appendix

This appendix presents some details of model estimation and factor rotation. For conve-

nience, the model is estimated imposing the normalized dynamics

x†
t+1 = D†x†

t + Σ†ε†t+1. (34)

In (34), D† is a diagonal matrix and Σ† is lower triangular with ones along the diagonal.

Rather than estimating directly both the physical and equivalent-martingale parameters, I

estimate the physical parameters in (34) and the parameters of an unrestricted measurement

equation

yt = A + B†x†
t + ηt, ηt ∼ N(0, σ2

η). (35)

In (35), A is a 6 × 1 vector and B† is a 6 × 5 matrix. Lurking behind the parameters of

this measurement equation are the equivalent martingale dynamics of x†
t . Because there

are five factors to explain six bond yields, A and B† exactly identify the parameters of the

no-arbitrage model δ0, δ1, μq, and Kq. As discussed in Duffee (2009), numerical optimization

of the likelihood function is faster and more reliable when the estimated parameters are A

and B† than when they are the parameters of the no-arbitrage model. Further details of the

optimization procedure followed here are in Duffee (2009).

After estimation, the factors are rotated into principal components as described in Sec-

tion 3.4. Define the 5 × 5 matrix Γ as

Γ = C−1
0 B†

\3 (36)
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where B†
\3 is the matrix B† excluding the row corresponding to the three-year bond. The

rotated state vector is

xt = Γx†
t . (37)

The parameters of its dynamics in equation (25) are defined by

K = ΓD†Γ−1, Σ = chol
(
ΓΣ†Σ†′Γ′

)
. (38)

The relation between bond yields and the rotated factors is equation (22) where the new

factor loadings are

B = B†Γ−1. (39)

These factor loadings (for all but the three-year bond yield) are the eigenvectors of the

diagonalization (24).

The parameters of the short-rate equation and the equivalent-martingale dynamics of the

state vector are not directly used in the paper. They are reported here for convenience, using

the principal components factor rotation. Thus they correspond to the physical measure

parameters reported in Table 2.

δ0 = 0.0043

δ1 =

(
0.527 -0.662 -0.182 2.495 -3.898

)′

μq = 10−4

(
0.520 0.094 0.452 −0.204 0.066

)′

Kq =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.973 0.096 −0.029 −0.962 1.388

0.028 0.990 0.052 1.103 −1.870

0.032 0.042 1.239 1.231 −1.764

−0.012 −0.013 −0.149 0.597 0.816

0.002 0.003 0.016 0.035 0.994

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The implied term structure dynamics are well-behaved over the maturity range used

34



in estimation (out to five years). Beyond that range–say, at ten years–the estimated term

structure dynamics are unrealistic. This is a common problem with estimated Gaussian term

structure models. Empirical estimates of Kq matrices typically have the largest eigenvalue

of Kq approximately equal to one. If the value exceeds one, factor dynamics are explosive

as maturity increases. Here, the largest eigenvalue is 1.046.
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Table 1. Summary statistics for Treasury yields

Month-end yields on six zero-coupon Treasury bonds are from CRSP. The sample is 528 ob-
servations from January 1964 through December 2007. Yields are continuously compounded
and expressed in percent per year. Panel B reports five eigenvalues of covariance matrices.
For “Yield levels,” the data are the six yields. For “Monthly changes,” the data are monthly
changes in the six yields. For “Annual returns,” the data are overlapping observations of
annual log returns to the five bonds with initial maturities of one through five years.

Panel A. Univariate statistics

Maturity
3 mon 1 yr 2 yr 3 yr 4 yr 5 yr

Mean 5.87 6.26 6.47 6.64 6.77 6.85

Std dev 2.77 2.74 2.66 2.58 2.53 2.49

Panel B. Variances of principal components

Index of component
1 2 3 4 5

Yield levels 40.405 0.930 0.068 0.008 0.005

Monthly changes 1.119 0.128 0.021 0.008 0.005

Annual returns 108.048 8.072 0.314 0.079 0.047
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Table 2. An estimated dynamic term structure model

A length-five state vector xt has dynamics

xt+1 = Kxt + Σεt+1, εt+1 ∼ N(0, I).

Yields on bonds with maturities of three months and one through five years are stacked in
the vector yt. Yields are expressed in decimal form per month. The measurement equation
is

yt = A + Bxt + ηt, ηt ∼ N(0, σ2
ηI).

The model is estimated with maximum likelihood and the Kalman filter using month-end
yields from 1964 through 2007. The factors are normalized to equal the five principal com-
ponents of yields on bonds with maturities of three months and one, two, four, and five
years. The table reports parameter estimates and standard errors. The standard errors are
computed from Monte Carlo simulations under the null hypothesis that the estimated model
is true.
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K 0.987 −0.018 −0.172 0.987 −3.355
(0.009) (0.049) (0.204) (0.872) (1.446)

0.003 0.936 −0.301 0.213 −0.033
(0.002) (0.020) (0.067) (0.266) (0.486)
−0.001 −0.003 0.820 0.506 0.065
(0.001) (0.005) (0.033) (0.121) (0.242)

0.000 −0.002 0.026 0.692 −0.024
(0.000) (0.002) (0.010) (0.049) (0.093)

0.000 −0.001 0.001 0.018 0.869
(0.000) (0.001) (0.006) (0.035) (0.046)

Σ × 104 7.913 0 0 0 0
(0.256)
−0.713 2.538 0 0 0
(0.304) (0.091)

0.379 0.590 0.928 0 0
(0.084) (0.109) (0.044)
−0.027 0.025 −0.224 0.328 0
(0.030) (0.031) (0.035) (0.033)

0.007 0.033 −0.039 −0.034 0.165
(0.022) (0.024) (0.029) (0.031) (0.028)

A×103 B(:,1) B(:,2) B(:,3) B(:,4) B(:,5)

3 mon 4.258 0.459 −0.650 −0.598 0.102 0.003
(1.036) (0.024) (0.028) (0.029) (0.018) (0.016)

1 year 4.564 0.464 −0.314 0.602 −0.567 0.055
(1.061) (0.015) (0.037) (0.023) (0.022) (0.071)

2 year 4.713 0.457 0.065 0.405 0.742 −0.268
(1.085) (0.004) (0.032) (0.025) (0.038) (0.101)

3 year 4.851 0.443 0.287 0.167 0.433 0.618
(1.077) (0.011) (0.023) (0.030) (0.089) (0.115)

4 year 4.960 0.432 0.437 −0.132 0.047 0.776
(1.075) (0.018) (0.018) (0.031) (0.102) (0.012)

5 year 5.027 0.422 0.533 −0.316 −0.340 −0.568
(1.071) (0.024) (0.021) (0.028) (0.075) (0.048)

ση × 105 4.612
(0.114)
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Table 3. Model-implied population properties of term structure factors

A five-factor Gaussian term structure model is estimated with the Kalman filter. True yields
are affine functions of the unobserved factors. Observed yields are contaminated with iid
measurement error. The data are month-end yields, from January 1964 through December
2007, on zero-coupon bonds with maturities of three months and one through five years.
The factors are rotated to represent, in order, the first five principal components of the
bond yields (expressed in percent per year). The first column of the table reports the
population standard deviations of the factors. Standard errors, computed from Monte Carlo
simulations, are in parentheses. The second column reports the population R2 of a regression
of the true, unobserved factors on contemporaneous values of all six observed bond yields.
The third column reports the population R2 of similar regressions using smoothed estimates
of the factors in place of the true factors. The fourth column reports population correlations
between true factors and smoothed estimates of the factors.

R2’s of factors on yields Correl of true,
Factor Std dev True factors Smoothed factors smoothed factor

1 6.017 1.000 1.000 1.000
(1.182)

2 0.925 0.997 1.000 0.998
(0.110)

3 0.251 0.954 0.993 0.982
(0.020)

4 0.067 0.623 0.821 0.871
(0.005)

5 0.043 0.433 0.591 0.858
(0.004)
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Table 4. Decomposition of volatility of 12-month-ahead yield forecasts

A five-factor Gaussian term structure model is estimated with the Kalman filter. The factors
represent, in order, the first five principal components of the bond yields and are uncondi-
tionally uncorrelated. Parameter estimates are used to construct estimates of unconditional
variances of 12-month-ahead expectations of bond yields, expressed in percent per year.
These variances are the sums of estimated variances attributable to each of the five factors.
The table reports the square roots of these estimated variances. Monte Carlo simulations
are used to compute biases and uncertainty in these estimates. Using the null hypothesis
that the estimated model is correct, the term structure model is estimated using simulated
yields. Means and ninety-five percentile bounds on the estimated standard deviations are
reported in parentheses and brackets respectively.

Std dev of
forecast Std dev attributable to factor

Maturity (%/year) 1 2 3 4 5

3 mon 2.28 2.23 0.28 0.07 0.06 0.36
(1.86) (1.79) (0.27) (0.14) (0.11) (0.30)

[0.87 3.15] [0.77 3.10] [0.02 0.58] [0.00 0.39] [0.00 0.31] [0.03 0.64]

1 yr 2.32 2.28 0.15 0.04 0.07 0.37
(1.88) (1.82) (0.18) (0.12) (0.11) (0.31)

[0.88 3.18] [0.80 3.13] [0.01 0.44] [0.00 0.35] [0.00 0.31] [0.04 0.61]

2 yr 2.34 2.31 0.02 0.07 0.04 0.38
(1.88) (1.83) (0.11) (0.11) (0.10) (0.32)

[0.87 3.18] [0.82 3.13] [0.00 0.31] [0.01 0.32] [0.00 0.28] [0.06 0.60]

3 yr 2.33 2.29 0.12 0.14 0.01 0.37
(1.86) (1.81) (0.11) (0.13) (0.08) (0.32)

[0.86 3.12] [0.81 3.09] [0.00 0.35] [0.00 0.35] [0.00 0.25] [0.08 0.58]

4 yr 2.32 2.27 0.20 0.19 0.01 0.37
(1.85) (1.79) (0.15) (0.17) (0.08) (0.32)

[0.86 3.11] [0.79 3.07] [0.01 0.41] [0.01 0.39] [0.00 0.23] [0.09 0.56]

5 yr 2.30 2.24 0.25 0.24 0.03 0.37
(1.83) (1.77) (0.19) (0.20) (0.08) (0.32)

[0.85 3.07] [0.77 3.04] [0.01 0.47] [0.02 0.42] [0.00 0.23] [0.10 0.57]
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Table 5. Model-implied properties of annual excess bond returns

A five-factor Gaussian term structure model is estimated with the Kalman filter. The factors
represent, in order, the first five principal components of the bond yields and are uncondi-
tionally uncorrelated. Parameter estimates are used to calculate population properties of
annual log returns to bonds in excess of the log return to a one-year bond. In Panel A, re-
turn variances are calculated for both true excess returns and observed excess returns. The
latter are contaminated by measurement error. The columns labeled “Predictable frac of
var” report the fraction of the variance attributable to time-variation in conditional means
of true returns. Panel B decomposes the volatility of true conditional expected excess returns
into components attributable to each factor. Its structure follows Table 4.

Panel A. Univariate statistics

True returns Observed returns
Std Predictable Std Predictable

Maturity Mean dev frac of var dev frac of var

2 yr 0.36 1.78 0.20 1.78 0.19

3 yr 0.68 3.24 0.20 3.24 0.20

4 yr 0.87 4.50 0.22 4.51 0.22

5 yr 0.88 5.58 0.21 5.59 0.21

Panel B. Decomposition of volatility of expected excess returns

Std dev of
conditional mean Std dev attributable to factor

Maturity (%/year) 1 2 3 4 5

2 yr 0.79 0.43 0.56 0.02 0.07 0.35
(0.83) (0.47) (0.55) (0.11) (0.11) (0.29)

[0.54 1.14] [0.15 0.75] [0.20 0.87] [0.00 0.32] [0.01 0.29] [0.03 0.59]

3 yr 1.46 0.57 1.04 0.11 0.05 0.84
(1.54) (0.69) (1.04) (0.21) (0.19) (0.72)

[1.03 2.13] [0.18 1.15] [0.40 1.62] [0.01 0.62] [0.01 0.54] [0.21 1.28]

4 yr 2.12 0.74 1.54 0.13 0.02 1.24
(2.21) (0.90) (1.54) (0.30) (0.26) (1.07)

[1.53 3.02] [0.25 1.52] [0.62 2.37] [0.01 0.84] [0.01 0.74] [0.36 1.85]

5 yr 2.53 0.82 1.97 0.23 0.02 1.35
(2.68) (1.03) (1.99) (0.37) (0.31) (1.15)

[1.84 3.64] [0.22 1.79] [0.85 2.99] [0.01 1.04] [0.01 0.90] [0.24 2.12]
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Table 6. Model-implied expectations compared to survey forecasts

Quarterly observations of expectations of future Treasury bill yields are from the Survey of
Professional Forecasters. The data used are quarter-t mean survey forecasts of the three-
month T-bill yield during quarters t + j, j = 1, . . . 4. The contemporaneous three-month
yield is subtracted from the forecasts to produce forecasted changes in the yield. Contem-
poraneous filtered estimates of the “level” and “hidden” factors are taken from a five-factor
term structure model. The factors are normalized to have population standard deviations
of one. All regressions are estimated from 1981Q3 through 2007Q4 (106 quarterly obser-
vations). Newey-West standard errors are in parentheses, adjusted for four lags of moving
average residuals.

Panel A. Regressions of the hidden factor on the survey-based expected change

Quarters ahead (j)
1 2 3 4

Coef −1.332 −0.965 −0.711 −0.544
(0.315) (0.300) (0.237) (0.174)

AR(1) of
residual 0.71 0.73 0.72 0.71

Panel B. Regressions of the survey-based expected change on the level and hidden factors

Quarters ahead (j)
1 2 3 4

Coef on level −0.101 −0.140 −0.198 −0.256
(0.033) (0.043) (0.056) (0.072)

Coef on hidde −0.132 −0.147 −0.142 −0.149
(0.052) (0.057) (0.058) (0.069)

AR(1) of
residual 0.27 0.51 0.56 0.58
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Table 7. The relation between industrial production and the hidden factor

The log change industrial production from month t−1 to month t is regressed on the month
t− i smoothed estimate of the hidden factor, for i = −6, . . . , 6. The log change is expressed
in percent and the factor is normalized to have a standard deviation of one. Newey-West
standard errors are calculated using two lags of moving average residuals. The sample period
is 1964 through 2007.

Lead of
Δ log(IP) Coef Std error t-statistic

−6 0.002 0.044 0.54

−5 −0.032 0.045 −0.71

−4 −0.056 0.047 −1.20

−3 −0.085 0.049 −1.76

−2 −0.102 0.049 −2.08

−1 −0.102 0.050 −2.05

0 −0.117 0.053 −2.20

1 −0.118 0.056 −2.10

2 −0.105 0.056 −1.88

3 −0.091 0.053 −1.73

4 −0.088 0.050 −1.76

5 −0.064 0.050 −1.29

6 −0.074 0.050 −1.49
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Fig. 1. Estimated loadings of annualized yields on the five factors of a term structure model.
Each line represents the response of the term structure to a one standard deviation change
in the given factor.
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Fig. 2. Responses of the three-month bill rate to term structure factors. Each panel plots
the expected time path of the three-month bill yield, assuming that at month zero the
specified factor is one standard deviation above its mean. All other factors are set to their
unconditional means.
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Fig. 3. Smoothed estimates of the “hidden” factor. The vertical lines are NBER business
cycle break points.
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Fig. 4. A comparison of October 2001 and October 2004. Values for the two months are
plotted with ’+’ and ’o’ respectively. Panel A displays the month-end term structures. Panel
B displays model-implied expected excess log returns (over the one-year yield) for bonds with
maturities of two through five years. Panel C displays expected future three-month yields
over the next 24 months, where month zero is October of either 2001 or 2004. Panel D
displays expected future five-year yields.
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